
www.ibdeveloper.com

Contents

2

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Contents
Editor’s note
Rock around the blog
by Alexey Kovyazin
... 3

Firebird conference
by Helen E. M. Borrie
... 4

Oldest Active
On Silly Questions and Idiotic Outcomes
by Helen E. M. Borrie
... 5

Server internals
Cover story
Locking, Firebird, and the Lock Table
by Ann. W. Harrison
... 6

Inside BLOBs
by Dmitri Kouzmenko and Alexey Kovyazin
... 11

TestBed
Testing NO SAVEPOINT in InterBase 7.5.1
by Vlad Horsun, Alexey Kovyazin
... 13

Development area
Object-Oriented Development in RDBMS, Part 1
by Vladimir Kotlyarevsky
.. 22

Subscribe now!

To receive future issues
notifications send email to

subscribe@ibdeveloper.com

Replicating and synchronizing
Interbase/FireBird databases using CopyCat
by Jonathan Neve
... 27
Using IBAnalyst
by Dmitri Kouzmenko
... 31
Readers feedback
Comments to “Temporary tables” article
by Volker Rehn
... 35

Miscellaneous
... 36

Best viewed with Acrobat Reader 7
Download now!

Donations

Alexey Kovyazin,
Chief Editor

Helen Borrie,
Editor

Dmitri Kouzmenko
Editor

Noel Cosgrave,
Sub-editor

Lev Tashchilin,
Designer

Natalya
Polyanskaya,
Blog editor

Credits

Magazine CD

http://ibdeveloper.com/magazine-cd/
http://ibdeveloper.com/donations/
http://www.adobe.com/products/acrobat/readstep2.html
mailto:subscribe@ibdeveloper.com?subject=Subscribe
mailto: subscribe@ibdeveloper.com

column “Oldest Active” by Helen
Borrie. No need to say more about
author of “The Firebird Book”, just
read it! In this issue Helen looks at
the phenomenon of support lists
and their value to the Firebird com-
munity. She takes a swing at some
of the unproductive things that list
posters do in this topic, titled “On
Silly Questions and Idiotic Out-
comes”.

Let’s blog again

Now it is a good time to say a few
words about our new web-presen-
tation. We've started a blog-style
interface for our magazine – take a
look on www.ibdeveloper.com if
you haven't already discovered it..
Now you can make comments on
any article or message. In future
we’ll publish all the materials relat-
ed to the PDF issues, along with spe-
cial bonus articles and materials.
You can look out for previews of
articles, drafts and behind-the-
scene community discussions.
Please feel welcome to blog with us!

Donations

The magazine is free for readers,

Editor’s note

3

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Rock around the block

Rock around the blog
Editor’s note

By Alexey Kovyazin
Dear readers,

I am glad to introduce you the
second issue of “The Inter-
Base and Firebird Developer
Magazine”. We received a lot
of emails with kind words and
congratulations which have
helped us in creating this
issue. Thank you very much!

In this issue

The cover story is the newest
Episode from Ann W. Harrison
“Locking, Firebird, and the Lock
Table”. The article covers the lock-
ing issue from general principles to
specific advice, so everyone will
find a bit that's interesting or inform-
ative.

We continue the topic of savepoints
internals with an article “Testing
NO SAVEPOINT in InterBase
7.5.1”. Along with interesting prac-
tical test results you will find a
description of UNDO log workings
in InterBase 7.5.1.

We publish the small chapter,
“Inside BLOBs” from the forthcom-
ing book “1000 InterBase&Firebird

Tips&Tricks” by Dmitri Kouzmenko
and Alexey Kovyazin.

Object oriented development has
been a high-interest topic for many
years, and it is a still hot topic. The
article “Object-Oriented Develop-
ment in RDBMS” explores the prac-
tical use of OOD principles in the
design of InterBase or Firebird
databases.

Replication is a problem which
faces every database developer
sooner or later. The article “Repli-
cating and synchronizing Inter-
Base/Firebird databases using
CopyCat” introduces the approach
used in the new CopyCat compo-
nent set and the CopyTiger tool.

The last article by Dmitri Kouz-
menko “Understanding Your Data-
base with IBAnalyst” provides a
guide for better understanding of
how databases work and how tun-
ing their parameters can optimize
performance and avoid bottle-
necks.

“Oldest Active” column

I am very glad to introduce the new

but it is a considerable expense for
its publisher. We must pay for arti-
cles, editing and proofreading,
design, hosting, etc. In future we’ll
try to recover costs solely from
advertising but, for these initial
issues, we need your support.

See details here

http://ibdeveloper.com/donations

On the Radar

I’d like to introduce the several
projects which will be launched in
the near future. We really need
your feedback so please do not
hesitate to place your comments in
blog or send email to us
(readers@ibdeveloper.com)

Magazine CD

We will issue a CD with all 3 issues
of “The InterBase and Firebird
Developer Magazine” in Decem-
ber 2005 (yes, a Christmas CD!).

Along with all issues in PDF and
searchable html-format you will find
exclusive articles and bonus materi-
als. The CD will also include free
versions of popular software relat-

mailto:authors@ibdeveloper.com
www.ibdeveloper.com
http://ibdeveloper.com/donations
mailto:ak@ib-aid.com

Editor’s note

4

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Rock around the block
Firebird conference

ed to InterBase and Firebird and
offer very attractive discounts for
dozens of the most popular prod-
ucts.

The price for CD is USD$9.99 plus
shipping.

For details see
www.ibdeveloper.com/magazine-
cd

Paper version
of the magazine

In 2006 we intend to issue the first
paper version of “The InterBase
and Firebird Developer Maga-
zine”. The paper version cannot be
free because of high production
costs.

We intend to publish 4 issues per
year with a subscription price of
around USD$49. The issue volume
will be approximately 64 pages.

In the paper version we plan to
include the best articles from the
online issues and, of course, exclu-
sive articles and materials.

To be or not be – this is the question
that only you can answer. If the
idea of subscribing to the paper
version appeals to you, please
place a comment in our blog
(http://ibdeveloper.com/paper-
version) or send email to
readers@ibdeveloper.com with
your pro and cons. We look for-

This issue of our magazine almost
coincides with the third annual
Firebird World Conference, start-
ing November 13 in Prague,
Czech Republic. This year's con-
ference spans three nights, with a
tight programme of back-to-back
and parallel presentations over
two days. With speakers in atten-
dance from all across Europe and
the Americas presenting topics
that range from specialised appli-
cation development techniques to
first-hand accounts of Firebird
internals from the core develop-
ers, this one promises to be the
best ever.

Registration has been well under
way for some weeks now,
although the time is now past for
early bird discounts on registra-
tion fees. At the time of publish-
ing, bookings were still being
taken for accommodation in the
conference venue itself, Hotel
Olsanka, in downtown Prague.
The hotel offers a variety of room
configurations, including bed and
breakfast if wanted, at modest
tariffs. Registration includes

Firebird
Conference

lunches on both conference days
as well as mid-moring and mid-
afternoon refreshments.

Presentations include one on Fire-
bird's future development from
the Firebird Project Coordinator,
Dmitry Yemanov and another
from Alex Peshkov, the architect
of the security changes coming in
Firebird 2. Jim Starkey will be
there, talking about Firebird Vul-
can, and members of the SAS
Institute team will talk about
aspects of SAS's taking on Fire-
bird Vulcan as the back-end to its
illustrious statistical software.
Most of the interface develop-
ment tools are on the menu,
including Oracle-mode Firebird,
PHP, Delphi, Python and Java
(Jaybird).

It is a "don't miss" for any Firebird
developer who can make it to
Prague. Link to details and pro-
gramme either at
http://firebird.sourceforge.net/i
ndex.php?op=konferenz or at the
IBPhoenix website,
http://www.ibphoenix.com.

ward for your feedback!

Invitation

As a footnote, I’d like to invite

all people who are in touch with
Firebird and InterBase to partici-
pate in the life of the community.
The importance of a large, active
community to any public project --
and a DBMS with hundreds of thou-
sands of users is certainly public! --
cannot be emphasised enough. It is
the key to survival for such projects.
Read our magazine, ask your ques-
tions on forums, and leave com-
ments in blog, just rock and roll with
us!

Sincerely,

Alexey Kovyazin

Chief Editor

editor@ibdeveloper.com

coming
soon

http://ibdeveloper.com/paper-version/
mailto:helebor@tpg.com.au
mailto:editor@ibdeveloper.com
http://www.ibphoenix.com
http://firebird.sourceforge.net/index.php?op=konferenz
http://firebird.sourceforge.net/index.php?op=konferenz
mailto:readers@ibdeveloper.com
http://ibdeveloper.com/paper-version
http://ibdeveloper.com/paper-version
www.ibdeveloper.com/magazine-cd
www.ibdeveloper.com/magazine-cd

Oldest Active

5

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

On Silly Questions
and Idiotic Outcomes

Firebird owes its existence to the community's support lists. Though it's
all ancient history now, if it hadn't been for the esprit de corps among the
"regulars" of the old InterBase support list hosted by mers.com in the
'nineties, Borland's shock-horror decision to kill off InterBase develop-
ment at the end of 1999 would have been the end of it, for the English-
speaking users at least.

Firebird's support lists on Yahoo and Sourceforge were born out of the
same cataclysm of fatal fire and regeneration that caused the phoenix,
drawn from the fire against extreme adversity, to take flight as Firebird
in July 2000. Existing and new users, both of Firebird and of the rich
selection of drivers and tools that spun off from and for it, depend heav-
ily on the lists to get up to speed with the evolution of all of these soft-
ware products.

Newbies often observe that there is just nothing like our lists for any
other software, be it open source or not. One of the things that I think
makes the Firebird lists stand out from the crowd is that, once gripped by
the power of the software, our users never leave the lists. Instead, they
stick around, learn hard and stay ready and willing to impart to others
what they have learnt. After nearly six years of this, across a dozen lists,
our concentrated mix of expertise and fidelity is hard to beat.

Now, doesn't all this make us all feel warm and fuzzy? For those of us
in the hot core of this voluntary support infrastructure, the answer has to
be, unfortunately, "Not all the time!" There are some bugbears that can
make the most patient person see red. I'm using this column to draw
attention to some of the worst.

First and worst is silly questions. You have all seen them. Perhaps
you even posted them! "Subject: Help! Body: Every time I try to
connect to Firebird I get the message 'Connection refused'. What
am I doing wrong?" What follows from that is a frustrating and
tedious game for responders. "What version of Firebird are you
using? Which server model? Which platform? Which tool?
What connection path? ('By connection path, we mean....').."

Everyone's time is valuable. Nobody has the luxury of being
able to sit around all day playing this game. If we weren't will-
ing to help, we wouldn't be there. But you make it hard, or even

impossible, when you post prob-
lems with no descriptions. You
waste our time. You waste your
time. We get frustrated because
you don't provide the facts; you
get frustrated because we can't
read your mind. And the list gets
filled with noise.

If there's something I've learnt in
more than 12 years of on-line
software support, it is that a prob-
lem well described is a problem
solved. If a person applies time
and thought to presenting a good
description of the problem,
chances are the solution will hop
up and punch him on the nose.
Even if it doesn't, good descrip-
tions produce the fastest right
answers from list contributors.
Furthermore, those good descrip-
tions and their solutions form a
powerful resource in the archives,
for others coming along behind.

Off-topic questions are another
source of noise and irritation in the
lists. At the Firebird website, we
have bent over backwards to
make it very clear which lists are
appropriate for which areas of
interest. An off-topic posting is
easily forgiven if the poster polite-
ly complies with a request from a
list regular to move the question to
"x" list. When these events instead
become flame threads, or when
the same people persistently reof-
fend, they are an extreme burden
on everyone.

In the "highly tedious" category
we have the kind of question that
goes like this: "Subject: Bug in
Firebird SQL. Body: "This state-
ment works in
MSSQL/Access/MySQL/insert
any non-standard DBMS name
here. It doesn't work in Firebird.
Where should I report this bug?"
To be fair, George Bernard Shaw
wasn't totally right when he said
"Ignorance is a sin." However,

you do at least owe it to yourself
to know what you are talking
about, and not to present your
problem as an attack on our soft-
ware. Whether intended or not, it
comes over as a troll and you
come across as a fool. There's a
strong chance that your attitude
will discourage anyone from
bothering with you at all. It's no-
win, sure, but it's also a reflection
of human nature. You reap what
you sow.

In closing this little tirade, I just
want to say that I hope I've struck
a chord with those of our reader-
ship who struggle to get satisfac-
tion from their list postings. It will
be a rare question indeed that has
no answer. Those rarities, well-
presented, become excellent bug
reports. If you're not getting an
answer, there's a high chance that
you asked a silly question.

Helen E. M. Borrie

helebor@tpg.com.au

On Silly Questions and Idiotic Outcomes

mailto:helebor@tpg.com.au

Cover story

6

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Locking, Firebird, and the Lock Table

Firebird Worldwide
Conference 2005

The Firebird conference
will take place

at the Hotel Olsanka
in Prague,

Czech Republic
from the evening

of Sunday the 13th
of November

(opening session)
until the evening

of Tuesday the 15th
of November

(closing session).

