

THE INTERBASE
& FIREBIRD
DEVELOPER
MAGAZINE

Credits

Alexey Kovyazin,
Chief Editor

Dmitri Kuzmenko,
Editor

Helen Borrie,
Editor

Lev Tashchilin,
Designer

Editorial Office

IBase IBDeveloper, office 5,
1-st Novokuznetsky lane, 10
zip: 115184

Moscow, Russia
Phone: +7495 6869763
Fax: +7495 9531334

Email:
ibdeveloper@ibdeveloper.com

www.ibdeveloper.com

© Copyright 2005-2006 by
IB Developer. All rights reserved.

No part of this publication may be
reproduced or transmitted in any
form of or by any means, electronic
or mechanical, including photo-
copy or any information storage
and retrieval system, without per-
mission.

For promotional reprints, contact re-
print coordinator Alexey Kovyazin,
editor@ibdeveloper.com.

IBDeveloper reserves the right to
revise, republish and authorize its
readers to use the articles submit-
ted for publication. All brand and
product names used in on these
pages are trade names, service
marks or trademarks of their re-
spective owners.

Contents
Editor notes
by Alexey Kovyazin
Money for nothing ... 4

Oldest Active
by Helen Borrie
RTFM — regarding those free manuals ... 5

Community
by Carlos Cantu
About Dolphins and Birds ... 6

Cover Story
by Paul Ruizendaal
The story of Fyracle .. 8

Development area
by Paul Ruizendaal
Common Table Expression in Fyracle .. 12

Products Overview
IBSurgeon Products .. 17

Development area
by Paul Ruizendaal
Morfik's WebOS: Innovating beyond LAMP 18

by Vlad Horsun
Global Temporary Tables in Fyracle .. 23

TestBed
by Alexey Kovyazin
TPC-C based tests results .. 26

Bonus
by Alexey Kovyazin
Comprehensive Repairing Guide. Part 1 .. 35

2006 ISSUE 4 Contents

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com �

mailto:ibdeveloper@ibdeveloper.com
http://www.ibdeveloper.com
mailto:editor@ibdeveloper.com

I guess some of our readers have be-
come a bit tired of waiting and won-

dering when the new issue would be re-
leased. I am really sorry about the long
delay, but there have been some serious
financial and time issues holding up
production.

I want to begin with sincere thanks
to people who made donations to our
magazine. Orlin Chankov and Steve
Kramer, thank you, guys, for your help.
Your donations were much appreciated.

We’ve come to realise that producing
the magazine with only advertising and
sponsors to support it is impossible.
We’ve decided to change our business
model slightly. We are going to run
special proprietary editions of each is-
sue with bonus articles. These special
editions will be available in electronic
(printable PDF) and paper versions.
From this issue forward, the latest issue
will be available only for purchase for
a period—say one or two weeks from
publication—and will be fully released
afterwards for everyone, minus the bo-
nus articles.

It’s regrettable to have to move in this
direction but it seems the only way to
make the magazine viable. Orlin and
Steve, for their generosity, will have
free, unlimited subscriptions to the
electronic version of IBDeveloper mag-
azine.

Borland
On February 8, Borland published plans
to spin off the developer product line,
including Delphi and InterBase. It
looked so peculiar at the time that
many developers said “Borland is dead”,
and probably several less printable ex-
pressions. It was really strange and,
for months, all we had were rumors and
fuzzy press-releases.

Recently, however, the chief Borland
executives of the new “DevCo” (David
I, Jason Vokes and others) went on a
worldwide tour to clarify events and
plans for the developer community. I
met with Jason in Moscow on May 23 at

a «Borland Developer Studio» confer-
ence and a lot of things got clearer.

In essence, Borland is splitting into two
companies: one is solution-targeted
(ALM) and the other is oriented on de-
veloper tools. As I understand, the De-
veloper Company (alias “DevCo”) guys
were the initiators of the spin-off be-
cause they considered the IDE product
line too different from the ALM busi-
ness. I can even guess that Delphi and
the other IDEs were the financial props
for ALM! Jason did not say so, of course,
but it seems quite obvious to me.

According to their statements, there’s
no problem with Delphi sales—Delphi
2006 is a bestseller—and no problem
with its development. Jason demon-
strated an impressive roadmap for Del-
phi up to 2009, with many exciting fea-
tures, and things of interest for JBuilder
and C++ Builder too.

According to the team, InterBase sales
are good and its roadmap is interesting,
too. There is no indication that DevCo
intends to drop all these profitable
products and, personally, I feel much
better about it all now. We can only
await the completion of the spin-off.

Just one other thing—why isn’t there
any name for “DevCo” yet? One guess is
that the “Borland” brand is one of the
most precious assets of the company
and both the IDE and ALM sides want to
have it. Anyway, Delphi and InterBase
are here to stay, regardless of whether
the branding is “Borland” or “DevCo”!

Jim
Jim Starkey was one of the main news-
makers since the previous issue. Jim is
a living legend and becomes more and
more popular (I think he should start
to sell autographs via eBay!). MySQL
bought Jim’s company Netfrastructure
and hired Jim to make a proprietary
database engine for them. In this is-
sue Carlos H. Cantu comments on all
these events in his article “From Birds
to Dolphins”. As editor I should em-
phasize that this article is his personal

(rather interesting) point of view. Jim’s
departure from active development on
Firebird provided an excellent opportu-
nity to promote Firebird. Now everyone
knows where successful companies are
looking to headhunt developers and
get good ideas :)

Fyracle
This issue is mostly devoted to Fyracle.
I’d like to express great thanks to Paul
Ruizendaal, Vlad Horsun and Eugeniy
Putilin for their help with creating this
issue. Fyracle is on the cutting edge of
new Firebird technologies. Many things
that are already implemented there are
planned for inclusion in Firebird 3.0, so
you can download the future right now.
Read on about Fyracle’s exciting fea-
tures and give it a try!

Unfortunately, we couldn’t include the
article about External Procedures in
Java and .NET in this issue. We’ll try to
ensure that it makes it in time for the
next issue.

TPC-C based test
And yes, we’ve finished the TPC-C series
testing. There are some very interesting
results, so don’t miss the article about
it in the TestBed section of our maga-
zine!

Bonus article
Our bonus material for this issue is the
first part of “The Comprehensive Re-
pairing Guide for InterBase and Fire-
bird”. This part is “Corruption reasons,
Part 1”. If you are keen to know where
the pitfalls and traps for your database
are, order the bonus version of “The
InterBase and Firebird Developer Maga-
zine”!

Money for nothing
By Alexey Kovyazin,
editor@ibdeveloper.com

EDITOR'S NOTE 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com�

mailto:editor@ibdeveloper.com

RTFM - Regarding Those
Free Manuals By Helen Borrie

helebor@tpg.com.au

A quaint side effect of the Firebird
“wanna-be” culture is the oft-sung

lament, entitled “Where Are My Free
Manuals?” I’m undoubtedly a bit over-
sensitive to the assertion that users
of a totally free database engine have
some indisputable right to expect to
pay nothing, ever, for up-to-date user
documentation. As the author of a Very
Fat Book about Firebird, I doubt I will
ever get happy about those list mes-
sages and private emails that criticise
Greedy Me for getting it published com-
mercially instead of just giving it to you
as a gift. It took a year and I’m not even
close to making any profit out of it. I
never expected I would. But–ouch!–it
hurts.

Contrary to popular belief, Borland
did not release the IB 6.0 documenta-
tion set sources in 2000, nor any other
form of documentation. One of the few
things Borland was prepared to be clear
about was that it would act against any-
one in Firebird’s community who tried
to re-publish or update any documen-
tation to which it claimed copyright.
Fortunately for those who demand free
documentation beyond the basics, un-
authorised downloads of these seven
PDF books have remained available
around the Web to this day.

What that means to us as a community
is that every bit of Firebird published
documentation has to be written on
blank paper. It takes time, care, effort,
skills and bodies. That’s why, almost
six years on from the opening of the In-
terBase code, the Firebird Project still
doesn’t have its own complete, inte-
grated, free documentation set.

It does have Quick Start Guides for its
two released versions and a few papers
on topics of interest to newbies, experi-
enced users, or both. It does have three
complete sets of detailed release notes
that document every bug-fix, change
and enhancement and tell users how
to install and configure that particu-
lar Firebird version. Those prepared to
reach past the end of their noses can

discover that full, free-beer documen-
tation is available and can be at your
fingertips with minimal effort.

Besides that, and top of the agenda
currently, Firebird-Docs also has in
hand a large volume of user documen-
tation that is work-in-progress, around
20 weighty chapters that began life in
2002, as a Firebird 1.0 ebook manual
that was distributed to subscribers of
the IBPhoenix CD service. The Volume
I manual, “Using Firebird”, was given to
the Firebird Project in 2004 as Frame-
maker 6 source code under open docu-
ment licensing. Converting the arcane
Adobe sources to the Firebird Docs proj-
ect’s custom Docbook XML format took
a lot of work for a couple of people.

Since then, updating those chapters
has fallen largely to Paul Vinkenoog,
the very same guy who picked up the
unfinished, unusable Docbook system
begun by David Jencks and refactored
it into the sophisticated, multi-lan-
guage system that today can build our
release notes and all of the project’s
currently released user docs in a vari-
ety of formats and languages. Some of

the original chapters need more work
than others, while some others need
to be laundered to eliminate content
that seems too Borlandish for peace of
mind. Paul has a couple of chapters
of “Using Firebird” almost ready to go
now. As the various chapters become
ready for use with Firebird 2.0 and 1.5,
so they will be built and published.

That’s where your free manuals are: in
the hands of the willing few. The Docs
project (see http://www.firebirdsql.
org/index.php?op=devel&sub=doc) ur-
gently needs some reasonably accom-
plished writers of English, with Fire-
bird skills, to pick up the XML sources
of these chapters and upgrade them
to Firebird 2.0, taking in Firebird 1.5
along the way. Waiting in the wings are
Spanish, Japanese, Russian and Brazil
Portuguese translators. There are tasks
aplenty here for those with some time
to commit and the will to participate in
documenting Firebird.

2006 ISSUE 4 OLDEST ACTIVE

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com �

mailto:helebor@tpg.com.au
http://www.firebirdsql.org/index.php?op=devel&sub=doc
http://www.firebirdsql.org/index.php?op=devel&sub=doc
http://www.firebirddevelopersday.com.br/fdd/index.html

It seems to me that we are living in
unprecedented times. As never be-
fore, Open Source software has tra-
ditional companies like Microsoft,
Oracle and IBM running scared. If
you think about Linux vs. Windows, it
has been the case for a while already.
Now, it seems to be carrying over to
database server systems.

Those who follow some of the tech-
nology news sites are probably aware

of recent announcements from the “big
guys”: Oracle and IBM both released
free versions of their respective data-
base server products. Microsoft already
had MSDE, along similar lines.

Those free versions do come with a
variety of limitations, such as restrict-
ing RAM/CPU or database size, and,
of course, although free, they are NOT
Open Source. They notably lack one of
the base benefits of open source, the
ability to get your hands on the source
code and make your own, custom builds.
And the question of whether those free
versions will be maintained or updated
by the vendors remains unknown.

The important thing to note is that
things are changing! Two or three years
ago, it would have been hard to imagine
Oracle or IBM releasing free versions
of their flagship software. In the in-
tervening years, open source database
engines have been growing in features,
power and market space conquest. The
threat of being overtaken is now forc-
ing the “big guys” to change the way
they do business.

MySQL Under Attack
Recently Oracle bought Innobase, the
Finland-based manufacturer of InnoDB,
the most fully featured engine used by
MySQL database. Next, Oracle acquired
Sleepycat, the company behind Berke-
leyDB, another database engine used by
MySQL. It is clear to me that Oracle’s ac-
tions are attempts directed at affecting
market confidence in MySQL. Remember
that MySQL has an impressive number
of installations all over the world and
claims to be the most-used database for
Internet applications. MySQL 5 prom-

About Dolphins and Birds...
By Carlos H. Cantu
carlos@firebase.com.br

ises a lot of new features, including
support for stored procedures, triggers,
referential integrity, etc., introducing
more advanced capabilities that could
make MySQL suitable for than more just
simple data repositories.

So what does all of this have to do with
Firebird? Firebird is Open Source soft-
ware, making the Firebird community
direct or indirect players in this game...
but there is more than that.

From Birds to Dolphins
Jim Starkey, creator of the original In-
terBase and main developer of the Vul-
can fork of Firebird, announced on Feb-
ruary 18 that MySQL AB had bought his
company (Netfrastructure) and he was
moving on with it (see announcement
box). Ann Harrison, who is a partner in
the Firebird/InterBase support compa-
ny IBPhoenix and also Jim’s wife, is to
work part-time for MySQL AB. Ann has
stated publicly that she has no inten-
tion of leaving the Firebird Project.

