
HQbird 2022 User Guide
1.09, by 08.01.2022

Table of Contents
Preface. 6

About this Guide. 6

About IBSurgeon . 6

1. Overview of HQbird. 7

1.1. What is HQbird . 7

1.2. What’s new in HQbird 2022 . 7

1.3. Feature matrix. 8

2. Installation of HQbird . 11

2.1. Installing HQbird Server on Windows . 11

2.1.1. Silent installation on Windows . 11

2.2. Installing HQbird Server for Windows using the installer. 13

2.3. Installing HQbird Administrator on Windows . 26

2.3.1. How to install community version of Firebird on Windows . 28

2.4. Installing HQbird Server on Linux. 29

2.4.1. Installation of HQbird with Firebird 2.5 on Linux . 29

2.4.2. Installation of HQbird with Firebird 3.0 on Linux . 30

2.4.3. Installation of HQbird with Firebird 4.0 on Linux . 31

2.4.4. Installation of HQbird Standard on Linux . 31

2.4.5. Firewall settings . 32

2.5. Upgrade existing HQbird version . 32

2.6. Registration of HQbird . 34

2.6.1. How to activate HQbird. 34

2.6.2. Offline Activation . 37

2.6.3. Activation in web interface . 38

3. Configuration of HQbird. 39

3.1. Initial configuration of HQbird FBDataGuard (backups, monitoring, alerts,etc) 39

3.1.1. Launch web-console. 39

3.1.2. Auto discovery feature of FBDataGuard . 40

3.1.3. Firebird server registration . 41

3.1.4. Firebird database registration. 43

3.1.5. Email alerts in HQbird FBDataGuard. 46

3.1.6. Next steps with FBDataGuard . 49

3.2. Monitoring and maintenance configuration in FBDataGuard . 49

3.2.1. Overview of web-console. 49

3.2.2. Server: Active server . 51

3.2.3. Server: Auto updates . 52

3.2.4. Server: Replication Log . 53

3.2.5. Server: Server log . 54

Table of Contents

1

3.2.6. Server: Temp files . 55

3.2.7. Server: Firebird server folder . 56

3.2.8. Server: HQbird Output Folder . 58

3.2.9. Database: General configuration . 58

3.2.10. Database: Transactions . 59

3.2.11. Database: Lockprint . 60

3.2.12. Database: Index statistics recalculation . 64

3.2.13. Database: Verified Backup . 65

3.2.14. Database: Incremental Backup . 70

3.2.15. Database: Dump Backup . 74

3.2.16. Database: RestoreDB . 74

3.2.17. Database: Transfer Replication Segments . 79

3.2.18. Database: Transfer Files . 83

3.2.19. Database: Pump Files. 87

3.2.20. Database: File Receiver . 90

3.2.21. Database: Low-level metadata backup . 93

3.2.22. Database: Validate DB . 93

3.2.23. Database: Sweep Schedule . 94

3.2.24. Database: Delta . 95

3.2.25. Database: Disk space . 96

3.2.26. Database: Database statistics . 97

3.2.27. Database: Replica Check . 97

3.3. FBDataGuard tips&tricks . 98

3.3.1. Path to FBDataGuard configuration . 98

3.3.2. Adjusting web-console port . 99

3.3.3. How to change password for Admin user. 99

3.3.4. Guest user for HQbird FBDataGuard . 99

3.4. Appendix: CRON Expressions . 100

3.4.1. CRON Format . 100

3.4.2. Special characters. 100

3.4.3. CRON Examples. 101

3.4.4. Notes . 102

3.5. Configuring firebird.conf for the best performance . 102

4. Monitoring . 104

4.1. Monitoring with HQbird FBDataGuard. 104

4.1.1. Overview. 104

4.1.2. Automatic monitoring with FBDataGuard (Trace API and MON$). 105

4.1.3. What can we see in the performance report? . 108

4.1.4. Automatic monitoring of long-running active transactions. 110

4.1.5. How to select a tool for detailed monitoring . 111

4.2. Monitoring with MON$ tables: HQbird MonLogger . 112

Table of Contents

2

4.2.1. Aggregated performance statistics for users attachments . 113

4.2.2. Aggregated performance statistics for statements . 114

4.2.3. Attachments . 116

4.2.4. Transactions. 117

4.2.5. Statements . 118

4.3. Advanced Monitor Viewer . 118

4.3.1. FetchesReadsWritesMarks . 120

4.3.2. Users . 121

4.3.3. Traces. 121

4.3.4. RAM and CPU Windows . 122

4.3.5. RAM and LoadAvg Linux . 122

4.3.6. Transactions. 122

4.3.7. Lock Table Info . 123

4.4. Monitoring with HQbird FBScanner . 123

4.4.1. What is FBScanner? . 123

4.4.2. Issues that FBScanner can help to resolve . 124

4.4.3. Performance Impact . 124

4.4.4. How to configure FBScanner for local computer? . 124

4.4.5. How to setup FBScanner for remote computer?. 125

4.4.6. How to setup logging? . 128

4.4.7. How to analyze FBScanner log? . 135

4.4.8. How to track 10054 errors, disconnects and failed login attempts?. 140

4.4.9. Backup/restore and mass load operations . 141

4.4.10. Real-Time Monitoring: FBScanner Viewer. 142

4.4.11. FBScanner Feature Matrix . 153

5. Database structure analysis . 158

5.1. Overview of Firebird database structure . 158

5.2. How to analyze database structure with HQbird Database Analyst (IBAnalyst) 159

5.2.1. How to get statistics from Firebird database in right way . 160

5.2.2. Summary View . 162

5.2.3. Tables view. 166

5.2.4. Index view . 169

6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements 173

6.1. What is HQbird Enterprise?. 173

6.1.1. Compatibility . 173

6.1.2. How the replication works . 173

6.2. Installation . 173

6.3. Asynchronous replication for Firebird . 173

6.3.1. Step 1: Configure HQbird for replication at the master . 175

6.3.2. Step 2: Create a copy of master database . 180

6.3.3. Step 3: Setup database for async replication at the replica(slave) server. 181

Table of Contents

3

6.4. Automatic initialization and re-initialization of replica . 182

6.4.1. How re-initialization works . 183

6.4.2. Troubleshooting asynchronous replication . 184

6.5. Synchronous replication for Firebird . 186

6.5.1. Steps to setup synchronous replication. 187

6.5.2. Synchronous replication at master and replica . 187

6.5.3. Replication parameters for testing synchronous replication . 188

6.6. How to manually create replica of the database? . 189

6.6.1. Creating copy online (with nbackup). 189

6.6.2. What is {DATABASEGUID}? . 190

6.6.3. How to set replica database to the master mode . 191

6.7. How to distinguish master database from replica . 192

6.7.1. Using gstat -h . 192

6.7.2. With SQL query to the context variable . 192

6.8. Optional parameters for replication . 193

7. Performance enhancements . 196

7.1. Pool of external connections . 196

7.2. Cached prepared statements . 197

7.3. TempSpaceLogThreshold: monitoring of big sorting queries and BLOBs 198

7.4. SortDataStorageThreshold: REFETCH instead SORT for wide record sets 199

7.5. Multi-thread sweep, backup, restore. 200

7.6. BLOB_APPEND function . 202

7.7. Transform LEFT joins into INNER . 206

8. Encryption support . 207

8.1. OpenSSL files . 207

8.1.1. How to encrypt and decrypt Firebird database . 207

9. Authentication plugin for Execute Statement On External . 215

9.1. Installation of authentication plugin for ESOE . 215

9.1.1. Authentication plugin files . 215

9.1.2. Configuration. 215

9.1.3. How to test . 218

10. RSA-UDR — security functions to sign documents and verify signatures . 219

10.1. How to use RSA-UDR security and conversion functions. 221

11. SPLIT-UDR — procedures to splitting lines by separator . 223

12. OCR-UDR — function to recognizing text from images. 226

12.1. Example of using OCR-UDR . 226

13. LK-JSON-UDR — building and parsing JSON . 228

13.1. Install UDR lkJSON . 228

13.2. How it works? . 228

13.3. Description of PSQL packages from UDR-lkJSON . 229

13.3.1. JS$BASE package. 229

Table of Contents

4

13.3.2. JS$BOOL package. 230

13.3.3. JS$CUSTLIST package. 231

13.3.4. JS$FUNC package. 233

13.3.5. JS$LIST package. 234

13.3.6. JS$METH package. 236

13.3.7. JS$NULL package. 237

13.3.8. JS$NUM package. 238

13.3.9. JS$OBJ package. 239

13.3.10. JS$PTR package . 242

13.3.11. JS$STR package . 243

13.4. Examples . 245

13.4.1. Building JSON . 245

13.4.2. Parse JSON . 247

14. NANODBC-UDR — working with ODBC Data Sources . 254

14.1. Install UDR nanodbc . 254

14.2. How it works? . 254

14.3. Description of PSQL packages from UDR-nanodbc . 255

14.3.1. NANO$UDR package. 255

14.3.2. NANO$CONN package. 256

14.3.3. NANO$TNX package. 259

14.3.4. NANO$STMT package. 259

14.3.5. NANO$RSLT package. 270

14.3.6. NANO$FUNC package. 280

14.4. Examples . 283

14.4.1. Fetching data from a Postgresql table . 283

14.4.2. Inserting data into a Postgresql table . 285

14.4.3. Batch insert into a Postgresql table . 286

14.4.4. Using transaction . 288

15. Firebird Streaming . 290

15.1. Json plugin description . 291

15.2. Sql plugin description . 293

15.3. Rabbitmq plugin description. 293

Appendix A: Support contacts. 295

Table of Contents

5

Preface

About this Guide
HQbird User Guide contains detailed description of functions and features of HQbird – advanced
Firebird distribution, including with configuration examples and best practices recommendations.

About IBSurgeon
IBSurgeon (https://www.ib-aid.com) was founded in 2002 with the idea to provide InterBase and
Firebird developers and administrator with services and tools focused on databases safety,
performance and availability. In Russia, IBSurgeon is mostly known as iBase.ru, famous by its
Russian InterBase and Firebird portal www.ibase.ru. IBSurgeon is a member of Firebird
Foundation and, as a member of Technical Task Group, has strong relationship with Firebird
Project, with direct representatives in Firebird-Admins and in Firebird Foundation Committee.
Today, IBSurgeon serves thousands of companies worldwide with emergency, optimization and
maintenance tools and various services. Our clients are medical institutions, financial
organizations and ISVs in Germany, Brazil, Russia and other countries, and all who have
applications based on Firebird and/or InterBase. The flagship project of IBSurgeon is HQbird, the
advanced distribution of FirebirdSQL for big databases with enterprise features.

Preface

6

https://www.ib-aid.com
http://www.ibase.ru

Chapter 1. Overview of HQbird

1.1. What is HQbird
HQbird is an advanced distribution of Firebird for enterprises, with the following list of features:

• Native one-to-many replication (2.5, 3.0, 4.0)

◦ Replicates databases with 1500+ connections

◦ Asynchronous replication with 10 seconds delay

◦ Synchronous replication

◦ No triggers or other changes in schema required, DDL support, online re-initialization

• multi-thread backup, restore, and sweep;

• support for encryption;

• pool of execute on external connections;

• cached prepared statements;

• optimized configurations;

• backups automation, including cloud backups;

• database health monitoring;

• automatic performance and transactions reports;

• advanced transactions and queries monitoring (Trace, MON$ and FBScanner);

• database structure analysis;

• recovery toolset and database development GUI.

Also HQbird includes a performance self-test to measure Firebird performance on the specific
hardware and OS configuration.

HQBird contains 2 parts: Server and Admin. The Server part has versions for Windows and Linux,
and the administration part works on Windows only.

There are 3 editions of HQbird: Standard, Professional and Enterprise.

1.2. What’s new in HQbird 2022
HQbird 2022 is a major new release that adds support for Firebird 4 and adds a number of
significant features:

1. Performance improvements:

◦ Optimizer improvements for automatic recognition of implicit INNER join (transform LEFT
JOIN to INNER JOIN if queries are equivalent)

◦ Temporary blob caching to speed up blob operations up to 15% and prevent abnormal
database growth

Chapter 1. Overview of HQbird

7

◦ blob_append function for faster blob concatenation, blob operations up to 18x faster

◦ Multithreaded restore in Firebird 4 HQbird 2022

2. Streaming changes to the database:

◦ Each change (such as INSERT, UPDATE or DELETE) for each table can be sent outside the
database by a commit event

◦ Ability to send changes as JSON via RabbitMQ and similar software

3. A set of additional UDRs:

◦ Text recognition (OCR) inside the database in queries, stored procedures and triggers, with
support for dictionaries.

◦ UDR for working with JSON (construction and parsing)

◦ Split UDR to quickly split a string by delimiter

◦ UDR for working with external data sources via ODBC

4. The most complete performance monitoring, based on MON$ and trace data, makes it easy to
identify performance problems, from long transactions to slow or too frequent requests.

In addition, HQbird 2022 still offers advanced replication functionality, external connection
pooling, prepared statements pool, and other features necessary when working with large
databases under critical load.

1.3. Feature matrix
Below there is the feature matrix for HQbird editions.

Features Editions

Standard Professional Enterprise

Optimized configurations X X X

Backups X X X

Automatic Performance Reports X X X

SQL queries tracking X X X

Transactions tracking X X X

Database structure analysis X X X

Performance self-test suite X X

SQL development, design&debugging X X

Recovery X

Replication and high availability X

Pool of Execute On External statements X

Cached prepared statements X

Multi-thread backup, sweep, restore X

Chapter 1. Overview of HQbird

8

Encryption support X

Enhanced authentication and security features X

It is possible to single out components in the HQbird modules that are responsible for certain
operations (such as backup, monitoring, database repair).

The table below shows how features are distributed among the HQbird modules:

Features Modules Description

Backup
(automated
verified and
incremental
backup)

FBDataGuard FBDataGuard runs on the server side and performs all
kinds of backup

Optimized
Configurations
(balanced, read-
intensive and
write-intensive)

FBDataGuard, a
collection of
optimized
configurations

The optimized configuration file can be customized on the
basis of recommendations from FBDataGuard

Performance Test
Suite (hardware
score)

Performance Test
Suite

The test measures the hardware performance

Monitoring SQL
Queries (MON$,
TraceAPI and
FBScanner)

Performance
Monitor,
MON$Logger,
FBScanner

Three different monitoring methods are used in different
scenarios

Health
Monitoring
(online validation,
database health
check, log
analysis)

FBDataGuard Everything is carried out on the server. FBDataGuard
sends notifications by e-mail.

Transaction
Tracking
(dynamic analysis
of transaction
markers)

FBDataGuard,
Transaction
Monitor,
MON$Logger

FBDataGuard tracks problems with transactions,
Transaction Monitor and MON$Logger show the dynamics
of changes and the current status of active transactions.

Database
Structure
Analysis (table
and index sizes,
fragmentation,
versioning, etc.)

Database Analyst Database Analyst analyses the database structure in detail
and shows warnings and recommendations.

Chapter 1. Overview of HQbird

9

Features Modules Description

SQL
Development &
Debugging (a GUI
tool for developing
databases and
queries)

SQL Studio SQL Studio is a powerful tool for developing and
debugging database objects and SQL queries.

Recovery
(database
recovery, backup
recovery, record
undeleting)

FirstAID,
FBDataGuard,
IBBackupSurgeon,
IBUndelete

FirstAID repairs databases when they get corrupted,
FBDataGuard stores important metadata thus increasing
the chances of successful repairs, IBBackupSurgeon
exports data from corrupted backup copies. IBUndelete
can undo records deletion.

High Availability
(replication)

The HQbird Enterprise edition includes replication and high availability tools.

Performance
improvements
(pool of Execute
On External and
Cached
prepared)

HQbird Enterprise includes performance improvements.

Multi-thread
backup, sweep,
restore

HQbird Enterprise

Encryption
support

HQbird Enterprise

Enhanced
authentication
and security
features

HQbird Enterprise

Chapter 1. Overview of HQbird

10

Chapter 2. Installation of HQbird
HQbird contains 2 parts: Server and Admin. Let’s consider how to install them.

2.1. Installing HQbird Server on Windows
HQbird Server 2022 includes Firebird 2.5, 3.0 and 4.0 with replication, multi-thread support and
other enhancements as part of its installer, so Firebird must be installed as part of HQbird. It is
mandatory to install Firebird bundled with HQbird Server installer, if you plan to use replication (it
also requires HQbird Enterprise license, full or trial) and other enhancements.

Optionally you can choose HQbird Standard, which will not install Firebird, so you can use
previously installed Firebird – in this case, make sure that installed version is compatible (2.5.2,
2.5.5, 2.5.6, 2.5.7, 2.5.8, 2.5.9, 3.0.x, 4.0.x).

Please note, that only Firebird 2.5, 3.0 and 4.0 are fully supported in HQbird, the old Firebird
versions are supported partially. We offer the comprehensive Firebird migration service with
guaranteed and fast result to migrate Firebird to the latest version.

2.1.1. Silent installation on Windows

The fastest way to install HQbird is to use the silent installation command.

In the example below we will install HQbird Enterprise with Firebird 4.0 into c:\HQbird,
configuration will be c:\HQbirdData\config, output in c:\HQbirdData\output.

HQBirdServer2022.exe /VERYSILENT /SP- /TYPE="hqbird40x64" /DIR="C:\HQbird2022"
/CONFIGDIR=C:\HQBirdData\config /OUTPUTDIR=C:\HQBirdData\output

The following parameters are mandatory to perform the silent installation:

• /VERYSILENT /SP - options to perform the silent installation

• /TYPE – what HQbird version should be installed. If you are doing silent upgrade, make sure the
version is the same as it was installed previously.

◦ "HQBird25x64" - "HQbird Enterprise (with Firebird 2.5 x64)";

◦ "HQBird30x64" - "HQbird Enterprise (with Firebird 3.0 x64)";

◦ "HQBird40x64" - "HQbird Enterprise (with Firebird 4.0 x64)".

• /DIR - where to install HQBird. If you are doing silent upgrade, make sure the version is the
same as it was installed previously.

• /CONFIGDIR – where to store configuration data for HQbird.

• /OUTPUTDIR – where to store output data (default location for backups, performance reports, etc).

Optional parameters for the silent installation of HQbird:

• /fbport=3050 - port for Firebird to be installed with HQbird Enterprise

Chapter 2. Installation of HQbird

11

https://ib-aid.com/en/firebird-database-migration/

• /LOG=C:\temp\HQBirdServerSetup.log - where to store installation log

• DataGuard parameters:

◦ /DGPORT=8082 – port for web interface of HQbird (FBDataGuard)

◦ /DGLOGIN=admin – login for web interface of HQbird (FBDataGuard)

◦ /DGPASSWORD=strong password – password for web interface of HQbird (FBDataGuard)

• Automatic registration parameters:

◦ /REGEMAIL=youremail@company.com - email to perform the automatic registration of HQBird

◦ /REGPASS=yourpassword – password from IBSurgeon Deploy Center account to register HQbird

◦ /REGTYPE=S|E|T == Standard, Enterprise, Trial – license type, must be specified if you need to
register HQbird during the installation

• Оffline registration (incompatible with REG **)

◦ /REGUIK=<uik filename>

◦ /REGUNLOCK=<unlock filename>

Must be set in pairs, both are required!

/REGUIK="z:\HQBird\test\uik" /REGUNLOCK="z:\HQBird\test\unl"

• Email alerts parameters:

◦ /EAHOST=smtp.company.com – SMTP server for email alerts

◦ /EAPORT=25 – SMTP port for email alerts

◦ /EALOGIN=support – SMTP login to send email alerts

◦ /EAPASSWORD=psw – SMTP password to send email alerts

◦ /EATO=support@email.to – where to send email alerts

◦ /EAFROM=someemaildg@company.com – from address

◦ /EAENABLED=true – enable or disable email alerts

◦ /EADEFALT=true – send a copy of email alerts to IBSurgeon Control Center

• Built-in FTP server parameters:

◦ /FTPENABLED=true – enable or disable FTP server

◦ /FTPPORT=8721 - FTP port

◦ /FTPLOGIN=admin2 - FTP login

◦ FTPPASSWORD=strong password2 - FTP password

Please note, that in a case of error, for example, if you are trying to run silent installation to install
HQbird to the location which is different from the current location, the error message window will
popup and installation will be canceled.

Chapter 2. Installation of HQbird

12

mailto:youremail@company.com
mailto:support@email.to
mailto:someemaildg@company.com

2.2. Installing HQbird Server for Windows using the
installer
Download HQbird from https://ib-aid.com/en/download-hqbird

The distribution package of HQbird server is the same for the 32-bit and 64-bit versions of the
Firebird engine.

Make sure that HQbird installer is signed with valid IBSurgeon certificate («iBase LLC») and run it:

Figure 1. Installer is signed with IBSurgeon digital signature: iBase LLC

Figure 2. Confirmation to start the installation process

The HQbird Server Side installation wizard will be launched after that and it will take you through
several steps, such as agreeing to the license agreement and selecting the installation folder.

Chapter 2. Installation of HQbird

13

https://ib-aid.com/en/download-hqbird

Figure 3. Licence agreement

At first, the installer will ask you where to install HQbird:

Chapter 2. Installation of HQbird

14

Figure 4. Where to install HQbird

We recommend to use the default location c:\HQbird, but you can use any suitable location.

After that, you should select folders for storing configuration files, backup copies of databases,
statistics and HQbird log files:

Chapter 2. Installation of HQbird

15

Figure 5. Select folders for HQbird configuration and log files

By default, the installation wizard offers to create folders for configuration and log files in
C:\HQbirdData.

Usually, we recommend selecting a disk with a large amount of free space for this
purpose, but you can configure it later.

If configuration files already exist in the selected location, the installation wizard will display the
corresponding warning:

Figure 6. Warning about existing configuration files

We recommend the automatic upgrade, so default answer should be Yes.

However, you can choose to create fresh configuration of HQbird, and click No – it this case the

Chapter 2. Installation of HQbird

16

installer will warn you that existing configuration files will be moved:

Figure 7. Confirmation of backup

In case of choosing Cancel, you need to specify the different location for the configuration and
output/backup files.

After you confirm it, the folder with the existing configuration files will be renamed and the
installation will continue.

After that, you will see the installation step where you can select components to be installed:

Figure 8. Select components from HQbird Server Side to be installed

We recommend that you install HQbird Enterprise, which contains all HQbird components and

Chapter 2. Installation of HQbird

17

Firebird, to avoid further configuration. All HQbird modules are installed in the inactive mode and
do not affect the operation of the Firebird server until they are configured or used.

If you select to install HQbird Enterprise (i.e., with Firebird), it will install Firebird in the subfolder
of HQbird installation, by default C:\HQBird\Firebird25 or C:\HQBird\Firebird30 or
C:\HQBird\Firebird40.

Then, you will be asked to specify the port for HQbird FBDataGuard (web interface to manage
HQbird):

Figure 9. Specify port, login and password for HQbird FBDataGuard and HQBird Advanced Monitoring
Viewer

We recommend to keep 8082, but sometimes this port can be occupied, so you can change it.

Default password: strong password

Chapter 2. Installation of HQbird

18

Figure 10. Setup FTP Server settings

After that, the installer will ask about email settings to be used to send email alerts:

Chapter 2. Installation of HQbird

19

Figure 11. Email alerts settings

 You can skip this step: all email alerts can be set later in web interface.

Then, the installation wizard will ask to specify the port for Firebird engine installed with HQbird:

Chapter 2. Installation of HQbird

20

Figure 12. Specify port for Firebird server

By default, the port is 3050. If the port will be occupied by another running Firebird, the installation
wizard will warn you and make to choose another port. Or, you can stop and uninstall another
Firebird service.

The checkbox “Add MaxParallelWorkers parameter to enable multi-threaded features” enables
multi-threading support for backup, restore and sweep. You can learn more in the “Performance
enhancements” chapter of the "Multi-thread sweep, backup, restore" section.

Then, only if you are installing HQbird Standard (i.e., without bundled Firebird), the installation
wizard will ask you to specify the folder where Firebird is installed:

Chapter 2. Installation of HQbird

21

Figure 13. Confirm the location of the current Firebird instance (for HQbirdStandard).

Attention! During this step, the installation wizard checks the availability and compatibility of the
installed Firebird version with HQbird. If the specified folder does not contain a correctly installed
Firebird version, you will see the following warning:

Figure 14. This warning from the installation wizard prompts you to select the correctFirebird folder.

You should use Firebird version 2.5.5 or higher for HQbird Standard to be installed (see How to
Update Firebird for Windows), or choose HQbird Enterprise to install the newest Firebird.

Then, you can specify the folder name and location in Windows menu:

Chapter 2. Installation of HQbird

22

Figure 15. Choose Windows Start menu folder.

At the next step the installer will offer you to pre-configure HQbird to be used as master or replica
server:

Chapter 2. Installation of HQbird

23

Figure 16. Pre-configuration for replication.

You can skip this step, this configuration can be done later.

The final step is a summary of components to be installed and their paths:

Chapter 2. Installation of HQbird

24

Figure 17. Click Install to complete the installation.

After that you have to activate HQbird (see How to Activate HQbird) and proceed to configure the
HQbird components.

At the end of installation process, you will be asked about next steps:

Chapter 2. Installation of HQbird

25

Figure 18. Post-installation steps.

2.3. Installing HQbird Administrator on Windows
To install HQBird Administrator, download the distribution package from httpshttp://ib-aid.com/
en/hqbird/, or from your account at http://deploy.ib-aid.com.