News & Events

One of the best-known facts about
Firebird is that it uses multi-version
concurrency control instead of
record locking. For databases that
manage concurrency though
record locks, understanding mecha-
nisms of record locking is critical to
designing a high performance, high
concurrency application. In gener-
al, record locking is irrelevant to
Firebird. However, Firebird uses
locks to maintain internal consisten-
cy and for interprocess coordina-
tion. Understanding how Firebird
does (and does not) use locks helps
with system tuning and anticipating
how Firebird will behave under
load.

I’m going to start by describing
locking abstractly, then Firebird
locking more specifically, then the
controls you have over the Firebird
lock table and how they can affect
your database performance. So, if
you just want to learn about tuning,
skip to the end of the article.

Concurrency control

Concurrency control in database
systems has three basic functions:
preventing concurrent transactions
from overwriting each others’
changes, preventing readers from
seeing uncommitted changes, and
giving a consistent view of the data-

Locking, Firebird, and the Lock Table
base to running transactions. Those
three functions can be implemented
in various ways. The simplest is to
serialize transactions – allowing
each transaction exclusive access to
the database until it finishes. That
solution is neither interesting nor
desirable.

A common solution is to allow each
transaction to lock the data it uses,
keeping other transactions from
reading data it changes and from
changing data it reads. Modern
databases generally lock records.
Firebird provides concurrency con-
trol without record locks by keeping
multiple versions of records, each
marked with the identifier of the
transaction that created it. Concur-
rent transactions don’t overwrite
each other’s changes, because the
system will not allow a transaction
to change a record if the most
recent version was created by a
concurrent transaction. Readers
never see uncommitted data
because the system will not return
record versions created by concur-
rent transactions. Readers see a
consistent version of the database
because the system returns only the
data committed when they start –
allowing other transactions to cre-
ate newer versions. Readers don’t
block writers.

A lock sounds like a very solid
object, but in database systems, a
lock anything but solid. “Locking” is
a shorthand description of a proto-
col for reserving resources. Data-
bases use locks to maintain consis-
tency while allowing concurrent
independent transactions to update
distinct parts of the database. Each
transaction reserves the resources –
tables, records, data pages – that it
needs to do its work. Typically, the
reservation is made in memory to
control a resource on disk, so the
cost of reserving the resource is not
significant compared with the cost
of reading or changing the
resource.

Locking example

“Resource” is a very abstract term.
Lets start by talking about locking
tables. Firebird does lock tables, but
normally it locks them only to pre-
vent catastrophes like having one
transaction drop a table that anoth-
er transaction is using.

Before a Firebird transaction can
access a table, it must get a lock on
the table. The lock prevents other
transactions from dropping the
table while it is in use. When a
transaction gets a lock on a table,
Firebird makes an entry in its table
of locks, indicating the identity of

the transaction that has the lock, the
identity of the table being locked,
and a function to call if another
transaction wants an incompatible
lock on the table. The normal table
lock is shared – other transactions
can lock the same table in the same
way.

Before a transaction can delete a
table, it must get an exclusive lock
on the table. An exclusive lock is
incompatible with other locks. If any
transaction has a lock on the table,
the request for an exclusive lock is
denied, the drop table statement
fails. Returning an immediate error
is one way of dealing with conflict-
ing lock requests. The other is to put
the conflicting request on a list of
unfulfilled requests and let it wait for
the resource to become available.

In its simplest form, that is how lock-
ing works. All transactions follow
the formal protocol of requesting a
lock on a resource before using it.
Firebird maintains a list of locked
resources, a list of requests for locks
on resources – satisfied or waiting
– and a list of the owners of lock
requests. When a transaction
requests a lock that is incompatible
with existing locks on a resource,

Author: Ann. W. Harrison
aharrison@ibphoenix.com

Request
for Sponsors

How to Register

Conference
Timetable

Conference
Papers

and Speaker

http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1121342419:23015&page=fb_conf_call_papers
http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1129529648:22789&page=fb_conf_timetable
http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1121342419:23015&page=fb_conf_attend
http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1121342419:23015&page=fb_conf_sponsors
mailto:aharrison@ibphoenix.com

Cover story

7

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Locking, Firebird, and the Lock Table

Firebird either denies the new
request, or puts it on a list to wait
until the resource is available. Inter-
nal lock requests specify whether
they wait or receive an immediate
error on a case-by-case basis.
When a transaction starts, it speci-
fies whether it will wait for locks that
it acquires on tables, etc.

Lock modes

For concurrency and read commit-
ted transactions, Firebird locks
tables for shared read or shared
write. Either mode says, “I’m using
this table, but you are free to use it
too.” Consistency mode transac-
tions follow different rules. They
lock tables for protected read or
protected write. Those modes say
“I’m using the table and no one else
is allowed to change it until I’m
done.” Protected read is compati-
ble with shared read and other pro-
tected read transactions. Protected
write is only compatible with share
read.

The important concept about lock
modes is that locks are more subtle
than mutexes – locks allow
resource sharing, as well as protect-
ing resources from incompatible
use.

Two-phase locking vs. tran-
sient locking

The table locks that we’ve been

describing follow a protocol known
as two-phase locking, which is typi-
cal of locks taken by transactions in
database systems. Databases that
use record locking for consistency
control always use two-phase
record locks. In two-phase locking,
a transaction acquires locks as it
proceeds and holds the locks until it
ends. Once it releases any lock, it
can no longer acquire another. The
two phases are lock acquisition and
lock release. They cannot overlap.

When a Firebird transaction reads
a table, it holds a lock on that table
until it ends. When a concurrency
transaction has acquired a shared
write lock to update a table, no con-
sistency mode transaction will be
able to get a protected lock on that
table until the transaction with the
shared write lock ends and releases
its locks. Table locking in Firebird is
two-phase locking.

Locks can also be transient, taken
and released as necessary during
the running of a transaction. Fire-
bird uses transient locking exten-
sively to manage physical access to
the database.

Firebird page locks

One major difference between Fire-
bird and most other databases is
Firebird’s Classic mode. In Classic
mode, many separate processes
share write access to a single data-

base file. Most databases have a
single server process like Super-
Server that has exclusive access to
the database and coordinates
physical access to the file within

itself. Firebird coordinates physical
access to the database through
locks on database pages.

In general database theory, a trans-

www.ibphoenix.com
http://www.janus-software.com

Cover story

8

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Locking, Firebird, and the Lock Table

action is a set of steps that transform
the database from on consistent
state to another. During that trans-
formation, the resources held by the
transaction must be protected from
incompatible changes by other
transactions. Two-phase locks are
that protection.

In Firebird, internally, each time a
transaction changes a page, it
changes that page – and the physi-
cal structure of the database as a
whole – from one consistent state to
another. Before a transaction reads
or writes a database page, it locks
the page. When it finishes reading
or writing, it can release the lock
without compromising the physical
consistency of the database file.
Firebird page level locking is tran-
sient. Transactions acquire and
release page locks throughout their
existence. However, to prevent
deadlocks, transactions must be
able to release all the page locks it
holds before acquiring a lock on a
new page.

The Firebird lock table

When all access to a database is
done in a single process – as is the
case with most database systems –
locks are held in the server’s memo-
ry and the lock table is largely invis-
ible. The server process extends or
remaps the lock information as
required. Firebird, however, man-
ages its locks in a shared memory

section. In SuperServer, only the
server uses that share memory
area. In Classic, every database
connection maps the shared memo-
ry and every connection can read
and change the contents of the
memory.

The lock table is a separate piece of
share memory. In SuperServer, the
lock table is mapped into the server
process. In Classic, each process
maps the lock table. All databases
on a server computer share the
same lock table, except those run-
ning with the embedded server.

The Firebird lock manager

We often talk about the Firebird
Lock Manager as if it were a sepa-
rate process, but it isn’t. The lock
management code is part of the
engine, just like the optimizer, pars-
er, and expression evaluator. There
is a formal interface to the lock
management code, which is similar
to the formal interface to the distrib-
uted lock manager that was part of
VAX/VMS and one of the inter-
faces to the Distributed Lock Man-
ager from IBM.

The lock manager is code in the
engine. In Classic, each process has
its own lock manager. When a
Classic process requests or releases
a lock, its lock management code
acquires a mutex on the shared
memory section and changes the

state of the lock table to reflect its
request.

Conflicting lock requests

When a request is made for a lock

on a resource that is already locked
in an incompatible mode, one of
two things happens. Either the
requesting transaction gets an
immediate error, or the request is

Registering for the Conference

Call for papers

Sponsoring the Firebird Conference

http://firebird-conference.com/

https://secure.shareit.com/shareit/cart.html?PRODUCT[300038112]=1&cartcoupon=1&COUPON1=ibdeveloper2
http://www.firebirdsql.org/index.php?op=konferenz
http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1121342419:23015&page=fb_conf_sponsors
http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1121342419:23015&page=fb_conf_call_papers
http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1121342419:23015&page=fb_conf_attend

Cover story

9

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Locking, Firebird, and the Lock Table

put on a list of waiting requests and
the transactions that hold conflicting
locks on the resource are notified of
the conflicting request. Part of every
lock request is the address of a rou-
tine to call when the lock interferes
with another request for a lock on
the same object. Depending on the
resource, the routine may cause the
lock to be released or require the
new request to wait.

Transient locks like the locks on
database pages are released
immediately. When a transaction
requests a page lock and that page
is already locked in an incompati-
ble mode, the transaction or trans-
actions that hold the lock are noti-
fied and must complete what they
are doing and release their locks
immediately. Two-phase locks like
table locks are held until the trans-
action that owns the lock completes.
When the conflicting lock is
released, and the new lock is grant-
ed, then transaction that had been
waiting can proceed.

Locks as interprocess com-
munication

Lock management requires a high
speed, completely reliable commu-
nication mechanism between trans-
actions, including transactions in
different processes. The actual
mechanism varies from platform to
platform, but for the database to

work the mechanism must be fast
and reliable. A fast, reliable inter-
process communication mechanism
can be – and is – useful for a num-
ber of purposes outside the area
that’s normally considered data-
base locking.

For example, Firebird uses the lock
table to notify running transactions
of the existence of a new index on a
table. That’s important, since as
soon as an index becomes active,
every transaction must help main-
tain it – making new entries when it
stores or modifies data, removing
entries when it modifies or deletes
data.

When a transaction first references
a table, it gets a lock on the exis-
tence of indexes for the table.
When another transaction wants to
create a new index on that table, it
must get an exclusive lock on the
existence of indexes for the table.
Its request conflicts with existing
locks, and the owners of those locks
are notified of the conflict. When
those transactions are in a state
where they can accept a new index,
they release their locks, and imme-
diately request new shared locks on
the existence of indexes for the
table. The transaction that wants to
create the index gets its exclusive
lock, creates the index, and com-
mits, releasing its exclusive lock on
the existence of indexing. As other
transactions get their new locks,

they check the index definitions for
the table, find the new index defini-
tion, and begin maintaining the
index.

Firebird locking summary

Although Firebird does not lock
records, it uses locks extensively to
isolate the effects of concurrent
transactions. Locking and the lock
table are more visible in Firebird
than in other databases because the
lock table is a central communica-
tion channel between the separate
processes that access the database
in Classic mode. In addition to con-
trolling access to database objects
like tables and data pages, the Fire-
bird lock manager allows different
transactions and processes to notify
each other of changes to the state of
the database, new indexes, etc.

Lock table specifics

The Firebird lock table is an in-mem-
ory data area that contains of four
primary types of blocks. The lock
header block describes the lock
table as a whole and contains
pointers to lists of other blocks and
free blocks. Owner blocks describe
the owners of lock requests – gen-
erally lock owners are transactions,
connections, or the SuperServer.
Request blocks describe the rela-
tionship between an owner and a
lockable resource – whether the
request is granted or pending, the

mode of the request, etc. Lock
blocks describe the resources being
locked.

To request a lock, the owner finds
the lock block, follows the linked list
of requests for that lock, and adds
its request at the end. If other own-
ers must be notified of a conflicting
request, they are located through
the request blocks already in the list.
Each owner block also has a list of
its own requests. The performance
critical part of locking is finding lock
blocks. For that purpose, the lock
table includes a hash table for
access to lock blocks based on the
name of the resource being locked.

A quick refresher on hashing

A hash table is an array with linked
lists of duplicates and collisions
hanging from it. The names of lock-
able objects are transformed by a
function called the hash function
into the offset of one of the elements
of the array. When two names
transform to the same offset, the
result is a collision. When two locks
have the same name, they are
duplicates and always collide.

In the Firebird lock table, the array
of the hash table contains the
address of a hash block. Hash
blocks contain the original name, a
collision pointer, a duplicate point-
er, and the address of the lock block
that corresponds to the name. The
collision pointer contains the

https://secure.shareit.com/shareit/cart.html?PRODUCT[200879]=1&COUPON1=issue2readers

Cover story

10

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Locking, Firebird, and the Lock Table

address of a hash block whose
name hashed to the same value.
The duplicate pointer contains the
address of a hash block that has
exactly the same name.