Before talking about how this can af-
fect the future of Firebird development,
let’s check why MySQL did this.

Jim has a great reputation as a soft-
ware architect and for his first-hand
knowledge about RDBMS development
and architecture. Transactions, stored
procedures, concurrency and all the
other powerful relational database fea-
tures are no mystery to him. Acquir-
ing Netfrastructure and bringing Jim
aboard along with it could be viewed
as MySQL’s answer to Oracle’s attacks.
They want Jim’s brain so they can start
developing their own fully featured
database engine for MySQL. It won’t
surprise me to find a lot of similarities
between Firebird and the next genera-
tions of MySQL.

What About Firebird?
If you are worried about Firebird’s fu-
ture, calm down! The project loses noth-
ing from the recent events. Actually, it
can even win, as I will explain.

Jim Starkey had no direct involvement
in the development of Firebird 1.0, 1.5
and 2.0. All three versions were the

work of the Firebird development team,
a group of people from many places
around the world. Jim jumped into the
scene almost three years ago, when SAS
contracted IBPhoenix to fork Firebird
1.5 and develop a systemically multi-
threaded version for its own purposes.
IBPhoenix hired Jim to do the work.
From that point, he became an active
participant in the Firebird discussion
lists and involved himself with the
team. When Jim’s contract with SAS
ended, SAS gave Vulcan to the Firebird
Project.

I’m sure Jim would not get directly in-
volved with Firebird if he wasn’t being
paid to do his work. The Vulcan proj-
ect was based on a forked version of
Firebird 1.5 code and remains a totally
separate project from Firebird 2.0. The
next major Firebird release, Firebird 3.0,
is planned to be a merger of Vulcan and
Firebird 2.0 into a single code base.

The merger process is being conducted
by the Firebird team. Jim has stated that
he would continue to lurk in the Firebird
lists from time to time, so I don’t doubt
that he will be around if his advice is
needed during the merger process.
However, the Firebird team comprises a
highly competent group of developers
with a thorough understanding of the
code and the requirements. The Inter-
Base 6.0 code was released with no ac-
cess to internal documentation and, in
almost six years, the Firebird developers
have been digging and figuring out for
themselves how to build, change and
clean that buggy code. These guys are
really good and I’m sure they will do a
great job in the merge process!

What does Firebird win from
this?
Jim’s announcement attracted a lot of
attention to Firebird. FireBirdNews, one
of the first sites to spread the notice

COMMUNITY 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com�

mailto:carlos@firebase.com.br

about the Starkey move, got a lot of
links from many other technology sites
and blogs all over the internet. That
provided opportunities for potential
new users, who previously had no con-
tact with Firebird, to discover how good
and special the product is. A special
paper was created to introduce Firebird
to those people: “Get to know Firebird
in 2 minutes” is now available at least
eight languages, with the intention of
presenting Firebird to outsiders in a
simple, concise way.

I’m sure Firebird is getting a lot of new
users who can be persuaded to become
Firebird Foundation members and so
start to contribute to the project fund-
ing. Some of them might join the devel-
opment team and help with bug fixing
and implementing new features. Others
might contribute to documentation
and testing.

In other words, Firebird is out there in
the media and the community is get-
ting the kind of exposure it needs to
get bigger! Consider my line of think-
ing: why should you wait years until
MySQL can finish a new engine, if Fire-
bird offers all the features of a real RD-
BMS right now?

What if Oracle wants to buy
Firebird?
It would be a very difficult (should I
say “impossible”?) thing to make hap-
pen. Firebird has no owner and there is
no individual or company that owns or
controls its inherent rights and assets.
Oracle (or anybody else) can take the
code for free and roll their own Firebird,
as long as they comply with the open
source licensing, but nobody can come
and buy Firebird. We don’t need to worry
about this. Firebird belongs to the com-
munity!

Conclusion
I hope this article provided some clari-
fication of recent events and was able
to show how Firebird can gain from the
extra exposure. Firebird is a great prod-
uct, and it is getting better and better
at each new release.

You can find some more information
about this by checking the posts at
www.FirebirdNews.org.

Announcement box:
My company, Netfrastructure, Inc.,

has been acquired by MySQL, AB. As part
of the agreement, I will be working full
time for MySQL. I expect to lurk on the ar-
chitecture list from time to time and may
contribute the occasional wolf-o-gram,
but I will not be taking an active part in
Firebird development. Although Ann will
work for MySQL, part time, translating
from wolf to English, she will continue to
be active in the Firebird project.

My decision to join MySQL has al-
most nothing to do with Firebird and
everything to do with Netfrastructure.
The Netfrastructure platform represents
what I feel about contemporary comput-
ing hardware and future application re-
quirements, and has been the center of
my technical heart and soul for six year.
Some aspects of Netfrastructure technol-
ogy have already been contributed to the
Vulcan project, but Firebird and Netfra-
structure are architecturally incompat-
ible. An attempt to integrate the tech-

nologies would be unlikely to meet the
goals of either project.

MySQL and Firebird have never seen
each other as competitors and I doubt
this will change in the future. The proj-
ects have different open source philoso-
phies, different technologies, different
customer bases, and different sweet
spots. The ideas behind the two projects
are, happily, public and available to all.
If MySQL and Firebird compete, it is only
competition in offering the best possible
support to their respective customers.

I am pleased to have had the oppor-
tunity to finish the Vulcan project. The
combination of Vulcan SMP and archi-
tecture combined the rich feature set of
Firebird 2 will make a solid release and a
superb platform for future development.

I wish the Firebird project all the
best in years to come. And if you need
an opinion, please feel free to call.

Jim Starkey

better office is a German company specialized
in Borland and Microsoft development environments

 With offices in Oldenburg (head office),
Frankfurt, Berlin, Pennsylvania (USA)

and a Team of appr. 25 associates.
better office provide development tools,

custom made software development,
software consultancy,

Project management, training and support.
They have extensive experience in developing client-server

and web based database systems.

Head Office: Oldenburg
Stau 19 – 6.OG -

26122 Oldenburg

Tel.: +49 (0)441 926740
Fax: +49 (0)441 2488675

E-Mail: info@better-office.com

Benefits:
Borland Delphi WIN32 and .Net
Microsoft .Net Framework
(C# Visual Studio)
JAVA JBuilder and Eclipse
Borland InterBase
Microsoft SQL-Server
IBM DB/2/40 (iSeries)

Customer satisfaction is our top priority! Integrating the Enterprise!

2006 ISSUE 4 COMMUNITY

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com �

http://www.better-office.de
mailto:info@better-office.com

The story of Fyracle
The birth of
Oracle-mode Firebird

Some of the best conversation takes
places over dinner. Picture yourself

in Brussels, Februrary 2003. It was the
weekend of the annual FOSDEM confer-
ence and I had just attended Ann Har-
rison’s talk about Firebird. For several
years I had been looking for a database
to accompany Phoenix Object Basic, a
cross-platform work-alike of Visual Ba-
sic. It needed something equivalent to
Microsoft’s Jet database engine, only it
had to run on both Windows and Linux
and it had to be less fragile than Jet. It
looked like Firebird could fit the bill.

About half a year earlier I had been
searching for an accounting package
and had come across something called
“Compiere”. Compiere is an open source
ERP package, written in Java, running on
top of a Jboss application server. With
several hundred thousand downloads,
Compiere was getting noticed. It had
one big drawback: it only ran on Oracle.
The author of Compiere, Jorg Janke, had
tried to port his software to Postgres,
but had given up. I asked him what
caused him to abandon the project, and
he said that Postgres lacked three es-
sential features: sequences, embedded
transactions (he meant savepoints)
and PL/SQL. This reply intrigued me
and I wondered whether Firebird would
be up to the job.

With these two issues in mind I had
e-mailed Ann and asked if I could in-
vite her to dinner to talk about Firebird
during the FOSDEM conference. Ann,
probably cautious not to have dinner
alone with a complete stranger asked
if Paul Beach could be there and as it
happened most of the IBPhoenix crew
joined the dinner. So there we were, en-
joying hearty Flemish food and discuss-
ing where Firebird could go.

Using Firebird as a better Jet for Phoe-
nix Object Basic was not much of a top-
ic. It was quickly concluded that it had
nearly all features on my wish list, with
one exception. I would have liked for
the possibility to link to external ODBC
database tables. It was suggested that

this could perhaps be modeled on the
existing code for external flat file ta-
bles. This, I think, was a good idea and
remains on my list of future projects for
Firebird. Today, I would look at general-
izing the external table mechanism to a
variety of sources, the most important
being another Firebird instance. The
toughest hill to climb would be to fig-
ure out how to deal with transactions.

The more elaborate part of the dinner
conversation was about Compiere and
how Firebird could support it. Sequenc-
es were not an issue, generators fit the
bill perfectly. Embedded transactions
was a bigger topic. At the time I did not
understand all that much and it took a
while before we could figure out that
what was needed were user level save-
points. Around that time, these had just
been added to the Firebird 1.5 develop-
ment branch, so that hurdle seemed
taken as well.

Remained the issue of PL/SQL and syn-
tax differences between Firebird’s SQL
and Oracle’s SQL. Various approaches
were discussed. One such option was
converting PL/SQL to the equivalent
PSQL text and working from there.
There are some products on the mar-
ket that attempt to do this for other
conversions (e.g. Oracle to DB2, etc.).
None of these appear to work very well,
because if they did, database system
migration would not be seen as such a
major task.

A second approach was suggested by
Paul Beach. He reminded everyone at
the table of the old BLR interface to
Firebird that still existed. It was once
the main connection API into the en-
gine, in a time when client programs
used pre-processing instead of dynamic
SQL to communicate with the database
engine. BLR is an acronym for Binary
Language Representation. It is a low
level language that high level relational
languages like SQL, GDML and QUEL can
be compiled to. Paul suggested that it
might be possible to write a compiler
that mapped PL/SQL to BLR. The issue
of accepting Oracle’s flavour of SQL
could be handled in a similar way.

After tossing the idea around for
about an hour, everybody agreed that
it might work. In theory. Covering ev-
ery nook and cranny of Oracle’s some-
times weird behaviors would be hard.
To make a general solution would be a
major amount of work. It would always
be out of date with the latest release
of Oracle. All very sensible comments.
But I only want to run one specific pro-
gram, I countered. The problem set is
defined and not unbounded. Skeptical
faces remained. With one exception,
Paul Reeves. With a deep, thoughtful
look he agreed: it actually might work.

The challenge was on the table. It
looked like there was a plan that could
give Firebird an oracle-compatibility
mode. But who was going to do it? The
IBPhoenix crew looked rather exhaust-
ed from the 2000-2002 experiences
and had enough struggles of their own
to deal with. They were not going to
shoot of on a tangent just because of
a pleasant dinner. So, during the din-
ner I resolved to look into how hard it
would really be and Ann kindly agreed
to answer questions I may have. Paul
Beach promised to dig up a copy of an
old Interbase 3.3 manual for BLR for
me, which he did.

So, Fyracle was born in a pub-eatery in
Brussels. If the project ever gets to be
famous, I will have to go back to the
place and put a plaque on the wall. Not
sure I can still find it, though.

Building the architecture
In March of that year work began on
exploring the work needed to make
Compiere run on Firebird, with mini-
mal, or even better no change to Com-
piere. Work started with getting the
table definitions across and moving
the data. As it was obvious that a full-
blown SQL compiler would be needed
further down the road, the first item to

By Paul Ruizendaal
pnr@janus-software.com

THE STORY of FYRACLE 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com�

mailto:pnr@janus-software.com

be written was a lexer and a simple recursive descent parser that could handle the
essential oracle-style DDL statements. Rather than writing out BLR, the back-end
of the compiler wrote out a text file with Firebird-style SQL. This was completed
about a month later.

The compiler was then extended with the ability to parse a subset of Oracle’s DML
language, covering the most common constructs. The hardest part in this early
phase was figuring out how to handle Oracle’s join syntax. As most of you probably
know, Oracle has a non-standard syntax for joining tables, using the (+) operator.

What the compiler does is analyzing the WHERE clause and find the sub-expres-
sions that use the (+) operator. These expressions are then ordered and potential
cycles are detected. Cycles are illegal and an error results. The WHERE clause is
then rewritten to contain only the other parts. The sub-expressions using the (+)
operator are moved to the JOIN ON clauses.