The name of HQbird Administrator package is HQbirdAdminNNNN.exe (it is in the zip archive).

Run the installation wizard and follow the standard installation steps: digital signature check,
license, then select the installation folder:

Chapter 2. Installation of HQbird

26

http://ib-aid.com/en/hqbird/
http://ib-aid.com/en/hqbird/
http://deploy.ib-aid.com/

Figure 19. Select where to install HQbird Admin.

Select tools to install after that. We recommend that you install all tools.

Figure 20. Select tools to install.

Follow the instructions after that. After the installation is over, you will be offered to launch the
activation wizard. If you are installing HQbird Admin on the same computer where HQbird Server
was already installed, the license will be automatically detected by HQbird Admin tools.

Chapter 2. Installation of HQbird

27

2.3.1. How to install community version of Firebird on Windows

The easiest way is to install Firebird bundled with HQbird – just choose the desired version during
the installation. However, sometimes it is necessary to use HQbird with a community version of
Firebird.

Please note – to enable replication and performance features in HQbird Enterprise
you need to install Firebird bundled with HQbird ServerSide.

To install Firebird separately, download the Firebird zip archive from www.firebirdsql.org

Unpack the archive file to a suitable location (for instance, C:\Firebird25), after that copy the
optimized configuration file firebird.conf (see Optimized Configurations below) to this folder.

Then, go to the Bin folder and then use the Run As Administrator option to run the batch file with
the architecture you need.

• For Firebird 2.5 – run install-superclassic.bat.

• For Firebird 3.0 – set parameter ServerMode=Super and run install_service.bat.

Of course, you can choose the SuperServer for 2.5 or Classic architecture for 3.0 if you know what
you need.

As a result of running the command file, Firebird of the selected architecture will be installed and
run as a service.

You can make sure the Firebird service is installed and running in the Services snap-in (rub
services.msc in command prompt):

Chapter 2. Installation of HQbird

28

http://www.firebirdsql.org/

Figure 21. Firebird Service.

In this example, Firebird is installed in the folder H:\Firebird\Firebird-2.5.5.26928-0_x64 and
running as a service with the SuperClassic architecture.

2.4. Installing HQbird Server on Linux
To install HQbird Server Side on Linux, you need to download HQbird ServerSide for Linux with
integrated Firebird from this location: https://ib-aid.com/en/hqbird-installation/

This archive contains 3 files:

• install_fb25_hqbird2022.sh

• install_fb30_hqbird2022.sh

• install_fb40_hqbird2022.sh

You must be root or sudoer to install HQbird on Linux!

General prerequisites: install java version 1.8 before installing HQbird! We recommend
OpenJDK, but Oracle’s Java is also fine.

2.4.1. Installation of HQbird with Firebird 2.5 on Linux

1. Uninstall all previously installed Firebird versions before running this installer. Make sure you
don’t have Firebird installed from repositories!

Chapter 2. Installation of HQbird

29

https://ib-aid.com/download/hqbird/hqbird2022linux.zip
https://ib-aid.com/en/hqbird-installation/

2. Apply execution rights to the installation package:

chmod +x install_fb25_hqbird2022.sh

3. Run installation script install_fb25_hqbird2022.sh. It will install Firebird into /opt/firebird and
HQbird into /opt/hqbird

4. By default, Firebird 2.5 is installed as Classic. We recommend to install it as SuperClassic – for
this run script /opt/firebird/bin/changeMultiConnectMode.sh and choose thread

Next steps:

1. Please note that Firebird 2.5 will be installed with SYSDBA/masterkey

2. You can stop/start Firebird 2.5 with command service firebird stop or service firebird start.
Check is it running with command ps aux | grep firebird

3. You can stop/start HQbird with command service hqbird stop or service hqbird start. Check is
it running with command ps aux | grep dataguard

4. Run browser, and log in to HQbird FBDataGuard http://serverurl:8082, with user/password =
admin/strong password

5. Choose “I have HQbird Enterprise” and register HQbird with the email and password you have
received from IBSurgeon Deploy Center.

6. If necessary, follow steps to setup — or see the appropriate chapter of this Guide.

2.4.2. Installation of HQbird with Firebird 3.0 on Linux

Prerequisites: make sure you have libtommath, libncurses5-dev and ICU installed (there will be
an appropriate error message if they are not installed).

1. Uninstall all previously installed Firebird versions before running this installer

2. Apply execution rights to the installation package:

chmod +x install_fb30_hqbird2022.sh

3. Run installation script install_fb30_hqbird2022.sh. It will install Firebird into /opt/firebird and
HQbird into /opt/hqbird

4. By default, Firebird 3.0 is installed as SuperServer. Keep it.

5. Firebird 3.0 will be installed with SYSDBA/masterkey

Next steps:

1. You can stop/start Firebird 3.0 with command service firebird-superserver stop or service
firebird-superserver start. Check is it running with command ps aux | grep firebird

2. You can stop/start HQbird with command service hqbird stop or service hqbird start. Check is
it running with command ps aux | grep dataguard

Chapter 2. Installation of HQbird

30

http://serverurl:8082

3. Run browser, and log in to HQbird FBDataGuard http://serverurl:8082, with user/password =
admin/strong password

4. Choose “I have HQbird Enterprise” and register HQbird with the email and password you have
received from IBSurgeon Deploy Center.

5. If necessary, follow steps to setup — or see the appropriate chapter of this Guide.

2.4.3. Installation of HQbird with Firebird 4.0 on Linux

Prerequisites: make sure you have libtommath and ICU installed (there will be an appropriate
error message if they are not installed).

1. Uninstall all previously installed Firebird versions before running this installer

2. Apply execution rights to the installation package:

chmod +x install_fb40_hqbird2022.sh

3. Run installation script install_fb40_hqbird2022.sh. It will install Firebird into /opt/firebird and
HQbird into /opt/hqbird

4. By default, Firebird 4.0 is installed as SuperServer. Keep it.

5. Firebird 4.0 will be installed with SYSDBA/masterkey

Next steps:

1. You can stop/start Firebird 4.0 with command service firebird-superserver stop or service
firebird-superserver start. Check is it running with command ps aux | grep firebird

2. You can stop/start HQbird with command service hqbird stop or service hqbird start. Check is
it running with command ps aux | grep dataguard

3. Run browser, and log in to HQbird FBDataGuard http://serverurl:8082, with user/password =
admin/strong password

4. Choose “I have HQbird Enterprise” and register HQbird with the email and password you have
received from IBSurgeon Deploy Center.

5. If necessary, follow steps to setup — or see the appropriate chapter of this Guide.

2.4.4. Installation of HQbird Standard on Linux

If you have a license of HQbird Standard, or if you don’t want to change the existing Firebird
installation, please run the following command:

install_fb4_hqbird2022.sh –-nofirebird

It will install HQbird without Firebird binaries.

Chapter 2. Installation of HQbird

31

http://serverurl:8082
http://serverurl:8082

Please note, that advanced features (replication, multi-thread support, encryption,
authentication) require HQbird Enterprise with Firebird binaries!

2.4.5. Firewall settings

Firebird is installed on port 3050, HQbird web interface is listening on port 8082, and licensing
interface is listening on 8765.

These ports can be changed in /opt/firebird/firebird.conf (RemoteServicePort),
/opt/hqbird/conf/network.properties (server.port) and /opt/hqbird/conf/license.properties
(serverlicense.port).

Make sure to allow these ports in your firewall configuration.

Attention!

After upgrade, make sure that there is only the one copy of HQbird is running! If
there are 2 copies, stop them (service hqbird stop for the first and kill <process-
number> for the second instances) and start it again.

2.5. Upgrade existing HQbird version
HQbird installer on Windows (from v 2018R2) and on Linux (from v 2018R3) supports automatic
upgrade of the configuration of already installed HQbird version 2017R2 and later.

If HQbird installer will notice the previous version of HQbird, it will ask you to confirm the
upgrade, and in case of the positive answer, it will stop Firebird, HQbird and upgrade their files.

Figure 22. Warning about upgrade.

Chapter 2. Installation of HQbird

32

Figure 23. Warning about restart of currently running HQbird FBDataGuard.

The configuration will be retained — it means that firebird.conf, aliases.conf, securityX.fdb, and
HQbird configuration files will not be deleted (HQbird configuration files will be upgraded to the
new configuration version).

The upgrade does not change the Windows service settings for Firebird and HQbird – it means that
if you have changed “Run As” properties of the service, they will be retained.

 After upgrade on Linux Firebird and HQbird must be started manually!

After upgrading HQbird, open the web-console and choose in the right upper
corner: “Refresh HQbird web-console”. It is necessary to clean the cache of
JavaScript part of the application.

Please note — if you are installing HQbird 2022 over the old version of HQbird on Windows, the
dialog with installation options will be shown as disabled, because we cannot automatically
upgrade from 2.5 to 3.0 or 4.0, and installer can only upgrade the same components. If you need a
different installation, remove old version of HQbird from the computer prior installing 2022.

Chapter 2. Installation of HQbird

33

Figure 24. An example of the disabled components selection dialog in case ofupgrade.

2.6. Registration of HQbird

2.6.1. How to activate HQbird

To activate HQbird, you can either use a separate utility included in the server and administrator
packages for Windows, or use the registration mechanism embedded into the HQBird Firebird
DataGuard web interface (for Windows and Linux), or run any tool from the administrator
software and use the built-in activation wizard.

The activation wizard looks and works the same in the tools and in the activation tool. It is enough
to perform activation once on any computer that can connect to the server where HQbird
ServerSide is installed.

You can launch the registration utility from the Start menu (IBSurgeon\HQbird Firebird
Admin\HQbird):

Chapter 2. Installation of HQbird

34

Figure 25. HQBird registration helper.

If you click the Register button (or Re-Register for repeated registration), you will see the activation
wizard:

Figure 26. HQBird activation window.

After that, specify the IP address or the computer name of the server HQbird is installed on in the
upper input field and click Connect to HQbird Server. If you started registration utility on the
same computer with HQbird Server, it will be “localhost”, otherwise — some remote address.

Then enter your registration data. If you have a license, enter your e-mail address and password
that you used to register with the IBSurgeon Deploy Center and click Activate.

Chapter 2. Installation of HQbird

35

If you have no license, choose Trial license, specify your e-mail address and click
Activate. You will be automatically registered and the password will be sent to
your e-mail address.

Right after you click Activate, the registration wizard will try to connect to the IBSurgeon Deploy
Center () and obtain a license. If it succeeds, you will see the corresponding message. If there are
any problems, you will see the error message.

If you forget the password, click the Forgot password… button and it will open the browser with
the password recovery form.

If you need to purchase a new or additional license or renew your subscription, click Purchase.

Click Close this window after the registration is over.

Internet Activation via a Client Computer

If the server with HQbird Server does not have access to the Internet, you can still activate it via the
Internet: you can install HQbird Administrator on any client computer with Windows that has both
access to the Internet and access to the HQbird Server and perform activation.

Run HQbird Register tool and enter there: IP address of your server (or, server name — for
example, mylinuxserver), email and license, and click Activate:

Chapter 2. Installation of HQbird

36

Figure 27. HQBird activation window.

2.6.2. Offline Activation

If the server and all client computers have no access to the Internet, you should use offline
activation. To do it, click Offline activation tab and follow instructions there. In case of any troubles
please contact.

Chapter 2. Installation of HQbird

37

2.6.3. Activation in web interface

Figure 28. Activation in web interface.

Chapter 2. Installation of HQbird

38

Chapter 3. Configuration of HQbird

3.1. Initial configuration of HQbird FBDataGuard
(backups, monitoring, alerts,etc)
Please follow these steps:

1. Make sure that you have Firebird 2.5.5 or later (Firebird 2.1 is also supported with some
limitation), and it is working;

2. HQbird FBDataGuard service is installed and running

a. You can check it using Services applet in Control Panel (right-click on “My Computer”,
choose “Manage”, then “Services and Applications”, “Services” and find in the list
“FBDataGuard Agent”

b. At Linux you can check it with command ps aux | grep dataguard.

3. Make sure the FBDataGuard port is accessible (8082) and it is not blocked by firewall or any
other antivirus tools. If necessary, adjust port in FBDataGuard configuration file (see Web-
console port).

3.1.1. Launch web-console

To open web-console type in your browser or use IP address of your server with installed HQbird
ServerSide.

Or you can choose in “Start” menu IBSurgeon\HQbird Server Side\Firebird DataGuard\"Launch the
DataGuard web console for localhost".

Supported browsers

FBDataGuard web interface works correctly with Firefox, Chrome, Safari and Internet Explorer 11.

Error message regarding webs-site certificate

If you have configured FBDataGuard to use https, the browser will indicate that this web-site () is
not safe, and it will recommend leaving web-site. This message is caused by the default security
certificate for FBDataGuard web-console.

Please ignore this message and click to open FBDataGuard web-console.

It will ask you for username and password (login dialog can be different for Firefox, Safari or
Chrome).

Chapter 3. Configuration of HQbird

39

Figure 29. Enter username and password for FBDataGuard web-console.

Attention!

Default username/password for HQbird FBDataGuard is "admin"/"strong
password" (without quotes).

3.1.2. Auto discovery feature of FBDataGuard

At the first launch FBDataGuard will check computer for installed Firebird servers. FBDataGuard
for Windows search registry for Firebird records, FBDataGuard for Linux checks default locations
of Firebird installations.

FBDataGuard will show the list of all Firebird copies installed, but only the one instance of Firebird
can be monitored by FBDataGuard. Choose it by clicking [ Add Firebird engine to monitoring >> ]

If you don’t see Firebird instance in auto discovery list, you can choose [ Add custom >> ] and
configure instance parameters manually.

Chapter 3. Configuration of HQbird

40

Figure 30. Auto discovery feature of HQbird.

3.1.3. Firebird server registration

To register auto-discovered server, you need to click at [ Add Firebird engine to monitoring>> ]
and then adjust auto-discovered settings.

Note: to use Windows Trusted Authentication (by default it’s off), you need to be
sure that libraries jaybird30.dll and fbclient.dll (from appropriate Firebird version)
are in searchable Windows paths.

When installing under Windows, if the option to automatically register the master/replica is
selected, the server will be added automatically. In this case, you can skip this step. If the option to
automatically register a replica is selected, then the database will be added in addition.

Let’s consider what can you see in the Server dialog (and, normally, you don’t need to change
them):

• Installed in: Firebird installation folder

• Binary folder: Firebird bin folder (for Firebird 3 on Windows Binary folder is the same as the
installation folder)

• Log: location of firebird.log

• Configuration file: location of firebird.conf

• Aliases: location of aliases.conf or, for Firebird 3, databases.conf (please change it manually, if
needed)

• Host: name of the server, usually localhost

• Port: network port for Firebird, according firebird.conf settings

Chapter 3. Configuration of HQbird

41

• Use trusted auth: use trusted authentication, by default it is off

• SYSDBA login: name of SYSDBA user, usually it is SYSDBA

• SYSDBA password: password for SYSDBA

• Output directory: Folder where backups, statistics and gathered logs will be stored

Figure 31. Register server in HQbird FBDataGuard.

By default “Output directory” for Firebird server is ${agent.default-directory}/${server.id}, it
corresponds to C:\HQbirdData in case of a default installation.

It can be not very convenient, so we recommend pointing FBDataGuard output directory to more
simple path, usually located at disk where backups are intended to be stored, for example
F:\myserverdata.

After clicking “Register” FBDataGuard will populate default configurations files and immediately
start analysis of firebird.log. It can take a while (for example, 1 minute for 100Mb firebird.log). After
that you will see initial web-console with registered Firebird server:

Chapter 3. Configuration of HQbird

42

Figure 32. HQbird FBDataGuard with registered Firebird server.

FBDataGuard shows alerts and statuses of monitored objects: if everything is fine, it shows green
signs, otherwise there will be yellow or red notifications.

Below we will consider in details each monitored objects and its settings.

Note: you cannot delete registered Firebird server in FBDataGuard web-console.
The only way to unregister server is to delete its configuration files. In general,
there is no reason for deleting registered server, until you want completely
uninstall FBDataGuard.

Now we let’s proceed with a database registration.

3.1.4. Firebird database registration

To register database in FBDataGuard, you need to click at the symbol “Settings” in the right corner
of “Databases” (there will be a hint “Add database to monitoring”) and fill the following form:

Chapter 3. Configuration of HQbird

43

Figure 33. Add database to monitoring.

• “Database nick name” is for your convenience, it is used to refer this database in alerts and
email messages.

• “DB alias” is a database alias from aliases.conf or in databases.conf. If you specify both “DB
Alias” and “Path to database”, “DB Alias” will be used.

• “Path to database” is the local path to database (remember that FBDataGuard should work at
the same computer with Firebird). If you are putting database on external drive, it can raise
error “File… has unknown partition”. To fix it you need to click on “Configure” at Server widget
and click “Save” to make FBDataGuard re-read partitions.

• “Crypt key name” – if the database is encrypted, specify encryption key name.

• “Crypt key value” – if the database is encrypted, specify encryption key value.

• “Output folder” is the folder where FBDataGuard will store backups, logs and statistics for this
database. If you do not select HQbirdData folder during the installation, and if you do not
specify output folder for the server, it’s a good idea to specify “Output directory” to some
explicit location like F:\mydatabasedata.

• “Enable advanced monitoring” - see Advanced Monitor Viewer

You can specify exact absolute locations for backups and statistics later in
appropriate dialogs.

You can see the list of databases available for registration or their aliases by clicking on the link
View database aliases.

Chapter 3. Configuration of HQbird

44

Figure 34. Available database aliases.

You can see the list of databases available for registration or their aliases by clicking on the link
View open databases.

After registration, FBDataGuard will populate database configuration with default values and then
show web-console with registered database:

Chapter 3. Configuration of HQbird

45

Figure 35. HQbird FBDataGuard web console after adding a database.

You can adjust database settings later; now let’s proceed with alerts setup.

3.1.5. Email alerts in HQbird FBDataGuard

FBDataGuard can send alerts by email to administrator(s): such alerts contain information about
successful backups and potential and real problems with databases.

General properties for notifications can be set by clicking on the server name (or computer name)
at the top of the web-console:

After that you will see the configuration dialog for common alerts settings:

Chapter 3. Configuration of HQbird

46

Descriptions of some of the properties you can set here:

• “Installation name” is some readable name for your convenience; it will be referred in emails
and alerts.

• “Installation GUID” is a service field; there is no need to change it.

• “Web console background color” – often it is useful to adjust the color of HQbird web interface
to distinguish them easily.

It’s a good idea to enable setup email alerts. To do this you need to click on the envelope button in
the top of the web-console:

After that you will see the configuration dialog for alerts:

Chapter 3. Configuration of HQbird

47

Figure 36. Email alerts configuration dialog in FBDataGuard.

First of all, you need to enable alerts sending by enabling checkbox “Send alerts by e-mail”.

• “Send alerts by email” - enable email alerts and configure email settings below.

• “Send alerts to” specify where to send emails.

• “From field” is what will be set as sender in the email.

• “SMTP server address”, “SMTP server port”, “SMTP server login” and “SMTP server password”
are data which will be used to send emails.

Before saving the settings, you can click the "Send Test Message" button, if the settings are correct,
you should receive a letter to the specified address.

In order to limit the number of letters, you can collect messages into groups and send them in

Chapter 3. Configuration of HQbird

48

batches. To do this, set "Group notifications in emails" checkbox. It will also help bypass some of the
atni-spam systems that can blacklist you due to too frequent send emails.

Click “Save” to save email alerts settings.

3.1.6. Next steps with FBDataGuard

After you have setup HQbird FBDataGuard and added there server and database(s) to be
monitored, you need to adjust settings for the most important maintenance activities: backups,
sweep and performance monitoring.

3.2. Monitoring and maintenance configuration in
FBDataGuard

3.2.1. Overview of web-console.

Parts of web-console.

FBDataGuard Web-console contains 5 tabs (in the left side of the screen, usually they
are collapsed):

• Dashboard – it is the main tab where administrator can configure HQbird FBDataGuard and see
server and databases statuses.

• Alerts – contains the full list of alerts, generated by FBDataGuard.

• Registration – license and registration/activation information.

• Graphs gallery – performance graphs.

• Performance – performance monitoring settings and performance reports.

Jobs

Web-console is intended for easy configuration of activities (called “jobs”) which are fulfilled by
HQbird FBDataGuard.

Chapter 3. Configuration of HQbird

49

Almost all FBDataGuard jobs have 2 purposes: the first is to monitor for some values and to raise
alerts if necessary, and the second is to store historical values into logs, so later it’s possible to see
the dynamics of important parameters of Firebird server and database.

In this section we will consider general configuration of jobs parameters, but not an analysis of
gathered logs.

Jobs widgets

General approach is the following: each activity is represented by a “widget”, which has the
following parts:

Figure 37. Elements of FBDataGuard web-console widget.

Status — it is indicated with color icon and name. Status of database is a summary of all included
server-level jobs and databases' statuses, and, respectively, status of database is a summary of all
database-level jobs.

Status types

CRITICAL means problems, OK means “Everything is fine”, WARNING means some issues which
require attention, MAJOR means major issue, MINOR – minor issue, MALFUNCTION means that
jobs was not succeeded (something prevents its execution), NOT_AVAILABLE means that job is not
available in this server or database version.

OFF means that job is not active, UNKNOWN means that job is active but was not started yet, so
actual results are unknown.

Job name indicates the name of activity.

•
 Configuration button opens configuration dialog, which is individual for each job.

•
 Resolved is the link to flush the status to UNKNOWN and forgot errors which were

Chapter 3. Configuration of HQbird

50

discovered previously. The status will be updated according the current situation after the next
execution of the job.

Last run shows the time after the last run of this job.

Period/Schedule to run shows how often or when the job will be started.

More>> is the link which opens the widget and shows more details and suggested action for
administrator to resolve the situation.

All jobs in FBDataGuard have default settings, which are very close to recommended values for the
80% of Firebird installations, so after initial configuration server and database will be protected at
pretty good level comparing with default installation, however, we recommend additional
configuration and tuning for every job. In the next sections we will consider each job and its
configuration.

3.2.2. Server: Active server

Server: Active server widget shows summarized status of all server-level jobs and statuses of
monitored databases.

Server: Active server also indicates Firebird currently running or not and shows detailed version
of Firebird and HQbird.

If you click on configure link, you will see the same dialog that we have used to register Firebird
instance in FBDataGuard, and now it can be used for changing Firebird instance properties:

Chapter 3. Configuration of HQbird

51

In general, there is no need to edit Firebird server details after the registration, until you are not
reinstalling Firebird – but in this case we recommend reinstalling HQBird too.

3.2.3. Server: Auto updates

Auto update is an important job which notifies you that newer version of HQbird
FBDataGuard is available and suggests to update the software.

It provides an alert regarding available updates and appropriate download link. Default time to run
this job is 22-00 everyday (for information).

In the configuration dialog of auto-updates you can disable auto check or set another time for it.

Chapter 3. Configuration of HQbird

52

In fact there is a small confusion here: auto update does not perform automatic update of HQbird, it
just checks for the new versions periodically, and optionally download it.

The upgrade is initiated by the administrator.

3.2.4. Server: Replication Log

If you are using HQbird Enterprise, FBDataGuard can check replication.log for errors. In case of
error it sends an appropriate alert (by email) to the administrator.

To enable this job please check “Enabled”.

Chapter 3. Configuration of HQbird

53

• Check period – how often to check replication.log for changes

• Size to roll, bytes — if replication.log will exceed will value, it will be renamed according date-
time pattern

• Date pattern for rolling – how to rename replication.log

• Keep NN error messages: how many errors will be stored in the list of the recent errors.

3.2.5. Server: Server log

“Server log” job periodically checks firebird.log and if it detects that file was changed, log analysis
starts. The embedded analytic engine checks each entry in firebird.log and categorizes them into
several categories with different levels of a severity. According the severity of messages status of
job is assigned and appropriate alerts are generated.

Once administrator has reviewed errors and alerts (and performed necessary actions to solve the
reason of error), he need to click on “Resolved” link and FBDataGuard will forget old error
messages in firebird.log.

In the configuration dialog of “Server log” you can enable/disable this job and set the check period
(in minutes).

Chapter 3. Configuration of HQbird

54

Also this job watches for the size of firebird.log and if its size exceeds “Size to roll”, FBDataGuard
will split firebird.log and rename it according to the date-time pattern.

3.2.6. Server: Temp files

“Server: Temp files” job is useful to catch and solve performance problems with Firebird database.

While performing SQL queries Firebird stores intermediate results for sorting and merging data
flows in temporary files, which are allocated in specified TEMP locations. FBDataGuard shows at
“Server: Temp files” widget information about quantity and size of temporary files.

FBDataGuard recognizes locations of TEMP folders and monitors quantity and size of temporary
files. Lack of space can lead to the performance problem or more serious errors, too many (or too
large) temporary files can indicate problems with SQL queries quality.

Chapter 3. Configuration of HQbird

55

Using configuration dialog you can enable/disable this job, set period and thresholds to the
maximum size of temporary files (size of all files) and quantity.

If you see that size of temp files is too high and if there is enough RAM on the server, increase
TempCacheLimit parameter in firebird.conf to fit all temporary tables into RAM.