A hash table is fast when there are
relatively few collisions. With no
collisions, finding a lock block
involved hashing the name, index-
ing into the array, and reading the
pointer from the first hash block.
Each collision adds another pointer
to follow and name to check. The
ratio of the size of the array to the
number of locks determines the
number of collisions. Unfortunately,
the width of the array cannot be
adjusted dynamically because the
size of the array is part of the hash
function. Changing the width
changes the result of the function
and invalidates all existing entries in
the hash table.

Adjusting the lock table to
improve performance

The size of the hash table is set in
the Firebird configuration file. You
must shut down all activity on all
databases that share the hash table
– normally all databases on the
machine – before changes take
effect. The Classic architecture uses
the lock table more heavily than
SuperServer. If you choose the
Classic architecture, you should
check the load on the hash table
periodically and increase the num-

ber of hash slots if the load is high.
The symptom of an overloaded
hash table is sluggish performance
under load.

The tool for checking the lock table
is fb_lock_print, which is a com-
mand line utility in the bin directory
of the Firebird installation tree. The
full lock print describes the entire
state of the lock table and is of limit-
ed interest. When your system is
under load and behaving badly,
invoke the utility with no options or
switches, directing the output to a
file. Open the file with an editor.
You'll see output that starts some-
thing like this:

LOCK_HEADER BLOCK
Version:114, Active owner:0, Length:262144, Used:85740
Semmask:0x0, Flags: 0x0001
Enqs: 18512, Converts: 490, Rejects:0, Blocks: 0
Deadlock scans:0, Deadlocks:0, Scan interval:10
Acquires: 21048, Acquire blocks:0, Spin count:0
Mutex wait:10.3%
Hash slots:101, Hash lengths (min/avg/max):3/ 15/ 30

…
The seventh and eighth lines suggest
that the hash table is too small and
that it is affecting system perform-
ance. In the example, these values
indicate a problem:

Mutex wait: 10.3%
Hash slots: 101, Hash lengths (min/avg/max):3/ 15/ 30
In the Classic architecture, each
process makes its own changes to
the lock table. Only one process is

allowed to update the lock table at
any instant. When updating the lock
table, a process holds the table’s
mutex. A non-zero mutex wait indi-
cates that processes are blocked by
the mutex and forced to wait for
access to the lock table. In turn, that
indicates a performance problem
inside the lock table, typically
because looking up a lock is slow.

If the hash lengths are more than
min 5, avg 10, or max 30, you
need to increase the number of
hash slots. The hash function used in
Firebird is quick but not terribly effi-
cient. It works best if the number of
hash slots is prime.

Change this line in the configuration
file:
#LockHashSlots = 101

Uncomment the line by removing

the leading #. Choose a value that
is a prime number less than 2048.

LockHashSlots = 499

The change will not take effect until
all connections to all databases on
the server machine shut down.

If you increase the number of hash
slots, you should also increase the
lock table size. The second line of
the lock print

Version:114, Active owner 0,
Length: 262144, Used: 85740

tells you how close you are to run-
ning out of space in the lock table.
The Version and Active owner are
uninteresting. The length is the max-
imum size of the lock table. Used is
the amount of space currently allo-
cated for the various block types
and hash table. If the amount used
is anywhere near the total length,
uncomment this parameter in the
configuration file by removing the
leading #, and increase the value.

#LockMemSize = 262144

to this

LockMemSize = 1048576

The value is bytes. The default lock
table is about a quarter of a
megabyte, which is insignificant on
modern computers. Changing the
lock table size will not take effect
until all connections to all databases
on the server machine shut down.

PHP Server

One of the more interest-
ing recent developments
in information technolo-
gy has been the rise of
browser based applica-
tions, often referred to
by the acronym "LAMP".

One key hurdle for
broad use of the LAMP
technology for mid-mar-
ket solutions was that it
was never easy to con-
figure and manage.

PHPServer changes that:
it can be installed with
just four clicks of the
mouse and support for
Firebird is compiled in.

PHPServer shares all the
qualities of Firebird: it is
a capable, compact,
easy to install and easy
to manage solution.

PHPServer is a free
download

Read more at:

www.fyracle.org/
phpserver.html

News & Events

www.fyracle.org/phpserver.html
www.fyracle.org/phpserver.html

Server internals

11

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Inside BLOBs

How the server
works with BLOBs

The BLOB data type is intended for
storing data of variable size. Fields
of BLOB type allow for storage of
data that cannot be placed in fields
of other types, - for example, pic-
tures, audio files, video fragments,
etc.

From the point view of the database
application developer, using BLOB
fields is as transparent as it is for
other field types (see chapter “Data
types” for details). However, there
is a significant difference between
the internal implementation mecha-
nism for BLOBs and that for other
data.

Unlike the mechanism used for han-
dling other types of fields, the data-
base engine uses a special mecha-
nism to work with BLOB fields. This
mechanism is transparently inte-
grated with other record handling
at the application level and at the
same time has its own means of
page organization. Let's consider in
detail how the BLOB-handling
mechanism works.

Inside BLOBs
This is an excerpt from the book “1000 InterBase & Firebird Tips & Tricks”
by Alexey Kovyazin and Dmitri Kouzmenko, which will be published in 2006.

Initially, the basic record data on
the data page includes a reference
to a “BLOB record” for each non-
null BLOB field, i.e. to record-like
structure or quasi-record that actu-

ally contains the BLOB data.
Depending on the size of the BLOB,
this BLOB-record will be one of
three types.

The first type is the simplest. If the
size of BLOB-field data is less than
the free space on the data page, it is
placed on the data page as a sepa-
rate record of "BLOB" type.

Author: Dmitri Kouzmenko
kdv@ib-aid.com

Author: Alexey Kovyazin
ak@ib-aid.com

mailto:ak@ib-aid.com
mailto:kdv@ib-aid.com
https://secure.shareit.com/shareit/checkout.html?PRODUCT[148695]=1&cartcoupon=1&affiliate=200018053&COUPON1=PVSFK

Server internals

12

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Inside BLOBs

The second type is used when the
size of BLOB is greater than the
free space on the page. In this
case, references to pages contain-
ing the actual BLOB data are
stored in a quasi-record. Thus, a
two-level structure of BLOB-field
data is used.

If the size of BLOB-field contents is
very large, a three-level structure
is used – a quasi-record stores ref-
erences to BLOB pointer pages
which contain references to the
actual BLOB data.

The whole structure of BLOB stor-
age (except for the quasi-record,
of course) is implemented by one
page type – the BLOB page type.
Different types of BLOB-pages dif-
fer from each other in the presence
of a flag (value 0 or 1) defining
how the server should interpret the
given page.

BLOB Page

The blob page consists of the fol-
lowing parts:

The special header contains the
following information:

•The number of the first blob page
in this blob. It is used to check that
pages belong to one blob.

•A sequence number. This is
important in checking the integrity
of a BLOB. For a BLOB pointer
page it is equal to zero.

•The length of data on a page. As
a page may or may not be filled to
the full extent, the length of actual
data is indicated in the header.

Maximum BLOB size

As the internal structure for storing
BLOB data can have only 3 levels
of organization, and the size of
data page is also limited, it is pos-
sible to calculate the maximum size
of a BLOB.

However, this is a theoretical limit
(if you want, you can calculate it),
but in practice the limit will be
much lower. The reason for this
lower limit is that the length of
BLOB-field data is determined by a
variable of ULONG type, i.e. its
maximal size will be equal to 4
gigabytes.

Moreover, in reality this practical
limit is reduced if a UDF is to be
used for BLOB processing. An
internal UDF implementation
assumes that the maximum BLOB

size will be 2 gigabytes. So, if you
plan to have very large BLOB
fields in your database, you should
experiment with storing data of a
large size beforehand.

The segment size mystery

Developers of database applica-
tions often ask what the Segment
Size parameter in the definition of
a BLOB is, why we need it and
whether or not we should set it
when creating Blob-fields.

In reality, there is no need to set
this parameter. Actually, it is a bit
of a relic, used by the GPRE utility
when pre-processing Embedded
SQL. When working with BLOBs,
GPRE declares a buffer of speci-
fied size, based on the segment
size. Setting the segment size has
no influence over the allocation
and the size of segments when
storing the BLOB on disk. It also
has no influence on performance.
Therefore the segment size can be
safely set to any value, but it is set
to 80 bytes by default.

Information for those who want to
know everything: the number 80
was chosen because 80 symbols
could be allocated in alphanumer-
ic terminals.

https://secure.shareit.com/shareit/cart.html?PRODUCT[300038112]=1&cartcoupon=1&COUPON1=ibdeveloper2

TestBed

13

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Testing the NO SAVEPOINT

In issue 1 we published Dmitri
Yemanov’s article about the inter-
nals of savepoints. While that article
was still on the desk, Borland
announced the release of InterBase
7.5.1, introducing, amongst other
things, a NO SAVEPOINT option
for transaction management. Is this
an important improvement for Inter-
Base? We decided to give this
implementation a close look and test
it some, to discover what it is all
about.

Testing NO SAVEPOINT

In order to analyze the problem that
the new transaction option was
intended to address, and to assess
its real value, we performed several
very simple SQL tests. The tests are
all 100% reproducible, so you will
be able to verify our results easily.

Database for testing

The test database file was created in
InterBase 7.5.1, page size = 4096,
character encoding is NONE. It
contains two tables, one stored pro-
cedure and three generators.

For the test we will use only one

Testing the NO SAVEPOINT
feature in InterBase 7.5.1 Author: Alexey Kovyazin

ak@ib-aid.com

Author: Vlad Horsun
hvlad@users.sourceforge.net

table, with the following structure:

CREATE TABLE TEST (
ID NUMERIC(18,2),
NAME VARCHAR(120),
DESCRIPTION VARCHAR(250),
CNT INTEGER,
QRT DOUBLE PRECISION,
TS_CHANGE TIMESTAMP,
TS_CREATE TIMESTAMP,
NOTES BLOB

);
This table contains 100,000 records, which will be updated during the test.
The stored procedure and generators are used to fill the table with test data.
You can increase the quantity of records in the test table by calling the
stored procedure to insert them:

SELECT * FROM INSERTRECS(1000);

The second table, TEST2DROP, has the same structure as the first and is filled
with the same records as TEST.
INSERT INTO TEST2DROP SELECT FROM TEST;
As you will see, the second table will be dropped immediately after connect.
We are just using it as a way to increase database size cheaply: the pages
occupied by the TEST2DROP table will be released for reuse after we drop
the table. With this trick we avoid the impact of database file growth on the
test results.

Setting test environment

All that is needed to perform this test is the trial installation package of Inter-
Base 7.5.1, the test database and an SQL script.

Download the InterBase 7.5.1 trial
version from www.borland.com.
The installation process is obvious
and well-described in the InterBase
documentation.

You can download a backup of the
test database ready to use from
http://www.ibdeveloper.com/issu
e2/testspbackup.zip (~4 Mb) or,
alternatively, an SQL script for cre-
ating it from
http://www.ibdeveloper.com/issu
e2/testspdatabasescript.zip (~1
Kb).

If you download the database
backup, the test tables are already
populated with records and you
can proceed straight to the section
“Preparing to test”, below.

If you choose instead to use the
SQL script, you will create data-
base yourself. Make sure you
insert 100,000 records into table
TEST using the INSERTRECS stored
procedure and then copy all of
them to TEST2DROP three or four
times.

After that, perform a backup of this
database and you will be on the
same position as if you had down-

http://www.fyracle.org/phpserver.html
http://www.ibdeveloper.com/issue2/testspdatabasescript.zip
http://www.ibdeveloper.com/issue2/testspdatabasescript.zip
http://www.ibdeveloper.com/issue2/testspbackup.zip
http://www.ibdeveloper.com/issue2/testspbackup.zip
mailto:hvlad@users.sourceforge.net
mailto:ak@ib-aid.com

TestBed

14

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Testing the NO SAVEPOINT

loaded “ready for use” backup.

Hardware is not a material issue for these tests, since we are only comparing performance with and without the NO
SAVEPOINT option. Our test platform was a modest computer with Pentium-4, 2 GHz, with 512 RAM and an 80GB
Samsung HDD.

Preparing to test

A separate copy of the test database is used for each test case, in order to eliminate any interference between state-
ments. We create four fresh copies of the database for this purpose. Supposing all files are in a directory called
C:\TEST, simply create the four test databases from your test backup file:

gbak –c –user SYSDBA –pass masterkey C:\TEST\testspbackup.gbk C:\TEST\testsp1.ib

gbak –c –user SYSDBA –pass masterkey C:\TEST\testspbackup.gbk C:\TEST\testsp2.ib

gbak –c –user SYSDBA –pass masterkey C:\TEST\testspbackup.gbk C:\TEST\testsp3.ib

gbak –c –user SYSDBA –pass masterkey C:\TEST\testspbackup.gbk C:\TEST\testsp4.ib

SQL test scripts

The first script tests a regular, one-pass update without the NO SAVEPOINT option.