With this work done, some of the basic
elements were in place, but Fyracle was
still a text-to-text tool. For Fyracle to
support Compiere it would need to work
together with the Jaybird JDBC driver.
Ann kindly introduced me to Roman
Rokytskyy, who was kind enough to
help and has been providing invaluable
input ever since. After some discussion,
it was decided that Fyracle should ex-
pose a standard Firebird client API, so
that the JDBC driver could connect to
it as a Type II driver. Roman added code
to load “fyracle.dll” when an oracle-
mode connection was specified and I
wrapped the text-to-text tool in a dy-
namic library exposing the standard
API. So, the connection stack would
look like the below graphic:

At this point we had some basic con-
cepts in place. We could take an Oracle
DDL file and use it to define the data-
base structure in Firebird. We could
connect a Java client and use basic
oracle-style SQL. This SQL was translat-
ed on-the-fly to firebird-style SQL and
passed to the engine. The result set, if
any, was passed back to the Java client
in the usual way.

Working with PL/SQL
In parallel work had taken place on
compiling PL/SQL into something that
Firebird could digest. With the help of
Paul’s manual and Ann’s input, I was be-
ginning to understand the concepts be-
hind BLR. It wasn’t long before I had to
accept that there were some real chal-
lenges here: BLR is not a natural match
with PL/SQL. It was designed to be a
low level representation of relational
languages with some extensions added
to help it handle procedural elements
like you would find in for instance the
“qli” command line tool.

PL/SQL in contrast has a very different
design philosophy. It started life as a
client side scripting language in Oracle
extensions like the “Forms” package. In
its concepts it is - according to Oracle
- modeled on the ADA programming
language, which is rooted in the Algol
family of programming languages. The
most well known member of this fam-
ily is Pascal. Being in the Algol family
means that PL/SQL supports something
called lexical scoping, which in turn
means that procedures can be defined
inside of other procedures. The vari-
ables of the current instance of the
outer procedure are available in every

SELECT tbl1.a, tbl2.x FROM tbl1, tbl2 WHERE tbl1.a=tbl2.x(+);

SELECT tbl1.a, tbl2.x FROM tbl1 LEFT JOIN tbl2 ON tbl1.a=tbl2.b;

2006 ISSUE 4 THE STORY of FYRACLE

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com �

figure 1

www.janus-software.com

instance of the inner procedure.

At first I tried to figure out how the re-
quirements of PL/SQL could be mapped
to regular BLR. At a few points I was
considering to add significant new
features to it, even revamping it com-
pletely. The execution engine for BLR
evolved from the co-routine struc-
ture that Jim had once developed for
Datatrieve and it had evolved so much
during 20 years that a major redesign
would make sense. In the end I decided
that such a task would go beyond my
will and skill and chose another route.

The solution was to create a simple byte
code interpreter for an Algol-like pro-
cedural language, which would be sep-
arate, but have tight integration with
the relational engine. The design for
this byte code engine is similar to the
byte code engines that used to support
microcomputer Pascal back in the early
eighties. We have probably all written
such an engine back in university, as an
assignment in compiler construction
class. For lack of a more creative name,
I call it the “btc engine”, for byte code
engine. Often I refer to the btc engine
as the “procedural engine”, to distin-
guish it from the blr engine, which I
refer to as the “relational engine”.

As in PL/SQL, this engine started life as
a client side test implementation. Us-
ing the lexer and SQL parser that was
already taking shape, code was added
to parse the various expressions and
control structures. A semantic mod-
ule was added that verified data types
and various other checks. A back-end
was added that took the parse tree and
generated code for the btc engine.
From simple beginnings, the parser, the
semantic checks and the btc engine
gradually grew in capabilities.

At this point, the btc engine was still
a client side only entity, much like PL/
SQL itself had been in its earliest incar-
nations. It needed an implementation
inside the engine and a way for the rela-
tional engine to call into the procedur-
al engine and vice versa. The first thing
to look at was the existing UDF code,
which enables the relational engine to
call into external code. It seemed like
this would work, but it offered no way
for the external code to call back into
the engine, using the same connection

and transaction.

New code had to be created to build a superset of the UDF mechanism. The engine
was modified to accept new syntax that called an external function and provided
that external function with the means to call back into the engine. The code was
modeled on both the UDF code and the EXECUTE STATEMENT code that had just
been added to the Firebird 1.5 development branch. Much debate took place on
the Architecture mailing list about how external procedures should call back into
the engine. The discussion revolved on the best design of the API and the proper
architectural layering of code. Fyracle needed to keep moving, so it took a short-
cut: the API was kludged together and the layering was broken. The latter didn’t
mean much as Borland had already broken the layering and proper refactoring
would not occur before Firebird 3.

By now time had progressed to about November 2003 and all the basic elements
seemed in place. Fyracle could connect to a Java client and accept oracle-style
SQL statements. There was a compiler to take the source of a PL/SQL procedure,
function or trigger and compile it to byte code and the Fyracle build of Firebird
could execute that byte code (see below picture).

You can imagine our joy when the Compiere application came up whilst connected
to Fyracle for the first time.

Step-wise refinement
The joy soon turned to a long grind of bug fixing. Almost every function in Com-
piere failed because a built-in oracle function had not been implemented yet, be-
cause the PL/SQL compiler had made an error or because the SQL translator did not
cover a wide enough range of the full syntax.

The harder cases were those where Firebird did not have a certain bit of functional-
ity that was required by Compiere. On such a case was Oracle’s CONNECT BY syntax,
which allows hierarchical queries. Another round of debate on the Architecture
list ensued. In those discussions it became clear that hierarchical queries are best
conceptualized as a special form of union and that the standard’s WITH syntax was
a clearer way to express that (see separate article about WITH in this issue on page
…). So, the Fyracle build of Firebird was extended with support for recursive WITH
and the oracle connector used this syntax to express CONNECT BY statements.

By March 2004, almost exactly one year after that dinner in Brussels, Fyracle was
able to run large parts of the Compiere application. As it happened, I had to be in
the USA that month and took the opportunity to fly out to Massachusetts and meet
with Ann and Jim, proudly showing the result. On the whiteboard the component
architecture was drawn out (similar to figure 2) and it was agreed that it was a
good way to do things. The client-side SQL-connector, of course, is not such a nice
part and it would be better if it moved to the server-side.

THE STORY of FYRACLE 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com10

figure 2

In discussions it came up that it would
be so much nicer if the architectural
layering of Firebird would be restored.
This would mean that Firebird’s SQL
compiler (module “dsql” in the source
tree) would move from the Y-valve com-
ponent to the core engine component.
This would enable the use of dynamic
SQL in the core engine, whereas it cur-
rently relies on preprocessing. I argued
that if the way this was done provided
a clean API for pluggable SQL compil-
ers, I could swap in my oracle-mode
SQL compiler for clients connecting in
oracle-mode.

Jim did implement such a structure
in the Vulcan branch of Firebird. I had
promised to look into cleaning up the
code in a specific core engine module
which I never found the time to do.
As a result of this mal performance,
Jim promised to string me up in the
tree next to his house. Luckily, he in-
formed me last November that the wind
had blown over the tree he had had in
mind.

The “coming out party” for Fyracle was
the Firebird conference in Fulda in May
2004. Most of the summer little hap-
pened in further development of func-
tionality, as the initial goal had been
reached. Towards the end of the sum-
mer, Marius Popa managed to get Fyra-
cle discussed on Slashdot and interest
slowly but surely started to rise. For one,
the “oracle-mode” thing was picked up
by Computer Associates (“CA”) as a
nice marketing gimmick for the open
source release of Ingres. CA announced
the “million dollar challenge”, which
amongst other projects promised $600K
for a working migration tool for oracle-
based applications. After some thought
and a look at Ingres, I decided to stick
with Firebird and not take part in the
competition. Also in that Summer, En-
terpriseDB got started on oracle-mode
Postgres, although they did not come
out of “stealth mode” until May of
2005.

So, motivated by competition, work
started to make Fyracle a real prod-
uct. In order to create an easy to use
package, the Fyracle configuration was
cleaned up and a graphical installer for
both Windows and Linux was added. A
guy named Arek Heldt showed up with

a reasonable cross-platform GUI admin
tool and agreed to create a special Fyr-
acle plug-in for it. Tim O’Reilly was nice
enough to allow me to include some of
his manuals into the developer kit. Fyr-
acle 0.8.0 was born in November 2004
and has gone through 10 dot-releases
since.

Two of those release contained major
functionality provided by other team
members. Vlad Horsun had worked out
how to add global temporary tables to
Firebird, but his code was too late to be
included in the FB2 release. Vlad kindly
agreed to back-port his code from FB2
to FB15 and from there it was included
in Fyracle in May 2005.

Eugeney Putilin had been working on
creating stored procedures written in
Java for a long time, probably starting
as early as 2003. By 2005 he had fig-
ured out the issues and gotten to work-
ing developer builds. Roman Rokytskyy
had modified the Jaybird driver to also
support usage inside the server, rather
than only from a client. Eugeney, Vlad
and Roman worked hard late sum-
mer 2005 and delivered working code
early in the autumn. It was included
in Fyracle in October 2005. Soon after,
Carlos Guzman added a plugin for dot-
NET based languages and the CLR. This
plugin and the dotNet driver will be in-
cluded in the next release of Fyracle.

Outlook
What once started as a one-off project
to see if it could be done has evolved
into a long-term project. Much has
been achieved, but much more remains
to be done.

• The PL/SQL supported by Fyracle is
roughly Oracle 8i with some 9i exten-
sions. Some things are glaringly miss-
ing and will be added soon, such as
table functions and collections. Other
features to be added are the object-
oriented features of PL/SQL that were
mostly added in 9i. The language en-
hancements in version 10g are not all
that significant.

• On the relational side, Firebird needs
to get some upgrades for future releas-
es of Fyracle. Things like statement and
database level triggers, deferred trig-
gers, materialized views, 10-base floats

and a 128-bit data type come to mind.

• On the infrastructure side, Fyracle
needs to implement a few of the more
commonly used predefined packages, in-
cluding integration with a web server.

• Last but not least, it would be nice to
resurrect the clustering code that was
once written for VAX clusters and use it
to allow using Firebird on a Linux clus-
ter.

Fyracle has been fun for the team that
created it. I hope that it has been fun
for you, the reader and user as well.

Special thanks
I would like to use this opportunity to
thank everybody who helped making
Fyracle a reality, by giving advice, con-
tributing code or simply moral support.
Special thanks go to, in alphabetical
order:

Tiberiu Adorei

Paul Beach

Arno Brinkman

Carlos Guzman

Ann Harrison

Arek Heldt

Vlad Horsun

Holger Klemt

Pascal Legrand

Marek Mosiewicz

Eugeney Putilin

Roman Rokytskyy

Nikolay Samofatov

Jim Starkey

Claudio Valderrama

Dmitry Yemanov

2006 ISSUE 4 THE STORY of FYRACLE

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 11

www.ibdeveloper.com/magazine-cd

Introduction

Whilst building the oracle-to-firebird translation module for Fyracle, it became
clear that Firebird does not have support for hierarchical queries. To Oracle

users, such queries are known as CONNECT BY queries, after the syntax that Oracle
uses to express them. The SQL standard does not support oracle’s CONNECT BY
syntax, but does support a different syntax known as recursive common table ex-
pressions. This syntax is implemented by DB2 and by SQLServer in its latest release
(2005).

In order to be able to support CONNECT BY statements in Fyracle’s oracle-mode,
Firebird had to be enhanced to support hierarchical queries. In order to stay close
to the standard, it was implemented using recursive common table expressions.

In this article, I will explain the basic syntax of common table expressions, of re-
cursive common table expressions and the relation to Oracle’s CONNECT BY syntax.

Syntax definition
Common table expressions (CTE’s) are define using a new syntax element around
the WITH keyword. Essentially, the normal SELECT syntax is extended with a pre-
amble that defines common expressions. The WITH syntax specifies a temporary
named result set. One can think of the named result set as a named derived table.
It is derived from a simple query and defined within the execution scope of a
single SELECT statement. A common table expression can include references to
itself. This is referred to as a recursive common table expression and in this usage
the keyword RECURSIVE is obligatory.

Syntax

<with statement> ::=
WITH [RECURSIVE] <common table expression> [, <common
table expression>...] <select_statement>

<common table expression> ::=
 expression name [(column name [,...n])]
 AS

 (CTE query definition)

Expression name
This is a valid identifier for the common table expression. An expression name
must be different from the name of any other common table expression defined
in the same WITH <common table expression> clause, but expression name can be
the same as the name of a base table or view. Any reference to expression name in

the query uses the common table expression and not the base object.

Column name
Specifies a column name in the common table expression. Duplicate names within
a single CTE definition are not allowed. The number of column names specified
must match the number of columns in the result set of the CTE query definition.
The list of column names is optional only if distinct names for all resulting col-

umns are supplied in the query definition.