Also, HQbird checks other temp files used by Firebird — if you see extreme values (several Gb) for
trace or monitor, the good idea will be check the FIREBIRD_TMP folder for outdated files (with old
modification timestamps). Please note — the screenshot below is not a real alert (i.e., values are Ok),
it was created to demonstrate the output in case of large temporary files.

3.2.7. Server: Firebird server folder

“Firebird server folder” jobs monitors size, occupied by Firebird installation. It’s enabled by
default.

Chapter 3. Configuration of HQbird

56

There are several threats prevented by this job: maladministration issues when database volumes
or external tables are being created in %Firebird%\Bin folder, very big firebird.log which can
exhaust all places at drive with Firebird installation, and some other problems.

Also this job monitors and analyses information, gathered by all space-related jobs (including
database-level jobs). At the picture below you can see quick representation of space analysis for all
drives where Firebird, databases and backups are stored.

Using configuration dialog you can enable/disable this job, set period of checking and thresholds for
server folder size.

By default we use 200 Mb is a standard setting for Firebird installation.

If the size of your Firebird is larger, please consider clean-up of old logs and other unwanted
artifacts, or increase parameter Max occupied (in bytes) to prevent false alerts.

Note for Linux users: if you see red warning regarding the inconsistent space information, add
locations with database and backups to Disk Space widget:

You can get idea where is your database and backup is actually located with command df –h.

Chapter 3. Configuration of HQbird

57

3.2.8. Server: HQbird Output Folder

“HQbird output folder” monitoring is intended to watch space occupied by reports, logs, stats,
metadata repository and other data, gathered and generated by HQbird – this folder by default is
C:\HQbirdData\output.

For databases unattended for a long time (1-2 years) it is possible that FBDataGuard logs will
occupy too much space and lack of space can lead to database outage. To prevent it for sure,
“HQbird output folder” is watching for occupied space.

By default “HQbird output folder” job is enabled.

Also, if someone has ignored recommendations to put backups’ folders to the explicit locations, it is
possible that database backup will be created inside Agent folder. In this case you’ll see CRITICAL
status immediately — FBDataGuard will recognize and warn you regarding wrong configuration.

And, this job is useful for bundles of FBDataGuard and third-party applications.

In the configuration dialog you can enable/disable this job, set check period (by default it is 10
minutes), and set thresholds for alerts.

Thresholds can be set in % of max size occupied by log or using the explicit size in bytes.

FBDataGuard checks both values and raises alert for the first threshold. If you wish to set % only,
you need to set -1 as value to “Max occupied”.

3.2.9. Database: General configuration

FBDataGuard can monitor several databases at the single server (up to 80 databases). For each
database the separate widget is created. At the top widget database status is shown, database

Chapter 3. Configuration of HQbird

58

nickname (it’s specified during database adding and can be changed). Also database widget shows
the full path to the database, its size, status of backups and the number of currently connected
users.

Using configuration dialog you can set database nickname, path to database and output folder for
the database (to store logs and jobs results).

FBDataGuard checks the validity of path to database and it does not allow specifying the wrong
path.

Also, for HQbird Enterprise, in the database widget you can see status of the replication and
configure replication by clicking on the icon. Please read more details in the replication
configuration section.

Since HQbird 2020, the database widget in HQbird also shows the encryption status of the database.

3.2.10. Database: Transactions

“Database: Transactions” job is intended to log transactions activity. It monitors 2 important
intervals: difference between Oldest Active Transaction and Next transaction and gap between
Oldest Snapshot and Oldest Interesting.

If these intervals are out of the frames of the specified threshold, it means problem with

Chapter 3. Configuration of HQbird

59

transactions management.

These logs can be analyzed to get helpful insight regarding database performance and application
quality (see more information here http://ib-aid.com/en/articles/ibanalyst-what-you-can-see-at-
summary-view/).

This job also monitors the implementation limit in Firebird: maximum transactions number in
Firebird versions before 3.0 should be less than 231-1.

Near this number database should be backup and restored. It will throw an alert if transaction
number will be close to the restrictions. Also, the transaction dynamics is shown on the tab “Graphs
gallery”:

3.2.11. Database: Lockprint

“Lockprint” job monitors the information from the lock table of Firebird. It is very important for

Chapter 3. Configuration of HQbird

60

http://ib-aid.com/en/articles/ibanalyst-what-you-can-see-at-summary-view/
http://ib-aid.com/en/articles/ibanalyst-what-you-can-see-at-summary-view/

architectures Classic/SuperClassic and useful for SuperServer.

The lock table is an internal Firebird mechanism to organize access to the objects inside Firebird
engine. HQbird monitors the important parameters of the lock table:

• Check period, minutes — how often HQbird analyses lock table. 3 minutes is an optimal

Chapter 3. Configuration of HQbird

61

interval.

• Deadlock Scans threshold — deadlock scan is a process, started by Firebird engine, in case of a
long response delay from the one of the threads. If a number of deadlock scans is high, it means
that Firebird is heavily loaded. The value is accumulated since the Firebird engine start. The
default value is pretty big – 12345, so if it is exceeded, it means that database performance is
poor.

• Deadlock threshold — if Firebird engine finds the true deadlock during the deadlock scans, it
increases this value. Please note: true deadlocks are very seldom. Don’t confuse them with
transactions' conflicts (“deadlock. Lock conflict on nowait transaction” etc).

• Mutex wait threshold — Mutex Wait is a parameter of lock table which implicitly indicates the
conflicts for the resources. The higher mutex wait, the more competition exists inside the
engine for the resources. By default, the mutex wait threshold is set to 18%, but this value is not
universal for all databases. The good approach is to watch for the mutex values during 1-2
weeks and then set the highest value seen during this period. Mutex wait graph is available in
Mutex Wait gallery.

• Hash slots alerts. Lock table header has a parameter “Hash lengths (min/avg/max): 0/0/4”, it
shows the lengths in the lock table. It is important to keep these values as low as possible, so
HQbird monitors them and suggest, how to improve the situation, if hash length is more than
specified in this job.

• Owners limit.“Owners” is a number of connections established to the specified database. In
fact, this is the fastest way to get the actual number of connections to the database with the
minimum load to the database — other ways like request to MON$ATTACHMENTS or isc_tpb_database
have various disadvantages. The limit here should be set according the actual peak number of
connections. For example, if you are sure that peak number of the connections to your database
is 500, set 550 as Owners limit, and if at some moment the load will increase, you will not miss
that moment.

Chapter 3. Configuration of HQbird

62

• Free owners. “Free owners” is the value between the peak number of owners and current
number of owners. If you see Free owners = 0, it means that number of connections grows
steadily since the Firebird start. If you see high number of Free owners, it can be sign that many
connections were disconnected recently.

• Lock table size. The lock table size is an implicit indicator of the load to the system. Normally,
lock table size should be stable. Also, it is recommended to set the initial lock table size to the
value it has after some active work period — though the lock table is enlarged on demand, the
re-allocation process is a heavy operation and can lead to micro-freezes in database responses.
Lock table graph is useful to determine the proper initial value.

• Lock table queue. Lock table queue does not have the explicit threshold in Lockprint job, but
its values are collected and shown in “Graphs gallery”. Lock table queue is an indicator of a
general load.

Chapter 3. Configuration of HQbird

63

3.2.12. Database: Index statistics recalculation

“Database: Index statistics recalculation” is an important job which helps to keep performance of
indices at optimal level, and performs additional checking of a database health.

“Database: Index statistics recalculation” allows to run re-computing of indices selectivity values.
During this procedure Firebird quickly walks through leaf pages of indices, and renews statistics
about selectivity. By visiting these pages Firebird also verifies their integrity and if index is
corrupted, the warning will be thrown.

Also, this job verifies that all indices are active in database. Inactive or non-activated indices
usually indicate corruption and lead to performance degradation.

By default this job is disabled, but we recommend enabling it after careful selecting of indices for
the recalculation.

There are three modes in this job: AUTO, ALL, SELECTED.

ALL is the mode where all indices will be checked.

AUTO is the default mode. It is very similar to ALL, but it also checks the size of database and do not
touch indices if database is bigger than 3.6Gb.

Chapter 3. Configuration of HQbird

64

SELECTED is the recommended mode. It allows choosing of indices which should be recomputed or
those which should be avoided.

To include indices into the list of recomputed, you need to specify indices names (divided by
comma), and to exclude – perform the same in the appropriate field.

As you can see at configuration dialog screenshot, there are fields to enable/disable job, to set
update mode, and to include or exclude indices. “DB size to switch, bytes” is to set limit where AUTO
mode is working. “Check index activity” switch should be always on, until you are not performing
special manipulations with inactive indices.

3.2.13. Database: Verified Backup

“Database: Verified Backup” is one of the key jobs to guarantee the safety of data stored in the
protected database. During the development of HQbird we had in mind certain recovery scenario,
and this scenario implies that the key goal of database protection is to minimize potential losses of
data. If we have healthy backup, recovery can be concentrated on saving the most recent data (just
entered into the database), and it greatly decreases the time of overall outage.

As you will see below, “Database: Verified Backup” is not just a wrapper for standard gbak
functionality and scheduler, this is a smart job which has many built-in rules to prevent problems
with backups and provide suitable interface for backups management.

“Database: Verified Backup” is disabled by default, but we strongly recommend
reviewing of its settings immediately after HQbird setup.

Chapter 3. Configuration of HQbird

65

Initially “Database: Verified Backup” job is shown as Ok, though backup was not tried. In this case
OK means that backup at least scheduled.

Also this job recognizes files according the name pattern (see below information regarding
configuration), and shows the totals number of backups.

After the backup will be done, the widget information will be changed: creation time of last
successful backup will be shown, and also the time took to actually perform the backup (only 1
minute 12 seconds at the screenshot with example).

Also, the detailed alert will be send to your email and/or HQbird Control Center:

“Database: Verified Backup” checks the free space at the drive with backup destination, and if it
detects that there is not enough free disk space, CRITICAL alert will be sent, and current backup
will be canceled (if necessary).

Chapter 3. Configuration of HQbird

66

Be careful – by default backup time is set to 23-00 Monday-Sunday.

By default, database backups will be stored into the output folder that you have
specified during installation step! By default, it is C:\HQbirdData\output...

It is very important to carefully review database backups settings and adjust them
according the local configuration!

Let’s consider the configuration dialog for backup in more details:

• “Enabled” is obvious – it enables or disables scheduled backups

• In the “Schedule” field you can set the time when backup should be run. Scheduler uses CRON
expression and this is a right place to apply all the power of CRON (see CRON Expressions).

• “Backups folder” specifies the folder to store backups. This folder should be at the same
computer where database is. By default, it is situated inside database default directory. Usually
it’s a good idea to set the explicit path to the folders with backups.

• “Maximum number of backup files in folder” specifies how many previous backups should
be stored. FBDataGuard stores backups in revolver order: when the maximum number will be
reached (i.e., 5 backups will be created), FBDataGuard will delete the oldest backup and create
the new backup. In combination with CRON expressions it gives a powerful ability to create
necessary history of backups.

• “Backup name pattern” specifies how backup files will be named. Also this name pattern
allows FBDataGuard to recognize old backups with the same name pattern.

• “Backup extension” is fbk by default.

• “Compress backups” specifies should FBDataGuard archive backups after regular Firebird
backup. By default, this option is on, but you need to know that FBDataGuard will zip backups’
files which are less than 100 Gb in size. After that size, the backup compression will be
automatically switched off. We recommend to turn this feature on for small databases only.

• “Check restore” is an important option. If it is on (by default), FBDataGuard will perform test
restore of fresh backup, in order to test its validity. It guarantees the quality of created backup
and notifies administrator in case of any problems with test restore.

• “Remove restored” specifies should FBDataGuard delete restored database. By default it is OFF,
so you might want to turn it ON, but you need carefully consider – do you really need to keep
the copy of test restored database. With each test restore this copy will be overwritten.

• “Use multiple cores to backup and test restore” - this feature is for HQbird Enterprise only, it
allows to backup database and restore test database using multiple CPU cores, so backup can be
made 3-5 times faster. We recommend to allocate ½ of CPU cores,

• “Send "Ok" report” – by default it is off, but it’s strongly recommended to turn it ON and start
to receive notifications about correct backups. This feature will use email settings from alerts
system

Chapter 3. Configuration of HQbird

67

If we will click on button [ More>> ], the advanced backup options will appear:

Chapter 3. Configuration of HQbird

68

• “Backup (gbak) timeout, minutes” - maximum time to complete only backup (gbak -b)
operation, otherwise alert will be generated.

• “Restore (gbak) timeout, minutes” – maximum time to complete test restore operation.

• “Final destination folder for backups” - if you need to make backups into the one folder, and
then move created backup to another folder (for long-term storage, for example), you can
change the value of this parameter from ${backup-directory} to the folder where you will keep
them. Backup files in both locations are watched by HQbird FBDataGuard, and included into the
count of backup copies shown in the widget.

• “Copy backup” switch and “Copy backup to” path. If you have network location or plugged
USB drive to store database where you want to store copy of backup (in addition to usual
backups), FBDataGuard can copy the latest backup there: just turn on “Copy backup” switch and
specify “Copy backup to” path. The copied files are not monitored and not included into the
number of backup files shown in the widget.

• “Execute shell command” switch and “Shell command” path. It is possible to specify custom
script or executable after the general backup procedure will be complete. Shell command gets
as the path to the fresh database backup as a parameter.

• “Optional path to gbak executable” - it is possible to specify other gbak tool than standard
gbak.

• “Backups option for gbak” - if you need to add some specific options, add them here.

• “Restore options for gbak” - if you need to add specific options for test restore, add them here.

Chapter 3. Configuration of HQbird

69

If you are monitoring more than one database, it is highly recommended splitting
the runtime of the restores.

Important Note: Backup to the network locations

Please be aware that for creating and copying backup to the network locations Firebird and
FBDataGuard services must be started under the account with sufficient rights. By default, Firebird
and FBDataGuard are started under LocalSystem account, which does not have rights to access
network location.

So, to store Firebird backups to the network location on Windows, run Services applet (
services.msc) and on the tab Log On change “Log on as” to the appropriate account (Domain Admin
should be fine).

For Linux – add necessary rights for “firebird” user.

3.2.14. Database: Incremental Backup

Incremental backup is a job to schedule and manage incremental backups in Firebird.

Please note that we recommend to use incremental backups only in combination with verified
backups, since incremental backup performs coping of database pages changed since the last
backup (in case of multilevel incremental backup).

HQbird FBDataGuard implements 2 types of multilevel incremental backup: Simple and Advanced
incremental backups, and also Dump backup (see Database: Dump backup).

Multilevel backup in Firebird must follow the following steps:

1. Create initial backup (level 0) which essentially is the copy of the database at the moment of
backup start and mark it with backup GUID.

2. Since Firebird marks each data page with a certain identifier at every change, it is possible to
find data pages, changed from the moment of previous backup and copy only them to form
backup of level 1.

3. It is possible to create several level of the backups – for example, the initial backup (full copy,

Chapter 3. Configuration of HQbird

70

level 0) is being created every week, every day we create level 1 (differences from the level 0),
and at every hour we create level 2 backups (differences from daily level 1).

Incremental backup with simple schedule allows planning 3 levels of backups: weekly, daily and
hourly.

You can see summary information for such incremental backup configuration at the following
screenshot of its widget:

In order to setup Simple incremental backup, click on Settings “gear” of the widget and select
“Simple schedule” (selected by default). The following dialog will appear:

There are 4 main areas in this dialog, let’s cover them one by one.

The top area is devoted for general settings of the incremental backup – they are the same for

Chapter 3. Configuration of HQbird

71

Simple and Advanced schedules:

Max duration, sec – it limits the maximum duration of backup process, by default is 1 day (86400
seconds).

Minimum free disk space (bytes) – minimal size of free disk space to prevent backup to start, by
default ~9Mb

Backup folder – where incremental backup for the selected database will be stored. It is necessary
to store incremental backups for each database separately from backups of other databases: i.e., the
separate folder for each database.

It is necessary to specify backup folder with enough free disk space to store all level of backups!

Journal name–file name details information about incremental backups files, for internal use only.

Path to nBackup – it is possible to specify other nbackup tool than standard nbackup (not
recommended).

Backup name pattern – pattern for files of incremental backup (no need to change it).

Options – additional options for nbackup command line tool (no need to change it).

Do not check existence of backup files – this option should be checked if you plan to delete or
more incremental backups to another location.

Do not check GUID chain – this option should be checked if you want to skip existence check of
previous levels of incremental backups.

Immediately create non-existing low-level backups – by default this option is On. It means that if
you have scheduled the initial start moment of level 1 backup earlier than the initial start moment
of level 0 backup, DataGuard will automatically fix it and create level 0 backup right before level 1.
The following backups of level 0 will be fulfilled according the regular schedule.

Send OK email for levels 0, 1, 2 – enable this option to receive notifications about incremental
backups (highly recommended!)

After setting main set of parameters the schedule itself should be set. As you can see on the
screenshot below, you need to specify day of the week and time to do level 0 (weekly) backup, days
of week and time to start level 1 (daily) backups and hours and minutes of level 3 (hourly backups).

For each backup level you can specify how many files to keep in history.

Chapter 3. Configuration of HQbird

72

By default it is set to keep 5 weekly backups, 7 daily and 24 hourly backups.

However, sometimes more flexible schedule is required, for this purpose Incremental Backup
widget has Advanced schedule:

As you can see, the upper part of the configuration screen is the same as in Simple schedule, and
the difference is in the way how backup levels are scheduled.

Advanced schedule allows to setup up to 5 levels of backup, and plan them with flexible CRON

Chapter 3. Configuration of HQbird

73

expressions.

For example, you can setup it to create full copy (level 0) backup every 3 months, level 1 copy every
month, level 2 – every week, level 3 every day and level 4 – every hour.

If you are monitoring more than one database, it is highly recommended splitting
the runtime of the backups.

3.2.15. Database: Dump Backup

This job also utilizes nbackup functionality in Firebird, but unlike multilevel backups, it always
performs a full copy (level 0) of the database. Such job is useful to quickly create a copy of working
database.

The configuration of Database: Dump backup is trivial:

You just need to setup when and where DataGuard should copy a full copy (level 0 incremental
backup), and how many copies it should keep.

3.2.16. Database: RestoreDB

One of the often tasks of the database administrators is restoring database from the backup. There
could be many reason to do restore, the most popular reasons are regular check of the stored
backups and necessity to have fresh restored copy for quick rollback. HQbird FBDataGuard can
automate restoring of backups (which were created with gbak or Database: Verified backup) with
Database: RestoreDB job. Let’s consider the options and parameters of this job.

Chapter 3. Configuration of HQbird

74

By default, restore is disabled – and, since restoring can be long and resource-consuming job, please
plan when to restore carefully.

The database can be restored from different types of backups. To specify which types of backups
are used during recovery, use the Restore Source switch.

Below you can see the configuration dialog for Database: RestoreDB in nbackup mode:

Chapter 3. Configuration of HQbird

75

In gbak mode, the configuration dialog for Database: RestoreDB looks like this:

Chapter 3. Configuration of HQbird

76

• “Scheduled” field contains CRON expression which defines when to run restore.

• “Get backup from folder” - specify the location of backup file(s) to be restored. If you are
restoring backups at the same computer where they have been created, specify the same folder

Chapter 3. Configuration of HQbird

77

as it is in Database: Verified backup job. If you are restoring backups from the another
computer, specify the folder where those backups are located.

• “Take backup not older than, hours” - this parameter specifies the maximum age of backup to
be restored. If the latest backup file will be older than specified number of hours, RestoreDB job
will send the alert with warning that backup is too old. This is useful for automatic checking of
backups created on the remote computer.

• “Restore source” specifies what types of backups will be used to restore the database .

• “Datatime pattern for nbackup” contains the template for backup names made with nbackup.
It should be the same as Backup name pattern see Database: Incremental Backup.

• “Template for gbak backup file name” contains the template for backup names. It should be
the same as Backup name pattern see Verified backup.

• “Backup gbak file extension” - by default it is fbk

• “Use NN CPU cores to restore” - only available in gbak mode.

• “Restore options” - only available in gbak mode.

• “Restore to directory” - folder where FBDataGuard will restore backups.

• “Restore with filename” - template for the restored database file. By default it contains the
following parts

◦ ${db.id}_{0,date, yyyyMMdd_HH-mm}_testrestore.fdb

◦ Db.id – internal identifier of the database (GUID)

◦ 0,date, yyyyMMdd_HH-mm – timestamp

◦ testrestore.fdb – description (You can set there any filename you need).

• “When existing database found” - if FBDataGuard will encounter a file with the same name as
restored database in the destination folder, by default it will rename the existing file. If you
want to replace old restored file with new one, choose “Replace existing file”.

• “Append suffix to filename when rename” - if you have chosen “Rename existing file”, this
suffix will be used to rename it. If you have chosen “Replace existing file”, this suffix also will be
used to rename, but after that the old file will be deleted.

• “Execute command after restore” - in this field you can specify an optional path to the
command file or another utility to be started after the restore. There will be 2 parameters
passed: the first is the path to the backup which was just restored, and the second is the path to
the restored file.

• “Restore timeout, minutes” - here you can set the time limit for restore operation. If this limit
will be exceeded, the warning will be sent, saying that restore takes too long.

• “Check available space before restore (bytes)” - here you can set the limit for the minimal
free space in the restore destination – if there is less free space than specified, restore will not
start, and associated warning will be sent.

• “Notify on successful restore” - send email about successful restore (by default it is off, only
alerts about problems will be sent).

Chapter 3. Configuration of HQbird

78

3.2.17. Database: Transfer Replication Segments

The purpose of "Transfer Replication Segments" job is to send replication segments produced by
async replication from master to replica server. In the case of distributed environment of the
asynchronous replication, when the network connection between master and replica server is
unstable, or with high latency, or when servers are in the different geographical regions, the best
way to transfer replication segments will be through FTP or FTP over SSH.

Below we will consider how to setup Cloud Backup for this task.

First, the asynchronous replication master should be configured to save replication segments into
the some local folder – by default, it will be ${db.path}.LogArch – as it is shown in the example
below:

Chapter 3. Configuration of HQbird

79

Figure 38. Transfer Replication Segments configuration

Then we can setup Transfer Replication Segments job to monitor this folder for the new
replication segments and upload them to the remote FTP server.

As you can see at the screenshot above, Cloud backup job checks folder, specified in “Monitor this
folder” with an interval, specified in “Check period, seconds”. Please note – Cloud Backup sends
files in the order of their names, not dates.

To check that transferred files are valid replication segments, and to support automatic re-

Chapter 3. Configuration of HQbird

80

initialization of the replica databases, the checkmark “Enable/disable replication cloud backup
job” must be enabled.

By default, Cloud Backup compresses and encrypts replication segments before send them. The
default password is “zipmasterkey” (without quotes), which can be specified in the field
“Compress with optional password”. FBDataGuard creates the compressed and encrypted copy of
the replication segment and upload it to the specified target server.

To disable packing and encryption, uncheck the “Compress with optional password” checkmark.

FTP/FTPS/FTPS over SSH

There are several types of target servers: FTP, FTP over SSL/TLS, FTP over SSH. When you select the
necessary type, dialog shows mandatory fields to be completed.

You can select up to 5 simultaneous remote servers to upload backups. Below you can see the
configuration dialog for FTP.

If you don’t have FTP installed on the target server with Windows, install Filezilla
– it is very popular fast and lightweight FTP-server for Windows.

Replication segments will be uploaded to the subdirectory specified in the “Upload
to folder”. By default, this is /dababase0/${db.id}, where db.id is the identifier of the
database inside the DataGuard. The replica about this db.id does not know
anything, so you need to register it manually in “Unpack to directory” (see File
Receiver).

Chapter 3. Configuration of HQbird

81

FTP over SSL/TLS

In order to send files to FTPS, it is necessary to create jks storage with private key file, and specify
path to it in the field “Key store file” and password for it in “Key store password”.

See details and example how to create jks file and password here: http://xacmlinfo.org/2014/06/13/
how-to-keystore-creating-jks-file-from-existing-private-key-and-certificate/

The last part of parameters in Cloud Backup dialog allows controlling the behavior of Cloud backup.

• Delete local prepared copy – by default it is On. This parameter specify that Cloud backup job
deletes compressed copy of the replication segment after the successful upload to the target
server. If you don’t want to keep these copies on the master server, keep the parameter enabled.

• Delete local prepared file copy – by default is Off. It means status means that replication
segment will be not deleted by FBDataGuard after uploading. It can be useful if you want to
keep the full history of changes in replication segments, but, be careful; in case of an intensive
write activity replication segments can occupy a lot of space (Terabytes).

• Send Ok report – send email to the specified in Alerts address every time when replication
segment is uploaded. By default it is off.

Chapter 3. Configuration of HQbird

82

http://xacmlinfo.org/2014/06/13/how-to-keystore-creating-jks-file-from-existing-private-key-and-certificate/
http://xacmlinfo.org/2014/06/13/how-to-keystore-creating-jks-file-from-existing-private-key-and-certificate/

As a result, FBDataGuard will upload encrypted and compressed replication segments to the remote
server. To decompress and decrypt them into the regular replication segments, another instance of
HQbird FBDataGuard should be installed on the replica server, and Cloud Backup Receiver job
should be configured – see more details in the section Database: File Receiver.

FTP over SSH

To use FTP over SSH with private key authentication, please specify the full path to it in “Key store
file”, other parameters are similar to usual FTP.