For convenience, the important commands are clarified with comments:

connect "C:\TEST\testsp1.ib" USER "SYSDBA" Password "masterkey"; //Connect
drop table TEST2DROP; // Drop table TEST2DROP to free database pages
commit;
select count(*) from test; // Walk down all records in TEST to place them into cache
commit;
set time on; //enable time statistics for performed statements
set stat on; // enables writes/fetches/memory statistics
commit;
// perform bulk update of all records in TEST table
update TEST set ID = ID+1, QRT = QRT+1, NAME=NAME||'1', ts_change = CURRENT_TIMESTAMP;
commit;

quit;
The second script tests performance for the same UPDATE with the NO SAVEPOINT option:

mailto:authors@ibdeveloper.com
www.ibdeveloper.com
https://www.plimus.com/jsp/buynow.jsp?contractId=1647123&referrer=ibdeveloper

TestBed

15

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Testing the NO SAVEPOINT

connect "C:\testsp2.ib" USER "SYSDBA" Password "masterkey";
drop table TEST2DROP;
commit;
select count(*) from test;
commit;
set time on;
set stat on;
commit;
SET TRANSACTION NO SAVEPOINT; // enable NO SAVEPOINT
update TEST set ID = ID+1, QRT = QRT+1, NAME=NAME||'1', ts_change = CURRENT_TIMESTAMP;
commit;
quit;

Except for the inclusion of the SET TRANSACTION NO SAVEPOINT statement in the second script, both scripts are
the same, simply testing the behavior of engine in case of the single bulk UPDATE.

To test sequential UPDATEs, we added several UPDATE statements--we recommend using five.
The script for testing without NO SAVEPOINT would be:

connect "E:\testsp3.ib" USER "SYSDBA" Password "masterkey";
drop table TEST2DROP;
commit;
select count(*) from test;
commit;
set time on;
set stat on;
commit;
update TEST set ID = ID+1, QRT = QRT+1, NAME=NAME||'1', ts_change = CURRENT_TIMESTAMP;
update TEST set ID = ID+1, QRT = QRT+1, NAME=NAME||'1', ts_change = CURRENT_TIMESTAMP;
update TEST set ID = ID+1, QRT = QRT+1, NAME=NAME||'1', ts_change = CURRENT_TIMESTAMP;
update TEST set ID = ID+1, QRT = QRT+1, NAME=NAME||'1', ts_change = CURRENT_TIMESTAMP;
update TEST set ID = ID+1, QRT = QRT+1, NAME=NAME||'1', ts_change = CURRENT_TIMESTAMP;
commit;
quit;

Fyracle 0.8.9

Janus has released a
new version of Oracle-
mode Firebird, Fyracle.
Fyracle is a specialized

build of Firebird 1.5:
it adds temporary

tables, hierarchical
queries and

a PL/SQL engine.

Version 0.8.9 adds
support for stored
procedures written

in Java.

Fyracle dramatically
reduces the cost of port-
ing Oracle-based appli-

cations to Firebird.

Common usage
includes the

Compiere open source
ERP package,

mid-market deployments
of Developer/

2000 applications
and demo CD's
of applications

without license trouble.

Read more at:

www.janus-soft-
ware.com

News & Events

IBAnalyst 1.9

IBSurgeon has issued new
version of IBAnalyst.

Now it can better analyze
InterBase or Firebird data-
base statistics with using
metadata information (in this
case connection to database
is required).

IBAnalyst is a tool that assists
a user to analyze in detail
Firebird or InterBase data-
base statistics and identify
possible problems with data-
base performance, mainte-
nance and how an applica-
tion interacts with the data-
base.

It graphically displays data-
base statistics and can then
automatically make intelli-
gent suggestions about
improving database per-
formance and database
maintenance

www.ibsurgeon.com/
news.html

News & Events

You can download all the scripts and the raw results of their execution from this location:
http://www.ibdeveloper.com/issue2/testresults.zip

http://www.ibdeveloper.com/issue2/testresults.zip
www.ibsurgeon.com/news.html
www.ibsurgeon.com/news.html
www.janus-software.com
www.janus-software.com

TestBed

16

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Testing the NO SAVEPOINT

How to perform the test

The easiest way to perform the test is to use isql's INPUT command.

Suppose you have the scripts located in c:\test\scripts:

>isql
Use CONNECT or CREATE DATABASE to specify a database
SQL>input c:\test\scripts\script01.sql;

Test results
The single bulk UPDATE

First, let’s perform the test where the single-pass bulk UPDATE is performed.

This is an excerpt from the one-pass script with default transaction settings.

SQL> update TEST set ID = ID+1, QRT = QRT+1, NAME=NAME||'1', ts_change = CURRENT
_TIMESTAMP;
Current memory = 10509940
Delta memory = 214016
Max memory = 10509940
Elapsed time= 4.63 sec
Buffers = 2048
Reads = 2111
Writes 375
Fetches = 974980

SQL> commit;
Current memory = 10340752
Delta memory = -169188
Max memory = 10509940
Elapsed time= 0.03 sec
Buffers = 2048
Reads = 1
Writes 942
Fetches = 3

Fast Report 3.19

The new version of the
famous Fast Report is.
now out. FastReport® 3
is an add-in component
that gives your applica-
tions the ability to gener-
ate reports quickly and
efficiently. FastReport®
provides all the tools you
need to develop reports.
All variants of FastRe-
port® 3 contains:

Visual report designer
with rulers, guides and
zooming, wizard for
basic types of report,
export filters for html, tiff,
bmp, jpg, xls, pdf out-
puts, Dot matrix reports
support, support for most
popular DB-engines. Full
WYSIWYG, text rotation
0..360 degrees, memo
object supports simple
html-tags (font color, b, i,
u, sub, sup), improved
stretching (StretchMode,
ShiftMode properties),
access to DB fields,
styles, text flow, URLs,
Anchors.

Trial!
Buy Now!

News & Events

TECT Software
presents

New versions of nice utilities
from TECT Software
www.tectsoft.net.

SPGen, Stored Procedure Gen-
erator for Firebird and Inter-

Base, creates a standard set of
stored procs for any table, full

details can be found here

http://www.tectsoft.net/
Products/Firebird/

FIBSPGen.aspx

And FBMail, Firebird EMail
(FBMail) is a cross platform PHP

utility which easily allows the
sending of email's direct from

within a database.

This utility is specifically aimed
at ISP's that support Firebird,
but can easily be used on any
computer which is connected

to the internet.

Full details
can be found here:

http://www.tectsoft.net/
Products/Firebird/

FBMail.aspx

News & Events

This is an excerpt from the one-pass script with NO SAVEPOINT enabled

http://www.tectsoft.net/Products/Firebird/FBMail.aspx
http://www.tectsoft.net/Products/Firebird/FBMail.aspx
http://www.tectsoft.net/Products/Firebird/FBMail.aspx
http://www.tectsoft.net/Products/Firebird/FIBSPGen.aspx
http://www.tectsoft.net/Products/Firebird/FIBSPGen.aspx
http://www.tectsoft.net/Products/Firebird/FIBSPGen.aspx
www.tectsoft.net
https://www.plimus.com/jsp/buynow.jsp?contractId=1645271&referrer=ibdeveloper
https://www.plimus.com/jsp/download_trial.jsp?contractId=1645271&referrer=ibdeveloper

CopyTiger 1.00

CopyTiger,
a new product
from Microtec,
is an advanced

database
replication &

synchronisation
tool for

InterBase/
Firebird,

powered by
their CopyCat
component set
(see the article
about CopyCat

in this issue).

For more
information about

CopyTiger see:
www.microtec.fr/

copycat/ct

Download
an evaluation

version

TestBed

17

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Testing the NO SAVEPOINT

SQL> SET TRANSACTION NO SAVEPOINT;
SQL> update TEST set ID = ID+1, QRT = QRT+1, NAME=NAME||'1', ts_change = CURRENT
_TIMESTAMP;
Current memory = 10352244
Delta memory = 55296
Max memory = 10352244
Elapsed time= 4.72 sec
Buffers = 2048
Reads = 2102
Writes 350
Fetches = 967154

SQL> commit;
Current memory = 10344052
Delta memory = -8192
Max memory = 10352244
Elapsed time= 0.15 sec
Buffers = 2048
Reads = 1
Writes 938
Fetches = 3

Performance appears to be almost the same, whether the NO SAVEPOINT option is enabled or not.

Sequential bulk UPDATE statements

With the mutlti-pass script (sequential UPDATEs) the raw test results are rather large.

Table 1

Test results for 5 sequental
UPDATEs

News & Events

SQLHammer 1.5
Enterprise Edition

The interesting
developer tool,
SQLHammer,

now has
an Enterprise Edition.

SQLHammer is
a high-performance tool

for rapid
database development

and administration.

It includes a common
integrated development

environment,
registered custom

components
based on the

Borland Package Library
mechanism

and an Open Tools API
written in

Delphi/Object Pascal.

www.metadataforge.com

News & Events

www.metadataforge.com
http://www.ibdeveloper.com/issue2/testresults.zip
www.microtec.fr/copycat/ct/download.php?type=eval
www.microtec.fr/copycat/ct/download.php?type=eval
www.microtec.fr/copycat/ct/download.php?type=eval
www.microtec.fr/copycat/ct
www.microtec.fr/copycat/ct

TestBed

18

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Testing the NO SAVEPOINT

For convenience, the results are tabulated above.

The first UPDATE statement has almost the same execution time with and without the NO
SAVEPOINT option. However, memory consumption is reduced fivefold when we use NO
SAVEPOINT.

Figure 1

Time to perform UPDATEs with and without NO SAVEPOINT

Table 1

Test results for 5 sequental UPDATEs

In the second UPDATE we start to see the difference. With default transaction settings this
UPDATE takes a very long time - 47 seconds - compared to only 7210 ms with NO SAVE-
POINT enabled. With default transaction settings we can see that memory usage is signifi-
cant, wherease with NO SAVEPOINT no additional memory is used.

The third and all following UPDATE statements with default settings show equal time and
memory usage values and the growth of writes parameters.

Figure 2

Memory usage while performing UPDATEs with and without NO SAVEPOINT

With NO SAVEPOINT usage we observe that time/memory values and writes growth are
all small and virtually equal for each pass. The corresponding graphs are below:

Inside the UNDO log
So what happened during the execution of the test scripts? What is the secret behind this
magic that NO SAVEPOINT does? Is there any cost attached to these gains?

A few words about versions

You probably know already that InterBase is a multi-record-version database engine,
meaning that each time a record is changed, a new version of that record is produced. The

TestBed

19

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Testing the NO SAVEPOINT

old version does not disappear
immediately but is retained as a
backversion.

In fact, the first time a backversion is
written to disk, it is as a delta ver-
sion, which saves disk space and
memory usage by writing out only
the differences between the old and
the new versions. The engine can
rebuild the full old version from the
new version and chains of delta ver-
sions. It is only if the same record is
updated more than once within the
same transaction that the full back-
version is written to disk.

The UNDO log concept

You may recall from Dmitri’s article
how each transaction is implicitly
enclosed in a "frame" of savepoints,
each having its own undo log. This
log stores a record of each change
in sequence, ready for the possibili-
ty that a rollback will be requested.

A backversion materializes when-
ever an UPDATE or DELETE state-
ment is performed. The engine has
to maintain all these backversions in
the undo log for the relevant save-
point.

So, the Undo Log is a mechanism to
manage backversions for save-
points in order to enable the associ-
ated changes to be rolled back. The
process of Undo logging is quite
complex and maintaining it can
consume a lot of resources.

The NO SAVEPOINT
option

The NO SAVEPOINT option in
InterBase 7.5.1 is a workaround for
the problem of performance loss
during bulk updates that do multiple
passes of a table. The theory is: if
using the implicit savepoint man-
agement causes problems then let's
kill the savepoints. No savepoints –
no problem :-)

Besides ISQL, it has been surfaced
as a transaction parameter in both
DSQL and ESQL. At the API level, a
new transaction parameter block
(TPB) option isc_tpb_no_savepoint
can be passed in the isc_start_trans-
action() function call to disable
savepoints management. Syntax
details for the latter flavors and for
the new tpb option can be found in
the 7.5.1 release notes.

The effect of specifying the NO
SAVEPOINT transaction parameter
is that no undo log will be created.
However, along with the perform-
ance gain for sequential bulk
updates, it brings some costs for
transaction management.

First and most obvious is that, with
NO SAVEPOINT enabled, any
error handling that relies on save-
points is unavailable. Any error
during a NO SAVEPOINT transac-
tion precludes all subsequent exe-
cution and leads to rollback (see

“Release Notes” for InterBase 7.5. SP1, “New in InterBase 7.5.1”, page 2-2).