CTE query definition
Specifies a SELECT statement whose result set populates the common table expres-
sion. The SELECT statement for CTE query definition must meet the same require-
ments as for creating a view, except a CTE cannot define another CTE

Specifying more than one WITH clause in a CTE is not allowed. For example, if a

Common Table Expressions in Fyracle
By Paul Ruizendaal

pnr@janus-software.com

Fyracle … Yes!
Fyracle … Yes, it has lot of Oracle
specific features.

Really, InterBase and Firebird some-
times used as “small Oracle’s broth-
ers”. Main office uses Oracle, sub-
units uses Firebird.

Want to move from Firebird or Inter-
base to work with >250 gigabytes
database? Go to Oracle.

But, now Fyracle can be used not
only as Oracle-like RDBMS.

It’s on the edge of new technologies,
like Java Stored Procedures, Global
Temporary Tables, and all other cool
things.

Try Fyracle, if you want to dig in to
the future.

Expert's note

Dmitri Kuzmenko is the chief expert
of “The InterBase and Firebird De-
veloper Magazine” with 20 years of
InterBase and Firebird experience

e-mail: kdv@ib-aid.com

Our
expert

DEVELOPER AREA 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com12

mailto:pnr@janus-software.com
mailto:kdv@ib-aid.com

CTE query definition contains a subquery, that subquery cannot contain a nested
WITH clause that defines another CTE. The recursive form of WITH must contain
exactly two query definitions, an anchor member and a recursive member, joined
together by a UNION ALL operator.

Setting up an example
To start, we will define and fill an employee table. The table has an employee ID,
which is the primary key, a manager ID, which links the employee to his manager,
and name and salary columns:

CREATE TABLE emp(empid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(10),
 salary DECIMAL(9, 2),
 mgrid INTEGER);

INSERT INTO emp VALUES (1, ‘Winkel’, 30000, 10);
INSERT INTO emp VALUES (2, ‘Henkel’, 35000, 10);
INSERT INTO emp VALUES (3, ‘Bassinger’, 40000, 10);
INSERT INTO emp VALUES (4, ‘Lessig’, 38000, 10);
INSERT INTO emp VALUES (5, ‘Korning’, 42000, 11);
INSERT INTO emp VALUES (6, ‘Beagle’, 41000, 11);
INSERT INTO emp VALUES (7, ‘Reilly’, 36000, 12);
INSERT INTO emp VALUES (8, ‘Smith’, 34000, 12);
INSERT INTO emp VALUES (9, ‘Boot’, 33000, 12);
INSERT INTO emp VALUES (10, ‘Monroe’, 50000, 15);
INSERT INTO emp VALUES (11, ‘Schindler’, 52000, 16);
INSERT INTO emp VALUES (12, ‘King’, 51000, 16);
INSERT INTO emp VALUES (13, ‘Jones’, 54000, 15);
INSERT INTO emp VALUES (14, ‘Scott’, 53000, 16);
INSERT INTO emp VALUES (15, ‘Mills’, 70000, 17);
INSERT INTO emp VALUES (16, ‘Gaastra’, 80000, 17);
INSERT INTO emp VALUES (17, ‘Gates’, 95000, NULL);

 Looking at the inserted rows, it is apparent that employee ‘Gates’ is the top man-
ager for whom ‘Gaastra’ and ‘Mills’ work. ‘Scott’ in turn works for ‘Gaastra’ and has
no employees of his own. ‘Monroe,’ on the other hand, manages ‘Henkel,’ ‘Bassing-
er,’ and ‘Lessig’ and is an employee of ‘Mills.’

Using common table expressions
Common table expressions can make complex SELECT statements more legible.
For example, the following example shows the number of employees reporting
directly to each manager:

WITH DirReps(mgrid, dirreps) AS
(
 SELECT mgrid, COUNT(*) as dirreps
 FROM emp
 WHERE mgrid IS NOT NULL
 GROUP BY mgrid
)
SELECT mgrid, dirreps
FROM DirReps
ORDER BY mgrid;

 The resulting output is:

 MGRID DIRREPS
============ ============

 10 4
 11 2
 12 3
 15 2
 16 3
 17 2

2006 ISSUE 4 DEVELOPER AREA

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 13

www.ibsurgeon.com

WITH DirReps (mgrid, dirreps) AS
(
 SELECT mgrid, COUNT(*) AS dirreps
 FROM emp
 GROUP BY mgrid
)
SELECT MAX(dirreps) AS “Max. Number of Direct Reports”
FROM DirReps
WHERE dirreps>= 2 ;

The resulting output is:

Max. Number of Direct Reports
=============================
 4

Although common table expressions can be used as a hint to the optimiser about
how a subquery is used, and to make it explicit that a single subquery is used
at more than one place in a query, such optimisations are currently not imple-
mented.

A simple recursive query
A reasonable question to ask is: “Who works directly or indirectly for ‘Gaastra’?”
To answer the question of who works for ‘Gaastra,’ an Oracle developer might write
the following query:
SELECT name
 FROM emp
 START WITH name = ‘Gaastra’
 CONNECT BY PRIOR empid = mgrid

START WITH denotes the seed of the recursion while CONNECT BY describes the re-
cursive step. That is how to get from step n to step (n + 1). Since it is important to
distinguigh between the nth and the (n + 1)th step during name resolution, PRIOR
is used to show that empid belongs to the nth step while mgrid belongs to step (n
+ 1)th. So with empid being 16 for step 1, mgrid must be 16 as well and hence step
2 produces ‘Scott,’ ‘King,’ and ‘Schindler.’ Their empids will now serve as PRIOR to
step 3, and so on and so forth.

The Oracle syntax is very concise. The SQL standard WITH syntax uses regular SQL
to describe the exact same relationships. As you will see, it is more verbose, but
equally straightforward:

WITH RECURSIVE n(empid, name) AS
 (SELECT empid, name
 FROM emp
 WHERE name = ‘Gaastra’
 UNION ALL
 SELECT nplus1.empid, nplus1.name
 FROM emp as nplus1, n
 WHERE n.empid = nplus1.mgrid)
SELECT name FROM n;

What makes this CTE special is that it is referred to within its very own defintion.
This is what distinguishes a regular CTE from a recursive CTE. Here I named the
CTE n to correlate to the recursive steps. A recursive CTE consists of two parts
combined with a UNION ALL:

• The seed or step 1 of the recursion. This is what is described in Oracle using
START WITH. In a recursive CTE, it is simply any query providing a set of rows. In
this case we query the emp table and filter for ‘Gaastra.’ We select the name of
course and also the empid, because we need it for the recursive step.
• The recursive step going from n to (n + 1). Here we refer to step n (the CTE n)

And the following example shows the maximum number of employees reporting
to a single manager:

DEVELOPER AREA 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com14

https://secure.shareit.com/shareit/product.html?productid=300031918

and join in step (n + 1) using the same predicate used in CONNECT BY. Instead of
PRIOR, regular correlation names are used to distinguish n from (n + 1).
It is noteworthy to look at the output of this query and realize that the recursive
process is a depth first recursion:

NAME
==========

Gaastra
Schindler
Korning
Beagle
King
Reilly
Smith
Boot
Scott

Before moving on to pseudo columns and more complex examples, I want to briefly
explain where the WHERE predicate of an Oracle recursion needs to be placed. We
will modify the example to return all employees, including their salaries, working
for ‘Gaastra’ who earn more than 40,000.

SELECT name, salary
 FROM emp
 WHERE salary > 40000
 START WITH name = ‘Gaastra’
 CONNECT BY PRIOR empid = mgrid

It is interesting to note how the WHERE clause preceded the recursive specifica-
tion. For a non-oracle developer, it might seem that the predicate belongs to the
set of rows being considered to begin with. This, however, is not correct. Instead,
the WHERE filters the final result and belongs at the end of the matching CTE
based query:

WITH RECURSIVE n(empid, name, salary) AS
 (SELECT empid, name, salary
 FROM emp
 WHERE name = ‘Gaastra’
 UNION ALL
 SELECT nplus1.empid, nplus1.name, nplus1.salary
 FROM emp as nplus1, n
 WHERE n.empid = nplus1.mgrid)
SELECT name, salary FROM n WHERE salary > 40000;

This query results in the following output:

NAME SALARY
========== ============

Gaastra 80000.00
Schindler 52000.00
Korning 42000.00
Beagle 41000.00
King 51000.00
Scott 53000.00

The LEVEL pseudo column
The most well-known of the pseudo columns is LEVEL. The purpose of this column
is to show the number of the recursive step n that produced the row. In our ex-
ample, it indicates the levels of management between ‘Gaastra’ and the employee
plus 1 (because LEVEL starts with 1). Here is the original Oracle example enhanced
with LEVEL:

2006 ISSUE 4 DEVELOPER AREA

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 15

http://ibd.devrace.com

SELECT LEVEL, name
 FROM emp
 START WITH name = ‘Gaastra’
 CONNECT BY PRIOR empid = mgrid

The SQL standard saw no need to add syntax for this feature because it can be
expressed using regular SQL:

WITH RECURSIVE n(lvl, empid, name) AS
 (SELECT 1 lvl, empid, name
 FROM emp
 WHERE name = ‘Gaastra’
 UNION ALL
 SELECT n.lvl + 1, nplus1.empid, nplus1.name
 FROM emp as nplus1, n
 WHERE n.empid = nplus1.mgrid)
SELECT lvl, name FROM n;

The output for this query is:

 LVL NAME
===================== ==========
 1 Gaastra
 2 Schindler
 3 Korning
 3 Beagle
 2 King
 3 Reilly
 3 Smith
 3 Boot
 2 Scott

All I have done here is to introduce a level column, which starts with 1 and incre-
ments by 1. Of course, any semantics is possible, but this one happens to provide
the same semantics as LEVEL.

Conclusion
In this article I provided generic mappings from the Oracle style CONNECT BY
recursive query syntax to Firebird’s standard compliant recursive common table
expressions using UNION ALL. While the Oracle syntax is less verbose because it
provides keywords for various common semantics, this also means that it is less
expressive since little new semantics can be added without changes to the DBMS.

DEVELOPER AREA 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com16

http://ibsurgeon.com/optimization-services-for-interbase-and-firebird/supecharge-your-database-5.html
mailto:authors@ibdeveloper.com

IBSurgeon Pack
IBSurgeon Pack is a comprehensive set of
tools to repair InterBase and Firebird data-
bases and backups, undelete occasionally
deleted records and foresee database prob-
lems.

Buy IBSurgeon Pack
for EUR 399 and save 197 EUR!

IBFirstAID
IBFirstAID is a tool that can be
used for automatically diagnosing
and repairing corrupted Firebird or
InterBase databases. It can fix up
to 80% of often corruptions.

Supports InterBase 5.x-7.x and
Firebird 1.x-2.x databases.

IBUndelete
IBUndelete is a tool which can undelete occasionally deleted records
in InterBase or Firebird databases. It uses unique IBSurgeon core en-
gine for direct work with data inside database.

Supports InterBase 5.x-7.x and Firebird 1.x-2.x

IBBackupSurgeon
IBBackupSurgeon is a tool to read and save data
from corrupted Firebird or InterBase backup
files. With this tool you can browse a backup
file, select tables you need and then extract
them to a new or existing database.

Supports InterBase 5.x-7.x and Firebird 1.x-2.x
backups.

IBAnalyst
IBAnalyst is a tool that assists a user to analyze in detail Firebird or InterBase
database statistics and identify possible problems with database performance,
maintenance and how an application interacts with the database.

Supports InterBase 5.x-7.x and Firebird 1.x-2.x databases.

IBSurgeon
Products

2006 ISSUE 4

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 17

https://secure.shareit.com/shareit/product.html?productid=200879
https://secure.shareit.com/shareit/product.html?productid=300031918
https://secure.shareit.com/shareit/product.html?productid=300058041
https://secure.shareit.com/shareit/product.html?productid=214084
https://secure.shareit.com/shareit/cart.html?PRODUCT[300050548]=1

MORFIK’s WebOS:
Innovating beyond LAMP
Last month saw the first public beta of a revolutionary new tool to develop web ap-
plications. Several developers have commented that using WebOS for the first time
gives that same sensation of excitement that they felt when they first worked with
Delphi 1.0 back in the early nineties. WebOS comes with a bundled Firebird database
server.

Introduction

In less than two decades since its
humble beginnings, the World Wide

Web has not only permeated a fair por-
tion of our lives but has also become
the subject of much discussion and
speculation as a viable alternative to
traditional platforms for business ap-
plications. For many years the web
community has tried to overcome the
limitations of web browsers and their
related internet protocols by extending
the capabilities of browsers and servers
in a variety of ways. Some have tried to
extend the functionality of browsers
using plug-ins and applets, while others
have tried to push the entire computing
task to the server.