3.2.18. Database: Transfer Files

The purpose of "Transfer Files" job is to send backup files from master to replica server. In the case
of distributed environment, when the network connection between master and replica server is
unstable, or with high latency, or when servers are in the different geographical regions, the best
way to transfer files will be through FTP or FTP over SSH.

Below we will consider how to setup "Transfer Files" for this task.

First, the database server should be configured to save backup files into the some local folder — by
default, it will be ${db.default-directory}/backup — as it is shown in the example below:

Chapter 3. Configuration of HQbird

83

Figure 39. Transfer File configuration

Then we can setup Transfer Files job to monitor this folder for the new backup files and upload
them to the remote FTP server.

As you can see at the screenshot above, Transfer Files job checks folder, specified in “Monitor this
folder” with an interval, specified in “Check period, seconds”. Please note – Transfer Files sends
files in the order of their names, not dates.

Chapter 3. Configuration of HQbird

84

By default, Transfer Files compresses and encrypts backup files before send them. The default
password is “zipmasterkey” (without quotes), which can be specified in the field “Encrypt when
compressing”. FBDataGuard creates the compressed and encrypted copy of the backup and upload
it to the specified target server.

To disable packing and encryption, uncheck the “Encrypt when compressing” checkmark.

FTP/FTPS/FTPS over SSH

There are several types of target servers: FTP, FTP over SSL/TLS, FTP over SSH. When you select the
necessary type, dialog shows mandatory fields to be completed.

You can select up to 5 simultaneous remote servers to upload backups. Below you can see the
configuration dialog for FTP.

If you don’t have FTP installed on the target server with Windows, install Filezilla
– it is very popular fast and lightweight FTP-server for Windows.

Replication segments will be uploaded to the subdirectory specified in the “Upload
to folder”. By default, this is /dababase0/${db.id}, where db.id is the identifier of the
database inside the DataGuard. The replica about this db.id does not know
anything, so you need to register it manually in “Unpack to directory” (see File
Receiver).

Chapter 3. Configuration of HQbird

85

FTP over SSL/TLS

In order to send files to FTPS, it is necessary to create jks storage with private key file, and specify
path to it in the field “Key store file” and password for it in “Key store password”.

See details and example how to create jks file and password here: http://xacmlinfo.org/2014/06/13/
how-to-keystore-creating-jks-file-from-existing-private-key-and-certificate/

The last part of parameters in Cloud Backup dialog allows controlling the behavior of Cloud backup.

• Delete local prepared copy — by default it is On. This parameter specifies that Transfer Files
job deletes compressed copy of the file after the successful upload to the target server. If you
don’t want to keep these copies on the master server, keep the parameter enabled.

• Delete local prepared file copy — by default is Off. It means status means that file will be not
deleted by FBDataGuard after uploading. It can be useful if you want to keep the full history of
changes in files, but, be careful; in case of an intensive write activity such files can occupy a lot
of space (Terabytes).

• Send Ok report — send email to the specified in Alerts address every time when replication
segment is uploaded. By default, it is off.

• Perform fresh backup — disabled by default. Transfer Files remembers the last number of file
it sends. If you need to start again from scratch, from file 1, enable this parameter. Please note
that it will automatically become disabled after the resetting of the counter.

As a result, FBDataGuard will upload encrypted and compressed files to the remote server. To
decompress and decrypt them into the regular files, another instance of HQbird FBDataGuard
should be installed on the replica server, and File Receiver job should be configured — see more

Chapter 3. Configuration of HQbird

86

http://xacmlinfo.org/2014/06/13/how-to-keystore-creating-jks-file-from-existing-private-key-and-certificate/
http://xacmlinfo.org/2014/06/13/how-to-keystore-creating-jks-file-from-existing-private-key-and-certificate/

details in the section Database: File Receiver.

FTP over SSH

To use FTP over SSH with private key authentication, please specify the full path to it in “Key store
file”, other parameters are similar to usual FTP.

Sending verified and incremental backups through Cloud Backups

Cloud Backup also can be used to send any files to FTP/FTPS/etc. For example, you can setup Cloud
Backup to look for FBK files, produces by Verified Backup Job, and schedule to upload to the remote
FTP server.

It is necessary to remember that number of stored backups should be less than the number of files
to be preserved by Cloud Backup (specified in the parameter “How many files to keep”. By default,
Cloud Backup keeps 10 last sent files, and Verified backup has 5 most recent backup files, so it work
Ok, but if you will reduce the number of kept files in Cloud Backup, it will delete extra files
according “Filename template”.

The same can be done for incremental backups.

3.2.19. Database: Pump Files

The purpose of the "Pump Files" task is to transfer files from one directory accessible to the
DataGuard to some other location, usually remote, with the possibility of using various methods
that can be connected to the DataGuard in the form of plugins and selectable in the task

Chapter 3. Configuration of HQbird

87

configuration with the ability to set unique for each plugin parameters. HQbird includes two file
transfer plugins: fpt and sftp. There are other file transfer plugins. Transfer plugins are jar files and
are located in the Firebird DataGuard/plugins folder.

Let’s consider the options and parameters of this job.

Figure 40. Options available for the ftp file transfer plugin.

• Filemask to pump — whitelist, according to which files are selected for copying. Represent
masks of file names. Must be separated by comma.

Chapter 3. Configuration of HQbird

88

• Exclude file-mask — blacklist is a mask of file names that should be excluded from the
transfer. The blacklist takes precedence over the whitelist.

• Pump method — file transfer method (plugin).

Figure 41. Options available for the sftp file transfer plugin.

The algorithm of this task is as follows:

1. At each iteration of the task, a list of files is generated for the directory for monitoring files to be
sent. Masks are used to select the list of files: "Filemask to pump" and "Exclude file-mask".

Chapter 3. Configuration of HQbird

89

2. For each selected file (from the list from step 1, in ascending date order from the lastModified
file), the following is performed:

a. If the packing option is set, the file is packed (if the file is not of zero size). The name of the
packed file is formed by adding a hardcoded extension: .zipfilepump. The file is packed in
the same directory. If the file turns out to be of zero size, the algorithm will consider that the
file has not been completed yet and will interrupt sending the rest of the files with a
corresponding message.

b. The file sending task is configured for one of several possible sending options using optional
plugins (see below). Depending on whether the packing option was enabled or not, the
original or packed file is sent using the specified algorithm (in the current version it is ftp or
sftp).

c. After sending, if the packing option was selected, the packed file is deleted.

d. The original file is renamed by adding the extension .fuploaded.

3. The algorithm proceeds to send the next file from the list. The total number of files sent during
the iteration and their original (unpacked) size are summed up for display in the widget

4. Upon completion of sending all files from the generated list, the directory is revolving cleaned,
from which files are deleted by mask *.fuploaded. That is, a list of all such files is created, it is
sorted by the time of the last modification, and all old ones are deleted, except for the last "Keep
NN files".

Upon completion of sending, if the "Send OK-report on every pump" checkbox is checked, then
the user will be sent a report on the number and size of files sent at the current iteration.

3.2.20. Database: File Receiver

In general, Cloud Backup Receiver is designed to decompress files from zip archives, and the most
often it is used in the pair with Cloud Backup to transfer archived replication segments.

Cloud Backup Receiver checks files in the folder specified in “Monitor directory”, with interval
equal to “Check periods, minutes”. Its checks only files with specified mask according “Filename
template” (arch by default) and specified extension (.replpacked by default), and if it encounters
such files, it decompresses and decrypts them with the password, specified in “Decrypt password”,
and copies to the folder, specified in “Unpack to directory”.

If parameter “Monitor for replication” is enabled, Cloud Backup Receiver also will check that
received file is actually a replication segment (it has specific header), and if it is not, it will raise an
appropriate warning.

Chapter 3. Configuration of HQbird

90

There are the following additional parameters:

• Alert if number of unpacked files more than – by default is 30. If there is a long queue of
replication segments to be unpacked, it can be a problem with a replica database, so HQbird
sends alert to attract administrator’s attention.

• Warn if the newest file in unpack folder is older than (minutes) – if the most recent file
(usually, replication segment) is too old (more than 360 minutes), the replication process can be
broken, and HQbird sends an appropriate alert.

• Send Ok report – by default it is Off. If it is On, HQbird sends an email about each successful
unpacking of the segment. It can be too often for replication segments, because they are
arriving every 30-180 seconds, and Ok for normal files like verified or incremental backups.

• Perform fresh unpack – disabled by default. Cloud Backup Receiver remembers the last
number of replication segment it unpacked. If you need to start unpacking from scratch, from
segment 1 (for example, after re-initialization of replication), enable this parameter. Please note
that it will automatically become disabled after the resetting of the counter.

Chapter 3. Configuration of HQbird

91

After setup of Cloud Backup Receiver, configure the replica to look for replication segments: set in
the “Log archive directory” the same path as in “Cloud Backup Receiver” → “Unpack to directory”.

Embedded FTP server

HQbird has embedded FTP server, which is off by default. It is suitable to use embedded FTP server
to receive replication segments.

In order to enable embedded FTP server, it is necessary to edit the ftpsrv.properties configuration
file, which is located in C:\HQbirdData\config or /opt/hqbird/ftpsrv.properties

By default, it contains the following:

#path in ftpsrv.homedir must be escaped "ftpsrv.homedir=c:\\ftp\\pub"

or backslashed for ex: "ftpsrv.homedir=c:/ftp/pub"

ftpsrv.enable = false

ftpsrv.port = 8721

ftpsrv.defuser=admin2

ftpsrv.defpsw=strong password2

ftpsrv.homedir=

It is necessary to change ftpsrv.enabled to true and specify the home directory for FTP in

Chapter 3. Configuration of HQbird

92

ftpsrv.homedir parameter. Also, it is recommended to use non-default username and password.

After that, restart FBDataGuard service, and check availability of the FTP.

Attention — Linux users!

On the Linux, FBDataGuard service runs under firebird user, so FTP home
directory also should have permission for user firebird.

3.2.21. Database: Low-level metadata backup

“Database: Low level metadata backup” is one of the key jobs of DataGuard, it ensures database
protection at low level.

First of all, this job stores raw metadata in special repository, so in case of heavy corruption (due to
hardware failure, for example) of database it is possible to use this repository to recover database.

The second purpose of this job is to constantly check all important system tables for consistency.
Every 20 minutes it walks through all important system tables in the database and ensures that
there are no errors at metadata level.

The third purpose is to warn administrator about too many formats for each tables.

There is an implementation limit in Firebird to have 256 formats per table, however even several
formats can greatly increase a chance of hard corruption and can slow down the performance. It is
recommended do not change tables structure at production database and keep only one format per
each table. If it’s not possible, administrator should try to perform backup/restore more often to
transform all formats into the single one.

3.2.22. Database: Validate DB

Validation of Firebird database requires exclusive access: i.e., no users should be connected during

Chapter 3. Configuration of HQbird

93

validation. “Database: Validate DB” job shuts down the database and performs validation of
database, and then turns it on.

By default, this job is OFF. Please consider carefully, is it possible to provide exclusive access for
database. Validation can also take significant time.

Using configuration dialog, you can enable/disable this job, set time to run, set the shutdown
timeout (time to wait before launch validation), and also shutdown mode (FORCE, ATTACH,
TRANSNATIONAL). If you have no deep knowledge n what you are doing, it’s better to keep default
parameters.

“Database: Validate DB” will send alert with critical status if there will be any errors.

Also, Firebird will write errors into firebird.log, and they will appear in the alerts generated by
“Server log” job.

3.2.23. Database: Sweep Schedule

FBDataGuard includes special job to run an explicit sweep, in case if automatic sweep was disabled.
By default, job is disabled.

The recommendation is to schedule explicit sweep with disconnection of long-running transactions
for all databases where such transactions are detected. The recommended period is once per day
(usually during the night, after backup’s completing).

By default, sweep is set to 23-00, which can be not a good time, because default verified backup
starts at the same time, so better change it.

Chapter 3. Configuration of HQbird

94

Please note: by default, check mark “Disconnect all connections with long-running active
transactions before sweep” is enabled. It means that HQbird will find and disconnect long-
running transactions (more than 30 minutes) before sweep — in order to make sweep efficient. If
long-running active transactions will be not disconnected, sweep cannot clean old records versions.

“Do not disconnect processes with name pattern” — in this parameter specify SIMILAR TO
expression for processes names which will be not disconnected. By default, we exclude gbak, gstat
and fbsvcmgr processes.

“Disconnect all processes older than (minutes)” — HQbird will disconnect processes which have
long-running active writeable transactions, by default threshold is 30 minutes. The practical upper
limit for this parameter is 1440 minutes (it is highly unlikely that transaction does something useful
more than 1 day).

“Use multiple cores to sweep” — HQbird Enterprise can use multiple cores to perform sweep
operation, in order to make sweep 4-6 times faster. We recommend to specify no more than 1/2 CPU
cores in case of the single database on the server, or 1/4 of CPU cores if there are several databases.
For example, if you have 16 cores and 1 big database, set this parameter to 8, if there are several big
databases, set 4.

3.2.24. Database: Delta

If you are using incremental backups (or Dump backup), this job is critically important. It watches
for delta-files lifetime and size, and warns if something goes wrong. Forgotten delta-files are the
often reason of corruptions and significant losses of data.

Chapter 3. Configuration of HQbird

95

This jobs finds all delta files associated with database and check their age and size. If one of these
parameters exceeds thresholds “Maximum delta size” or “Maximum delta age”, administrator will
receive the alert and database status will be set to CRITICAL.

If delta file of the protected database was corrupted, it is possible to extract data
from it using metadata from the original database file or repository from “Low-
level metadata backup” job.

3.2.25. Database: Disk space

This job watches for all objects related with database: database files (including volumes of multi-
volume database), delta-files, backup files and so on.

“Database: Disk space” job analyzes the growth of database and estimate will there be enough free
space for the next operation like backup (including test restore) on the specific hard drive.

It generates several types of alerts. Problems with disk space are in the top list of corruption
reasons, so please pay attention to the alerts from this job.

This job also contributes data to the server space analysis graph ().

By default, this job is enabled.

Using configuration dialog, you can specify check period and thresholds for free space. The first
reached threshold will be alerted. To set threshold only in % of disk space, you need to set explicit
space in bytes to 0.

Chapter 3. Configuration of HQbird

96

3.2.26. Database: Database statistics

This job is very useful to capture performance problems and perform overall check of database at
low-level without making backup.

We recommend running this job every day and storing a history of statistics report.

Then, with HQbird Database IBAnalyst it is possible to find problems with database performance
and get useful recommendations how to fix them.

As a useful side effect, gstat visits all database pages for tables and indices, and
ensures that all of them are correct.

3.2.27. Database: Replica Check

This task allows you to check the availability of the replica database. After a specified period, it
changes the value of the specified generator and compares the value of the generator on the replica
side and the master database.

Chapter 3. Configuration of HQbird

97

Min diff to alert — the difference between the values of the generator on the master and replica
side, after which alter are sent.

3.3. FBDataGuard tips&tricks
FBDataGuard allows changing its setting not only through web-console, but also using direct
modification of configuration files. This can be useful when you need to install FBDataGuard in
silent mode (no interaction with user), to bundle it with third-party software, or to perform some
fine configuration adjustments.

3.3.1. Path to FBDataGuard configuration

During the start FBDataGuard looks for in registry for configuration and output paths:

Chapter 3. Configuration of HQbird

98

These values specify the paths to FBDataGuard configuration and output folder — these values are
chosen during installation.

3.3.2. Adjusting web-console port

One of the most frequently asked questions is how to adjust port for web-console application (by
default it is 8082), It can be done by changing port setting in file %config%\agent\agent.properties
(%config% is C:\HQbirdData\config or /opt/hqbird/conf).

server.port = 8082 #change it

%config% - folder to store configuration information, it is specified in .

3.3.3. How to change password for Admin user

You can specify its password in the file access.properties (in C:\HQbirdData\config or
/opt/hqbird/conf)

access.login=admin

access.password=youradminpasswordforhqbird

After setting the password, restart FBDataGuard, and new password will be encrypted and applied.

3.3.4. Guest user for HQbird FBDataGuard

There is read-only user to access HQbird FBDataGuard, with the name guest.

access.guest-login=guest

access.guest-password=yournewpassword

Chapter 3. Configuration of HQbird

99

3.4. Appendix: CRON Expressions
All jobs in FBDataGuard have time settings in CRON format. CRON is very easy and powerful format
to schedule execution times.

3.4.1. CRON Format

A CRON expression is a string comprised of 6 or 7 fields separated by white space. Fields can
contain any of the allowed values, along with various combinations of the allowed special
characters for that field. The fields are as follows:

Field Name Mandatory Allowed Values Allowed Special
Characters

Seconds YES 0-59 , - * /

Minutes YES 0-59 , - * /

Hours YES 0-23 , - * /

Day of month YES 1-31 , - * / L W

Month YES 1-12 or JAN-DEC , - * /

Day of week YES 1-7 or SUN-SAT , - * / L #

Year NO empty, 1970-2099 , - * /

So cron expressions can be as simple as this: * * * * ? * or more complex, like this: 0 0/5
14,18,3-39,52 ? JAN,MAR,SEP MON-FRI 2002-2010

3.4.2. Special characters

• * ("`all values`") — used to select all values within a field. For example, “*” in the minute field
means "`every minute`".

• ? ("`no specific value`") — useful when you need to specify something in one of the two fields in
which the character is allowed, but not the other. For example, if I want my trigger to fire on a
particular day of the month (say, the 10th), but don’t care what day of the week that happens to
be, I would put “10” in the day-of-month field, and “?” in the day-of-week field. See the examples
below for clarification.

• - — used to specify ranges. For example, “10-12” in the hour field means "`the hours 10, 11 and
12`".

• , — used to specify additional values. For example, “MON,WED,FRI” in the day-of-week field
means "`the days Monday, Wednesday, and Friday`".

• / — used to specify increments. For example, “0/15” in the seconds field means "`the seconds 0,
15, 30, and 45`". And “5/15” in the seconds field means "`the seconds 5, 20, 35, and 50`". You can
also specify “/” after the “*character – in this case *” is equivalent to having “0” before the “/”.
“1/3” in the day-of-month field means "`fire every 3 days starting on the first day of the month`".

• L ("`last`") — has different meaning in each of the two fields in which it is allowed. For
example, the value “L” in the day-of-month field means "`the last day of the month`" — day 31

Chapter 3. Configuration of HQbird

100

for January, day 28 for February on non-leap years. If used in the day-of-week field by itself, it
simply means “7” or “SAT”. But if used in the day-of-week field after another value, it means
"`the last xxx day of the month`" — for example “6L” means "`the last Friday of the month`".
When using the “L” option, it is important not to specify lists, or ranges of values, as you’ll get
confusing results.

• W ("`weekday`") — used to specify the weekday (Monday-Friday) nearest the given day. As an
example, if you were to specify “15W” as the value for the day-of-month field, the meaning is:
"`the nearest weekday to the 15th of the month`". So if the 15th is a Saturday, the trigger will fire
on Friday the 14th. If the 15th is a Sunday, the trigger will fire on Monday the 16th. If the 15th is
a Tuesday, then it will fire on Tuesday the 15th. However, if you specify “1W” as the value for
day-of-month, and the 1st is a Saturday, the trigger will fire on Monday the 3rd, as it will not
“jump” over the boundary of a month’s days. The “W” character can only be specified when the
day-of-month is a single day, not a range or list of days.

The “L” and “W” characters can also be combined in the day-of-month field to yield
“LW”, which translates to "`last weekday of the month`".

• # — used to specify “the nth” XXX day of the month. For example, the value of “6#3” in the day-
of-week field means "`the third Friday of the month`" (day 6 = Friday and “#3” = the 3rd one in
the month). Other examples: “2#1” = the first Monday of the month and “4#5” = the fifth
Wednesday of the month. Note that if you specify “#5” and there is not 5 of the given day-of-
week in the month, then no firing will occur that month.

The legal characters and the names of months and days of the week are not case
sensitive. MON is the same as mon.

3.4.3. CRON Examples

Here are some full examples:

Expression Meaning

0 0 12 * * ? Fire at 12pm (noon) every day

0 15 10 ? * * Fire at 10:15am every day

0 15 10 * * ? Fire at 10:15am every day

0 15 10 * * ? * Fire at 10:15am every day

0 15 10 * * ? 2005 Fire at 10:15am every day during the year 2005

0 * 14 * * ? Fire every minute starting at 2pm and ending at
2:59pm, every day

0 0/5 14 * * ? Fire every 5 minutes starting at 2pm and ending
at 2:55pm, every day

0 0/5 14,18 * * ? Fire every 5 minutes starting at 2pm and ending
at 2:55pm, AND fire every 5 minutes starting at
6pm and ending at 6:55pm, every day

Chapter 3. Configuration of HQbird

101

Expression Meaning

0 0-5 14 * * ? Fire every minute starting at 2pm and ending at
2:05pm, every day

0 10,44 14 ? 3 WED Fire at 2:10pm and at 2:44pm every Wednesday
in the month of March.

0 15 10 ? * MON-FRI Fire at 10:15am every Monday, Tuesday,
Wednesday, Thursday and Friday

0 15 10 15 * ? Fire at 10:15am on the 15th day of every month

0 15 10 L * ? Fire at 10:15am on the last day of every month

0 15 10 ? * 6L Fire at 10:15am on the last Friday of every
month

0 15 10 ? * 6L 2002-2005 Fire at 10:15am on every last Friday of every
month during the years 2002, 2003, 2004 and
2005

0 15 10 ? * 6#3 Fire at 10:15am on the third Friday of every
month

0 0 12 1/5 * ? Fire at 12pm (noon) every 5 days every month,
starting on the first day of the month.

0 11 11 11 11 ? Fire every November 11th at 11:11am.

 Pay attention to the effects of '?' and '*' in the day-of-week and day-of-month fields!

3.4.4. Notes

Support for specifying both a day-of-week and a day-of-month value is not complete (you must
currently use the '?' character in one of these fields).

Be careful when setting fire times between mid-night and 1:00 AM - “daylight savings” can cause a
skip or a repeat depending on whether the time moves back or jumps forward.

More information is here http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html

3.5. Configuring firebird.conf for the best performance
HQbird includes set of optimized configuration files for all Firebird versions from 1.5 to 3.0 – they
are located in HQBird\Configurations.

If you did not perform a justified tuning of firebird.conf or you are using default firebird.conf,
consider to use one of the optimized files from this collection.

There are three variants of Firebird configuration files for every Firebird architecture: balanced,
read-intensive and write intensive. We always recommend to start with balanced firebird.conf.
Then we recommend to measure actual ratio between reads and writes using HQbird MonLogger
tool (tab “Aggregated Performance Statistics”). In 90% of cases there are much more reads than

Chapter 3. Configuration of HQbird

102

http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html

writes, so the next step is to try read-optimized firebird configuration file.

Firebird configuration greatly depends on the hardware, so if you want to tune Firebird properly,
please also read “Firebird Hardware Guide”, it will help you to understand what parameters must
be tuned.

For the deep tuning of high-load Firebird databases IBSurgeon offers Firebird Database
Optimization Service: https://ib-aid.com/en/firebird-interbase-performance-optimization-service/

Also, HQbird FBDataGuard analyses the database health and sends alerts with intelligent
suggestions to increase specific parameters in firebird.conf, like TempCacheLimit or LockHashSlots.

Attention!

If you have specified many page buffers in the header of your database and
installed SuperClassic or Classic, it can affect Firebird performance. To avoid the
potential problem, set page buffers in the header of your database to 0, it will
ensure that the value from firebird.conf will be used:

gfix –buff 0 –user SYSDBA –pass masterkey disk:\path\database.fdb

Chapter 3. Configuration of HQbird

103

http://ib-aid.com/en/articles/firebird-hardware-guide/
https://ib-aid.com/en/firebird-interbase-performance-optimization-service/

Chapter 4. Monitoring

4.1. Monitoring with HQbird FBDataGuard

4.1.1. Overview

HQbird monitors all aspects of Firebird server and database functioning, and includes continuous
monitoring and detailed monitoring.

The continuous monitoring is performed by HQbird FBDataGuard. It is low-invasive, but very
effective monitoring which can help to find and resolve the majority of issues with databases
performance and stability.

FBDataGuard performs the following monitoring activities:

• Optional performance monitoring with TraceAPI and MON$

• Monitoring of transactions markers dynamics (Next, OAT, OIT, OST, active transactions)

• Monitoring of lock table activity (queues, deadlocks, mutexes)

• Monitoring of Firebird log (errors, warnings, messages)

• Number of connected users

• Free space monitoring for server, databases and their backups

• Health monitoring through analysis of database metadata and general availability of server and
databases

• Number and size of Firebird temporary files (sorting, etc)

• Indices monitoring: health and activity check

• General validation of Firebird database

• Backups statuses monitoring

• Replica availability monitoring

FBDataGuard can graphically represent information gathered during the monitoring, for example,
transactions and number of users:

Chapter 4. Monitoring

104

Figure 42. Transaction dynamics in FBDataGuard.

Figure 43. Number of users.

4.1.2. Automatic monitoring with FBDataGuard (Trace API and MON$)

In the version 2020, HQBird introduces the new approach for the automatic performance
monitoring with Firebird MON$ tables and TraceAPI.

Now it is possible to schedule the regular check of database performance for every HQBird
(Standard, Professional, Enterprise) in less than 1 minute.