Secondly, when a NO SAVEPOINT transaction is rolled back, it is marked as rolled back in the transaction
inventory page. Record version garbage thereby gets stuck in the "interesting" category and prevents the
OIT from advancing. Sweep is needed to advance the OIT and back out dead record versions.

Fuller details of the NO SAVEPOINT option are provided in the InterBase 7.5.1. Release Notes.

Initial situation

Consider the implementation details of the undo-log. Figure 3 shows the initial situation:

Recall that we perform this test on freshly-restored database, so it is guaranteed that only one version exists
for any record.

Figure 3

Initial situation before any UPDATE - only the one record version exists, Undo log is empty

The first UPDATE

The first UPDATE statement creates delta backversions on disk (see figure 4). Since deltas store only the
differences between the old and new versions, they are quite small. This operation is fast and it is easy
work for the memory manager.

It is simple to visualize the undo log when we perform the first UPDATE/DELETE statement inside the trans-
action – the engine just records the numbers of all affected records into the bitmap structure. If it needs to
roll back the changes associated with this savepoint, it can read the stored numbers of the affected records,
then walk down to the version of each and restore it from the updated version and the backversion stored
on disk.

TestBed

20

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Testing the NO SAVEPOINT

Figure 4

UPDATE1 create small delta version on disk and put record number into UNDO log

This approach is very fast and economical on memory usage. The engine
does not waste too many resources to handle this undo log – in fact it reuses
the existing multi-versioning mechanism. Resource consumption is merely
the memory used to store the bitmap structure with the backversion num-
bers. We don't see any significant difference here between a transaction
with the default settings and one with the NO SAVEPOINT option enabled.

The second UPDATE

When the second UPDATE statement is performed on the same set of records, we have a
different situation.

Here is a good place to note that the example we are considering is the most simple situa-
tion, where only the one global (transaction level) savepoint exists. We will also look at the
difference in the Undo log when an explicit (or enclosed BEGIN… END) savepoint is used.

To preserve on-disk integrity (remember the ‘careful write’ principle ?) the engine must
compute a new delta between the old version (by transaction1) and new version (by trans-
action2, update2), store it somewhere on disk, fetch the current full version (by transac-
tion2, update1), put it into the in-memory undo-log, replace it with the new full version (with
backpointers set to the newly created delta) and erase the old, now superseded delta. As
you can see – there is much more work to do, both on disk and in memory.

The engine could write all intermediate versions to disk but there is no reason to do so.
These versions are visible only to the modifying transaction and would not be used unless
a rollback was required.

Figure 5

The second UPDATE creates a new delta backversion for transaction 1,
erases from disk the delta version created by the first UPDATE, and copies
the version from UPDATE1 into the Undo log.

This all makes hard work for the memory manager and the CPU, as you can see from the
growth of the “max mem”\”delta mem” parameters values in the test that uses the default
transaction parameters.

When NO SAVEPOINT is enabled we avoid the expense of maintaining the Undo log. As
a result, we see execution time, reads/writes and memory usage as low for subsequent
updates as for the first.

The third UPDATE

The third and all subsequent UPDATEs are similar to the second UPDATE, with one excep-
tion – memory usage does not grow any further.

TestBed

21

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Testing the NO SAVEPOINT

Figure 6

The third UPDATE overwrites the UPDATE1 version in the Undo log with the UPDATE2
version and its own version is written to disk as the latest one.

Figure 7

If we have an explicit SAVEPOINT, each new record version associated with it will have a
corresponding backversion in the Undo log of that savepoint

Original design of IB implement second UPDATE another way but sometime after IB6 Bor-
land changed original behavior and we see what we see now.But this theme is for another
article;)

Why is the delta of memory usage zero? The reason is that, beyond the second UPDATE,
no record version is created. From here on, the update just replaces record data on disk
with the newest one and shifts the superseded version into the Undo log.

A more interesting question is why we see an increase in disk reads and writes during the
test. We would have expected that the third and following UPDATEs would do essentially
equal numbers of read and writes to write the newest versions and move the previous ones
to the undo log. However, we are actually seeing a growing count of writes. We have no
answer for it, but we would be pleased to know.

The following figure (figure 6) helps to illustrate the situation in the Undo log during the
sequential updates. When NO SAVEPOINT is enabled, the only pieces we need to perform
are replacing the version on disk and updating the original backversion. It is fast as the first
UPDATE.

Explicit SAVEPOINT
When an UPDATE statement is going to be performed within its own explicit or implicit

BEGIN... END savepoint framework, the engine has to store a backversion for each associ-
ated record version in the Undo log.

For example, if we used an explicit savepoint, e.g. SAVEPOINT Savepoint1, upon perform-
ing UPDATE2, we would have the situation illustrated in figure 7:

In this case the memory consumption would be expected to increase each time an UPDATE
occurs within the explicit savepoint's scope.

Summary
The new transaction option NO SAVEPOINT can solve the problem of excessive resource
usage growth that can occur with sequential bulk updates. It should be beneficial when
applied appropriately. Because the option can create its own problems by inhibiting the
advance of the OIT, it should be used with caution, of course. The developer will need to take
extra care about database housekeeping, particularly with respect to timely sweeping.

Development area

22

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

OOD and RDBMS, Part 1

Object-Oriented
Development in RDBMS,
Part 1
Thanks and apologies
This article is mostly a compilation
of methods that are already well-
known, though many times it turned
out that I on my own have reinvent-
ed a well-known and quite good
wheel. I have endeavored to pro-
vide readers with links to publica-
tions I know of that are discussing
the problem. However, if I missed
someone’s work in the bibliogra-
phy, and thus violated copyright,
please drop me a message at
vlad@contek.ru. I apologize
beforehand for possible inconven-
ience, and promise to add any nec-
essary information to the article.

The sources in the bibliography are
listed in the order of their appear-
ance in my mind.

The described database structures
have been simplified in order to
illustrate the problems under con-
sideration as much clearly as possi-
ble, leaving out more unimportant
elements. I have tested the viability

of all the methods taken from the
articles, and of course I have tested
all my own methods.

Mixing of object-oriented program-
ming and RDBMS use is always a
compromise. I have endeavored to
recommend several approaches in
which this compromise is minimised
for both components. I have also
tried to describe both advantages
and disadvantages of such a com-
promise.

I should make it clear that the object
approach to database design as
described is not appropriate for
every task. It is still true for the OOP
as a whole, too, no matter what
OOP apologists may say! ?. I would
recommend using it for such tasks as
document storage and processing,
accounting, etc.

And the last, but not least , I am very
thankful to Dmitry Kuzmenko,
Alexander Nevsky and other peo-
ple who helped me in writing this
article.

The problem state-
ment

What is the problem?

Present-day relational databases
were developed in times when the
sun shone brighter, the computers
were slower, mathematics was in
favour, and OOP had yet to see the
light of day. Due to that fact most
RDBMSs’ have the following char-
acteristics in common:

1.Everyone got used to them and
felt comfortable with them.

2.They are quite fast (if you use
them according to certain known
standards).

3.They use SQL, which is an easy,
comprehensible and time-proved
data manipulation method.

4.They are based upon a strong
mathematical theory.

5.They are convenient for applica-

tion development - if you develop
your applications just like 20-30
years ago.

As you see, almost all these charac-
teristics sound good, except, proba-
bly, the last one. Today you can
hardly find a software product (in
almost any area) consisting of more
than few thousand of lines which is
written without OOP technologies.
OOP languages have been used for
a long time for building visual
forms, i.e. in UI development. It is
also quite usual to apply OOP at
the business logic level, if you
implement it either on a middle-tier,
or on a client. But things fall apart
when the deal comes closer to the
data storage issues… During the last
ten years there were several
attempts to develop an object-ori-
ented database system, and, as far
as I know, all those attempts were
rather far from being successful.
The characteristics of an OODBMS
are the antithesis of those for an
RDBMS. They are unusual and

Author: Vladimir Kotlyarevsky
vlad@contek.ru

https://secure.shareit.com/shareit/cart.html?PRODUCT[214084]=1&COUPON1=issue2readers
mailto:vlad@contek.ru

Development area

23

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

OOD and RDBMS, Part 1

slow; there are no standards for
data access and no underlying
mathematical theory. Perhaps the
OOP developer feels more comfort-
able with them, although I am not
sure…

As a result, everyone continues
using RDBMS, combining object-
oriented business logic and domain
objects with relational access to the
database, where these objects are
stored.

What do we need?

The thing we need is simple – to
develop a set of standard methods
that will help us to simplify the
process of tailoring the OO-layer of
business logic and a relational stor-
age together. In other words, our
task is to find out how to store
objects in a relational database,
and how to implement links
between the objects. At the same
time we want to keep all the advan-
tages provided by the relational
database design and access:
speed, flexibility, and the power of
relation processing.

RDBMS as an object
storage
First let’s develop a database struc-
ture that would be suitable for
accomplishing the specified task.

The OID

All objects are unique, and they
must be easily identifiable. That is
why all the objects stored in the
database should have unique ID-
keys from a single set (similar to
object pointers in run-time). These
identifiers are used to link to an
object, to load an object into a run-
time environment, etc. In the [1]
article these identifiers are called
OIDs (i.e. Object IDs), in [2] – UINs
(Unique Identification Number), or
"hyperkey". Let us call them OIDs,
though “hyperkey” is also quite a
beautiful word, isn’t it? ? .

First of all, I would like to make a
couple of points concerning key
uniqueness. Database developers
who are used to the classical
approach to database design
would probably be quite surprised
at the idea that sometimes it makes
sense to make a table key unique
not only within a single table (in
terms of OOP – not only within a
certain class), but also within the
whole database (all classes). How-
ever, such strict uniqueness offers
important advantages, which will
become obvious quite soon. More-
over, it often makes sense to pro-
vide complete uniqueness in a Uni-
verse, which provides considerable
benefits in distributed databases
and replication development. At the
same time, strict uniqueness of a key
within the database does not have

any disadvantages. Even in the
pure relational model it does not
matter whether the surrogate key is
unique within a single table or the
whole database.

OIDs should never have any real
world meaning. In other words, the
key should be completely surro-
gate. I will not list here all the pros
and cons of surrogate keys in com-
parison with natural ones: those
who are interested can refer to the
[4] article. The simplest explanation
is that everything dealing with the
real world may change (including
the vehicle engine number, network
card number, name, passport num-
ber, social security card number,
and even sex ?.

Nobody can change their date of
birth – at least not their de facto
date of birth. But birth dates are not
unique, anyway.)

Remember the maxim "everything
that can go bad will go bad" ("con-
sequently, everything that cannot
go bad…". hum!. But let’s not talk
about such gloomy things ?).
Changes to some OIDs would
immediately lead to changes in all
identifiers and links, and thus, as
Mr. Scott Ambler wrote [1], could
result in a “huge maintenance
nightmare.” As for the surrogate
key, there is no need to change it, at
least in terms of dependency on the
changing world.

And what is more, nobody requires
run-time pointers to contain some
additional information about an
object except for a memory
address. However, there are some
people who vigorously reject usage
of surrogates. The most brilliant
argument against surrogates I’ve
ever heard is that "they conflict with
the relational theory». This state-
ment is quite arguable, since surro-
gate keys, in some sense, are much
closer to that theory than natural
ones.

Those who are interested in more
strong evidence supporting the use
of OIDs with the characteristics
described above (pure surrogate,
unique at least within the data-
base), should refer to [1], [2], and
[4] articles.

The simplest method of OID imple-
mentation in a relational database
is a field of “integer” type, and a
function for generating unique val-
ues of this type. In larger or distrib-
uted databases, it probably makes
sense to use “int64” or a combina-
tion of several integers.

ClassId

All objects stored in a database
should have a persistent analogue
of RTTI, which must be immediately
available through the object identi-
fier. Then, if we know the OID of an
object, keeping in mind that it is

https://secure.shareit.com/shareit/cart.html?PRODUCT[300042371]=1&COUPON1=issue2readers

Development area

24

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

OOD and RDBMS, Part 1

unique within the database, we can
immediately figure out what type
the object is. This is the first advan-
tage of OID uniqueness. Such an
objective may be accomplished by
a ClassId object attribute, which
refers to the known types list, which
basically is a table (let us call it
“CLASSES”). This table may include
any kind of information – from just
a simple type name to detailed type
metadata, necessary for the appli-
cation domain.

Name, Description, cre-
ation_date, change_date,
owner

Imagine a file system where user
has to remember the handles or the
inodes of files instead of their file-
names ?. It is frequently convenient,
though not always necessary, to
have an object naming method that
is independent of the object type.
For example, each object may have
a short name and a long name. It is
also sometimes convenient to have
other object attributes for different
purposes, akin to file attributes,
such as “creation_date,”
“change_date,” and “owner” (the
“owner” attribute can be a string
containing the owner’s name, as
well as a link to an object of the
“user” type). The “Deleted” attrib-
ute is also necessary as an indicator
of the unavailability of an object.
The physical deletion of records in a
database, full of direct and indirect

links, is often a very complicated
task, to put it mildly ?.