If taken to either of these extremes,
the status of the browser is essentially
reduced to that of a “dumb terminal”.
With applets and plug-ins, the browser
is merely a host for another application
which runs inside a box. With server-side
computing, the browser simply displays
what it receives like a slide-show. While
centralized systems, such as corporate
server farms or applications hosted by
ASPs (application service providers),
are believed to need little more from
the browser than the functionality of a
dumb-terminal, in real life the browser
has steadily grown in functionality to
the extent that it is now a viable alter-
native platform for both the web and
desktop applications – irrespective of
their on-line or off-line state.

Recently, developments such as Asyn-
chronous JavaScript And XML (AJAX),
have captured the imagination of de-
velopers worldwide and have allowed us
to re-examine the capabilities that have
existed in web browsers for some time.
Applications such as Google Gmail,

Google Maps and Flickr have shown
that the user experience in a browser
can rival that of desktop applications,
with the browser powered by nothing
more than JavaScript, HTML/XML and
XMLHttpRequest.

However, for AJAX to succeed in the
long term, it must be supported by pro-
fessional development tools that are
specifically designed for creating web
applications and also incorporate the
design methodologies and features of-
fered by products such as Visual Studio®
and Delphi®. Ideally, developers should
be able to leverage their existing lan-
guage skills and use a familiar Inte-
grated Development Environment (IDE)
to develop AJAX applications without
the need for learning JavaScript or for
hand-coding HTML.

This is precisely what Morfik’s WebOS
AppsBuilder offers. It allows program-
mers to implement the business logic
of their application in a high-level ob-
ject oriented language of their choice
and develop the presentation layer of
their application using a visual design
environment. WebOS AppsBuilder com-
piles the project’s code, resources and
objects into an AJAX application that
can run both on-line and off-line.

A new role for traditional
operating systems
The browser is already the undisputed
platform of choice and indeed the driv-
ing force behind a new class of appli-
cations which are centered around the
user and their social interactions. Ex-
amples include e-mail, blogs, CRM, col-
laboration software, discussion forums,
e-commerce and community portals.

With the advent of AJAX, browsers have
demonstrated an ability to provide a
user experience that rivals the desktop
enabling the browser to claim new terri-
tory within the corporate and business
applications sphere. Today, many ac-
counting and financial applications –
inventory control, sales and marketing,
production planning, human resources
management and payroll to name a
few – can not only be implemented as
browser applications but can also ben-
efit from the portability and wider con-
nectivity that the browser provides.

As the browser continues its march in
the direction of both traditional desk-
top territory and new and innovative
landscapes, traditional operating sys-
tems will gradually take a back seat
and revert to their original mission of

By Paul Ruizendaal
pnr@janus-software.com

DEVELOPER AREA 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com18

mailto:pnr@janus-software.com

providing a hardware abstraction layer.
This will allow traditional applications
to be gradually superseded by a new
class of applications that fully utilize
this new operating system and are de-
signed from the outset to be user-cen-
tric.

A new approach
“Our objective is to bring web applica-
tions to the desktop and take desktop
applications to the web”

Can we use the browser as a platform
for real-life business applications? Will
such applications provide a user expe-
rience similar to conventional desktop
applications? Will these applications
work both on-line and off-line?

The answer to all these questions is a
resounding yes! The capabilities re-
quired for this have been natively avail-
able in browsers for some time, yet we
have been hampered by the difficulty of
writing JavaScript code and distracted
by inadequate attempts to extend the
browser’s functionality.

By combining the following elements in
a single stand alone package, web ap-
plications can be brought to the desk-
top and desktop applications taken to
the web:

1. HTML - for the user interface

2. JavaScript - for the application logic

3. XMLHttpRequest - for asynchronous
browser requests

4. Web Server - for handling the browser
requests

5. Database - for managing data

This concept is not new and appears
deceptively simple, yet its implemen-
tation presents enormous technical
challenges. Unless these challenges are
addressed and overcome, the concept
shall remain on the drawing board.

Morfik has identified and addressed
these technical challenges and in the
process has created a unique Inte-
grated Development Environment for
developing business applications on
the browser platform. The following is
a technical account of these challenges
and their solutions.

• Limitations of a page-centric archi-
tecture

Traditional web applications are com-
prised of a number of web pages that
are separate from one another both
spatially and computationally. Un-
like the user interface of conventional
desktop applications, the browser con-
tent changes in a disjointed fashion
– sometimes with unacceptable time-
delays. This spatial separation of web
pages has a detrimental effect on the
user experience. Recent developments,
such as AJAX, have proven successful
in enhancing the user experience, and
applications such as Google Gmail and
Google Maps are examples of this.

Those who develop for the web are
forced to scatter the business logic
across the application space and find
workarounds for managing the appli-
cation state in an otherwise stateless
environment. This computational sepa-
ration of web pages has a detrimental
effect on the reliability and scalability
of the application. In contrast, conven-
tional software engineering empha-
sizes a unified computational model to
ensure reliability and scalability.

One option is to push all of the comput-
ing to the server-side in order to unify
the computational space and make the
application more reliable. But this has
three undesirable side-effects: first, it
further limits scalability; second, it is
dependant on both the availability of
band-width and the reliability of the
connection; and third, the application
is no longer available when it is un-
plugged.

Morfik has the following solution to
limitations of a page-centric archi-
tecture: WebOS AppsBuilder applica-
tions are not page-centric. The browser
content “morphs” according to the
requirements of the application. This
simplifies state management and works
hand-in-hand with an application-spe-
cific AJAX engine. WebOS AppsBuilder
creates this AJAX engine from the busi-
ness logic written in a high level lan-
guage of choice using its unique and
patented JavaScript Synthesis Technol-
ogy (‘JST’). This approach unifies the
computational space of the application
across the server and the client.

WebOS AppsBuilder applications do not
use applets, plug-ins or cookies. The re-
sult is an application comprised purely

of HTML and JavaScript, which rivals
desktop applications in user experience
and computational integrity.

• Limitations of HTML page layout

HTML pages are designed to display
their content in a fluid layout much like
a word processor. Fluid layouts take the
shape of their container. Changing the
size of the browser’s window will change
the alignment of page components.
Web designers have managed to find
work-arounds to address many undesir-
able side effects of this fluid model.

With the advent of Cascading Style
Sheets, browsers gained the ability to
display the elements of the page in
a predetermined fixed position – ir-
respective of the shape or size of the
containing window. This fixed layout
is similar to conventional desktop ap-
plications. But since neither the size of
the browser window nor the resolution
of the client display is controlled by
the developer, the CSS model has some
undesirable side-effects also. The ideal
model is a plastic layout that combines
the strengths of fluid and fixed models.
Such a plastic layout is particularly use-
ful when database reports and tabulat-
ed data are displayed or page elements
change their size and position due to
user interaction or business logic.

WebOS AppsBuilder’s plastic layout of-
fers the strengths of both fluid and
fixed layouts. In Morfik applications,
the content of the browser is a hierar-
chy of heterogeneous nodes. Each node
is aware of the existence, state and be-
haviour of other nodes and can respond
to layout changes at run-time according
to the rules set out by the programmer
at design-time. In other words, at de-
sign-time, the programmer can define
both the fixed position of each element
as well as its run-time plasticity. This
uniquely incorporates the best of both
worlds in layout design.

• Limitations of JavaScript

The difficulties of writing extensive
and yet coherent JavaScript code is
the Achilles’ heel of AJAX and if not ad-
dressed could eventually slow down its
widespread uptake. Few acknowledge or
recognize that JavaScript’s capabilities
extend beyond that of a mere scripting
language for light programming tasks.

2006 ISSUE 4 DEVELOPER AREA

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 19

However, market acceptance of JavaS-
cript for implementing large-scale ap-
plications faces the following practical
challenges:

a) Syntax - JavaScript borrows its
syntax from C. While C/C++/C# and
Java programmers feel at home with
case-sensitive short-hand syntax, the
large number of developers who have
mastered other languages such as Vi-
sual Basic and Delphi face a frustrating
transition.

b) Semantic Design - JavaScript is a pro-
totype-based (instead of class-based)
object-oriented language. This also
presents developers with the challenge
of adopting a whole new mindset.

c) Lack of rigor - JavaScript does not
provide the developer with a rigorous
programming model. For example, it
does not support type declarations, nor
can functions receive their parameters
by reference, to name a few. This limi-
tation is a disadvantage in large scale
programming.

d) Interpreted - Interpreted languages
do not offer the benefit of compilers in
rigorous enforcement of application in-
tegrity at compile time. Small changes
to an otherwise perfectly working pro-
gram can cause unpredictable run-time
crashes. For example the most common
error messages in existing web-page
scripts are “object expected” or “object
does not support this property”.

Morfik solves these problems with its
revolutionary JavaScript Synthesis
Technology (‘JST’). Using WebOS Ap-
psBuilder, programmers implement the
business logic of their application in a
high-level object oriented language of
their choice (e.g. C++, C#, Java, Delphi).
WebOS AppsBuilder then compiles this
code into a JavaScript AJAX engine.

The process is a true compilation and
avoids boilerplates or code snippet li-
braries. The source code written in the
object-oriented, strongly typed lan-
guage of choice is first passed through
a parser that includes a tokenizer and
syntax analyzer. The output of the pars-
er is passed through a semantic map
builder which builds a detailed seman-
tic map of the entire application. This
map conveys the full “meaning” of the
application logic. This semantic map is
then compiled into JavaScript code that
is semantically identical to the original
code written by the programmer and
conveys the exact same “meaning”.

This process offers several advantages:

• Mastering a programming language is
a long and arduous process. Switching
to a new language requires much more
than learning a new syntax. It requires
an idiomatic shift in the programmer’s
thought processes. This skill takes time
to acquire. By allowing developers to
program in the language they have al-
ready mastered, Morfik not only encour-
ages the uptake of AJAX and improves
the quality of the output, but also re-
duces the development cost of AJAX
applications.

• The clean separation of the parser,
semantic analyzer and compiler al-
lows Morfik to compile from a variety
of source languages into a variety of
target languages. The only condition is
that the source language is either ob-
ject-oriented (e.g. C++/C#/Java) or has
been specifically modified to support
object-oriented constructs. (See Ap-
pendix A for further details on) “multi-
language support in Morfik”.

• Strongly typed compiled languages
follow a rigorous programming model
that has made compilers the preferred

tool for building large and complex ap-
plications.

• Compiled code is, by definition, more
reliable and scalable than interpreted
code. Although the output of the Mor-
fik compiler is interpreted JavaScript,
the compilation process nevertheless
ensures rigorous type checking and
enforcement of referential integrity in
producing reliable and scalable appli-
cations.

• The AJAX engine created through
the Morfik process is an exact seman-
tic equivalent of the high level source
code which reflects the programmer’s
intentions without imposing limita-
tions. Code-snippet libraries and pre-
fabricated component frameworks, by
their very nature, limit the program-
mer’s ability to choose the appropriate
level of abstraction.

Since the output of this process is nei-
ther an executable in machine-code,
nor a one-to-one translation of source
code, nor a collection of predefined
code snippets, WebOS AppsBuilder‘s
process is referred to as JavaScript Syn-
thesis Technology (‘JST’):

Client-side handling of brows-
er requests
Browsers are designed to work with
servers using a stateless request-re-
sponse model. Normally, the browser
and the server do not co-exist on the
same hardware, and browsers need to
stay connected to the web in order to
maintain a dialog with the server. Of
course, this is natural and the way of
things on the web. However, to bring
the web applications to the desktop
and enable them to work after they are
unplugged from the web, one must be
able to handle the browser requests lo-
cally.

DEVELOPER AREA 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com20

One obvious solution is to install an
HTTP server on the local host. This
will also fulfill the second part of the
objective, namely taking desktop ap-
plications to the web. Many mature
and stable examples of HTTP servers are
freely available. Some are stand-alone
applications whilst others are small em-
bedded systems. Alternatively, the rel-
evant subset of HTTP server protocols
can be implemented within the appli-
cation so it can natively communicate
with the browser and process browser
requests.

More importantly, the browser vendors
have recognized the benefits and pos-
sibilities that local handling of browser
requests can offer, and they are plan-
ning to add this ability to the browser
itself – effectively merging the HTTP
server and the browser into a unified
system.

WebOS AppsBuilder has an open and
highly flexible architecture which can
support the local handling of browser
requests in a variety of ways. To provide
a mature, stable and well tested option
that can allow its applications to run
under Windows, Linux and OS X, WebOS
AppsBuilder tightly integrates an em-
bedded open-source Apache server into
Morfik applications by default. This is
not an exclusive option and will not
limit the developer’s choice of other
methods

Database needs
Business applications are predomi-
nantly data-driven and depend heav-
ily on a relational database system. In
the corporate world, data is centralized
and database servers do not normally
co-exist with the client applications on
the same hardware. Consequently, the
client needs to stay connected to the
network in order to maintain a dialog
with the server.