For this just open tab Performance and setup monitoring for transactions and queries:

In order to setup Performance monitoring, specify its mandatory parameters in the dialog:

Chapter 4. Monitoring

105

The first mandatory parameter is “Enable performance monitoring” — it must be enabled to run
traces by schedule.

The next important parameters are “Start trace session at” and “Stop trace session”. They contain
CRON expressions which specify when tracing starts and stops.

By default, trace is set to start at 10-30 and to end at 11-00. It is recommended to adopt tracing
schedule for your needs. Below you can see the table with some popular options.

CRON expression for Description

Start End

0 0 * ? * * 0 10 * ?* * Run trace every hour from 0 to 10 minutes

0 0 8 ? * * 0 0 17 ?* * Run trace every day from 8-00 to 17-00

0 30 10,13,15 ? * * 0 0 11,14,16 ? * * Run trace sessions every day from 10-30 to 11-00, 13-30 to
14-00 and from 15-30 to 16-00

The next important parameter is time threshold for the slow queries, it is set in the field “Log SQLs
with execution time more than”. In this field you need to set time threshold (in milliseconds), after
exceeding it logs will be stored and analyzed.

By default, the time is set to 1000 milliseconds, or 1 second. It means, that only queries which take
more than 1 seconds, will be logged and analyzed.

We recommend keeping 1000 ms as a basic value, until your database is very slow: in this case
3000-5000 ms can be a good start.

“Send email” check mark indicates if there necessity to send the performance report. The email
settings from Alerts configuration will be used to send performance report.

For more advanced settings, “Performance Monitoring” dialog has additional parameters (normally,
you don’t need to adjust them).

Chapter 4. Monitoring

106

• “Configuration template” — name of the configuration template file which should be used for
trace settings

• “Database filter” — how the database should be identified. Usually AUTO is enough, it will trace
specified database. In case of Filename or Alias it will use filename or alias to filter database
events. «Manual» provides an ability to set any regular expression, to trace several databases,
for example, or more than one alias for the single database.

• “Database name filter” it is used in case of “MANUAL” selection.

• “Trace format” — AUTO means automatic selection, 2.5 or 3.0 will force format for 2.5 or 3.0.
Usually there is no need to change it.

• “Keep recent reports” — it specifies how many reports should be kept in the “Output folder”
for possible retrospective usage.

As a result of this job, HQbird will generate the performance report, which will be stored in the
Output folder as a file with the extension html, and it will be sent by email (in case if “Send email”
is enabled). Also the most recent performance is available for review and download in the HQBird
interface.

Chapter 4. Monitoring

107

4.1.3. What can we see in the performance report?

The HQbird FBDataGuard performance analysis provides 3 types of reports:

1. list of queries sorted by their time — “Sort by duration”;

2. list of queries sorted by its frequency — “Sort by frequency”;

3. list of queries sorted by the total time (i.e., summary execution time for queries with the same
text and various parameters) — “Sort by summary”.

In the beginning of the report you will see the graphical representation of most problematic SQL
queries:

When you click “Sort by duration” (it is a default option), you will see SQL queries and stored

Chapter 4. Monitoring

108

procedures which took the longest time to execute first.

Normally there will be long-running reports and other big SQLs.

When you click on “Sort by frequency” link in the header of the report, you will see most frequent
queries: i.e., those queries which started frequently (among logged queries).

For example, in this case the statement SP_GETINVOICE_REPORT was run 46 times. It means that
this query heavily affects the overall performance, and it should be optimized first.

When you click on Sort by summary, you will see the queries which took the most part of the time
(among logged queries). These queries usually are the best candidates for the optimization.

Chapter 4. Monitoring

109

Detailed information for the problematic SQL queries

To see details of the most frequent query, click in the link “View details” in the bottom of the query
text:

As a result, you will see the longest query among the queries with the same SQL text, with its
execution plan, execution statistics and input parameters.

This information is enough to analyze and optimize SQL query in Firebird SQL Studio or other
developer IDE.

4.1.4. Automatic monitoring of long-running active transactions

On the “Performance” tab you can find the option to enable automatic monitoring of long active
transactions:

Chapter 4. Monitoring

110

By default, this monitoring is off. To enable it, click on «Enable transactions monitoring». In
general, it is enough, this monitoring does not require further setup.

Let’s consider it’s settings:

• When to log transactions: This parameter defines when to check MON$ tables for long-running
active transactions. By default, it is set to run every 5 minutes (see CRON statement). You can
make less often on heavy loaded databases, up to once per hour.

• Output folder: it is a service parameter.

• Show transactions older then (minutes): it specifies the time threshold to show the transaction
(and associated connection) in the list of long-running-transactions. By default, this threshold is
60 minutes: it means that writeable transactions which started more than 1 hour ago, will be
considered as long-running.

• Send alert if oldest active transaction is older then (minutes): the same, but it triggers alert and,
if email notifications are enabled, the automatic email with the details of long running active
transaction. The text of the alert looks like the following:

There is a long running active transactions: it was started at 11/13/17 1:19 PM
(and run at least 107 minutes}) from ::1/51068 by C:\HQbird\Firebird30\isql.exe.
Such transactions block garbage collection, please perform transactions analysis
with HQbird MonLogger.

• Show only NN oldest active transactions: it specifies how many records will be shown in the list
with long-running transactions.

The list of long-running active transactions is shown on the screenshot below:

Here you can see that isql.exe started 2 long-running active transactions to the database
h:\employee_30.fdb at November 13, 18-05.

4.1.5. How to select a tool for detailed monitoring

FBDataGuard is the first line of a defense for Firebird database; once FBDataGuard encounters
something suspicious inside the monitored areas, it sends an alert with description of the issue.

Chapter 4. Monitoring

111

Important!

If you have several Firebird servers, we offer HQbird Control Center application
which gathers alerts data from the Firebird servers and databases and shows them
at the single screen. Contact our for more details.

After receiving such alert from FBDataGuard the database administrator should proceed with
detailed investigation of the problem.

The choice of tool for detailed monitoring depends on the type of detected problem.

If FBDataGuard reports long-running active transaction (Next-OAT), it is necessary to use HQbird
Mon$Logger to detect the source of currently running active transaction.

If stuck of oldest interesting transaction is reported, database administrator must plan an explicit
sweep to clean uncollected garbage with FBDataGuard sweep job (if it is necessary) and then plan
tracking of forced rollbacks with Performance Monitoring in FBDataGuard, or, if it is an old version
of Firebird (2.1 or older), with FBScanner.

If users report slowness problem with some queries, Perfusion or FBScanner should be used.

If there is unusual spikes in transaction behavior, IBTransactionMonitor can be a good addition to
HQbird FBDataGuard to clarify the situation.

The problems with general database performance and occasional or periodic slowness require an
analysis of database structure, which can be done only with HQbird Database Analyst.

Below we will consider how to work with HQbird monitoring tools in more details.

4.2. Monitoring with MON$ tables: HQbird MonLogger
HQbird MonLogger is a tool to analyze monitoring tables output in Firebird and find problems with
slow SQL queries, wrongly designed transactions (long-running transactions, transactions with
incorrect isolation level, etc) and identify problematic applications.

MonLogger can connect to Firebird database with performance problems and identify what is the
reason of slowness: is it some user attachment, slow SQL query or long-running transaction?

MonLogger supports Firebird 2.1, 2.5, 3.0 and 4.0 – for older Firebird versions or InterBase please
use FBScanner.

MonLogger can show you:

• Top attachments with highest number of IO operations, non-indexed and indexed reads

• Top SQL statements with highest number of IO operations, non-indexed and indexed reads

• Problematic transactions: long-running transactions, transactions with erroneous isolation
level, read/write transactions, and related information: when they started, what applications
started these transactions, from what IP address, etc

• Attachments and statements with the most intensive garbage collection actions

Chapter 4. Monitoring

112

• Read/write ratio, INSERTS/UPDATE/DELETE ratio, and more.

After connection to the database where you want to find performance problems, several snapshots
of monitoring tables should be done – click on “Get Snapshot” to take snapshot.

4.2.1. Aggregated performance statistics for users attachments

At the first screen we can see aggregated statistics for database connections, and identify
connections with the biggest problems:

Sequential reads / Indexed reads

“Sequential reads / Indexed reads” shows us total ratio between sequential (non-indexed) reads and
indexed reads in application. Usually number of non-indexed reads should be low, so big percent of
sequential reads is sign that many SQL queries have NATURAL execution plans, and they could be a
reason of slow response time.

Click on record in “TOP attachments: sequential/indexed reads” will bring you to tab
“Attachments”, where you can see more details about Attachment, and then jump to tab
“Transactions” or “Statements”, where you will see transactions and attachments linked with
selected attachment (if checkmark “Link to selected attachment” is on, otherwise all

Chapter 4. Monitoring

113

transactions/statements for all attachments will be shown).

Write details

“Write details” gives you an overview of write operations: ratio between
INSERTs/UPDATEs/DELETEs among all database attachments. In the table of top writers you can see
attachments with the biggest number of write operations. It is useful to identify applications or
software modules which performs excessive number of update or deletes (which are the most
dangerous operations in terms of garbage collections).

Garbage collection details

What garbage collection operations mean?

• Purge — engine removes back-versions, only primary version is in database.

• Expunge — both primary version and all back-versions were deleted.

• Back-out — remove only primary version (due to rollback).

Usually we can associate purge with UPDATE operation, Expunge with DELETE, and Backout with
rollback of INSERT or UPDATE. Many backouts could mean that there is a problem with transaction
management in the application.

Memory usage

“Memory usage” graph shows us total memory used by all active attachments now, and peak of
allocated memory for them in the past.

List of top attachments by memory usage shows us the biggest memory consumers among your
attachments. It is useful to find applications or software modules with excessive memory usage.

4.2.2. Aggregated performance statistics for statements

At the second tab you can find aggregated performance statistics for statements.

Chapter 4. Monitoring

114

This statistics better reflects the momentary situation in the database – since monitoring tables
collect information since the beginning of each object life, statements you can see here are those
which were running during the moment when snapshot was taken.

Sequential reads / Indexed reads

In this list we can see top statements which perform many sequential reads from the database.
Usually such statements require SQL tuning – either through indices tuning, or through SQL query
redesign.

To tune the query, check its execution plan: usually it is possible to improve query speed by
eliminating NATURAL in plans with new indices or query redesign. Click on the statement in this
list to open tab “Statements”, where you can find more details about selected statement, and jump
to associated transaction or attachment.

Page reads/page writes

This graphs and list shows brief information about top statements which perform many reads – it
means that they consume significant IO and can affect performance of other queries. SQL
statements with peak values should be carefully checked for optimal performance.

Write details for statements

At this graph you can see what writing SQL statements were doing at the moment when snapshot of
monitoring tables was taken, and identify UPDATES and DELETEs which made many changes in the
database.

Chapter 4. Monitoring

115

Garbage collection details for statements

At this graph we can see how many garbage collection operations were done by statements running
at the moment of snapshot.

Memory usage for statements

Unlike aggregated memory usage statistics for attachment, statements' memory usage can show us
list of exact statements which consume a lot of memory at the moment.

4.2.3. Attachments

The third tab is “Attachments”. You can open this tab directly to jump there by clicking one of the
records at “Aggregated performance statistics”.

“Attachments” shows the list of users connected to the Firebird database, with many useful details:
USER and ROLE of attachment, start time and ID of attachment, is there garbage collection enabled
for the attachment, name of remote process which established an attachment, and several
accumulated performance counters for the attachment: number of sequential reads [done by
attachment since its start], number of indexed reads, number of inserts, updates and deletes, as
well records backouts, purges and expunges.

By default, some of columns of attachment are switched off, to show only most important
information.

Of course, every time you click on attachment, you can jump to transactions running inside it, and

Chapter 4. Monitoring

116

then to statements. There is a checkbox in the left upper corner of Transactions and Statements
tabs, which controls the behavior — when checked, only transactions and statements marked by
selected attachment ID, will be shown.

4.2.4. Transactions

Tab “Transactions” shows active transactions at the moment when snapshot was taken.

If checkbox “Link to selected attachment” is enabled, only transactions for selected attachment will
be shown, otherwise all transactions are shown.

One of the most important characteristics is a lifetime of transactions: since Firebird is designed to
work with short write transactions, it is important to keep them as short as possible. MonLogger
highlights transactions with isolation modes and read-write settings which hold Oldest Active
transaction and therefore provoke excessive record versions to be not cleared. If you see such
transaction and it started a while ago, it means that it can be responsible for excessive records
versions.

Sort on “started at” column and look for old transactions, marked in red: all writeable transactions
and read only snapshots stuck Oldest Active Transaction and provoke excessive record versions to
be hold. Identify where these transactions started (right-click and select “View parent attachment”)
and fix your code to commit this transaction earlier.

Chapter 4. Monitoring

117

4.2.5. Statements

Tab “Statements” shows statements active at the moment of snapshot: if you need to catch all
statements FBPerfMon or FBScanner should be used (all these tools are part of IBSurgeon
Optimization Pack).

If “Link to selected attachment” is enabled, only statements for specific attachment will be shown,
otherwise all active statements are in the list.

Some statements have no associated transaction id (=0): these queries are prepared, but not
executed.

4.3. Advanced Monitor Viewer
Advanced Monitor Viewer allows graphical display of additional performance counters. They are
based on both trace data and data from monitoring tables, plus additional system utilities such as
wmic (Windows) are used.

To launch the "Advanced Monitor Viewer" click on the corresponding item of the Start menu
"IBSurgeon/HQbird Server Side 2022/Advanced Monitor Viewer" or run the script
AVM/quick_start.cmd.

After successful launch, the page http://127.0.0.1:8083 will open in your default browser.

You will be prompted to log in:

Chapter 4. Monitoring

118

http://127.0.0.1:8083

The default login and password are the same as for DataGuard: "admin / strong password".

After successful authentication, a page will open with a panel on which various graphs are located,
displaying the system load at different points in time.

On the left side of the page, you will see two buttons: "Properties" and "Databases". The first one
opens a context menu for selecting counters that will be displayed on the charts.

On the left side of the page, you will see two buttons: "Properties" and "Databases". The first one
opens a context menu for selecting counters that will be displayed on the charts. The second, opens
the context menu in which you can select the database for which these counters are displayed. The
database must be registered for monitoring with DataGuard.

Chapter 4. Monitoring

119

At the top of the page, the name of the database, bookmarks with dates are displayed, as well as the
time interval for which the performance counters are displayed. You can change the viewing date
and select the desired interval.

The following counters can be displayed graphically:

4.3.1. FetchesReadsWritesMarks

The graph displays the performance counters Fetches, Reads, Writes, Marks based on monitoring
tables. You can drill down to each time point by clicking on it or selecting "Data for time" from the
list.

Chapter 4. Monitoring

120

4.3.2. Users

The graph displays the number of active users and requests, as well as the ping time. You can drill
down to each time point by clicking on it or selecting "Data for time" from the list.

4.3.3. Traces

The graph displays the performance counters Fetches, Reads, Writes, Marks and statement execute
time based on data from trace logs. You can drill down to each time point by clicking on it or
selecting "Data for time" from the list.

Chapter 4. Monitoring

121

4.3.4. RAM and CPU Windows

The graph displays the consumed memory, as well as the processor load based on tracking by the
wmic utility.

4.3.5. RAM and LoadAvg Linux

The same as "RAM and CPU Windows", only in Linux.

4.3.6. Transactions

The graph displays the number of active transactions and the gap between the counters OST-OIT,
Next-OAT.

Chapter 4. Monitoring

122

4.3.7. Lock Table Info

The graph displays data to the load on the lock manager (relevant in Classic and SuperClassic).

4.4. Monitoring with HQbird FBScanner

4.4.1. What is FBScanner?

FBScanner (Firebird Scanner) is a tool included in HQbird advanced distribution of Firebird, which
can monitor and view all traffic between Firebird and InterBase servers and their client
applications. It shows the real-time activity of connected clients:

• Connections (IP/Name, duration, CPU load),

• Queries (query text, status, parameters)

• Transactions (with parameters).

FBScanner can log all SQL traffic to text files and external Firebird database, it includes FBScanner
LogAnalyzer module to analyze SQL performance.

FBScanner can be used to profile database applications, monitor user activity, and manage
database connections (including client disconnects on Classic, SuperClassic and SuperServer
architectures). It’s also ideal for troubleshooting INET errors, as well as auditing existing
applications and performance tuning.

Chapter 4. Monitoring

123

FBScanner supports Firebird (V1.x, V2.0, V2.1 and V.2.5), InterBase (V4.0 to 2009/XE3). It is a useful
tool for analyzing production databases, especially if the application has been developed by third-
party and there is no source code available.

FBScanner is transparent as far as the database application is concerned and does not require any
changes in application or database source code, logic or configuration.

4.4.2. Issues that FBScanner can help to resolve

• Real-time monitoring of connections. FBScanner shows all connections to the selected database
server: the IP/DNS name of connected client, database and connection time.

• Real-time monitoring of SQL queries. For each connection FBScanner shows all the currently
running SQL queries along with their transaction parameters.

• Detection of the oldest connection and the oldest active transaction to allow you to analyze that
may have non-optimal transaction behavior or incorrect transaction design or show users who
might be using the application in a manner that may be affecting performance.

• Client disconnects. Check that disconnections are taking place correctly. You can also use
FBScanner to disconnect users in order to perform maintenance or database upgrades.

• FBScanner allows the routing of specific applications or particular users to allow you to zoom in
on specific applications or users.

• You can log SQL queries. For debugging or for security FBScanner can log all the selected traffic
to a special database for further analysis. FBScanner includes LogAnalyzer tool to find bad
queries and ineffective SQL plans.

4.4.3. Performance Impact

FBScanner does not change anything in transferred SQL traffic and works simply like a transparent
proxy, so all applications will work normally.

FBScanner consume approximately 50-150Mb of memory (for 30-100 active clients), it is known that
FBScanner adds approximately 150ms for every SQL statement.

4.4.4. How to configure FBScanner for local computer?

To configure FBScanner start “FBScanner Service Settings” from Start menu (IBSurgeon\HQbird
Server Side\Firebird SQL Scanner\).This tool will help you to setup both basic and advanced
configuration parameters for FBScanner.

The basic configuration parameters are shown at the main screen of “FBScanner Configuration”. It
scans Windows registry for installed Firebird services and show them in the grid.

Chapter 4. Monitoring

124

By default Firebird uses port 3050 for network connections. FBScanner works as a transparent TCP
proxy – it redirects all SQL traffic from and to Firebird clients to another.

FBScanner offers to change Firebird port to 3053, in order to start its own instance at 3050.
FBScanner checks for the port usage and if either 3050 or 3053 are used by other software (not
Firebird), it will warn you with red caption “Port used” near new “Port” text box.

The green figure in the center of “FBScanner Configuration” main screen briefly shows how client
applications SQL traffic will be passed.

At the figure below you can see that FBScanner found Firebird 1.5 instance, and offers to change its
port to 3053, in order to set own instance to listen at 3050.

Such default scenario will give the maximum compatibility with existing Firebird clients (i.e., end-
user applications).

To approve the changes, click “Ok”, otherwise “Cancel”.

If FBScanner settings were changed, FBScanner Service will be restarted, and all
existing Firebird connections will be dropped! Be careful with changing
FBScanner settings in production environment. FBScanner will ask your
permission to restart, please decide carefully.

4.4.5. How to setup FBScanner for remote computer?

FBScanner can route SQL traffic not only as local proxy, but from another computer too. To
understand the difference and discover consequences, let’s walk though details.

The basic (and default) configuration of FBScanner implies that it works on the same computer
where Firebird is working, and process all SQL traffic from Firebird clients (i.e., end-user

Chapter 4. Monitoring

125

applications) which use default connection string (and, therefore, port 3050).

Sometimes it’s not convenient to setup FBScanner to process all requests, for example, in case of:

• Only several (may be, the single workstation) workstations need to be profiled/logged

• Only certain application or narrow functionality need to be profiled

• Developers need to check some SQL code on the live database — gather SQL log with execution
statistics, plans, etc.

• Heavy load (too many workstations). In case of heavy load FBScanner can consume resources of
the main server, and it’s better to move FBScanner (as well as FBScanner log, if it’s enabled, to
the dedicated computer).

• Linux server. If Firebird works on Linux, it’s possible to route SQL traffic through remote
instance of FBScanner on Windows.

In these cases the good idea is to setup FBScanner at the remote computer and pass only part of
SQL traffic through it. It also makes possible to perform necessary analysis of SQL without changing
ports or other configuration at server — the only needed adjustment will be change host name in
client applications' connections strings.

One of the frequent use cases for setting up FBScanner in remote configuration is using it as debug
console for developer computer, so developer can see in real-time (with FBScanner LogViewer) or
afterwards (with FBScanner LogAnalyzer) all SQLs from own computer to the Firebird server.

At the figure below you can see how it can look like:

Chapter 4. Monitoring

126

Now let’s back to the configuration and see how easy to setup FBScanner to route SQL traffic at the
remote computer.

At the bottom of the main screen of “FBScanner Configuration” you can see the following default
settings (for Firebird 2.5 example we considered above):

In order to setup FBScanner to route SQL traffic to the remote Firebird, we need to change “Server
Type” from “Local…” to “Remote”. It will change the main screen of the configuration tool.

First of all, we need to specify network name (or IP) of the computer with Firebird instance and
port where it will be used — it should be entered into “Interface” text box.

Then we need to specify Firebird version – in our example it’s Firebird 1.5.

FBScanner instance also has “Interface” — it’s the list of network adapters found at the computer. If
you need to bind FBScanner to one of them and disable connections from other network adapters,
choose one of the adapters from the drop-down list. By default FBScanner will accept Firebird
clients’ requests from all network adapters.

Below you can see the example of FBScanner configuration to route SQL traffic to remote Firebird
instance, which resides on myserver1 computer and works on default port 3050.

Chapter 4. Monitoring

127

Click “Ok” to confirm new settings, and FBScanner will route SQL requests to the remote Firebird.

If you need to pass SQL traffic from client applications through remote FBScanner,
please change Firebird appropriate connection string. For example, if originally
client applications have connected with “myserver1:C:\Database\data.fdb”, in
order to pass SQL traffic through FBScanner in this example you need to change
connection string to “computer1: C:\Database\data.fdb” (where computer1 is the
network name of the computer where FBScanner works).

4.4.6. How to setup logging?

From Start menu run “Firebird Scanner\FBScanner Settings”, then click button “Advanced options”
(in the right bottom of the main screen).

At the dialog click tab “SQL log”.

Chapter 4. Monitoring

128

By default logging is disabled.

It’s important to understand that logging to SQL database will write all SQL
operations, including transactions, connects, etc. It means that SQL log database
will consume the same amount of resources (CPU, HDD, etc) as the main database
does. Due to this fact for heavy load environments we recommend to use remote
configuration of FBScanner for SQL logging.

There are 2 options for logging — to file and to Firebird log database.

Logging to text files

File logging creates text file for each connection where FBScanner writes SQL and transactions
operators. We recommend file logging for debug purposes and during development — it’s suitable
to investigate linear SQL code. If there are a lot of connections, file logging becomes not very
suitable.

To enable file logging, click radio button near “File” option and set folder where to store file logs
(check that specified folder exists first!):

Chapter 4. Monitoring

129

Then click “Ok”.

Enabling logging will require restart of FBScanner Service, so all current
connections will be dropped. FBScanner will ask your permission to do it
immediately.

Example of text file logging

For the following isql commands

Chapter 4. Monitoring

130

Use CONNECT or CREATE DATABASE to specify a database

SQL> connect "localhost:E:\Temp\TEST15_2.FDB";
Database: "localhost:E:\Temp\TEST15_2.FDB"

SQL> create table t1(i1 integer, c1 varchar(150));
SQL> create table t2(i2 integer, b1 blob);
SQL> select count(*) from t1;

COUNT
============
0

SQL> insert into t1(i1, c1) values(1, 'test');
SQL> select count(*) from t1;

COUNT
============
1

SQL> exit;

FBScanner created the following log:

/* Log created by FBScanner v2.7.19
14.01.2011 16:06:07
 Client IP = 127.0.0.1
 Client Name = ibsurgeon3
 Client Process = isql [1884]
*/
CONNECT '127.0.0.1/3053:E:\Temp\TEST15_2.FDB' USER 'SYSDBA';

/* 14.01.2011 16:06:09 */
/* TrID=20; */
SET TRANSACTION READ WRITE WAIT SNAPSHOT;

/* 14.01.2011 16:06:09 */
/* TrID=22; isc_tpb_version1, isc_tpb_write, isc_tpb_read_committed, isc_tpb_wait,
 isc_tpb_no_rec_version */
SET TRANSACTION READ WRITE WAIT ISOLATION LEVEL READ COMMITTED NO RECORD_VERSION;

/* 14.01.2011 16:06:19 */
/* QrID=26 TrID=22; EXECUTE */
create table t1(i1 integer, c1 varchar(150));

/* 14.01.2011 16:06:19 */
/* QrID=26 TrID=22; INFO */

/* 14.01.2011 16:06:19 */

Chapter 4. Monitoring

131

/* TrID=22; */
COMMIT;

/* 14.01.2011 16:06:33 */
/* TrID=27; isc_tpb_version1, isc_tpb_write, isc_tpb_read_committed, isc_tpb_wait,
 isc_tpb_no_rec_version */
SET TRANSACTION READ WRITE WAIT ISOLATION LEVEL READ COMMITTED NO RECORD_VERSION;

/* 14.01.2011 16:06:33 */
/* QrID=31 TrID=27; EXECUTE */
create table t2(i2 integer, b1 blob);

/* 14.01.2011 16:06:33 */
/* QrID=31 TrID=27; INFO */

/* 14.01.2011 16:06:41 */
/* TrID=32; isc_tpb_version1, isc_tpb_write, isc_tpb_read_committed, isc_tpb_wait,
 isc_tpb_no_rec_version */
SET TRANSACTION READ WRITE WAIT ISOLATION LEVEL READ COMMITTED NO RECORD_VERSION;

/* 14.01.2011 16:06:41 */
/* QrID=36 TrID=20; EXECUTE */
select count(*) from t1;

/* 14.01.2011 16:06:41 */
/* QrID=36 TrID=20; INFO */

/*
 Fetch count = 1
*/

/* 14.01.2011 16:07:11 */
/* QrID=38 TrID=20; EXECUTE */
insert into t1(i1, c1) values(1, 'test');

/* 14.01.2011 16:07:17 */
/* QrID=40 TrID=20; EXECUTE */
select count(*) from t1;

/* 14.01.2011 16:07:17 */
/* QrID=40 TrID=20; INFO */

/*
 Fetch count = 1
*/

/* 14.01.2011 16:07:26 */
/* TrID=32; */
COMMIT;

/* 14.01.2011 16:07:26 */

Chapter 4. Monitoring

132

/* TrID=27; */
COMMIT;

/* 14.01.2011 16:07:26 */
/* TrID=20; */
COMMIT;

As you can see, file log is useful to understand how SQL commands were run inside the single
connect.