Thus each object has to have
mandatory attributes (“OID” and
“ClassId”) and desirable attributes
(“Name,” “Description,” “cre-
ation_date,” “change_date,” and
“owner”). Of course, when devel-
oping an application system, you
can always add extra attributes
specific to your particular require-
ments. This issue will be considered
a little later.

The OBJECTS Table

Reading this far leads us to the con-
clusion that the simplest solution is
to store the standard attributes of all
objects in a single table. You could
support a set of these fixed attrib-
utes separately for each type, dupli-
cating 5 or 6 fields in each table,
but why? It is not a duplication of
information, but it is still a duplica-
tion of entities. Besides, a single
table would allow us to have a cen-
tral “well-known” entry point for
searching of any object, and that is
one of the most important advan-
tages of the described structure.

So let us design this table:

Description varchar(128),
Deleted smallint,
Creation_date timestamp default CURRENT_TIMESTAMP,
Change_date timestamp default CURRENT_TIMESTAMP ,
Owner TOID);

The ClassId attribute (the object type identifier) refers to the OBJECTS table,
that is, the type description is also an object of a certain type, which has, for
example, well-known ClassId = –100. (You need to add a description of the
known OID). Then the list of all persistent object types that are known to the
system is sampled by a query: select OID, Name, Description from
OBJECTS where ClassId = -100).

Each object stored in our database will have a single record in the OBJECTS
table referring to it, and hence a corresponding set of attributes. Wherever
we see a link to a certain unidentified object, this fact about all objects
enables us to find out easily what that object is - using a standard method.

Quite often, only basic information is needed. For instance, we need just a
name to display in a lookup combobox. In this case we do not need any-
thing but the OBJECTS table and a standard method of obtaining the name
of an object via the link to it. This is the second advantage.

There are also types, simple lookup dictionaries, for example, which do not
have any attributes other than those which already are in OBJECTS. Usual-
ly it is a short name (code) and a full long name that can easily be stored in
the “Name” and “Description” fields of the OBJECTS table. Do you remem-
ber how many simple dictionaries are in your accounting system? It is like-
ly, that not less than a half! Thus you may consider that you have implement-
ed half of these dictionaries - that is the third advantage! Why should dif-
ferent dictionaries (entities) be stored in different tables (relations), when
they have the same attributes? It does not matter that you were told to do so
when you were a student!

create domain TOID as integer not null;
create table OBJECTS(
OID TOID primary key,
ClassId TOID,
Name varchar(32),

A simple plain dictionary can be retrieved from the OBJECTS
table by the following query

select OID, Name, Description
from OBJECTS
where ClassId = :LookupId

http://www.janus-software.com

Development area

25

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

OOD and RDBMS, Part 1

if you know ClassId for this dictionary
element. If you only know the type
name, the query becomes a bit more
complex:
select OID, Name, Description
from OBJECTS
where ClassId = (select OID from OBJECTS where ClassId = -100
and Name = :LookupName)

Later I will demonstrate how to add a
little more intelligence to such simple
dictionaries.

Storing of more complex
objects

It is clear that some objects in real
databases are more complex than
those which can be stored in the
OBJECTS table. The method for stor-
ing them depends on the application
domain and the object’s internal
structure. Let’s look at three well-
known methods of object-relational
mapping.

Method 1. The objects are stored just
as in a standard relational database,
with the type attributes mapped to
table attributes. For example, docu-
ment objects of the “Order” type
with such attributes as "order num-
ber," "comments," "customer," and
"order amount" are stored in the
table Orders

create table Orders (
OID TOID primary key,
customer TOID,
sum_total NUMERIC(15,2)),

which relates one-to-one to the OBJECTS table by the
OID field. The "order number" and “comments” attrib-
utes are stored in the “Name” and “Description” fields
of the OBJECTS table. “Orders” also refers to

“OBJECTS” via the “customer” field, since a customer is
also an object, being for example, a part of the "Part-
ners" dictionary. You can retrieve all attributes of
“Order” type with the following query:

select o.OID,
o.Name as Number,
o.Description as Comment,
ord.customer,
ord.sum_total
from Objects o, Orders ord
where o.OID = ord.OID and ord.OID = :id

As you see, everything is simple and usual. You could
also create a view “orders_view”, and make everything
look as it always did. ?

If an order has a “lines” section, and a real-world order
should definitely have such a section, we can create sep-
arate table for it, call it e.g. “order_lines”, and relate it
with the “Orders” table by a relation 1:M.

create table order_lines (
id integer not null primary key,
object_id TOID, /* reference to order object – 1:M relation */
item_id TOID, /* reference to ordered item */
amount numeric(15,4),
cost numeric(15,4),
sum numeric(15,4) computed by (amount*cost))

One very important advantage of this storage method is that it allows you to
work with object sets as you would with normal relational tables (which they
actually are). All the advantages of the relational approach are present.

Nevertheless, there are two main disadvantages: implementation of the system of
object-relational mapping for this method is less than simple, and there are some diffi-
culties in the organization of type inheritance. This method is described in detail in [1]
and [3]. These articles also describe the implementation of type inheritance methods in
a database.

Method 2. (See. [5]) All object attributes of any type are stored in the form of a
record set in a single table. A simple example would look like this:

create table attributes (
OID TOID, /* link to the master-object of this attribute */
attribute_id integer not null,
value varchar(256),
constraint attributes_pk primary key (OID, attribute_id));

connected 1:M with OBJECTS by OID. There is also a table

create table class_attributes (
OID TOID, /*here is a link to a description-object of the type */
attribute_id integer not null,
attribute_name varchar(32),
attribute_type integer,
constraint class_attributes_pk primary key (OID,attribute_id))

which describes type metadata – an attribute set (their names and types) for each
object type.

All attributes for particular object where the OID is known are retrieved by the query:

select attribute_id, value
from attributes
where OID = :oid

or, with names of attributes

select a.attribute_id, ca.attribute_name a.value
from attributes a, class_attributes ca, objects o
where a.OID = :oid and
a.OID = o.OID and
o.ClassId = ca.OID and
a.attribute_id = ca.attribute_id

Development area

26

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

OOD and RDBMS, Part 1

In the context of this method, you
can also emulate a relational stan-
dard. Instead of selecting object
attributes in several records (one
attribute per a record) you can get
all attributes in a single record by
joining or by using subqueries:

select o.OID,
o.Name as Number,
o.Description as Comment,
a1.value as customer,
a2.value as sum_total
from OBJECTS o
left join attributes a1 on a1.OID = o.OID and
a1.attribute_id = 1
left join attributes a2 on a2.OID = o.OID and
a2.attribute_id = 2
where o.OID = :id;

Clearly, the more attributes object
has, the slower the loading process
will be, since each attribute requires
an additional join in the query.

Returning to the example with the
“Order” document, we see that the
"order number" and "comments"
attributes are still stored in the
OBJECTS table, but "customer" and
"order amount" are stored in two
separate records of the “attributes”
table. This approach is described by
Anatoliy Tentser in article [5]. Its
advantages are rather important: a
standardized method of retrieving
and storing object attributes; ease
of extending and changing a type;
ease in implementing object inheri-
tance; very simple structure for the

database, a significant benefit ben-
efit since, with this approach the
number of tables would not
increase, no matter how many dif-
ferent types were stored in a data-
base.

The main disadvatage is that this
method is so different from the stan-
dard relational model that many
standard techniques used on rela-
tional databases cannot be applied.
The speed of object retrieval is sig-
nificantly lower than the previous
method 1 and it decreases also
with the growth of the attribute
count of a type. It is not very suit-
able for working with objects using
SQL from inside the database, in
stored procedures, for example.
There is also a certain level of data
redundancy because three fields
(“OID,” “attribute_id,” and
“value”) are applicable to every
attribute instead of just the one field
described in Method 1.

Method 3. Everything is stored in
BLOB, and one of the persistent for-
mats is applied – a custom format,
or, for example, dfm (VCL stream-
ing) from the Borland VCL, or XML,
or anything you like. There is noth-
ing to comment on here. The advan-
tages are obvious: object retrieval
logic is simple and fast; no extra
database structures are necessary
– just a single BLOB field; you can
store any custom objects, including
absolutely unstructured objects
(such as MS Word documents,
HTML pages, etc). The disadvan-
tage is also obvious: there is nothing
relational about this approach and
you would have to perform all data
processing outside of the database,
using the database only for object
storage.

Editor’s note: Even more impor-
tant, it is impossible to query the
database for objects with certain
attributes, as the attribute data is
stored in the BLOB.

It was not difficult to come to the fol-
lowing conclusions (well I know –
everyone already knows them ?).
All the three methods described are
undoubtedly useful and have a right
to live. Moreover, it sometimes
makes sense to use all three of them
in a single application. But when
choosing among these three meth-
ods, take into account the listed
advantages and disadvantages of
each method. If your application
involves massive relational data
processing like searching or group-
ing, or it is likely to be added in the
future, using a certain object attrib-

utes, it would be better to to use method 1, since it is the closest to
the standard relational model and you will retain all the power of
SQL. If, on the other hand, data processing is not particularly com-
plex and data sets are not too large and/or you need a simple
database structure, then it makes sense to use method 2. If a data-
base is used only as an object storage, and all operations are per-
formed with run-time instances of objects without using native data-
base tools like SQL (except work with attributes stored in the
OBJECTS table), the third method would probably be the best
choice due to the speed and ease of implementation.

To be continued…

FastReport 3 - new generation
of the reporting tools.

Visual report designer with rulers, guides and
zooming, wizards for base type reports, export
filters to html, tiff, bmp, jpg, xls, pdf, Dot matrix

reports support, support most popular DB-engines.

Full WYSIWYG, text rotation 0..360 degrees,
memo object supports simple html-tags

(font color, b, i, u, sub, sup), improved stretching
(StretchMode, ShiftMode properties),

Access to DB fields, styles, text flow, URLs, Anchors.

http://www.fast-report.com/

https://www.plimus.com/jsp/buynow.jsp?contractId=1645271&referrer=ibdeveloper

Development area

27

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Replicating and synchronizing

Replicating and synchronizing
InterBase/Firebird
databases using CopyCat

Author:
Jonathan Neve

jonathan@microtec.fr

www.microtec.fr

PART 1 :
BASICS OF DATABASE
REPLICATION
A replicator is a tool for keeping
several databases synchronized
(either wholly or in part), on a con-
tinuous basis. Such a tool can have
many applications: it can allow for
off-line, local data editing, with a
punctual synchronization upon
reconnection to main database; it
can also be used over a slow con-
nection, as an alternative to a direct
connection to the central database;
another use would be to make an
automatic, off-site, incremental
backup, by using simple one-way
replication.

Creating a replicator can be quite
tricky. Let's examine some of the
key design issues involved in data-
base replication, and explain how
these issues are implemented in
Microtec CopyCat, a set of Delphi /
C++Builder components for per-
forming replication between Inter-
base and FireBird databases.

Data logging

Before anything can be replicated,
all changes to each database must
of course be logged. CopyCat cre-
ates a log table and triggers for
each table that is to be replicated.
These triggers insert into the log
table all the information concerning
the record that was changed (table
name, primary key value(s), etc).

Multi-node replication

Replicating to and from several
nodes adds another degree of com-
plexity. Every change that is made
to one database must be applied to
all the others. Furthermore, when
one database applies this change, it
must indicate to the originating
database that the change has been
applied, without in any way hinder-
ing the other databases from repli-
cating the same change, either
before, simultaneously, or after.

In CopyCat, these problems are
solved using a simple and flexible
system. Each replication node can
be have one parent node, and sev-
eral sub-nodes towards which it

replicates its changes. Each node's
list of sub-nodes is stored in a table
in the node's database. (Incidental-
ly, the parent node is configured in
the replicator software itself rather
than in the database, and therefore,
no software is needed on nodes
having no parent – which allows
these servers to run Linux, or any
other OS supported by
Interbase/FireBird).

When a data change occurs in a
replicated table, one line is gener-
ated per sub-node. Thus, each sub-
node fetches only the log lines that
concern it.

Two-way replication

One obvious difficulty involved in two-way replication is how to
avoid changes that have been replicated to one database from
replicating back to the original database. Since all the changes to
the database are logged, the changes made by the replicator are
also logged, and will therefore bounce back and forth between the
source and the target databases. How can this problem be avoid-
ed?

The solution CopyCat uses is related to the sub-node management
system described above. Each sub-node is assigned a name, which
is used when the sub-node logs in to the database. When a sub-
node replicates its own changes to its parent, the replication triggers
log the change for all the node's sub-nodes except the current user.
Thus, only sub-nodes other than the originator receive the change.

Conversely, CopyCat logs in to the nodes local database using the
node name of its parent as user name. Thus, any change made to
the local database during replication will be logged for all sub-
nodes other than the node's parent, and any change made to the
parent node will be logged to other sub-nodes, but not to the origi-
nating node itself.