To bring data-driven web applications
to the desktop and enable them to work
after they are unplugged from the net-
work requires a local database engine.
This will not only fulfill the second part
of the objective, namely taking desktop
applications to the web, but also will
facilitate the implementation of large
scale distributed databases and distrib-
uted computing.

WebOS AppsBuilder has an open and
highly flexible architecture and can
integrate local database engines or
provide remote database connectivity
in a variety of ways. To provide a ma-
ture, stable and well tested option that
can allow its applications run under
Windows, Linux and OS X, WebOS Ap-
psBuilder tightly integrates a Firebird
server into its applications by default.
This is not an exclusive option and will
not limit the developer’s choice of oth-
er database engines.

Productivity
AJAX applications have created a lot
of excitement but until professional
Integrated Development Environments
become available, developers will find
it difficult to justify the effort – and
therefore the cost – associated with
AJAX programming.

It is Morfik’s belief that designing an
IDE around code libraries and compo-
nent frameworks is a repetition of past
mistakes. Such tools make it decep-
tively easy for developers to get simple
applications up and running quickly
only to have them hit the wall as their
projects grow in size and scope.

To ensure reliability, scalability and
maximum productivity, JavaScript Syn-
thesis Technology leverages the power
of high level languages and the exist-
ing skills of programmers. WebOS Ap-
psBuilder is a world class system which
incorporates the features that are re-
quired for a truly professional AJAX-
based Integrated Development Envi-
ronment.

Multi language support in
WebOS
At the core of the WebOS AppsBuilder
Integrated Development Environment
for AJAX lies the time-tested and prov-
en technique of using a strongly typed
object-oriented language and a com-
piler, which strictly enforces referential
integrity, high levels of modularity, re-
factoring and polymorphism within the
source code, to develop applications
that are reliable, scalable and easy to
maintain.

The output of a compiler is invariably
in a language different from that of the
source code – usually machine code but

2006 ISSUE 4 DEVELOPER AREA

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 21

https://secure.shareit.com/shareit/product.html?productid=214084

and Morfik Object Pascal (with more to
come) for the AJAX platform. Program-
mers choose their favorite syntax (or
even mix and match a number of them)
to develop their application. This al-
lows them to benefit from the rigorous
software engineering techniques and
system design methodologies inherent
in the object-oriented programming
paradigm. WebOS AppsBuilder then syn-
thesizes the source code into semanti-
cally equivalent JavaScript code and
packages it into an AJAX application.

In this model, the synthesized JavaScript
in WebOS AppsBuilder is the equivalent
of MIL in .NET. In addition, WebOS Apps-
Builder does not prevent extending the
JavaScript output by linking-in external
hand written JavaScript code libraries.
However, such external code would not
benefit from the same rigorous checks
as native WebOS AppsBuilder code.

WebOS AppsBuilder has a flexible and

sometimes an intermediate language. A
good example of this is the Microsoft
compiler that takes the source code in
C#, VB.NET or J# and produces code in
Microsoft Intermediate Language (MIL).
When examining a snippet of sample
code in Microsoft Developers Network
(MSDN), one is usually given the option
of seeing it in one of these languages.
Yet if these code snippets are carefully
compared, one realizes that semanti-
cally all three languages are identical!
Therefore, the MIL code generated is
also the same.

To achieve this, in the case of Visual
Basic, Microsoft had to take it to the
next level, and developed the strongly
typed object oriented VB.NET. Although
unpopular with some VB programmers
this move was nevertheless a technical
necessity.

Morfik has used this strategy in develop-
ing Morfik Basic, Morfik C#, Morfik Java

highly modular architecture. There is a
clean separation of the syntax parser,
semantic analyzers and the target code
synthesizer. This enables WebOS Ap-
psBuilder to compile from a variety of
source languages into a variety of target
languages. The only condition is that
the source language must be strongly
typed and either object-oriented (e.g.
C++/C#/Java) or has been specifically
modified to support object-oriented
constructs.

Free download
The beta releases of Morfik's WebOS Ap-
psBuilder is a free download.

Please check http://www.morfik.com
to download your own evaluation copy
and get a feel for the future of web ap-
plication development.

Move over LAMP, WebOS is here!

DEVELOPER AREA 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com22

http://www.morfik.com
http://www.better-office.com/Deutsch/Produkte/better_office/BDPSourceCodeProducer/BDPSourceCodeProducer_Home.htm

Programmers sometimes need to store
data that is temporary in nature: for

example, to create a data set, work with
it and remove it. If it is an infrequent
or one-off necessity, just creating and
dropping a table is feasible.

But what if the need for temporary ta-
bles arises regularly? In practical terms,
constantly creating and dropping tables
is not good from the security point of
view—end-users don’t usually have the
appropriate rights—and performing
DDL on production databases is against
all recommendations, anyway. Thirdly,
such an approach is far from perfect for
productivity.

All that apart, if the same sets of tem-
porary data are needed for several users
simultaneously, each would be com-
pelled to assign them unique names,
making such tables unworkable with
stored procedures.

The “Service Field” Approach
One widespread approach to eliminate
these problems is to create the table as
a permanent table with an additional
service field populated during the
life of the working data set with CUR-
RENT_USER or with a private value from
a generator.

Although this approach is free from the
aforesaid deficiencies, it is not without
deficiencies of its own, not least being
the accumulation of many back versions
as the subsequently unwanted rows are
deleted. Since the additional field is
usually indexed, the index remains in-
teresting to all queries on these tables.
The removed records are never visited
again, to make the back versions eli-
gible for garbage collection, and this
garbage will sit in the database until
the a sweep is run.

Fortunately, the SQL standard defines
a solution for such problems. True—it
doesn’t always promise a quiet life for

the ordinary programmer! :). The solution comes as various kinds of temporary
tables. In this article we’ll consider global temporary tables, first as they were
implemented in IB 7.5; then, the Fyracle implementation, that is to be included in
Firebird soon, after version 2.0.

A Definition of GTTs
Global temporary tables (GTTs) are tables with permanent metadata, stored in the
system catalogue, but with the temporary data.

GTT’s may be associated with data having two kinds of persistence: within the life-
time (scope) of the connection in which the given GTT was referenced and within
the lifetime (scope) of just the referencing transaction. The data in GTTs from
different connections or transactions, respectively, are isolated from one other,
but the metadata of the global temporary table is shared by all connections and
transactions.

Syntax and semantics
The statement syntax for creating the metadata of a temporary table in the system
catalogue is as follows:

Global Temporary
Tables in Fyracle

CREATE GLOBAL TEMPORARY TABLE <table_name> <table_elements>
[ON COMMIT {PRESERVE | DELETE} ROWS]

The ON COMMIT clause sets the scope of the data persistence for the temporary
table:

ON COMMIT PRESERVE ROWS causes data left in the table after a transaction
ends to remain in database until the end of the connection

ON COMMIT DELETE ROWS causes the data to be be deleted from database im-
mediately after a transaction ends

If the optional ON COMMIT clause is not specified, then ON COMMIT DELTE ROWS
is used by default.

CREATE GLOBAL TEMPORARY TABLE is an ordinary DDL statement that is pro-
cessed by the engine the same way as a CREATE TABLE operation, so creating and
dropping a GTT within a stored procedure or trigger is similarly prohibited. The
SQL standard has other kinds of temporary tables that can be allowed such treat-
ment, the most suitable for this purpose being the DECLARED LOCAL TEMPO-
RARY TABLE—but that’s another story.

A GTT differs from a permanent table by way of two new flags in RDB$RELATIONS.
RDB$FLAGS. Because it involves no change to the on-disk structure (ODS), it was
possible to include GTTs in Fyracle, which is based on Firebird 1.5.x. A GTT may
have indexes, triggers, field¬¬ level and table level constraints, just like ordinary
tables.

However, constraints between temporary and persistent tables follow some spe-
cific rules:

a) references between permanent and temporary tables are forbidden

b) a GTT with ON COMMIT PRESERVE ROWS cannot refer to a GTT with ON COM-
MIT DELETE ROWS

By Vlad Horsun, hvlad@users.sourceforge.net

2006 ISSUE 4 DEVELOPER AREA

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 23

mailto:hvlad@users.sourceforge.net

c) a domain constraints cannot refer to a GTT.

The following tabulation simplifies how the rules apply:

master\detail persistent preserve rows delete rows

persistent allow

preserve rows allow

delete rows allow allow

Implementation details
A GTT instance—a set of data rows created by and visible within the given con-
nection or transaction—is created when it is first referenced, usually at statement
prepare time. Each instance has its own private set of pages on which data and
indexes are stored. Data rows and indexes have the same physical storage lay-
out as permanent tables. When persistence ends (the connection detaches or the
transaction ends, depending on the scope) all pages of a GTT instance are released
immediately. Although this is similar to when you do DROP TABLE, of course the
metadata remains in the database.

The clearing of a GTT is much quicker than the ordinary row-by-row delete and its
associated garbage collection. Each data (index) page contains rows (keys) from
the same GTT instance, meaning the connection or transaction should read\write
fewer pages than they would if GTT instances were isolated by the service field.
With the “service field” design, in contrast, data pages would continue to contain
rows from old transactions and dead connections until it was garbage collected.

It can happen that the GTT design requires more space than the “service field” de-
sign. For example, 10 instances of a GTT, each with one row, would occupy 10 data
pages, while, under the “service field” design, only one page would be used, as long
as it could accommodate 10 rows. This difference doesn’t really become evident
except with a large number of small tables, so we can accept that as a reasonable
price for the benefits of speed and almost instant cleanup.

In Fyracle, the data pages of all of the GTT instances are placed in the database file.
In Firebird 2+, with better performance the objective, these pages will be placed in
separate files to allow temporary data to be written to another hard disk. This also
enables temporary files always to be opened with forced writes off, regardless of
the database setting. And—yes—there are plans to consider this mechanism for
implementing tablespaces. (No, I didn’t write this :)

There is no limit to the number of GTT instances active in the database. If you have
N transactions active simultaneously and each transaction has referenced some
GTT then you’ll have N instances of that GTT.

The InterBase implementation of GTT has one “featurebug”. If you have two trans-
actions in one connection and both transactions insert some rows into a GTT ON
COMMIT DELETE table and then one transaction commits, the data in the second
transaction’s GTT instance will disappear. Firebird’s implementation of GTT is free
of this problem.

Examples
— create usual (permanent) table :
CREATE TABLE PERSISTENT (
 ID INT NOT NULL
);
— create temporary table with scope of transaction
CREATE GLOBAL TEMPORARY TABLE GTT_DELETE (
 ID INT
) ON COMMIT DELETE ROWS;

— create temporary table with scope of connection
— try to reference on permanent table (this is forbidden!)

DEVELOPER AREA 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com24

http://ibsurgeon.com/database-management-products/glaos.html

CREATE GLOBAL TEMPORARY TABLE GTT_PRESERVE (
 ID INT
 CHECK (EXISTS(SELECT * FROM PERSISTENT))
) ON COMMIT PRESERVE ROWS;
This operation is not defined for system tables.
unsuccessful metadata update.
global temporary table “GTT_PRESERVE” of type on commit
preserve rows cannot depend on persistent table “PERSIS-
TENT”.

— create temporary table with scope of connection
CREATE GLOBAL TEMPORARY TABLE GTT_PRESERVE (
 ID INT
) ON COMMIT PRESERVE ROWS;
— Lets look how rows in different transactions and connec-
tion are handled
INSERT INTO GTT_DELETE VALUES (CURRENT_TRANSACTION);
INSERT INTO GTT_PRESERVE VALUES (CURRENT_TRANSACTION);
SELECT * FROM GTT_DELETE;

 ID
============
 5

SELECT * FROM GTT_PRESERVE;

 ID
============
 5

COMMIT;
SELECT * FROM GTT_DELETE;
— no rows

SELECT * FROM GTT_PRESERVE;

 ID
============
 5
— our one row still here
start another isql session:
SELECT * FROM GTT_PRESERVE;
— no rows, as expected

2006 ISSUE 4 DEVELOPER AREA

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 25

https://secure.shareit.com/shareit/product.html?productid=300058041
www.lulu.com/ibdeveloper

Well, it’s time to say who the winner
of our comparison test is. Usu-

ally tests are similar to beauty contests
– someone should be the winner. But I
have to disappoint you – it wasn’t the
case for our tests and there is no abso-
lute winner.