Logging to Firebird database

Before you start with SQL log, it’s necessary to understand some implementation details, which can
be important for production systems.

In general logging to Firebird database is implemented in the straightforward way: FBScanner
service writes all traffic to the external Firebird database. Firebird database with log can be at the
same computer where FBScanner resides, or at the remote computer.

Please consider the following requirements for SQL log configuration:

• Log database (and appropriate Firebird instance) should be in Firebird 2.5 format (since
FBScanner 2.7.15). If you are forced to use FBScanner at the computer with another Firebird
version, you need to use embedded Firebird 2.5 to store log.

• SQL traffic from all logged connections is written into the single table, with appropriate
markers (from what computer, application, user, etc. this particular record was created).

• Log database can consume significant amount of resources in case of heavy load. For many
connections it’s recommended to setup FBScanner and Firebird log database at dedicated
computer.

• In many cases it’s not necessary to log all connections, because they repeat the same set of SQL
queries. Careful investigation of the single connection can be the most effective way to find
performance problems.

To enable SQL logging, click on “SQL” radio button. It will enable appropriate text boxes and
controls.

First of all, click button “Edit”.

Chapter 4. Monitoring

133

If you intend to use the same Firebird instance to log SQL traffic, you need to
specify connections string with explicit and direct port. In our example it will be
port 3053, and connection string looks like 127.0.0.1/3053:C:\FBScanner_log.fdb

In this dialog you also need to specify how to connect to database with log.

If there is no database with specified name, create new database — click “Create database log”.

Test connection with log database — click “Test connection”.

Click “Ok” to save settings.

Transactions markers

FBScanner can gather information about transactions markers (in the same way like IBSurgeon
Transaction Monitors does). Gathered information will be shown as graphs in FBScanner Log
Analyzer.

For this purpose, FBScanner runs separate connect, which requires Login, Password and path to the
appropriate client dll (if you track Firebird 1.5 with FBScanner, fbclient.dll from 1.5 will be
required).

If you decide to gather transactions markers information, mark checkbox “Collect transactions
counters info” and fill out Login, Password and Client DLL fields.

Using Embedded Firebird 2.5 for SQL log

If you need to use SQL log at the computer where old Firebird is used (1.0, 1.5, 2.0, 2.1 or even
InterBase), it’s recommended to use Firebird 2.5 Embedded to store log.

You can download Firebird 2.5 Embedded from www.firebirdsql.org.

Unpack the archive right into the FBScanner folder (C:\Program Files\IBSurgeon\Firebird Scanner by
default) and rename fbembed.dll into fbclient.dll.

Chapter 4. Monitoring

134

https://www.firebirdsql.org

Folder structure will look like this

After that run “Advanced options”, tab “SQL logging”, radio button “SQL” and click “Edit”, then in
the “Client library” point to the renamed fbclient.dll, as it shown below.

In Embedded Firebird fbclient.dll represents the whole engine. It works inside the
process of FBScanner and there is no interaction with other installed Firebird
instances, both full and embedded.

4.4.7. How to analyze FBScanner log?

Many users told us that they did not realize how many queries, transactions and other operations
are performed by their software. As you remember, FBScanner stores all information into the
single table. It uses self-links to reduce the amount of stored information and it makes raw log hard
to read and understand.

Chapter 4. Monitoring

135

To facilitate log analysis we have created new module in FBScanner — LogAnalyzer. It’s available in
IBSurgeon Deploy Center for all FBScanner users (inside “Download” section).

LogAnalyzer requires Firebird 2.5 to work with log database. It also creates new indices and runs
heavy reporting queries, so it’s recommended the following procedure:

1. Setup logging and gather statistics for at least 1 day

2. Copy log database to another computer with Firebird 2.5

3. Connect to the copy of log database and perform analysis at the developer’s computers

4. Copy updated versions of log databases as necessary

To analyze log database, start LogAnalyzer and click “Connect to FBScanner log base”, then fill out
connection parameters and select log database.

At first start LogAnalyzer will create necessary indices, it can take several minutes.

After that LogAnalyzer will show the last available day in the log at the “Server Load” tab:

Chapter 4. Monitoring

136

“Server Load” tab shows how many SQL queries were run per minute, and how much time they
took to execute. Effectively it shows server load, i.e., number of queries and their execution times.

Zoom in (button in the top left corner of the tab “Server load”), drag graph by holding right-button
of the mouse and select the peak you are interested to investigate — click right-button to show
popup-menu

Chapter 4. Monitoring

137

It will show you tab “All statements”, where you can browse SQL queries

Select any query to see its text and, if plan logging feature is enabled, its plan.

To follow the execution flow, you can right-click on the query and look for connection and
transactions for this query

Chapter 4. Monitoring

138

LogAnalyzer marks bold queries in the same transaction:

You can sort queries and, for example, find query with the longest execution time:

Chapter 4. Monitoring

139

To know more about this query — double-click on it and see more details

4.4.8. How to track 10054 errors, disconnects and failed login attempts?

FBScanner automatically logs all 10054 errors, disconnects and failed login attempts with detailed
description in the FBScanner.log file, which is in FBScanner main directory.

Chapter 4. Monitoring

140

19.08.2010 21:43:09
 Connect Error
 Client IP = 192.10.1.2
 Client Name =
 DB Name =
 DB User = MORTON
 Client Process = SUPC [5520]
 Client Process (by fbclient) = E:\TEMP\TEST1.EXE [5520]
 STATUS = [file is not a valid database]

19.08.2010 21:43:25
 Login Failed
 Client IP = 127.0.0.1
 Client Name = ibsurgeon3
 DB Name = C:\Program Files\Jupiter2010\Data\data.gdb
 DB User = MORTON
 Client Process = Jupiter.exe [3032]
 Client Process (by fbclient) = E:\TEMP\TEST1.EXE [3032]
 STATUS = [Your user name and password are not defined.
Ask your database administrator to set up a Firebird login.]

4.4.9. Backup/restore and mass load operations

To perform operations which do not require monitoring or debugging, like backup and restore or
mass load of records (in billing systems) we recommend bypassing FBScanner service.

If FBScanner is installed in default recommended configuration, i.e., on port 3050 and Firebird is on
port 3053, connection strings should be like this

server_name/3053:Disk:\Path\database.fdb

example of connection string

connect "localhost/3053:C:\TEMP\database.fdb" user "SYSDBA" password "masterkey";

Example of using backup command

gbak.exe -b -g -v -user SYSDBA -pass masterkey
localhost/3053:C:\TEMP\database.fdb C:\temp\backup.gbk

and, of course, using local connection string will always bypass FBScanner:

Chapter 4. Monitoring

141

gbak.exe -b -g -v -user SYSDBA -pass masterkey
C:\TEMP\database.fdb C:\temp\backup.gbk

4.4.10. Real-Time Monitoring: FBScanner Viewer

To monitor connections, queries and transaction in real-time FBScanner includes special tool
namely FBScanner Viewer.

FBScanner Viewer shows momentary snapshot of SQL traffic between Firebird and monitored
client applications.

In the first column we can see type of record — connection, statements or transaction.

In the table below you can find description of all columns at main page of FBScanner Viewer (some
columns are hidden by default, use menu Columns to turn them on/off):

Column title Column description

! (first column) Indicates type of record in FBScanner
Viewer — there are separate set of values for
SQL statements, transactions and connections.
They are described in the next table below.

Sign “!” in the title of this column means active
filter — click on the triangle at right side of sign
“!” to adjust it.

Chapter 4. Monitoring

142

Column title Column description

Tag Green/red background shows CPU Usage in %
(red — Kernel, green — Firebird).

Text is shows tags value (if it was specified in
SQL query).

Example how to set tag values: [source] ----

SELECT * FROM RDB$DATABASE
/*FBSCANNER$CON_NAME=MyConnect;
FBSCANNER$TR_NAME=MyTransaction;
FBSCANNER$ST_NAME=SomeImportantQuery;
*/; ----

Also in this column you will see execution of
gbak and gfix tools.

Transaction Count Applicable for connection row. Number of active
transactions in the connection is shown.

It’s very useful to find applications with auto-
commit and other ineffective transaction
management issues.

PID Process ID for Firebird. Only for Classic
Architecture

Client IP IP of connection

Client Name DNS of connection (if possible to resolve)

Client Process Name Starting from Firebird 2.1, fbclient.dll shows
name of client application. For example,
C:\Program
Files\Firebird\Firebird_2_1\bin\isql.exe

Priority Priority of Firebird instance (Classic only)

Database Database name or its alias, as it appears in the
connection string

User Users name — for example, SYSDBA (it does not
supported Trusted Authentication)

Role Role of user

Start For connection row — connection time, for
transaction — start time of transaction, for
statement — query start time.

Time 'NOW' — Start; Time from the start moment

Chapter 4. Monitoring

143

Column title Column description

Last Activity Time of last action for current
connect/transaction/statement.

Inactive 'NOW' — Last Activity; Period of inactivity

Latest Retaining Time of the most recent “COMMIT RETAINING”
or “ROLLBACK RETAINING” in the current
transaction

Retaining 'NOW' — Latest Retaining

Received Bytes, received by client

Sent Bytes, sent by client

CPU Time Shows overall time consumed in
connection/transaction/query. If there is more
than 1 query in transactions, execution time of
all queries will be summarized. The same rule is
for connection time calculation.

Prepare Time Execute Time

Fetch Count Applicable only for statements. Number of rows,
as it’s reported by fbclient.dll

Protocol Firebird protocol version for current session.

Version Version of fbclient.dll/gds32.dll.

Version detection is not 100% correct: minor
versions are considered as the same, JayBird and
.NET Provider are considered as the same,
InterBase 8.x = InterBase 9.x

In the following table you can see details for the values appeared in the first column in FBScanner
Viewer for SQL statements rows:

Flag Description

A Allocated. Initial phase of SQL query life cycle

P Prepared. Indicates that statement was prepared

E Execute. Query is being executing at the moment

C Closed statement. Execution is finished

D Dropped statement.

F Fetching is in progress

f Fetching is in progress, but suspended at the
moment (recordset is not fetched)

c Closed cursor. All data was fetched.

Chapter 4. Monitoring

144

Tags

Tags allow assigning readable identifiers (names) to Connections, Queries and Transactions. You
just need to add these commentaries:

SELECT COUNT(*) FROM RDB$DATABASE
/* FBSCANNER$CON_NAME=My_application;
 FBSCANNER$TR_NAME=Read_only_transaction_N1;
 FBSCANNER$ST_NAME=Customers_list_query; */

• FBSCANNER$CON_NAME= sets the name of connection. After the first assignment this name
will be kept during the whole connection life.

• FBSCANNER$TR_NAME= sets the name of transaction. After the first assignment this name will
be used during the whole life of transaction.

• FBSCANNER$ST_NAME= sets the name of query.

Tags are showed in the first column in FBScanner Viewer grid, and it’s possible to filter tags by their
names.

Tags are useful to quickly answer the following frequent questions:

What program has launched this query? (developers need to mark with FBSCANNER$CON_NAME
tag each database connection)

What is the transaction for this query? (developers need to use FBSCANNER$TR_NAME tag to mark
transactions)

• What is this very long query? (developer can mark long queries with readable names like
“Annual report”).

FBScanner Viewer Menu

FBScanner Viewer offers wide range of options to make debugging and optimization easier, which
are accessible through its menu:

• Server

◦ Connect To

◦ Disconnect To

◦ Recent Servers

◦ Exit

• Connections

◦ Disconnect

◦ Disconnect Clients…

◦ Kill Process

◦ Latest Queries

Chapter 4. Monitoring

145

◦ Oldest Connection

◦ Process Priority…

◦ Ping Client

◦ Ping All Clients

◦ Extract Plans

• Transactions

◦ OAT

• Tools

◦ View Style

▪ Database Administrator (connections only)

▪ Database Developer (without transactions)

▪ Database Developer (with transactions)

◦ Language — English, Italian, Russian, Portuguese

◦ Plugins

◦ Options

• Columns — list of columns

• Help

Server

To connect to the FBScanner Service select Service\Connect To. The following dialog will appear:

After selecting the server FBScanner Viewer will ask for password. There are 2 passwords — for
read-only access and for administrator (full) access. By default the password for read-only access is
blank.

Chapter 4. Monitoring

146

To setup passwords for FBScanner Viewer access you need to go to “FBScanner
Configuration” — “Advanced Settings”.

Server\Disconnect disconnects FBScanner Viewer from FBScanner Service.

Server\Recent Servers shows list of most recent FBScanner Services where FBScanner Viewer
connected to.

Exit closes FBScanner Viewer.

Connections

“Disconnect”, “Disconnect clients” and “Kill Process” menu options are available only when
connected to FBScanner Service with administrative rights.

Disconnect will ask to close the current connection (highlighted in the main FBScanner Viewer
grid):

“Disconnect clients” runs the following dialog:

Chapter 4. Monitoring

147

In the right side there is a list of connections, represented by databases names, or clients, or user,
according the filter above.

Using > and < buttons, administrator can select connections to be disconnected and then click
“Disconnect” button.

Disconnect will be done by emulation of 10054 error — there will be appropriate record(s) in the
firebird.log (interbase.log) and in FBScanner.log.

Kill

There are few cases when you need to kill Firebird process, and we do not recommend it.

“Kill process…” asks for explicit killing of Firebird process, and it works only at local FBScanner
and Classic Architecture:

It will not work with SuperServer or SuperClassic architectures.

“Latest Queries” shows list of 20 most recent queries in the selected connection:

Chapter 4. Monitoring

148

It’s useful for ad-hoc debugging, it works like “Rewind” button.

For full-fledged logging of SQL traffic enable SQL logging feature in FBScanner
Service, and use FBScanner LogAnalyzer to look through the log.

“Oldest Connection” shows the oldest connection in the grid.

“Process Priority” is applicable only for local FBScanner installation with Classic architecture. It
enables to set process priority for Classic instances.

“Ping Client” allows to check – is selected connection still alive?

“Ping All Clients” checks all connections in the same way.

“Extract plans” starts plan extracting for selected connect. Extracted plans are shown in the grid,
and also stored in the SQL (or text) log. If logging is not enabled, nothing happens. To enable plan
extraction for all connects, use appropriate setting in “FBScanner Configuration”.

Transactions

The single option Transactions\OAT will put selection in the grid to the oldest active transaction.

Tools

In menu “Tools” we can see several options. With “View Style” user can select the most suitable
representation of grid data:

• Database Administrator (connections only)

• Database Developer (without transactions)

• Database Developer (with transactions)

FBScanner Viewer is localized in 4 languages. Use Tools\Language to switch between languages:

Chapter 4. Monitoring

149

“Plugins” option enables plugins. For more information please contact support@ib-aid.com

“Options” is another way to change some of FBScanner Service parameters.

Please consider appropriate session of this guide for details of FBScanner Service Configuration.

SQL log structure

FBScanner stores SQL traffic in the following table:

Chapter 4. Monitoring

150

mailto:support@ib-aid.com

CREATE TABLE FBSCANNER$LOG
(
 ID BIGINT NOT NULL,
 IDATTACHMENT BIGINT,
 IDTRANSACTION BIGINT,
 PID INTEGER,
 ROW_TYPE INTEGER NOT NULL,
 CLIENT_IP VARCHAR(24),
 CLIENT_NAME VARCHAR(256),
 CUSTOM_NAME VARCHAR(256),
 SUBNET_NAME VARCHAR(256),
 DB_FILENAME VARCHAR(512),
 DB_USER VARCHAR(512),
 DB_ROLE VARCHAR(512),
 START_TIME TIMESTAMP DEFAULT 'NOW' NOT NULL,
 END_TIME TIMESTAMP,
 LAST_ACTIVITY TIMESTAMP DEFAULT 'NOW' NOT NULL,
 LAST_RETAINING TIMESTAMP,
 WORK_TIME INTEGER DEFAULT 0 NOT NULL,
 CPU_TIME_USER INTEGER DEFAULT 0 NOT NULL,
 CPU_TIME_PRIVILEGED INTEGER DEFAULT 0 NOT NULL,
 FETCH_COUNT INTEGER DEFAULT 0 NOT NULL,
 RESULT INTEGER,
 SQL_TEXT BLOB SUB_TYPE 1 SEGMENT SIZE 80,
 SQL_TEXT2 BLOB SUB_TYPE 1 SEGMENT SIZE 80,
 SQL_PLAN BLOB SUB_TYPE 1 SEGMENT SIZE 80,
 PREPARE_TIME INTEGER DEFAULT 0 NOT NULL,
 EXECUTE_TIME INTEGER DEFAULT 0 NOT NULL
);

Logical structure

There are 3 levels of hierarchy in this table:

• ID — primary key

• IDATTACHMENT and IDTRANSACTION — foreign keys referenced to FBSCANNER$LOG.ID

• ROW_TYPE — hierarchy level (0, 1, 2)

Table 1. Level 1. Connection.ROW_TYPE = 0

PID Process ID (only for local FBScanner)

ROW_TYPE 0

CLIENT_IP IP address of client

CLIENT_NAME DNS name

CUSTOM_NAME Connection tag (if assigned in query text)

SUBNET_NAME Logical name of subnet. See file
FBScanner.subnets

Chapter 4. Monitoring

151

DB_FILENAME Database alias or full database path

DB_USER User name

DB_ROLE User role

START_TIME Start of connection

END_TIME End of connection

Table 2. Level 2. Connection.ROW_TYPE = 1

IDATTACHMENT Connection ID

ROW_TYPE 1

CUSTOM_NAME Transaction tag (if assigned)

START_TIME Transaction start time

END_TIME Transaction end time

LAST_RETAINING Time of most recent commit retaining or
rollback retaining

RESULT 0 – transaction is active

1 – Commit

2 – Rollback

SQL_TEXT Transaction flags

Table 3. Level 2. Connection.ROW_TYPE = 2

IDATTACHMENT Connection ID

IDTRANSACTION Transaction ID

ROW_TYPE 2

CUSTOM_NAME Query tag (if assigned)

START_TIME Query start time

WORK_TIME Time till the answer from server

CPU_TIME_USER CPU Time (local only)

CPU_TIME_PRIVILEGED CPU Kernel Time (local only)

FETCH_COUNT Number of records, returned by query

RESULT 0 – query executed successfully, otherwise this
field contains SQLCODE of error

SQL_TEXT Query text (with parameters)

SQL_TEXT2 Original query text(NULL if equal to SQL_TEXT)

SQL_PLAN Query execution plan (if “Extract plans” setting
is enabled)

Chapter 4. Monitoring

152

PREPARE_TIME Prepare time

EXECUTE_TIME Query execution time

Indices in the log

Initially log database contains only primary key index. FBScanner Log Analyzer creates necessary
indices at the first connect.

4.4.11. FBScanner Feature Matrix

Feature FBScanner mode

Agent Remote

Operation Systems Support

Windows X X

Linux, Mac OS X, Free BSD X

Firebird and InterBase versions supported

Firebird 1.0, Yaffil 1.0 (including logging) X X

Firebird 1.5 (including logging) X X

Firebird 2.0 (including logging) X X

Firebird 2.1 (including logging) X X

Firebird 2.5 (including logging + SuperClassic support) X X

InterBase 6.0-2009/XE (including logging) X X

1 Connections

1.1 Information about established connections in the
FBScanner Viewer:

Firebird/InterBase user login X X

IP-address or computer name X X

Connection time and time of the latest activity X X

Priority of processes (only for Classic architecture) X

1.2 Connection management (requires logging to
FBScanner Viewer with Admin rights)

Safe disconnect of one or several connections using
TCP/IP connection interruption (imitation of 10054
error)

X X

Changing of processes priority in Classic architecture
(for example, to adjust priority of long running report
or something like this. Using tags administrator can
recognize connection where report is working — see
below in “Tags”).

X

Chapter 4. Monitoring

153

Automatic priority settings for Firebird with Classic
architecture. In FBScanner configuration administrator
can set up automatic correspondence:

Specified IP or subnet of IPs – set priority X

Specified hostname – set priority X

Specified database name – set priority X

Specified user login name – set priority X

X

Killing of Classic processes, not recommended to use,
but sometimes it is helpful

X

Ability to restrict all connections (to perform some
operations which require exclusive access)

X X

Filtering connections viewing using all connections
parameters (except time information)

X X

White and black list of databases to connect X X

White and black list of IP addresses (clients) X X

Restriction of connections # — administrator can limit
the number of connections

X X

Emulation of “Wrong login/password” error for denied
connections

X

Detection of old/incorrect versions of
fbclient.dll/gds32.dll

X X

1.3 Logging events related with connections X X

FBScanner logs unsuccessful login attempts in the
FBScanner.log. For each unsuccessful login attempt
FBScanner writes the following information: IP-
address, login name, database and time of login
attempt.

X X

Chapter 4. Monitoring

154

If connection was broken (10054 error), FBScanner
determines and logs one of the 5 type of disconnects:

Client application was closed improperly (for instance,
application was closed by Task Manager)

Connection was closed by time-out (it’s possible to set
forced disconnect in FBScanner to close connect by
time-out too)

Server crashed (fbserver or fb_inet_server crashed)

Server process (fbserver or fb_inet_server) was killed
from the FBScanner

Disconnect of connections from FBScanner Viewer

For all cases above FBScanner writes the IP-address of
disconnected client(s) and the reason of disconnect.
This is very useful feature to find and eliminate 10054
errors.

X X

2. Transactions

2.1. Transactions are shown inside appropriate
connections

Transactions' flags X X

Lifetime of transactions X X

Using OAT button you can find the oldest active
transaction in real-time and review related
connection/queries.

X X

3. Queries (statements)

3.1 Information about queries(statements)

Start time X X

Query text X X

Transaction of the query X X

Status (prepare/execute/…) X X

Filtering by statement status (by default Closed
statements are hidden)

X X

Instant CPU load indicator X X

If query PREPARE or execution caused error,
FBScanner writes SQLCODE to the log (for example,
primary key violation)

Chapter 4. Monitoring

155

3.2 Additional operations with queries

Ad-hoc plan extraction for queries

Can be performed for all connections (should be set ON
in FBScanner configuration utility)

Can be turned ON/OFF for selected connection only in
the FBScanner Viewer

In both cases plans will be logged to the overall log if
logging is ON.

X X

4. Tags

Tags allow assigning readable identifiers (names) to
Connections, Queries and Transactions. You just need to
add these commentaries: [source] ----

SELECT COUNT() FROM RDB$DATABASE /
FBSCANNER$CON_NAME=My_application;
FBSCANNER$TR_NAME=Read_only_transaction_N1;
FBSCANNER$ST_NAME=Customers_list_query; */ ----

X X

FBSCANNER$CON_NAME= sets the name of connection.
After the first assignment this name will be kept during
the whole connection life.

X X

FBSCANNER$TR_NAME= sets the name of transaction.
After the first assignment this name will be used during
the whole life of transaction

X X

FBSCANNER$ST_NAME= sets the name of query.

Tags are showed in special column in FBScanner
Viewer

X X

It’s possible to filter tags by their names X X

Tags are useful to quickly answer the following
frequent questions:

What program has launched this query? (developers
need to mark with FBSCANNER$CON_NAME tag each
database connection)

What is the transaction for this query? (developers
need to use FBSCANNER$TR_NAME tag to mark
transactions)

What is this very long query? (developer can mark long
queries with readable names like “Annual report”)

X X

Chapter 4. Monitoring

156

5. Logging

Logging allows intercepting all queries and writing
them to the external Firebird database. FYI, logging
cannot be replaced with Firebird 2.1 or InterBase
system tables, because they provide only snapshots of
programs.

X X

Connections, queries and transactions are logged X X

All executed queries are logged (only prepared quires
skipped)

X X

Queries are stored with information about their
connection and transaction

X X

All transactions are logged, even rolled back.
Transaction log record has column RESULT which
shows was transaction committed or rolled back.