Primary key synchronization

One problem with replication is that since data is edited off-line,
there is no centralized way to ensure that the value of a field
remains unique. One common answer to this problem is to use
GUID values. This is a good solution if you're implementing a new
database (except that GUID fields are rather large, and therefore,
not very well suited for a primary key field), but if you have an exist-

mailto:jonathan@microtec.fr

Development area

28

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Replicating and synchronizing

ing database that needs replication,
it would be very difficult to replace
all primary or unique key fields by
GUID values.

Since GUID fields are, in many
cases, not feasible, CopyCat imple-
ments another solution. CopyCat
allows you to define for each pri-
mary key field (as well as up to
three other fields for which unicity is
to be maintained) a synchroniza-
tion method. In most cases, this will
be either a generator, or a stored
procedure call, though it could be
any valid SQL clause. Upon repli-
cation, this SQL statement is called
on the server side in order to calcu-
late a unique key value, and the
resulting value is then applied to the
local database. Only after the key
values (if any) have been changed
locally is the record replicated to
the server.

When replicating from the parent
node to the local node however,
this behaviour does not take place:
the primary key values on the serv-
er are considered to be unique.

Conflict management

Suppose a replication node and its
parent both modify the same record
during the same time period. When
the replicator connects to its parent
to replicate its changes, it has no
way of telling which of the two
nodes has the most up-to-date ver-

sion of the record: this is a conflict.

CopyCat automatically detects con-
flicts, logs them to a dedicated
table, and disables replication of
that record in either direction until
the conflict is resolved. The conflicts
table holds the user names of both
nodes involved in the conflict, as
well as a field called
“CHOSEN_USER”. In order to
solve the conflict, the user simply
has to put in this field the name of
the node which has the correct ver-
sion of the record, and automatical-
ly, upon the next replication, the
record will be replicated and the
conflict resolved.

This system was carefully designed
to function correctly even in some of
the complex scenarios that are pos-
sible with CopyCat. For instance,
the conflict may in reality be
between two nodes that are not
directly connected to each other:
since CopyCat nodes only ever
communicate directly with their par-
ent, there is no way to tell if another
node may not have a conflicting
update for a certain record. Fur-
thermore, it's entirely possible that
two nodes (having the same parent)
should simultaneously attempt to
replicate the same record to their
parent. By using a snapshot-type
transaction, and careful ordering of
the replication process, these issues
are handled transparently.

Difficult database structures

There are certain database archi-
tectures that are difficult to repli-
cate. Consider for example a
“STOCK” table, containing one line
per product, and a field holding the
current stock value. Suppose that
for a certain product, the current
stock value being 45, node A adds
1 item to stock, setting the stock
value to 46. Simultaneously, node
B, adds 2 items to stock thereby set-
ting the current stock value to 47.
How can such a table then be repli-
cated? Neither A nor B have the
correct value for the field, since nei-
ther take into consideration the
changes from the other node.

Most replicators would require such
an architecture to be altered.
Instead of having one record hold
the current stock value of product,
there could be one line per change.
This would solve the problem. How-
ever, restructuring large databases
(and the end-user applications that
usually go with them) could be a
rather major task. CopyCat was
specifically designed to avoid these
problems altogether, rather than
require the database structure to be
changed.

To solve this kind of problem, Copy-
Cat introduces stored procedure
“replication”. That is, a mechanism
for logging stored procedure calls,
and replicating them to other
nodes. When dealing with an

Development area

29

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Replicating and synchronizing

unreplicatable table (like in the example above) one solution is to make a
stored procedure which can be called for updating the table, and using
stored procedure replication in order to replicate each of these calls. Thus,
continuing the example above, instead of replicating the values of the
STOCK table, the nodes would replicate only their changes to these values,
thereby correctly synchronizing and merging the changes to the STOCK
table.

PART 2:
GETTING STARTED WITH COPYCAT
Copycat is available in two distinct forms :

1. As a set of Delphi / C++ Builder components

2. As a standalone Win32 replication tool

We will now present each one of these products.

1. CopyCat Delphi / C++ Builder Component Set

CopyCat can be obtained as a set of Delphi / C++ Builder components,
enabling you to use replication features painlessly and in many different sit-
uations, and sparing you the tedious task of writing and testing custom data-
base synchronization solutions.

Using these components, replication or synchronization facilities can be
seamlessly built into existing solutions. As an example, we have used the
CopyCat components in an application used by our development team on
their laptops to keep track of programming tasks. When the developers
need to go on-site to visit a customer, the application runs in local mode on
the laptop. When they return and connect up to the company network, any
changes they have made on-site are automatically synchronized with the
main Interbase database running on a Linux server.

Many more applications are possible since the CopyCat components are
very flexible and allow for synchronization of even a single table!

Below is a concise guide for getting started with the CopyCat component suite:

Download and install the evaluation components from
http://www.microtec.fr/copycat

Prepare databases

1) Open Delphi, and compile the data provider package(s) for the DAC
that you plan to use (currently IBX and FIBPlus are supported). These are
components for interfacing between the CopyCat components and the
underlying data-access components.

2) Open and run the “Configuration” example project (requires the IBX
provider).

3) On the “General” tab, fill in the connection parameters, and press “Con-
nect to Database”.

4) On the “Users” tab, provide the list of sub-nodes for the current data-
base.

5) On the “Tables” tab, for each table that you want to replicate, set a pri-
ority (relative to the other tables), and double-click on the “PKn generator”

https://secure.shareit.com/shareit/checkout.html?PRODUCT[148695]=1&cartcoupon=1&affiliate=200018053&COUPON1=PVSFK
http://www.microtec.fr/copycat

Development area

30

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Replicating and synchronizing

columns to (optionally) fill the primary key synchronization method. Once
these settings have been made, set the “Created” field to 'Y', so as to gen-
erate the meta-data.

6) On the “Procedures” tab, set “Created” to 'Y' for each procedure that
you want to replicate, after having set a priority.

7) Apply all the generated SQL to all databases that should be replicated.

8) For each database to be replicated, set the list of sub-nodes (in the
RPL$USERS table).

Replicate

1. In Delphi, open the “Replicator” example project.

2. Drop a provider component on the form, and hook it up to the TCcRepli-
cator's DBProvider property.

3. Setup the LocalDB and RemoteDB properties of the TCcReplicator with
the connection parameters for the local and remote databases.

4. Fill in the user name of the local and
remote nodes, as well as the SYSDBA
user name and password (needed for
primary key synchronization).

5. Compile and run the example.

6. Press the “Replicate now” button.

2. CopyTiger :
the CopyCat Win32
standalone replication tool

For those who have replication or synchronization needs but do not have
the time or resources to develop their own integrated system, Microtec pro-
poses a standalone database replication tool based on the CopyCat tech-
nology called COPYTIGER.

Features include :

• Easy to use installer

• Independent server Administrator tool (CTAdmin)

• Configuration wizard for setting up links to master / slave databases

• Robust replication engine based on Microtec CopyCat

• Fault-tolerant connection mechanism allowing for automatic resumption of lost database connections

• Simple & intuitive control panel

•Automatic email notification on certain events (conflicts, PK violations, etc.)

Visit the CopyTiger homepage to download a time-limited trial version.

http://www.microtec.fr/copycat/ct

SUMMARY

In today's connected world, database replication and synchronization are topics of great interest among
all industry professionals. With the advent of Microtec CopyCat, the Interbase / Firebird community is
obtaining a two-fold benefit :

1. By encapsulating all the functionality of a replicator into Delphi components, CopyCat makes it easier
than ever to integrate replication and synchronization facilities into custom applications,

2. By providing a standalone tool for the replication of Interbase / Firebird databases, Microtec is respond-
ing to another great need in the community – that of having a powerful and easy-to-use replication tool,
and one that can be connected to an existing database without disrupting it's current structure.

CopyCat is being actively developed by Microtec and many new features are being worked on such as
support for replicating between heterogeneous database types (PostgreSQL, Oracle, MSSQL, MySQL,
NexusDB, ...) as well as a Linux / Kylix version for the components and the standalone tool.

You can find more information about CopyCat at:
http://www.microtec.fr/copycat, or by contacting us at copycat@microtec.fr.

As as promotional operation, Microtec is offering a 20% discount to IBDeveloper readers for the pur-
chase of any CopyCat product, for the first 100 licenses sold!

Click on the BUY NOW icon on our web site and enter the following
ShareIt coupon code:

ibd-852-150

mailto:copycat@microtec.fr
http://www.microtec.fr/copycat/ct
http://www.microtec.fr/copycat/ct

Thankfully, prior to working with
InterBase, I was interested in differ-
ent data structures, how they are
stored and what algorithms they
use. This helped me to interpret the
output of gstat. At that time I decid-
ed to write a tool that could analyze
gstat output to help in tuning the
database or at least to identify the
cause of performance problems.

Long story, but the outcome was
that IBAnalyst was created. In spite
of my experience it still allows me to
find very interesting things or per-
formance issues in different data-
bases.

Real systems have runtime perform-
ance that fluctuates like a wave. The
amplitude of such ‘waves’ can be
low or high, so you can see how
performance differs from day to
day (or hour by hour). Actual per-
formance depends on many factors,
including the design of the applica-
tion, server configuration, transac-
tion concurrency, version garbage
in the database and so on. To find
out what is happening in a data-
base (both positive and negative
aspects of performance) you should
at the very least take a peek at the

Development area

31

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Using IBAnalyst

Understanding Your
Database with IBAnalyst
I have been working with InterBase
since 1994. Back then, most data-
bases were small, and did not
require any tuning. Of course, there
were occasions when I had to
change ibconfig on a server, and
reconfigured hardware or the OS,
but that was almost all I could do to
tune performance.

Four years ago, our company
began to provide technical support
and training of InterBase users.
Working with many production
databases also taught me a lot of
different things. However, most of
what I learned concerned applica-
tions – transaction parameters
usage, optimizing queries and
result sets.

Of course, I had known for quite
some time about gstat – the tool that
gives database statistics informa-
tion. If you have ever looked in
gstat output or read opguide.pdf
about it, you would know that the
statistical output looks like just a
bunch of numbers and nothing else.
Ok, you can discover fragmentation
information for a particular table or
index, but what other useful infor-
mation can be obtained?

database statistics from time to time.

Let's take a look at the capabilities
of IBAnalyst. IBAnalyst can take
statistics from gstat or the Services
API and compile them into a report
giving you complete information
about the database, its tables and

indices. It has in-place warnings
which are available during the
browsing of statistics; it also
includes hint comments and recom-
mendation reports.

The summary shown in Figure 1
provides general information about

Figure 1 Summary of database statistics

Author: Dmitri Kouzmenko
kdv@ib-aid.com

https://secure.shareit.com/shareit/cart.html?PRODUCT[214084]=1&COUPON1=issue2readers
mailto:kdv@ib-aid.com

1- InterBase 7.5 and Firebird 1.5 have special features that can periodi-
cally flush unsaved pages if Forced Writes is Off.
2 - Oldest transaction is the same Oldest interesting transaction, mentioned
everywhere. Gstat output does not show this transaction as "interesting".
3 - Really it is the oldest transaction that was active when the oldest trans-
action currently active started. This is because only new transaction start
moves "Oldest active" forward. In the production systems with regular
transactions it can be considered as currently oldest active transaction.

Development area

32

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Using IBAnalyst

your database. The warnings or
comments shown are based on
carefully gathered knowledge
obtained from a large number of
real-world production databases.

Note: All figures in this article con-
tain gstat statistics which were taken
from a real-world production data-
base (with the permission of its own-
ers).

As I said before, raw database sta-
tistics look cryptic and are hard to
interpret. IBAnalyst highlights any
potential problems clearly in yellow
or red and the detail of the problem
can be read simply by placing the
cursor over the relevant entry and
reading the hint that is displayed.

What can we discover from the
above figure? This is a dialect 3
database with a page size of 4096
bytes. Six to eight years ago devel-
opers used a default page size of
1024 bytes, but in more recent
times such a small page size could
lead to many performance prob-
lems. Since this database has a
page size of 4k, there is no warning
displayed, as this page size is okay.

Next, we can see that the Forced
Write parameter is set to OFF and
marked red. InterBase 4.x and 5.x
by default had this parameter ON.
Forced Writes itself is a write cache
method: when ON it writes
changed data immediately to disk,
but OFF means that writes will be

stored for unknown time by the
operating system in its file cache.
InterBase 6 creates databases with
Forced Writes OFF.

Why is this marked in red on the
IBAnalyst report? The answer is sim-
ple – using asynchronous writes can
cause database corruption in cases
of power, OS or server failure.

Tip: It is interesting that modern
HDD interfaces (ATA, SATA, SCSI)
do not show any major difference in
performance with Forced Write set
On or Off1 .