While the test results indicated certain
trends that were fairly dependent on
settings and hardware configurations,
it did not bring a single overlord into
the light. For the impatient amongst
the readers I can say that InterBase
7.5.1 showed the best results in most
but not all of the high-end configura-
tions, with some stability issues.

Let’s proceed to the test results.

Test team
First of all, I need to express my sincere
gratitude to Alexey Karyakin and Vlad
Horsun who created and adapted the
TPC-C based test toolkit for public us-
age.

Then I’d like to thank people who
helped to perform tests on different
hardware and software configurations:
Vadim Dokukin (www.niklaus.ru), An-
ton Glazunov, Sergey Chernyak, Eugeny
Putilin and Sergey Mereutsa.

Special thanks to Thomas Pfister (www.
nevrona.com) and Daniel Magin (www.
better-office.com) for great help in
carrying out tests on special configura-
tions.

Test technique
I anticipate a lot of questions related
to the execution of the tests, so please
read this part carefully to avoid a lot of
them.

We used a TPC-C based toolkit to carry
out our tests. In essence this test simu-
lates a database warehousing system
with W warehouses and T terminals (i.e.
users) working simultaneously with
these warehouses, mostly inserting and
updating records.

All tests were carried out on Windows
platform. I am first to agree that it is
a major omission but we’ve had insuffi-
cient time and resources so far to adapt
the tests for Linux.

TPC-C based tests results
The test toolkit contains 3 parts – 1)
SQL scripts to create the database, 2)
the load_ib.exe module to populate the
database with sample data, and 3) the
tpcc.exe module to run user processes
simultaneously in order to simulate the
OLTP workload.

All source code for these tools is open
and can be downloaded from http://ibdeveloper.com/tests/tpc-c/ , so you can
compile and check its workings.

How the test is conducted

1) Database creation. The test database is always created from scratch using SQL
scripts. We used page size 4096 for all databases. 4096 was chosen because our
previous tests1 did not show significant difference between a 4 Kb and an 8 Kb
page size, and because 4096 is the default page size for the modern server versions
of InterBase and Firebird.

2) Populating the database. The module load_ib.exe populates the test database
with sample values. Look below in the “How to configure tests” section to see how
to set the database size.

3) Index creation. All indices are created after data are loaded into the database,
not just to speed up data loading but also to avoid spoiling the selectivity of indi-
ces and thus forestall optimizer mistakes.

4) Testing. Testing is performed by tpcc.exe module which runs N simultaneous
threads with user queries to simulate real-world OLTP- activity. Please notice that
all actions are done by stored procedures, so the client (tpcc.exe) consumes very
little CPU and RAM resources. Tpcc.exe is run on the same host as the database
server. It can be run remotely, but it requires very wide bandwidth: during the
course of testing our attempt with a regular 100Mbps network produced a lot net-
work errors (10054), so I suppose a gigabit network is called for.

5) Database checking. After the test is complete, the “gfix –v –full” command line
tool is run to check database state after intensive work and ensure it is correct.

6) Database statistics. Then we run “gstat –r” to gather database statistics with
record versions.

Test duration (testing only, without loading, checking and statistics time) is usu-
ally three hours – 0.5 hours for startup and a 2.5-hour period of measurement.
Where we increased times we note it specifically.

All test results are written to appropriate logs into “Log” folder.

Raw results
Test logs can be downloaded from http://ibdeveloper.com/tests/tpc-c/

How to run tests
It might seem a difficult thing to get these tests set up to run but that’s not the
case at all. Thanks to a useful toolkit, all you need to do to run the test is change
the location of the appropriate server version in the setup_VERNN files, set the
desired database size and user count in prepare.cmd and then launch RUN.CMD.

How to configure the test
Let’s consider a simple example of configuring the test. Assume that you have In-
terBase 7.5 installed in folder “C:\InterBase751”, so you need to change the first
line in configuration file “setup_ib751.cmd”

By Alexey Kovyazin,
editor@ibdeveloper.com

1 Probably we will publish their results in the next issue

TESTBED 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com26

http://ibdeveloper.com/tests/tpc-c/
http://ibdeveloper.com/tests/tpc-c/
mailto:editor@ibdeveloper.com

SET IB=C:\interbase751\bin
SET NAME=IB751
SET DATABASE=%~dp0%NAME%_tpcc.fdb
SET ISC_USER=SYSDBA
SET ISC_PASSWORD=masterkey
SET PATH_SAVE=%PATH%
SET PATH=%IB%;%PATH%
SET BUFFERS = 99999
%IB%\instreg install %IB%\.. instance gds_db
%IB%\instsvc install %IB%\.. instance gds_db
net start IBS_gds_db

Please note that database buffers are set in setup_VERNN too.

Then you need to select the desired database size and user count. It involves
changing two lines in the prepare.cmd file.

Database size is set by –W variable (W means warehouses) at the database creation
step. Each warehouse adds ~30Mb to database, so –W50 means to create 4.5Gb
database:

bin\load_ib -W50 -D\\.\%DATABASE% > log\%NAME%_load.log
User count and number of actually used terminals are set up at the testing step:

bin\tpcc -W50 -T50 -Dlocalhost:%DATABASE% -r30 –R180 -i30 >
log\%name%_tpcc.log
Please note that we always set W= T. It’s done to avoid annoying lock conflict
errors in the logs. In fact, lock conflicts are perfectly normal in real-world OLTP
systems, but we’re trying to avoid exceptions for the testing because they pollute
the test logs and make them difficult to analyse.

Once all the locations in the setup_VERNN.cmd files are set up, the test – RUN.CMD
– is ready to launch.

Test participants
Which InterBase and Firebird versions were tested? We tested the following server
versions:

Server version Notes

InterBase 7.5.1 All configurations

Firebird 1.5 SuperServer Omitted in some configurations
due to the lack of time

Firebird 1.5 Classic All configurations

Firebird 2 Release
Candidate 1 SuperServer

Omitted in some configurations
due to the lack of time

Firebird 2 Release
Candidate 1 Classic

All configurations

Yaffil Classic Omitted in some configurations
due to the lack of time

Yaffil SuperServer Omitted in some configurations
due to the lack of time

Because a lot of people are interested in the Vulcan results, we tried to run the
public pre-alpha Vulcan of Vulcan. Unfortunately it was too unstable to run and
crashed every time, so we had to omit it. We still hope there will be an alpha ver-
sion before too long that will be stable enough to sustain our test.

Test results
We ran the tests many times in different software and hardware configurations and
received a lot of raw results that are not yet fully processed. Space in this issue
of magazine is limited too, so we decided to publish a special issue of “The Inter-
Base and Firebird Developer Magazine” devoted solely to test results analysis and

Yaffil
Yaffil is a Russian clone of Firebird
1.0. It was made in the middle of
2001 to check where optimizations
can be done, and how it will affect
server performance. Since Yaffil was
made only for Windows, there were
a lot of windows-related optimiza-
tions. The whole list of optimizations
is very long – new memory manager,
faster inserts, disk i/o, additional
configuration parameters, optimizer
fixes, query scheduler, garbage col-
lection, compatibility with previous
InterBase versions (5.x and lower),
and more. Also some little parts of
Firebird 1.0 code were rewritten in
pure assembler.

Thus, some users that moved from
InterBase 4.x and 5.x to Yaffil, got
not only better compatibility with
legacy databases than InterBase
6.0 and Firebird had, but from 2 to
6 times speedup of common server
performance. Optimization of the
internal server scheduler still allows
Yaffil SuperServer to have less pro-
cessor load (from 5 to 40 percent)
than Firebird SuperServer on some
applications (with short and long-
running queries being executed si-
multaneously).

Yaffil was the pioneer in reconstruct-
ing Classic for Windows functional-
ity, because Borland nearly dumped
Classic architecture before version
6.0, and the published source code
for InterBase Classic for Windows was
broken. Yaffil successfully revived
Classic architecture for Windows
(with services api support), having
high stability on ~40 gigabytes da-
tabases nearly year before Firebird
Classic for Windows was released.

Expert's note

Dmitri Kuzmenko is the chief expert
of “The InterBase and Firebird De-
veloper Magazine” with 20 years of
InterBase and Firebird experience

e-mail: kdv@ib-aid.com

Our expert
Dmitri Kuzmenko

2006 ISSUE 4 TESTBED

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 27

mailto:kdv@ib-aid.com

performance optimization.

Here we will highlight the main trends and commonalities in the results to illus-
trate the general picture.

Configuration 1
Hardware configuration:

Hardware:
2xCPU 3.0Ghz, 2GB RAM,
2x36Gb Ultra SCSI 320 in RAID1+0 with 128 RAM,
Windows 2003.

50 users, Forced Writes off

Server Performance, Tpmc Buffers

Firebird 2 RC1 Classic 1218.29 2048

Firebird 1.5.3 Classic 905.14 2048

Firebird 1.5.3
SuperServer

704.02 9900

InterBase 7.5.1 1746.16 99999

Yaffil Classic Server 1.0 1075.08 2048

Yaffil SuperServer 1.0 743.86 9900

This was the most balanced hardware configuration – a very good disk system is
combined with good CPUs and a lot of RAM. The database size for 50 users is 4.5Gb
would not fit into RAM, so disk performance was high in importance.

We set Forced writes off to get maximum performance. It’s the default mode in
InterBase 7.5.1. For Firebird, in addition to setting Forced Writes off, we set the
parameters MaxUnflushedWrites and MaxUnflushedWriteTime were to -1 in fire-
bird.conf to disable flushing.

So, InterBase 7.5.1 is winner here, with Firebird 2 Classic Release Candidate 1
showing its enhanced capability, compared to 1.5.3, to work with disks.

Firebird 1.5.3 and Yaffil 1.0 SuperServer versions showed lower performance be-
cause, in this test, dual CPUs played an important role – fast disks and a lot of RAM
being able to keep the CPUs busy.

100 users, Forced Writes On
After that, simulated a heavily loaded system. We increased the workload and ran
the test with 100 users and 100 terminals, so the database became 9.5Gb. We also
set Forced Writes on and increased test time to 6 hours.

TESTBED 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com28

https://secure.shareit.com/shareit/cart.html?PRODUCT[300050548]=1

We launched only 3 servers to compare the maximum workload of InterBase SMP
and the Firebird 1.5.3 and Firebird 2 Release Candidate 1 Classic architectures.
Firebird 1.5.3 SuperServer, Firebird 2 Release Candidate 1 SuperServer and also
Yaffil were omitted because of time constraints. Below are results:

Server tpmC Buffers

FFirebird 2 Release
Candidate 1 Classic

479.95 2048

Firebird 1.5.3. Classic 88.43 2048

InterBase 7.5.1 754.76 1000000

Below is the results graph. As you can see, Firebird 1.5.3 showed the lowest perfor-
mance, and InterBase 7.5.1 is the winner here.

But there are some circumstances which are rather important to mention. The
activity of InterBase 7.5.1 was rather unstable and performance tended to degrade
– please see graph below.

First, InterBase 7.5.1 had a lot of deadlocks. As I commented earlier, it’s rather normal, but InterBase didn’t exhibit them in
the test with the lower user count. More importantly, Firebird 2 Release Candidate 1 and Firebird 1.5.3 exhibited no deadlocks
at all, even with 100 users.

The second point is InterBase’s tendency to decrease in performance, with no obvious explanation. This test cycle (all three
servers) required more than 24 hours to complete, which is why we repeated it only twice. We got the same results (+- 1%)
on the repeat runs. It would be interesting to run InterBase alone for 2-3 days and see what happens.

Do you know how
many transactions

your application starts
every day?

You can check it by running gstat
–h db.gdb every day, but IBAna-
lyst will show daily average transac-
tions count on the fly.
System with 50-70 users usually
starts about 50-500 thousands
transactions per day.

Is it much, or not?

It depends on how you have written
your application, i.e. how you man-
age transactions within application.

There may be not many transactions
per day, but if these transactions are
long, they can cause lot of record
versions in database, and perfor-
mance may degrade (as usual).

On the other side, even 1-5 million
short transactions per day may not
load server much.

Tips

2006 ISSUE 4 TESTBED

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 29

The third instability we saw with InterBase was that InterBase, three times, went
to zero performance for 30-60 seconds – just stopped to answer to client requests.
The yellow vertical lines on the graph were where these trouble spots occurred.

I’m guessing that, as a result of these stops, database checking (gfix -v -full) indi-
cated 1 record error:

Summary of validation errors
	 Number of record level errors	 : 1

Configuration 2
by Daniel Magin, daniel@pauer-magin.de

Hardware: Pentium 3.0, HT ON, 2Gb/1Gb, SATA 300Gb

Many of our customers run InterBase on standard workgroup servers so I was in-
terested to analyse the results of testing the different server versions on a host
machine that was specifically not a high-speed system with multiple CPUs. My
base test platform was a simple machine with a Pentium 4 3.0 GHz processor with
Hyperthreading and 2 Gb RAM on an Asus P4P800-E mainboard. The hard drive
was a 300 Gb Maxtor SATA2 V300FO with a 16 Mb Cache but it was running on the
mainboard’s SATA1 interface.