X X

If plan extraction is on, queries plans are logged too X X

Automatic creation of database for logging X X

Automatic creation of tables to logging in any Firebird
database

X X

Chapter 4. Monitoring

157

Chapter 5. Database structure analysis

5.1. Overview of Firebird database structure
The first thing we have to say about the structure of Firebird database is that it represents a set of
pages of strictly defined size: 4096, 8192, 16384 (previous versions of Firebird supported page sizes
1024 and 2048).

Pages can be of different types, each of which serves its certain purpose.

Pages of the same type don’t go strictly one by one — they can be easily mixed, allocated in file in
the order they were created by server when extending or creating databases.

Table 4. Page types

Page Type ID Description

pag_undefined 0 Undefined – If a page has this
page type, it is most likely
empty

pag_header 1 Database header page

pag_pages 2 Page inventory page (or Space
inventory page – SIP)

pag_transactions 3 Transaction inventory page
(TIP)

pag_pointer 4 Pointer page

Chapter 5. Database structure analysis

158

Page Type ID Description

pag_data 5 Data page

pag_root 6 Index root page

pag_index 7 Index (B-tree) page

pag_blob 8 Blob data page

pag_ids 9 Gen-ids

pag_log 10 Write ahead log information

5.2. How to analyze database structure with HQbird
Database Analyst (IBAnalyst)
IBAnalyst is a tool that assists a user to analyze in detail Firebird database statistics and identify
possible problems with database performance, maintenance and how an application interacts with
the database. IBAnalyst graphically displays Firebird database statistics in a user-friendly way and
highlights the following problems:

• tables and BLOBs fragmentation,

• record versioning,

• garbage collection,

• indices effectiveness, etc

Moreover, IBAnalyst can automatically make intelligent suggestions about improving database
performance and database maintenance.

IBAnalyst can get statistics from the live production databases through Services API
(recommended), or analyze text output of gstat -a -r … commands. Statistics from the peak load
periods can give a lot of information about actual performance problems in production databases.

Main features of IBAnalyst are listed below:

• Retrieving database statistics via Service API and from gstat output.

• Summary of all actual and possible problems in database

• Colored grid representation of tables, indices and table→indices, which highlights fragmented
tables, poor indices and so on.

• Automatic expertise of database statistics provides recommendations and “how-to” for the
following things:

◦ Optimal database page size

◦ Transactions state and gap between critical transactions

◦ Different database flags

◦ Index Depth

◦ Index Key Duplicates

Chapter 5. Database structure analysis

159

◦ Fragmented Tables

◦ Record Versions

◦ Very Big Tables

• and more…

5.2.1. How to get statistics from Firebird database in right way

Right time, right place

It sounds strange, but just taking statistics via gstat or Services API is not enough. Statistics must be
taken at the right moment to show how applications affect data and transactions in database. Worst
time to take statistics is

Right after restore

After backup (gbak –b db.gdb) without –g switch is made

After manual sweep (gfix –sweep)

It is also correct that during work there can be moments where database is in correct state, for
example, when applications make less database load than usual (users at launch, dinner or its by
specific business process times).

How to catch when there is something wrong in database?

Yes, your applications can be designed so perfect that they will always work with transactions and
data correctly, not making sweep gaps, lot of active transactions, long running snapshots and so on.
Usually it does not happen. At least because some developers test their applications running 2-3
simultaneous users at the same time, not more. Thus, when they set up written applications for 15
and more simultaneous users, database can behave unpredictably. Of course, multi-user mode can
work Ok, because most of multi-user conflicts can be tested with 2-3 concurrently running
applications. But, next, when more concurrent applications will run, garbage collection problems
can come (at least). And this can be caught if you take statistics at the correct moments.

If you does not experience periodical performance problems

This can happen when your applications are designed correctly, there is low database load, or your
hardware is modern and very powerful (enough to handle well current user count and data).

The most valuable information is transactions load and version accumulation. This can be seen
only if you setup regular statistics saving.

The best setup is to get hourly transaction statistics. This can be done by running

gstat –h db.gdb>db_stat_<time>.txt

where

Chapter 5. Database structure analysis

160

• db.gdb is your database name,

• db_stat_<time>.txt is text file where statistics will be saved,

• <time> — current date and time when statistics was taken.

Also you can schedule to gather database statistics with HQbird FBDataGuard, job “Database:
Statistics”.

If you experience periodical performance problems

These problems usually caused by automatic sweep run. First you need to determine time period
between such a performance hits. Next, divide this interval minimally to 4 (8, 16 and so on). Now
information systems have lot of concurrent users, and most of performance problems with not
configured server and database happens 2 or 3 timers per day.

For example, if performance problem happens each 3 hours, you need to take

gstat –h db.gdb

statistics each 30-45 minutes, and

gstat –a –r db.gdb –user SYSDBA –pass masterkey

each 1-1.5 hour. The best is when you take gstat –a –r statistics right before forthcoming
performance hit. It will show where real garbage is and how many obsolete record versions
accumulated.

What to do with this statistics

If your application explicitly uses transactions and uses them well, i.e. you know what is read
read_committed and when to use it, your snapshot transactions lasts no longer than needed, and
transactions are being active minimal duration of time, you can tune sweep interval or set it off,
and then only care about how many updates application(s) makes and what tables need to be less
updated or cared about updates.

What does this mean, you can ask? We’ll give example of some system, where performance
problems happened each morning for 20-30 minutes. That was very sufficient for morning
applications, and could not last longer.

Database admin was asked correct questions, and here is the picture:

Daily work was divided by sections — analytic works in the morning, than data is inserted and
edited by usual operators, and at the end of the day special procedures started gathering data, that
would be used for analytic next day (at least).

The last work on database at the end of day was lot of updates, and updates of those tables which
analytic used in the morning. So, there were a lot of garbage versions, which started to be collected
by application, running in the morning.

Chapter 5. Database structure analysis

161

And, the answer to that problem was found simple — to run gfix –sweep at the end of the day.

Sweep reads all tables in database and tries to collect all garbage versions for committed and rolled
back transactions. After sweeping database became clear nearly it comes after restore.

And, “morning problem” has gone.

So, you need to understand statistics with lot of other factors:

• how many concurrent users (average) work during the day

• how long is the working day (8, 12, 16, 24 hours)

• what kind of applications running at different day times, and how they affect data being used
by other applications, running at the same time or next. I.e. you must understand business
processes happening during the whole day and whole week.

When DBA can’t do nothing

Sadly to say, these situations happen. And again, example:

Some system installed for ~15 users. Periodically performance is so bad, that DBA needs to restart
server. After server restart everything works fine for some time, then performance gets bad again.
Statistics showed that average daily transactions is about 75,000, and there are active transactions
running from the start of day to the moment when performance getting down.

Unfortunately, applications were written with BDE and with no transactions using at all; i.e. all
transaction handling was automatic and used by BDE itself. This caused some transactions to stay
active for a long time, and garbage (record versions) accumulated until DBA restarted server. After
restart the automatic sweep will start, and the garbage will be collected (eliminated).

All these was caused by applications, because they were tested only with 2-3 concurrent users, and
when they became ~15, applications started to make very high load.

Need to say that in that configuration 70% of users were only reading data, and other 30% were
inserting and updating some (!) data.

In this situation the only thing that can make performance better is to redesign transaction
management in this application.

How IBAnalyst can help find problems in your Firebird database

Let’s walk through the key features of IBAnalyst. When you look at your database statistics in
IBAnalyst first time, things can be not clear, especially if IBAnalyst shows lot of warnings by colored
red and yellow cells at Summary, Tables and Index views. Let’s consider several real statistics
examples.

5.2.2. Summary View

Summary contains the most important information extracted from database statistics. Usually full
statistics of database contains hundreds of Kbytes and it is not easy to recognize the important
information.

Chapter 5. Database structure analysis

162

Below is the description of database objects and parameters that you may see in Summary. For
description of visible problems (marked red or yellow) see column hints or Recommendations
output.

Object or parameter Description

Database name Name of analyzed database.

Creation date Database creation date. When it was created by
CREATE DATABASE statement or restore (gbak
-c/-r).

Statistics date When statistics was taken — statistics file date or
Services API call date (now).

Page size Page size is the physical parameter of database.
The best page size is 4096 or 8192 bytes. Other
page sizes (less than 4096) marked as red. For
better performance restore database from
backup using 4K or 8K page size. (Note: Firebird
2.0+ can use 16K page size).

Forced Write It shows the mode of changed pages writing:
synchronized or asynchronized — appropriate
setting is ON or OFF. OFF is not recommended,
because server crush, power failure or other
problems can cause database corruption.

Dialect Current database dialect.

Sweep interval Current sweep interval value. Marked yellow if
it is not 0, and marked red if Sweep Gap greater
than Sweep interval.

On Disk Structure ODS. It is a database physical format. See hint to
know ODS number for particular IB/FB versions

Transaction block

Oldest transaction Oldest interesting transaction.

The oldest transaction id that was rolled back, or
in limbo.

Oldest snapshot Oldest snapshot transaction

Id of transaction that was oldest active when
currently oldest snapshot started.

Oldest active Oldest active transaction

Id of oldest still active transaction.

Next transaction Newest available transaction id

Chapter 5. Database structure analysis

163

Object or parameter Description

Sweep gap (snapshot – oldest) For ODS 10.x databases. Difference between
Oldest Snapshot and Oldest Interesting
transaction. If it is greater than sweep interval,
and sweep interval is > 0, Firebird tries to run
sweep, and it can slowdown performance.

Snapshot gap (active – oldest) Difference between Oldest Active and Oldest
transaction. Same as previous sweep gap.

TIP size Transaction Inventory Page size, in pages and
kilobytes. TIP holds transaction state for every
transaction was started from database creation
(or restore). It is computed as Next transaction
div 4 (bytes).

Snapshot TIP Size Size of Transaction Inventory Pages that needed
for snapshot transactions. Indicates how much
memory will take each snapshot transaction to
check concurrent transactions state.

Active transactions Currently active (on the moment when statistics
was taken from database) transaction count
(Next – Oldest Active). Maybe incorrect, because
it can be one active transaction and lot of ahead
transactions committed. Anyway, active
transactions prevent garbage collection.

Transactions per day Simply divides Next transaction by days' count
between database creation date and date
statistics taken. Shows average transaction per
day, and useless if it is not production database.
Transaction warnings mostly based on average
transactions per day count.

Data versions percent Percent of record versions in database. Also total
records size and versions size for all tables is
shown, and total index size. Row is not shown
when statistics does not contain record count
information (gstat -a without -r option). Note
that there can be lot of other data (transaction
inventory pages, empty pages and so on) in your
database.

Table/Index lists (also reported in
recommendations)

Fragmented Tables Here you can view tables (with data > 200
kilobytes) that have average fill less than 60%
(File/Options/Table average fill).

Chapter 5. Database structure analysis

164

Object or parameter Description

Versioned Tables List of tables that have Versions greater than
Records, set in Options/Tables.

Tables fragmented with blobs List of tables that have blob fields with data size
less than database page size.

Massive deletes/updates List of tables that had lot of data deleted/updated
by one delete/update statement.

Very big tables Tables that are close to technical InterBase limit
(36 gigabytes per table). You will see warning
beforehand problem can occur.

Deep Indices Indices with depth more than 3 (Options/Index)

Bad Indices Indices with big MaxDup and TotalDup values

Broken or incomplete indices Indices with key count less than record count.
This can happen when index is broken or when
statistics is taken during index creation or re-
activation.

Useless Indices Indices with Unique column = 1. May be deleted
or deactivated, because they are useless for
index search or sort operations.

Tables with no records List of tables with Records = 0. This can be by
design (temporary tables), or they can be just
forgotten by database developer.

Chapter 5. Database structure analysis

165

Summary page shows a lot of information, but the most valuable is transactions state (please read
description of possible transactions states in IBAnalyst help, it is available by clicking F1 or in menu
Help).

At this screenshot you can see that some transaction is active for a long time, “60% of daily
average”. IBAnalyst marks such transaction’s state by red, because this transaction may prevent
accumulated versions to be considered as garbage by server, and so, to be garbage collected. This is
a possible reason of slowness: the more versions exist for some record, the more time it will takes
to read it.

In order to find this long-running transaction you can use MON$Logger module of FBScanner, or
perform direct query of MON$ tables. Then, to find out which tables were affected by long running
transactions (tables with a lot of record versions) you need to go to “Tables” view of IBAnalyst.

5.2.3. Tables view

View Tables contains the information about all database tables. It represents important statistical
information about each table. All table warnings are marked (see details below).

You can see the following columns (Columns Records, RecLength, VerLen, Versions, Max Vers are
visible only if statistics was generated with gstat -r or with “Include record/rec versions” checkbox
enabled):

Chapter 5. Database structure analysis

166

Column Description

Records Record count. Marked pink if table fragmented
by blob fields which data is less than database
page size. Hint shows real table fragmentation
and average records if there were no blob fields.
Such fragmentation can cause bad performance
for big table joins or natural scans.

RecLength Average record length. Depends on record data,
especially on char/varchar columns data. Min
physical record length is 17 bytes (record header
+ all fields are null), max – as declared in table.
Statistics show this data without record header
count, in this case RecLength can be 0 (if nearly
all records are deleted)

VerLen Average record version length. If it is close to
RecLength, almost all record is being updated. If
VerLen is 40-80% and not greater of RecLength,
then Versions are mostly updates. If VerLen
greater than 80-90% of RecLength, than maybe
Versions are mostly deletes, or update is made
by char/varchar columns with new, greater data.
Marked yellow if it’s size is greater than
specified % (Options/Record/Version size) of
average record size.

Versions Current record version count. More versions
slowdown table reads. Also lot of versions
means that there is no garbage collection
performed or records are not read by anyone.
Marked red if version count is greater than
Records. (Options/Record Versions).

Max Vers Max record versions for one particular record.
Marked blue when it is equal to 1 and Versions is
non-zero. It means that there were massive
update/delete operation. See Options, Table,
Massive deletes updates option.

Data Pages Allocated data pages

Size, Mb DataPages * Page Size, in megabytes. I.e. this is
total table size, records + versions. Graph shows
percentage of that table from the whole data
size.

Idx Size, Mb Sum of all indices size for that table. Graph
shows percentage of that value to total size of all
indices.

Chapter 5. Database structure analysis

167

Column Description

Slots Count of links to data pages. Empty links are
Slots-Data Pages. Doesn’t affect disk space or
performance.

Average Fill Average data page fill %. Can be computed as
(DataPages * Page_Size)/ Records * RecLength.
Low page fill means that table is "fragmented".
Frequent updates/deletes can fragment data
pages. Marked red if average fill rate is less than
60% (go to Options/Average Fill to adjust it).
Marked yellow if it is an artifact of high table
fragmentation when it’s record is too small (11-
13 bytes).

Real Fill Because we found that Average Fill, calculated
by gstat, sometimes gives wrong results (at least
for tables with small blobs), we placed here
calculated column, that counts average fill not
by data pages, but by records+versions,
including record header.

20%, 40%, 60% and 100% fill Shows page count having corresponding fill rate.
Can be turned on/off in Options dialog

Total % How big is that table plus it’s indices in %,
related to other tables.

Chapter 5. Database structure analysis

168

At “Tables” view you can see tables and their important parameters: number of records, number of
record versions, record length, maximum number of versions, etc.

You can sort this view to find the largest tables. Especially we are interested tables with many
record versions – many record versions will make garbage collection for affected tables longer.
Usually it is necessary to change update and delete algorithms to get rid of many record versions.

Row Versions show total versions count for particular table, and row Max Vers shows maximum
versions reached by some record. For example, if you look at table SITE, there are 40611 records,
total versions are 76142, but one record has 501 versions. Reading and parsing such packet from
disk takes more time, so, reading this record is slower than reading others.

This picture also shows a lot of tables where data was deleted. But, because of long running
transaction, server can’t delete these versions, and they still on disk, still indexed, and still being
read by server when reading data.

5.2.4. Index view

View Indices represents all indices in your database. You can estimate the effectiveness of indices
with the following parameters (problem indices are marked red — see smart hints for details)

Column Description

Depth Index depth is the page count that engine reads
from disk to walk from index root to record
pointer. Optimal index depth is 3 or less. When
Depth is 4 and higher, it is recommended to
increase database page size (backup, then
restore with -page_size option). This column will
be marked red if index depth is greater than 3
(Options/Index/Index Depth). More chances to
exceed optimal depth have indices built on long
char/varchar columns.

Keys Index key count. Usually equals to Records. If
Keys is bigger than Records and Versions count
is greater than 0 it means that concrete field
value was changed in those record versions. If
Table.RecVersions is bigger than Keys, than this
index field(s) are not changed during updates.

KeyLen Average index key length. The less KeyLen, the
more equal or similar (postfix) values (keys)
stored in index.

Max Dup Maximum duplicates count for particular key
value. Some old gstat versions show no more
than 32767 or 65535 — this bug is fixed in latest
Firebird versions. Marked red if duplicates
count is 30% of all keys. (Options/Index/Lot of
key duplicates).

Chapter 5. Database structure analysis

169

Column Description

Total Dup The overall count of keys with the same values.
Some old gstat versions show no more than
32767 or 65535 — this bug is fixed in latest
Firebird versions.

The closer this value to Keys count, the less
effective will be searching using this index,
especially when search is made using more than
one index. Total Dup value can be counted as
Keys minus unique keys count (index statistics is
nonlinear).

Marked yellow if 1/(Keys – TotalDup) greater
than 0.01, and red if in addition MaxDup is
marked red too. This constant (0.01) is used by
optimizer (see sources in opt.c/opt.cpp) as usable
index selectivity border. Optimizer will still use
that index if none other index with better
selectivity exists for some condition.

Uniques Count of different key values. Primary and
unique key indices will show same value as in
Keys column. Useful to understand how many
different values stored in index — is it useful or
not. Index is useless if Unique column shows 1
(marked yellow).

Selectivity Information from rdb$indises.rdb$statistics,
only visible if “load table/index metadata” was
On. If selectivity stored in database differs from
computed selectivity, yellow warning shown
(less than 20% difference) or red (higher than
20% difference). Blue warning is shown when
index is empty but it’s selectivity is not 0.
Selectivity of inactive indices are ignored.

Size, Mb Index size in megabytes. Gap show percentage
of that index size related to total size of all
indices.

Average Fill Average index pages fill rate, in %. Marked red if
average fill rate is less than 50% (go to
Options/Average Index Fill to adjust it).
Fragmented index results more page reads as
usual, and it’s Depth can be higher. Can be fixed
by alter index inactive/active, if it is not index
created by primary, unique or foreign key
constraints.

Chapter 5. Database structure analysis

170

Column Description

Leafs Leaf page count (pages with keys and record
pointers).

20%, 40%, 60% and 100% fill Shows page count having corresponding fill rate.
Can be turned on/off in Options dialog

Some production databases can have indices with the only key value indexed. This can happen
because database was developed “to be extended in the future”, or, someone just experimented
with the indices during development or tests. You can see these indices as “Useless” in IBAnalyst:
I_NUMBER, etc, built on the column that has only one value for all rows. These indices are really
useless, because

• Optimizer may use this index if you specify “where field =…”. Since field contains only one
value, using index will cause useless reading of index pages from disk to memory, and consume
memory (and time) when server will prepare which rows to show for that query.

• Creating indices is the part of restore process. Extra indices adds extra time.

Of course, that is not all that you can find about your database in IBAnalyst. You can also find

• average number of transactions per day

• was there rollbacks or lost connections, and when

• how big (in megabytes) each table and index

• tables that have records interchanged by blobs, and thus reading only records is slower

• empty tables — just forgotten, or empty at the time when statistics was taken

Chapter 5. Database structure analysis

171

• indices with lot of duplicate keys (you can consider about column value distribution)

• indices with depth 4 and greater — maybe you need to increase page size to speed up

Chapter 5. Database structure analysis

172

Chapter 6. HQbird Enterprise configuration:
Native Firebird replication and
PerformanceEnhancements

6.1. What is HQbird Enterprise?
HQbird Enterprise is the advanced distribution of Firebird for big databases with monitoring,
optimization and administration tools, it also includes the plugin for native master-slave replication
and various performance improvements.

6.1.1. Compatibility

HQbird Enterprise is 100% compatible with Firebird 2.5.5+, Firebird 3.0 and Firebird 4.0 – no
changes in ODS are needed. To switch to HQbird and back no backup/restore is required, just
stop/start Firebird and replace binaries. The replication is possible between nodes with the same
version, i.e., not possible between 3.0 and 2.5.

6.1.2. How the replication works

HQbird replication works on the logical level: it replicates DML statements
(INSERT/UPDATE/DELETE, stored procedures, etc) and DDL (CREATE/ALTER TABLE, etc) changes; no
additional triggers needed. The only requirement for the current version of replication is to have
unique or primary keys for all tables that need to be replicated.

In order to use the replication, you need to install HQbird instead of Firebird, register it (with trial
or with the full license) and configure replication. HQbird should be running on the master server
and on all replica servers.

Below we will consider how to setup Firebird replication with HQbird Enterprise.

You can use HQbird on Windows and Linux, with Firebird 2.5, 3.0 and 4.0, 32 bit and 64 bit.

6.2. Installation
Please install HQbird Enterprise from the supplied distributive. If you have other version of
Firebird installed, uninstall it first.

To enable replication you need to have working and registered (trial or full) copy of HQbird 2022 or
higher on your master and replica servers.

Please refer to the section 2 of this guide for details of HQbird Server installation.

6.3. Asynchronous replication for Firebird
HQbird supports 2 types of replication: asynchronous and synchronous. In the case of an

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

173

asynchronous replication, the master server stores committed changes from the master database to
the files (replication segments), which can be consumed asynchronously by one or more replica
servers.

How the asynchronous replication works:

• Changes on the master side are journaled into the replication log files

• Journal consists of multiple segments (files)

• Replication (archived) segments are transferred to the slave and applied to the replica in the
background

• Replica can be created and recreated online (without master’s stop)

Important things to consider:

• Practical delay between master and replica is configurable, can be set to 15-30 seconds (default
is 90 seconds)

• Delay between master and replica can grow in case of heavy load (due to the delayed processing
of replication segments)

• Replica can be switched to the master (i.e., normal) mode with 1 command

Asynchronous replication is the recommended choice for HQbird Enterprise:

• it provides stability and anti-corruption protection of Firebird database,

• it can be configured quickly and easily,

• it does not require downtime to setup,

• it has online re-initialization (in HQbird 2020 and higher),

• it is suitable for distributed environments (when the replica is located in the cloud or at the
remote location).

The following steps will be required to setup the asynchronous replication:

1. Configure HQbird for replication at the master

2. Create a copy of master database file

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

174

3. Setup database for replication at the replica(slave) server

6.3.1. Step 1: Configure HQbird for replication at the master

To setup replication, open HQbird FBDataGuard: run modern browser (Chrome, Firefox, etc) and
open this local URL: http://127.0.0.1:8082(port if configurable in HQBird ini files)

Enter default name and password: admin/strong password. Register Firebird server, and the
following picture will appear:

Check that you are actually connected to the correct Firebird version — in the upper left corner in
“Active server” widget should be version “… Firebird 2.5 HQbird” or “… Firebird 3.0 HQbird” or “…
 Firebird 4.0 HQbird”.

After that click “Add database” in the right bottom corner and configure nick name and path to the
database which will be master:

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

175

http://127.0.0.1:8082/

Please note that database should be registered with its explicit path, not with the
alias — the replication will not work with the alias.

After the successful registration of the database click on the icon in the header of database to setup
replication:

After that the main configuration dialog for master and replica databases will appear. When
replication is not configured, this dialog is almost empty:

Asynchronous replication at master

Asynchronous replication writes all changes in the master database to the replication log: the set of
files called “replication segments”. Replica server pulls these segments and inserts into the replica
database.

Previously we have registered H:\dbwmaster.fdb, it is the asynchronous master database in this

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

176

example. To configure the asynchronous replication on the master side: select replication role:
“Master”, then “Asynchronous”, and click “Save”.

Starting with Firebird 4.0, you need to enable publication at the database level. Clicking on the
"Enable publications (and grant it for all tables)" button enables publication and adds all tables to
the list for publication. The list of tables for publication can be manipulated in SQL using the
following statements:

ALTER DATABASE INCLUDE {TABLE <table_list> | ALL} TO PUBLICATION

ALTER DATABASE EXCLUDE {TABLE <table_list> | ALL} FROM PUBLICATION

<table_list> ::= tablename [, tablename ...]

Figure 44. Replication setup dialog for asynchronous replication

The only parameter you can change is “Write commited data every NN seconds”, it specifies how
often we should move committed data to the archived replication segments.

By default, it is set to 90 seconds.

There are several optional parameters which you can change if you open detailed dialog with
button “more>>”:

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

177

Let’s consider all parameters in this dialog — just to give you idea what they do, no need to change
them:

• “Log directory” — folder where operational logs will be stored. It is a system folder, completely
operated by Firebird. By default, no need to change its default value${db.path}.ReplLog
(db.path is where the database is located).

• “Log archive directory” — folder, where archived logs will be stored. According the default
value ${db.path}.LogArch, HQbird will create folder DatabaseName.LogArch in the folder with
the database, so there is no need to change this parameter.

• The third parameter (“Override log archive command”) is optional, leave it empty.

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

178

Please note that replication parameters are initialized at the first connection to the
database. That’s why you need restart Firebird service (or all connections in case
of Classic) after the replication configuration — such restart ensures that
replication will start properly.