Next on the report is the mysterious
"sweep interval". If positive, it sets
the size of the gap between the old-
est2 and oldest snapshot transaction,
at which the engine is alerted to the
need to start an automatic garbage
collection. On some systems, hitting
this threshold will cause a "sudden
performance loss" effect, and as a
result it is sometimes recommended
that the sweep interval be set to 0
(disabling automatic sweeping
entirely). Here, the sweep interval is
marked yellow, because the value
of the sweep gap is negative,
which it can be in InterBase 6.0,
Firebird and Yaffil statistics but not in
InterBase 7.x. When the value of the
sweep gap is greater than the
sweep interval (if the sweep interval
is not 0) the report entry for the
sweep interval will be marked red
with an appropriate hint.

We will examine the next 8 rows as
a group, as they all display aspects
of the transaction state of the data-
base:

• The Oldest transaction is the
oldest non-committed transaction.
Any lower transaction numbers are
for committed transactions, and no
record versions are available for
such transactions. Transaction num-
bers higher than the oldest transac-
tion are for transactions that can be
in any state. This is also called the
"oldest interesting transaction",
because it freezes when a transac-
tion is ended with rollback, and
server can not undo its changes at
that moment.

• The Oldest snapshot – the old-
est active (i.e., not yet committed)
transaction that existed at the start
of the transaction that is currently
the Oldest Active transaction.
Indicates lowest snapshot transac-
tion number that is interested in
record versions.

• The Oldest active3 – the oldest
currently active transaction .

• The Next transaction – the
transaction number that will be
assigned to new transaction

• Active transactions – IBAnalyst
will give a warning if the oldest
active transaction number is
30% lower than the daily transac-
tions count. The statistics do not tell

if there any other active transactions between oldest active and
next transaction, but there can be such transactions. Usually, if
the oldest active gets stuck, there are two possible causes: a) that
some transaction is active for a long time or b) the application
design allows transactions to run for a long time. Both causes pre-
vent garbage collection and consume server resources.

• Transactions per day – this is calculated from Next transaction,
divided by the number of days passed since the creation of the
database to the point where the statistics are retrieved. This can be
correct only for production databases, or for databases that are
periodically restored from backup, causing transaction numbering
to be reset.

As you have already learned, if there any warnings, they are shown
as colored lines, with clear, descriptive hints on how to fix or prevent
the problem.

It should be noted that database statistics are not always useful. Sta-
tistics that are gathered during work and housekeeping operations
can be meaningless.

Do not gather statistics if you:

• Just restored your database

• Performed backup (gbak –b db.gdb) without the –g switch

• Recently performed a manual sweep (gfix –sweep)

Statistics you get on such occasions will be practically useless. It is
also correct that during normal work there can be times where data-
base is in perfect state, for example, when applications make less
database load than usual (users are at lunch or it's a quiet time in the
business day).

Development area

33

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Using IBAnalyst

the main reason for performance degradation. For some tables
there can be a lot of versions that are still "in use". The server can
not decide whether they really are in use, because active transac-
tions potentially need any of these versions. Accordingly, the serv-
er does not consider these versions as garbage, and it takes longer
and longer to construct a correct record from the big chain of ver-
sions whenever a transaction happens to read it. In Figure 2 you
can see two tables that have the versions count three times higher
than the record count. Using this information you can also check
whether the fact that your applications are updating these tables so
frequently is by design, or because of coding mistake or an appli-
cation design flaw.

The Index view
IIndices are used by database engine to enforce primary key, for-
eign key and unique constraints. They also speed up the retrieval of
data. Unique indices are the best for retrieving data, but the level of
benefit from non-unique indices depends on the diversity of the
indexed data.

For example, look at ADDR_ADDRESS_IDX6. First of all, the index

How to seize the moment
when there is something
wrong with the database?
Your applications can be designed
so well that they will always work
with transactions and data correct-
ly, not making sweep gaps, not
accumulating a lot of active trans-
actions, not keeping long running
snapshots and so on. Usually it does
not happen (sorry, colleagues).

The most common reason is that
developers test their applications
running only two or three simultane-
ous users. When the application is
then used in a production environ-
ment with fifteen or more simultane-
ous users, the database can behave
unpredictably. Of course, multi-user
mode can work okay because most

multi-user conflicts can be tested
with two or three concurrently run-
ning applications. However, with
larger numbers of users, garbage
collection problems can arise. Such
potential problems can be caught if
you gather database statistics at the
correct moments.

Table information
Let's take look at another sample
output from IBAnalyst.

The IBAnalyst Table statistics view is
also very useful. It can show which
tables have a lot of record versions,
where a large number of
updates/deletes were made, frag-
mented tables, with fragmentation
caused by update/delete or by
blobs, and so on. You can see which
tables are being updated frequent-Figure 2 Table statistics

ly, and what the table size is in
megabytes. Most of these warnings
are customizable.

In this database example there are
several activities. First of all, yellow
color in the VerLen column warns
that space taken by record versions
is larger than that occupied by the
records themselves. This can result
from updating a lot of fields in a
record or by bulk deletes. See the
rows in which MaxVers column is
marked in blue. This shows that only
one version per record is stored and
consequently this is caused by bulk
deletes. So, both indications can tell
that this is really "bulk deletes", and
number in Versions column is close
to number of deleted records.

Long-living active transactions pre-
vent garbage collection, and this is name itself tells that it was created manually. If statistics

were taken by the Services API with metadata info, you
can see what columns are indexed (in IBAnalyst 1.83
and greater). For the index under examination you can
see that it has 34999 keys, TotalDup is 34995 and
MaxDup is 25056. Both duplicate columns are marked
in red. This is because there are only 4 unique key val-
ues amongst all the keys in this index, as can be seen
from the Uniques column. Furthermore, the greatest
duplicate chain (key pointing to records with the same
column value) is 25056 – i.e. almost all keys store one
of four unique values. As a result, this index could:

• Reduce the speed of the restore process. Okay, thir-
ty-five thousand keys is not a big deal for modern data-
bases and hardware, but the impact should be noted
anyway.

Development area

34

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Using IBAnalyst

• Slow down garbage collection. Indices with a low count of unique
values can impede garbage collection by up to ten times in compar-
ison with a completely unique index. This problem has been solved
in InterBase 7.1/7.5 and Firebird 2.0.

• Produce unnecessary page reads when the optimizer reads the
index. It depends on the value being searched in a particular query
- searching by an index that has a larger value for MaxDup will be
slower. Searching by value that has fewer duplicate values will be
faster, but only you know what data is stored in that indexed column.

That is why IBAnalyst draws your attention to such indices, marking
them red and yellow, and including them in the Recommendations
report. Unfortunately most of the “bad" indices are automatically
created to enforce foreign-key constraints. In some cases this prob-
lem can be solved by preventing, using triggers, deletes or updates
of primary key in lookup tables. But if it is not possible to implement
such changes, IBAnalyst will show you "bad" indices on Foreign
Keys every time you view statistics.

Reports

There is no need to look through the entire report each time, spotting cell color and reading hints for new warnings.
More direct and detailed information can be had by using the Recommendations feature of IBAnalyst. Just load the
statistics and go to the Reports/View Recommendations menu. This report provides a step-by-step analysis, includ-
ing more detailed descriptive warnings about forced writes, sweep interval, database activity, transaction state,
database page size, sweeping, transaction inventory pages, fragmented tables, tables with lot of record versions,
massive deletes/updates, deep indices, optimizer-unfriendly indices, useless indices and even empty tables. All of
this information and the accompanying suggestions are dynamically created based on the statistics being loaded.

As an example of the report output, let’s have a look at a report generated for the database statistics you saw
earlier in this article: "Overall size of transaction inventory pages (TIP) is big - 94 kilobytes or 23 pages.
Read_committed transaction uses global TIP, but snapshot transactions make own copies of TIP in memory. Big TIP
size can slowdown performance. Try to run sweep manually (gfix -sweep) to decrease TIP size. "

Here is another quote from table/indices part of report: "Versioned tables count: 8. Large amount of record versions
usually slowdown performance. If there are a lot of record versions in table, than garbage collection does not work,
or records are not being read by any select statement. You can try select count(*) on that tables to enforce garbage
collection, but this can take long time (if there are lot of versions and non-unique indices exist) and can be unsuccess-

Table Records Versions Rec/Vers size
CLIENTS_PR 3388 10944 92%
DICT_PRICE 30 1992 45%
DOCS 9 2225 64%
N_PART 13835 72594 83%
REGISTR_NC 241 4085 56%
SKL_NC 1640 7736 170%
STAT_QUICK 17649 85062 110%
UO_LOCK 283 8490 144%

ful if there is at least one transaction interested in these versions. Here
is the list of tables with version/record ratio greater than 3 :

Summary
IBAnalyst is an invaluable tool that assists a user in performing
detailed analysis of Firebird or InterBase database statistics and
identifying possible problems with a database in terms of perform-
ance, maintenance and how an application interacts with the data-
base. It takes cryptic database statistics and displays them in an
easy-to-understand, graphical manner and will automatically make
sensible suggestions about improving database performance and
easing database maintenance.

Readers feedback

35

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Comments to “Temporary tables”

One thing I'd like to ask you to
change is re temp tables. I suggest
you even create another myth box
for it. It is the sentence

'Surely, most often temporary
tables were necessary to those
developers who had been working
with MS SQL before they started to
use InterBase/Firebird.'

This myth does not want to die.
Temporary tables (TT) are not a
means for underskilled DB kids,
who cannot write any complex SQL
statement. They are *the* means of
dealing with data that is *structural-
ly* dynamic, but still needs to be
processed like data with a fixed
structure. So all OLAP systems
based on RDBMS are heavily
dependent on this feature - or, if it is
not present, it requires a whole lot
of unnecessary and complicated
workarounds. I'm talking out of
experience.

Then, there are situations where the
optimizer simply loses the plot

because of the complexity of a
statement. If developers have a fall-
back method to reduce complexity
in those cases, that's an advantage.
Much better than asking developers
to supply their own query plans.

Also, 'serious' RDBMS like Informix
had them at least 15 years ago,
when MS's database expertise did
not go further than MS Access. Cer-
tainly those MS database develop-
ers who need TTs to be able to do
their job would not have managed
to deal with an Informix server if
complexity was their main problem.

The two preceding paragraphs
were about local temp tables. There
are also global temporary tables
(GTTs). A point in favour of GTTs is
that one can give users their own
workspace within a database with-
out having to setup some clumsy
administration for it. No user id
scattered around in tables where
they don't belong, no explicit
cleanup, no demanding role man-
agement. Just setup tables as temp,

and from then on it is transparent to
users/applications that the data
inside is user/session-specific. Web
applications would be a good
example.

The argument reminds me a bit of
MySQL reasoning when it comes to
features their 'RDBMS' does/did
not have. Transactions / Foreign
Keys / Triggers etc were all bad
and unnecessary because they did
not have them (officially: they slow
down the whole system and intro-
duce dependencies). Of course
they do. To call a flat file system a
RDBMS is obviously good for mar-
keting. Now they are putting in all
those essential database features
which were declared crap by them
not long ago. And you can see
already that their marketing now
tells us how important those fea-
tures are. I bet we won't see MySQL
benchmarks for a while ;-) .

We should not make a similar mis-
take. Temporary tables are impor-
tant if the nature of a system is

dynamic, either re user/session
data isolation, or re data where the
structure is unknown in advance,
but needs to be processed like DB
data with a fixed structure. That
Firebird does not have them is
plainly a lack of an important fea-
ture, in the same category as cross
DB operations (only through qli,
which means 'unusable'). Both fea-
tures could make Firebird much
more suitable as the basis for OLAP
systems, an area where Firebird is
lacking considerably.

Well, to be fair, Firebird developers
are working on both topics.

Volker Rehn

volker.rehn@bigpond.com

We received a lot of feedback emails for article “Working with temporary tables in InterBase 7.5” which was published in issue 1.
The one of them is impressed me and with permission of its respective owner I’d like to publish it.

Alexey Kovyazin, Chief Editor

Readers feedback

https://secure.shareit.com/shareit/cart.html?PRODUCT[200879]=1&COUPON1=issue2readers
mailto:volker.rehn@bigpond.com

Miscellaneous

36

The InterBase and Firebird Developer Magazine 2005 ISSUE 2

www.ibdeveloper.com©2005 www.ibdeveloper.com All right reserved

Invitations, Subscription,
Donations, Sponsorships

This is the first, official
book on Firebird — the
free, independent,
open source relational
database server that
emerged in 2000.

Based on the actual
Firebird Project, this
book will provide you
all you need to know
about Firebird data-
base development, like
installation, multi-plat-
form configuration,
SQL language, inter-
faces, and mainte-
nance.

Subscribe now!

To receive future issues
notifications send email to

subscribe@ibdeveloper.com

Magazine
CD

Donations

mailto:authors@ibdeveloper.com
www.ibdeveloper.com
http://ibdeveloper.com/donations/
http://ibdeveloper.com/magazine-cd/
mailto:subscribe@ibdeveloper.com?subject=Subscribe
mailto: subscribe@ibdeveloper.com
http://www.amazon.com/exec/obidos/tg/detail/-/1590592794/qid=1121347490/sr=8-1/ref=pd_bbs_ur_1/104-6332401-7732731?v=glance&s=books&n=507846