On the only existing partition C (90GB) I installed a new Windows 2003 Server
Enterprise Edition. All tests ran on this single partition. Though there’s no ques-
tion that results could be sped up by spending more money on SCSI-RAID and more
RAM, the focus of my interest for this test was how this fairly ordinary configura-
tion would respond.

I used the latest official version of each of the different database engines. I start-
ed out by playing around quite intensively with some settings to find the best
configuration for each one for speed. I settled on the following buffer settings:

Server version Buffers

Firebird 1.5.3 Classic 2048

Firebird 1.5.3 SuperServer 9000

Firebird 2 Release Candidate 1 Classic 2048

Firebird 2 Release Candidate 1 SuperServer 100000

InterBase 7.5.1 100000

Yaffil Classic 2048e

Yaffil SuperServer 9000

I ran Alexey’s complete TPC-C Test for many hours. The test system was a ware-
housing system with 30 terminals, with a starting database size of around 2.8 Gb.
The 30 terminals would represent, for example, a web application with between
500 and 1000 users on-line.

Server tpmC Loadingtime RunningTime Transactions Deadlocks

Firebird 1.5.3
Classic

238,83 872,59 10800 82422 0

Firebird 1.5.3
SuperServer

522,55 815,67 10800 180251 3

Firebird2 Classic 252,85 951,7 10800 87234 0

Firebird 2
SuperServer

488,77 944,891 10800 168615 1

InterBase 7.5.1 832,64 1010,57 10800 287260 1

Yaffil Classic 697,77 768,531 10800 234516 0

Yaffil
SuperServer

659,77 765,53 10800 227630 0

TESTBED 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com30

http://ibd.devrace.com

InterBase, current Version 7.5.1, was the winner in my TPC-C based test, except
it came last in loading the datascript. I don’t know why. Most significant is the
extremely good speed InterBase delivers if it can find 2 Gb of RAM.

With only 1Gb of RAM, InterBase 7.5.1 and Firebird 2 Release Candidate 1 Classic
delivered similar speeds, and Firebird 1.5.3 SuperServer became the leader:

Server tpmC Loadingtime Transactions Set Buffers

Firebird 1.5.3
Classic

159.18 1475.36 54900 2048

Firebird 1.5.3
SuperServer

443.11 825.65 152889 9900

Firebird 2
Classic

202.88 951.53 69977 2048

Firebird 2
SuperServer

400.46 940.68 138213 6400

InterBase
7.5.1

341.47 1151.56 117820 6400

Yaffil Classic 377.3 776.18 130212 2048

Yaffil
SuperServer

359.09 783.26 121807 9900

So if you use InterBase, having the full 2 Gb of RAM available will be rewarding.
Yaffil—which is based on Firebird 1.0 but has a better memory manager—also
showed itself very good at handling the bigger memory. If you use open source
versions and you have at least 2 Gb RAM, Yaffil would be worth a try if you need
more speed.

Devrace
has acquired

Metadataforge
Devrace has recently acquired Meta-
dataforge company (SQLHammer
project) and will immediately start
selling the product.

The CEO of Devrace Serg Vostrikov,
says: “We are very happy to have
signed the contract with Dmitry
Kovalenko, the author of SQLHam-
mer. SQL Hammer is a simple, fast
and elegant IDE for database devel-
opment and invaluable tool for real
administrators. When developing
SQL Hammer Dmitry was concentrat-
ed on improving the performance of
access to databases, and so far judg-
ing by recent tests these attempts
are very successful. I am sure soon
we will prove InterBase/Firebird da-
tabase developers that SQL Hammer
is worth buying!”

Sophisticated internal SQLHammer
architecture is based on plug-in
modules which extend IDE func-
tionality. For example centralized
SQL Editor is used in most database
objects and editors, whereas it is
physically present only in a single
module. Such a module architecture
provides developers with additional
advantages:

• saving computer resources,

• an ability to use only necessary
functions and deactivate the other
tools,

• full support of all Borland Inter-
Base/Firebird versions, as we use
different access means for each
server,

• better support of client develop-
ment tools, in particular, SQLHam-
mer has SQLMonitor for FIBPlus and
SQLMonitor for IBX,

• more convenient updates: devel-
opers get an update of a certain
module or of the product core in-
stead of full package at once.

www.devrace.com

News line

2006 ISSUE 4 TESTBED

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 31

Hyperthreading
The next point for analysis was hyperthreading. Does HT really speed up the sys-
tem? Which versions actually work with HT?

I decided to increase the work for the server by changing the terminal/warehouse
setting to 50.

Bigger DataBase + More Thread Connections:=more work for the server :-)

The following results are just for comparing the differences between having HT
enabled and having it disabled. With a high-speed hard disk system such as SCSI,
you could vastly expand the Delta because the CPUs would not be kept waiting for
read/write operations.

Server HT ON HT OFF Delta

Firebird 1.5 311,62 301,23 103,45%

Firebird 2 323,08 353,25 91,46%

InterBase 7.5 442,82 414,52 106,83%

The Firebird 2 results are interesting: enabling HT actually causes the TPC-C values
to decrease, apparently with a negative impact that is higher than the gains shown
by using HT with InterBase, Firebird 1.5 and Yaffil.

Daniel Magin has more than 18 years of experience in a variety of hosting, multi-tier,
and client/server projects. He is a frequent tutorial speaker in Germany and is a certi-
fied trainer for Borland Delphi, InterBase and Microsoft.net. He is also employed by
Better-Office. Daniel has spoken at multiple international conferences in the USA, Eu-
rope and the Arab Emirates on object-oriented programming, Java, Delphi, InterBase,
workflow management, application servers, and database and application design.

better office is a German company specialized
in Borland and Microsoft development environments

 With offices in Oldenburg (head office),
Frankfurt, Berlin, Pennsylvania (USA)

and a Team of appr. 25 associates.
better office provide development tools,

custom made software development,
software consultancy,

Project management, training and support.
They have extensive experience in developing client-server

and web based database systems.

Head Office: Oldenburg
Stau 19 – 6.OG -

26122 Oldenburg

Tel.: +49 (0)441 926740
Fax: +49 (0)441 2488675

E-Mail: info@better-office.com

Benefits:
Borland Delphi WIN32 and .Net
Microsoft .Net Framework
(C# Visual Studio)
JAVA JBuilder and Eclipse
Borland InterBase
Microsoft SQL-Server
IBM DB/2/40 (iSeries)

Customer satisfaction is our top priority! Integrating the Enterprise!

TESTBED 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com32

www.better-office.de
https://secure.shareit.com/shareit/product.html?productid=200879

Configuration 3
Hardware: Fujitsu-Siemens 200TX S2, 1xXeon 3.2Ghz 64EM-T, HT OFF, 2Gb RAM,
6x36Gb UltraSCSI320, RAID 1+0, Windows 2003 64 bit Edition

30 users, Forced Writes off
This test was interesting because of the abnormal speed of Yaffil Classic Server
– it was more than twice as fast as InterBase 7.5. We believe the reason for it
is Windows-optimized code in Yaffil (as you probably know, Yaffil is for Windows
platform only) and its spinlock-based lock manager. Critical low-level operations
are implemented in Yaffil in Assembler. Yaffil’s memory manager also differs from
both the InterBase and Firebird memory managers.

64-bit based CPUs and OS are coming soon, so it may be useful for InterBase and
Firebird engineers to take a look at the Yaffil implementation.

Server Performance, Tpmc Buffers

Firebird 1.5.3 Classic 252.170 2048

Firebird 1.5.3
SuperServer

497.010 9000

Firebird 2 Release
Candidate 1 SuperServer

448.33 9000

Firebird 2 Release
Candidate 1 Classic

440.400 2048

InterBase 7.5.1 863.760 100000

Yaffil Server 1.0 Classic 2,038.160 2048

Yaffil 1.0 SuperServer was omitted due to a service startup problem that we didn’t
notice until it was too late to fix it. The hardware was no longer available to repeat
the test.

Servers results overview
InterBase 7.5.1

Currently it’s the most powerful server for the most powerful SMP hardware con-
figurations. It has some problems with stability and is sensitive to the amount of
installed RAM. And we should not forget about TPC-R results which showed that
InterBase 7.5.1 required a lot of query optimizations in real-world applications.
But, if SQL developers are optimizing queries effectively, the two tests indicate
there is a performance advantage for InterBase from investing in multi-CPU com-
puters with fast disk systems.

Firebird 1.5.3

It’s an old horse, but it’s not too bad! For single CPU computers SuperServer does

64-bit
64-bit processors now are nearly
everywhere, from desktop to server.
What benefit could be gained from
these processors?

The initial win is for gamers, espe-
cially those who already have AMD 64
processors in their systems. The next
comes when 64-bit operating sys-
tems come into currency. Windows
XP Professional and Windows 2003
Server 64-bit editions are available
already but the big problem for both
is drivers and software.

Before installing these operating
systems you need to be sure that sta-
ble drivers exist for your hardware. If
you will use only 32-bit programs,
performance will be the same as for
the 32-bit operating system (except
strange Yaffil results in tpc-c test),
and could be worse (especially in
games, up to -40%).

For now, it doesn’t make a lot of
sense to install 64-bit operating sys-
tem unless you have a specific need
to do so and the software and driver
support to make it work. Neverthess,
be prepared to install it in the not-
too-far-distant future.

Expert's note

Dmitri Kuzmenko is the chief expert
of “The InterBase and Firebird De-
veloper Magazine” with 20 years of
InterBase and Firebird experience

e-mail: kdv@ib-aid.com

Our
expert

2006 ISSUE 4 TESTBED

www.ibdeveloper.com© Copyright 2005-2006, All right reserved www.ibdeveloper.com 33

mailto:kdv@ib-aid.com

quite well. On a 64-bit computer with
Windows 2003 it does even better than
Firebird 2 Release Candidate 1. Firebird
1.5.3 looks good for small to medium
size databases and user bases. And we
should not overlook its very high sta-
bility.

Firebird 2 Release Candidate 1

It’s not good to test beta versions, be-
cause they change so quickly. For ex-
ample, Firebird 2 Release Candidate 2
is available already and we’ll certainly
test it and publish the results in the
next issue. But we have to admit that,
for a beta, Release Candidate 1 is doing
very well. Its performance is only 30-
40% lower than InterBase 7.5.1 run-
ning on powerful SMP configurations
with a lot of RAM installed (2Gb+). On
more modest hardware configurations
it is even better, and also demonstrated
very good stability. The forthcoming
release of Firebird 2 looks likely to be
more than a match for InterBase. We
intend to pay a lot of attention to its
evolution.

Yaffil 1.0

And about our dark horse. I suppose many of our readers first got to know of the
Yaffil project in this article. Firebird 2 incorporated quite a lot of Yaffil’s function-
ality (mostly System Defined Functions and some improvements), but there are
still many interesting things, especially in speed issues and heavy-load user man-
agement. Yaffil 1.0 is rather common in Russia – it is used for quick replacement
for old InterBase 4.x and InterBase 5.x databases due its special backward capa-
bilities and high speed. With single backup and restore and without any changes
in application code users get faster and more stable databases. Of course, Yaffil
isn’t in line for new development, but there are a lot of ideas inside it to explore.

Summary
I think many readers (especially fans of Firebird or InterBase) will be dissatisfied
with this article…. It’s not possible to determine an absolute leader and too many
things depend on hardware, operatng system and configuration parameters that
we haven’t specified here.

It was a real discovery for us that performance of modern InterBase and Firebird
versions can vary so much. As we discovered, performance is not a simple thing.

It’s hard to describe all the testing we did in a single article. We’ll be having a
special issue of our magazine devoted exclusively to the results and their inter-
pretation. It will cover configuration aspects like playing with firebird.conf and
IBCONFIG parameters, the impact of new settings like GROUP COMMIT on perfor-
mance, comparing tables of results for different settings, detailed explanation of
the interdependencies between elements of hardware configuration.

We hope that some readers will be able to repeat the tests using our toolkit and
send us the results for publication.

TESTBED 2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com34

www.sqlly.com

2006 ISSUE 4

www.ibdeveloper.com © Copyright 2005-2006, All right reserved www.ibdeveloper.com

Buy electronic version now
and get instant access

to full PDF!

www.lulu.com/ibdeveloper
http://www.shareit.com/product.html?productid=300073211