In this case, the replication log segments will be written first to ${db.path}.ReplLog (db.path is
where the database is located — in our example it will be H:\DBWMaster.fdb.ReplLog), and after
reaching the maximum segment size, or commit, or another trigger, the default archive command
will be started – it will copy archived replication segments to ${db.path}.LogArch (in our example it
will be H:\DBWMaster.fdb.LogArch).

After replication’s start, you should be able to see replication segment files in the folder specified in
“Log directory” immediately after any operation at master database:

The operational segments are rotated by the engine, and once each segment is completed, it is
copied to archive log. Default segment size is 16Mb. Please note — you don’t need to do anything
with operational segments!

After the commit and/or specified timeout of committed data, you will see archived segments in the
folder, specified by “Log archive directory”.

Archive replication log is essentially the chronologically ordered list of completed operational
segments. These files should be imported by replica server into the replica database.

Important!

For Linux users — make sure that folder with the database is owned by firebird
user. HQbird runs under “firebird” user in Linux, and the folder with the database
must have permissions for “firebird” to create logs folder (chown firebird -R
/your/database/folder).

How to copy replication segments from master server to the replicaserver?

There are 2 popular ways to copy archived segments from the master server to the replica
server(s): through network share and using Cloud Backup on master and Cloud Backup Receiver on
replica.

Network share

You can share the folder with archived segments as a network share. In this case, Firebird service
should have enough rights to read, write and delete files on that network share. Normally Firebird
and HQbird services are started under LocalSystem account, which do not have access to the
network shares. Change it to some powerful account (like Domain Admin).

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

179

Cloud Backup/Cloud Backup Receiver

We recommend using HQbird FBDataGuard to send replication segments from the master server to
the replica through FTP: it compresses, encrypts and uploads segments to the specified FTP server.
On that server, another HQbird FBDataGuard unpacks segments and copies to the necessary folder
for further consumption by the replica.

Please read about CloudBackup job for more details how to setup transfer of
archived segments between master and replica(s).

6.3.2. Step 2: Create a copy of master database

To start replication we need to create an initial copy of the database file, which will be used as a
target for the replication process. Let’s refer to such database file as “replica”.

Starting with HQbird 2018 R2, the replica will be created automatically in the folder which will you
specify in the dialog after clicking on “Reinitialize replica database”.

If you have enough space in the folder with the database, just leave the path empty, and click Ok,
and replica will be created near the database. Or, you can specify other destination on the local
drives with enough free space.

Important!

If there will be not enough free space (less than 105% of the database size), HQbird
will not create replica copy — there will be an appropriate error message.

If you click Ok, HQbird will start the process of replica creation. There will be an appropriate
message about it:

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

180

In case of default action, the resulted database will be in the same folder with the database. The
name of the replica will be DATABASE_NAME.EXT.DD-MMM-YYYY_NNNN.4replica — for example,
employee30.fdb.17-Apr-2018_142507.4replica

Please note — creating of replica may take significant time in a case of the big
database!

All stages of replica creation are listed as alerts in HQbird (also sent by email):

Please make sure that replica creation process was completed successfully — check
Alerts tab!

6.3.3. Step 3: Setup database for async replication at the replica(slave) server

After completing the configuration of asynchronous replication on the master server, we need to
configure it for the replica database at the replica server instance.

First of all, we assume that you have successfully installed HQbird Enterprise on the replica server.
We recommend to use on replica server SuperClassic for Firebird 2.5 and SuperServer for Firebird
3.0 (these are default configurations of HQbird Enterprise).

Firebird Classic Linux users: If you run Firebird on replica server in Classic mode on Linux, you
need to run additional Firebird replicator process with the command fb_smp_server -r.

Second, the replica database should be registered in HQbird FBDataGuard. If you intend to use
automatic re-initialization, you can register some small database (employee.fdb) with the required
name, and the do re-initialization: as a result, replica database will be automatically transferred
from the master server.

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

181

Third, we assume that you have managed to setup transfer of logs with Cloud Backup/Cloud Backup
Receiver, or with network share.

Please note: the database should have replica database GUID before the
registration! This GUID is created automatically if you have used link «Reinitialize
replica database», but if you are performing manual re-initialization, don’t forget
to set it, otherwise will be an error about missing database GUID.

Then complete the replication setup — the only required parameter is a path to the folder with
archived replication segments, and by default it is already set — HQbird will create folder with logs
near the database:

So, no need to change anything here, just click Save.

Assuming the replica database is configured in D:\DATABASE\DBWREPLICA.FDB, the HQBird will
create folder D:\DATABASE\DBWREPLICA.FDB.LogArch, and replica will import replication segment
files from it.

Click “Save” and restart Firebird service (to ensure that replication parameters were applied).

After restart, the replica server will start to consume the replication segments from the
folder — please note, after the import all processed segments will be deleted. Also, it will create file
with the name {DATABASE-GUIDE} — Firebird stores there some internal information about
replication progress.

It is not recommended to store archived replication segments from the different
databases into the same folder! Always allocate the separate folder for each pair of
master-replica databases!

6.4. Automatic initialization and re-initialization of
replica
We recommend using Cloud Backup on the master and Cloud Backup Receiver on the replica to
implement the transfer and check integrity of the replication segments through FTP. In this case, it

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

182

is also possible to implement 1-click re-initialization for the replica database.

If Cloud Backup and Cloud Backup Receiver have the following options enabled (by default),
HQbird perform the re-initialization automatically, including restart of replica database:

Parameter “Prefix to name uploaded reini files” should be changed if you intend to initialize
several copies of the master database through the single folder – in this case set it should be unique
for each database.

In case of the single database, no changes are required.

6.4.1. How re-initialization works

If Cloud Backup/Cloud Backup Receiver are configured, it is possible to perform the complete re-
initialization with 1 click to “Reinitialize replica database”.

Once clicked, the master HQbird will do the following:

1. Ask you where to store copy of the database (by default it is near the master database, click Ok
to store database there).

2. Master database will be copied (with nbackup)

3. The created copy of the database will be set to the replica mode

4. md5 hash-sum will be calculated for the copy

5. According the settings in Cloud Backup (Enable replication should be Enabled), master HQbird
will upload database to the specified FTP

Next steps will be done by replica HQbird instance:

1. Once replica HQbird will notice the reini* files in the incoming FTP folder, Cloud Backup
Receiver will start the procedure of re-initialization.

2. Processing if usual arch-segments will be stopped

3. The arrived database will be checked — md5 hash-sum will be calculated and compared with
the value in the accompanied report file.

4. The existing replica database will be shutdown to disconnect all users

5. New replica database will be copied over the existing database

6. The replica server may require restart to see new replica.

Replica is back to the normal mode.

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

183

6.4.2. Troubleshooting asynchronous replication

If you have setup asynchronous replication, but it does not work, the first thing is to enable job
“Replication Log” on the master and on the replica. This job parses replication.log files, and if there
are errors, creates the appropriate alert.

Also, the good thing is to enable “Verbose” option on the replica, and restart Firebird. Verbose will
make Firebird to write a lot of details about replication into the replication.log file (near
firebird.log).

Usually the text of the error is self-explanatory, but since there are some popular questions which
occur regularly, we decide to create the table with the list of main problems with asynchronous
replication and ways to resolve it.

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

184

Problem Possible reasons and how to resolve

Master part of replication was configured, but
folders for operational or archived segments
(${dbpath}.LogRepl or ${dbpath}.LogArch) are
not created

HQbird creates these folders automatically, but
it requires permissions.

On Windows: these folders should be on local
drives, or HQbird and Firebird services must
run with “Run As” with the powerful account
(Domain Admin?).

On Linux: folders must have permissions for
“firebird” user.

Master part of replication was configured;
folders for ReplLog and LogArch were created,
but nothing appear there. Replication.log is
empty.

Firebird does not see the replication
configuration. Restart Firebird service (all
connections in case of Classic) to make read the
new configuration.

Master part of replication was configured; there
are files databasename.log-000 in ReplLog folder,
but no files in LogArch. Also, could be errors
about insufficient space or out of space in
replication.log

It means that there is no permission for Firebird
to access the LogArch folder and create
replication segment files (databasename-
logarch.000XXX) there.

If LogArch folder on the network share or
mounted drive, make sure that Firebird has
rights (full access)to access it.

“Verbose” option on replica is enabled, but
replication.log is empty or nor created.

Sometimes Firebird cannot create replication.log
or even write to already created file. Try to
create it manually and apply necessary
permissions to it (especially on Linux). Verbose
output should be written to the replication.log
every 60 seconds even if there is no segments to
import.

Master part of replication is Ok, but replica does
not consume replication segments.
Replication.log file is empty.

Replica did not read the new replication
configuration. Restart Firebird.

Master part of replication is Ok, but replica does
not consume replication segments.
Replication.log contains errors about
permissions.

Replica does not have enough permissions to
read from the LogArch folder. Set necessary
permissions or run replica under powerful
account.

Replica has errors in replication.log"`Segment
NNN is missing`"

Check is there such segment on the replica side,
and if it is on the master size. If segment has size
= 0 on replica, copy it manually or use “Perform
fresh backup” checkmark in Cloud Backup.

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

185

Problem Possible reasons and how to resolve

Replica has errors in replication.log about wrong
foreign keys and stopped consume segments

It means that replica copy is desynchronized, so
some records do not have the appropriate
values in referenced tables for the specified
Foreign Key. Replica should be reinitialized. If
you see this errors often, please contact
IBSurgeon support.

6.5. Synchronous replication for Firebird
In case of synchronous replication, master server directly inserts committed changes of the master
database to one or more replicas databases:

The main features of the synchronous replication are the following:

• Changes are buffered per transaction, transferred in batches, synchronized at commit

• Practical delay is below1 second

• Follows the master priority of locking

• Replication errors can either interrupt operations or just detach replica

• Replica is available for read-only queries (with caveats)

• Automatic fail-over can be implemented (with HQbird Cluster Manager)

Issues to be considered

• Additional CPU and I/O load on the replica side

• Requires direct and permanent network connection from master to replica(s), 1+Gbps
recommended

• Replica can be recreated online, re-initialization of synchronous replication requires stop of
master

When to use synchronous replication:

• Custom fail-over cluster solutions with 3+ nodes (especially for web applications)

• Scale performance by moving reads to the separate replica server (report servers, data marts or
read-only web representation)

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

186

• In combination with asynchronous replication for performance scaling

6.5.1. Steps to setup synchronous replication

1. Stop Firebird

2. Create a copy of master database file, switch it to replica mode and copy it to the replica
server(s)

3. Setup replica server(s) and database(s) for replication with HQbird FBDataGuard

4. Start replica server(s) — before master server!

5. Setup master server and master database for replication with HQBird FBDataGuard

6. Start master server

As you can see, the downtime required for initialization the synchronous replication is bigger than
downtime to configure asynchronous replication, because replica database must be online before
master’s start.

6.5.2. Synchronous replication at master and replica

Synchronous replication is designed to write changes from the master database directly to the
replica database. The big advantage of synchronous replication that replication delay can be very
small, but the disadvantage is that in the case of the lost connection between master and replica
servers there will be gaps in transmitted data.

In this example, the synchronous replica database is on the remote server with IP address replica
server and path /data/test2.fdb.

No setup is necessary for synchronous replication on the replica server, except gfix –replica
{master-guid} for the replica database to switch it to the replica mode.

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

187

6.5.3. Replication parameters for testing synchronous replication

In the case of testing synchronous replication of HQbird Enterprise on the production system, we
recommend setting parameter disable_on_error to true.

It will switch off replication in case of replication error, and the master server will continue to
work without replication.

To reinitialize replication the replication log should be analyzed and all initialization steps should
be done again.

Also, please enable job “Replication log” in HQbird FBDataGuard to monitor replication log for
errors and warnings:

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

188

6.6. How to manually create replica of the database?
Of course, it is always possible to create replica with the simple copy process: stop Firebird on master,
copy database file, complete setup of replication on the replica, then start Firebird. However, HQbird
supports online replica creation – see details below.

If, for some reason, you cannot use the automatic replica creation (which is available since v. 2018
R2), you can create replica copy of the master database manually.

Starting with HQbird 2018, it is possible to create replica file without stopping the master server,
with nbackup. It is easy for asynchronous replication, and it also makes possible to create additional
replicas online — i.e., without stopping a master.

6.6.1. Creating copy online (with nbackup)

Let’s consider how to create replica for asynchronous replication using nbackup:

1. apply nbackup lock

nbackup –l database_path_name -user SYSDBA –pass masterkey

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

189

2. copy locked database file to create a replica

copy database_path_name replica_path_name

3. unlock master database

nbackup –n database_path_name -user SYSDBA –pass masterkey

4. Fixup replica database

nbackup –f replica_path_name_name

5. Switch database to replica mode

for Firebird 2.5 and 3.0

gfix replica_path_name –replica {DATABASEGUID} –user SYSDBA –pass masterkey

for Firebird 4.0

gfix replica_path_name –replica <replica_mode> –user SYSDBA –pass masterkey

<replica_mode> ::= read_only | read_write

6.6.2. What is {DATABASEGUID}?

Database GUID is the unique identifier of a master database. To find out {DATABASEGUIDE}, run
command gstat –h:

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

190

To switch database to the replica mode run the following command:

gfix disk:\path\mydatabase.fdb -replica {guid} -user SYSDBA -pass masterkey

If you don’t see Database GUID in gstat –h output, connect to the master database
using Firebird binaries from HQbird distribution (with isql or any other
application), and run gstat –h again.

6.6.3. How to set replica database to the master mode

To switch database to the normal (master) mode run the same command with the empty {} instead
of database GUID:

for Firebird 2.5 and 3.0

gfix disk:\path\mydatabase.fdb -replica {} -user SYSDBA -pass masterkey

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

191

for Firebird 4.0

gfix replica_path_name –replica none –user SYSDBA –pass masterkey

6.7. How to distinguish master database from replica

6.7.1. Using gstat -h

If you run gstat –h database_name, the output will contain the keyword “replica” in Attributes
section for database configured as replica:

Database "D:\O30.FDB"
Gstat execution time Mon Nov 26 17:47:07 2018

Database header page information:
Flags 0
Generation 187842
System Change Number 15
Page size 8192
ODS version 12.0
Oldest transaction 173630
Oldest active 185440
Oldest snapshot 185440
Next transaction 185441
Sequence number 0
Next attachment ID 24975
Implementation HW=AMD/Intel/x64 little-endian OS=Windows CC=MSVC
Shadow count 0
Page buffers 0
Next header page 0
Database dialect 3
Creation date Jan 11, 2017 15:12:20
Attributes replica

Variable header data:
Database backup GUID: {37E7918F-5478-43CF-E3B2-D80B0E7D3F63}
Sweep interval: 0
Database GUID: {BBBD2881-ACDE-4636-CEB2-7EE31AF66CC3}
Replication master GUID: {BBBD2881-ACDE-4636-CEB2-7EE31AF66CC3}
END
Gstat completion time Mon Nov 26 17:47:07 2018

For master database there is no special marks in Attributes.

6.7.2. With SQL query to the context variable

In Firebird 2.5 and 3.0, there is a context variable REPLICA in the SYSTEM area that contains

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

192

information about database status:

SQL> select RDB$GET_CONTEXT('SYSTEM', 'REPLICA') from rdb$database;

RDB$GET_CONTEXT
==
FALSE

In Firebird 4.0 use another context variable REPLICA_MODE:

SQL> select RDB$GET_CONTEXT('SYSTEM', 'REPLICA_MODE') from rdb$database;

RDB$GET_CONTEXT
==
READ-ONLY

Also in Firebird 4.0 you can use the MON$DATABASE monitoring table:

SQL> SELECT MON$REPLICA_MODE FROM MON$DATABASE;

MON$REPLICA_MODE
================
 1

Database replica mode:

• 0 - not a replica

• 1 - read-only replica

• 2 - read-write replica

6.8. Optional parameters for replication
It is possible to specify several additional parameters for fine tuning of the replication process.
These parameters can be specified in the “Optional parameters” of replication setup dialog.

1. Size of the local buffer used to accumulate replication events that can be deferred until the
transaction commit/rollback. The bigger this value the less network round-trips between master
and slave hosts are performed. However, it costs longer replication “checkpoints” (time to
synchronize the original database with its replica).

buffer_size = 1048576

2. If enabled, any error during replication causes the master to stop replicating changes and
continue working normally. Otherwise (the default behavior), the master reports an error.

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

193

disable_on_error = false

3. If enabled, replicated records are RLE-compressed before transmission and decompressed on
the slave side. It reduces the traffic and (indirectly) a number of round-trips at the cost of extra
CPU cycles on both sides.

compress_records = false

4. If enabled, conflicting records in the target database are modified to match records in the
master database. In particular:

◦ if there’s an insert and the target record exists, it gets updated;

◦ if there’s an update and the target record does not exist, it gets inserted;

◦ if there’s a delete and the target record does not exist, it gets ignored.

master_priority = false

1. Pattern (regular expression) that defines what tables must be included into replication. By
default, all tables are replicated.

include_filter

2. Pattern (regular expression) that defines what tables must be excluded from replication. By
default, all tables are replicated.

exclude_filter

3. If enabled, tables without primary key (or unique index) excluded from replication. By default,
all tables are replicated.

exclude_without_pk = false

4. Program (complete command line with arguments) that is executed when the current
replication session notices a critical error. This command is executed once per every failed
replication session. Please note that the program is executed synchronously and the server is
waiting for its completion before continuing its operations.

alert_command

5. Prefix for replication log file names. It will be automatically suffixed with an ordinal sequential
number. If not specified, database filename (without path) is used as a prefix.

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

194

log_file_prefix

6. Maximum allowed size for a single replication segment. It must at least double the specified
buffer_size.

log_segment_size = 16777216

7. Maximum allowed number of full replication segments. Once this limit is reached, the
replication process is delayed for log_archive_timeout seconds (see below) to allow the archiving
to catch up. If any of the full segments is not archived and marked for reuse during the timeout,
the replication fails with an error.

Zero means an unlimited number of segments pending archiving.

log_segment_count = 8

Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements

195

Chapter 7. Performance enhancements

7.1. Pool of external connections
HQbird 2018 supports a pool of external connections for Firebird 2.5 and (from 2018R3) in Firebird
3. Firebird 4.0 standard build supports external connection pooling out of the box. This pool allows
running parallel EXECUTE ON EXTERNAL statements to external Firebird databases.

 Please note — this pool is allocated per Firebird instance.

The feature is managed in the firebird.conf:

============================
Settings of External Connections Pool
============================

Set the maximum number of inactive (idle) external connections to retain at
the pool. Valid values are between 0 and 1000.
If set to zero, pool is disabled,
i.e. external connection is destroyed immediately after the use.
#
Type: integer
#
#ExtConnPoolSize = 0

Set the time before destroying inactive external connection, seconds.
Valid values are between 1 and 86400.
#
Type: integer
#
#ExtConnPoolLifeTime = 7200

From the application point of view, no additional steps are required to use or do not use — it is
enabled or disabled in the server configuration, and absolutely seamless for the applications.

The following commands exist to manage pool:

• changes the pool size

ALTER EXTERNAL CONNECTIONS POOL SET SIZE N

Example — this command sets the size of a pool to 190 connections.

ALTER EXTERNAL CONNECTIONS POOL SET SIZE 190

• changes the lifetime of the pooled connection

Chapter 7. Performance enhancements

196

ALTER EXTERNAL CONNECTIONS POOL
SET LIFETIME N {SECOND | MINUTE | HOUR}

Example — this command limits the lifetime of a connection in the pool to 1 hour.

ALTER EXTERNAL CONNECTIONS POOL SET LIFETIME 1 HOUR

• clear all pooled connections

ALTER EXTERNAL CONNECTIONS POOL CLEAR ALL

• clear the oldest connection in the pool

ALTER EXTERNAL CONNECTIONS POOL CLEAR OLDEST

To get information about pool status, new context variables were introduced. The following
example demonstrates their usage

SELECT
 CAST(RDB$GET_CONTEXT('SYSTEM', 'EXT_CONN_POOL_SIZE') AS INT) AS POOL_SIZE,
 CAST(RDB$GET_CONTEXT('SYSTEM', 'EXT_CONN_POOL_IDLE_COUNT') AS INT) AS POOL_IDLE,
 CAST(RDB$GET_CONTEXT('SYSTEM', 'EXT_CONN_POOL_ACTIVE_COUNT') AS INT) AS POOL_ACTIVE,
 CAST(RDB$GET_CONTEXT('SYSTEM', 'EXT_CONN_POOL_LIFETIME') AS INT) AS POOL_LIFETIME
FROM RDB$DATABASE;

7.2. Cached prepared statements
HQbird 2018 has the feature to improve the performance of Firebird (version 3+ only!) engine in
case of the many frequent and fast SQL queries: server-side cache of prepared SQL statements.

This feature can be enabled in firebird.conf with the parameter DSQLCacheSize:

Size of DSQL statements cache.
Maximum number of statements to cache.
Use with care as it is per-attachment and could lead to big memory usage.
Value of zero disables caching.
Per-database configurable.
Type: integer
#DSQLCacheSize = 0

The number specifies how many recent queries for each database connection to cache.

To apply the new value, Firebird restart is required.

Chapter 7. Performance enhancements

197

By default, cache of prepared statements is 0, it means OFF. We recommend to carefully enable it:
start with values like 4, 8, 16, to find the best performance effect.

 Please note: enabling cache of prepared statements increases the memory usage.

7.3. TempSpaceLogThreshold: monitoring of big sorting
queries and BLOBs
HQbird Enterprise has a new parameter in firebird.conf in Firebird 2.5, Firebird 3.0 and Firebird
4.0:

TempSpaceLogThreshold=1000000000 #bytes

When Firebird sees this parameter, it starts to log to firebird.log queries which produce large
sortings: queries with GROUP BY, ORDER BY, etc.

When such query creates the sorting file which exceeds the specified threshold, the following
message will appear in firebird.log:

SRV-DB1 Wed Nov 28 21:55:36 2018
 Temporary space of type "sort" has exceeded threshold of 1000000000 bytes.
 Total size: 10716980736, cached: 1455423488 bytes, on disk: 9263120384 bytes.
 Query: select count(*) from (select lpad('',1000,uuid_to_char(gen_uuid())) s
 from rdb$types a,rdb$types b, rdb$types c order by 1)

Total size — the total size of sorting file

Cached — the part of sorting which had fit into temporary space (specified by TempCacheLimit
parameter)

On disk — the part of sorting which was stored to the temporary file, which can be cached in the OS
memory, or stored on disk (in the folder specified by TempDirectories parameter, or in the default
temp folder)

For very big BLOBs the following message will appear in the firebird.log

SRV-DB1 Tue Nov 27 17:35:39 2018
 Temporary space of type "blob" has exceeded threshold of 500000000 bytes.
 Total size: 500377437, cached: 0 bytes, on disk: 501219328 bytes.

Use TempSpaceLogThreshold to find the non-optimized queries with big sortings and big BLOBs. In
Firebird 3.0, it also will report large hash sortings.

If you encounter such queries, optimize them either with redesign of SQL query itself, or try to
enable parameter SortDataStorageThreshold.

Chapter 7. Performance enhancements

198

7.4. SortDataStorageThreshold: REFETCH instead SORT
for wide record sets
HQbird Enterprise supports the new REFETCH optimization method. The standard build of Firebird
4.0 supports this optimization algorithm out of the box.

HQbird Enterprise has a new parameter SortDataStorageThreshold in firebird.conf (Firebird 3.0+):

SortDataStorageThreshold=16384 # bytes

If the size of the record, returned by SQL query, will be more than specified threshold, Firebird will
use the different approach for sorting record sets: REFETCH instead of SORT.

For example, we have the following query

select tdetl.name_detl
 ,tmain.name_main
 ,tdetl.long_description
from tdetl
join tmain on tdetl.pid=tmain.id
order by tdetl.name_detl

with the following execution plan:

Select Expression
 -> Sort (record length: 32860, key length: 36)
 -> Nested Loop Join (inner)
 -> Table "TMAIN" Full Scan
 -> Filter
 -> Table "TDETL" Access By ID
 -> Bitmap
 -> Index "FK_TABLE1_1" Range Scan (full match)

In this case, the size of each record to be sorted is 32860+36 bytes. It can lead to the very big sort
files, which will be written to the disk, and the overall query can slow.

With parameter SortDataStorageThreshold=16384, Firebird will use plan REFETCH, where only key is
sorted, and data are read from the database:

Select Expression
 -> Refetch
 -> Sort (record length: 76, key length: 36)
 -> Nested Loop Join (inner)

This approach can significantly (2-5 times) speed up queries with very wide sorted record sets

Chapter 7. Performance enhancements

199

(usually, heavy reports).

Please note!

It is not recommended to set SortDataStorageThreshold less than 2048 bytes.

7.5. Multi-thread sweep, backup, restore
In HQbird 2020+, the possibility of multi-threaded execution of sweep, backup and restore has
appeared, which speeds up their work from 2x to 6 times (depending on the specific database).
Multi-threaded operations work in HQbird Firebird 2.5 and 3.0 (starting from builds 2.5.9.27143 and
3.0.5.3.31717 respectively), in any architectures — Classic, SuperClassic, SuperServer.

To enable multi-threaded execution, the gfix and gbak command-line utilities have the –par n
option, where n is the number of threads that will be involved in a particular operation. In practice,
choosing the number n should be correlated with the number of available processor cores.

For example

• gfix –sweep database –par 8 …

• gbak –b database backup –par 8 …

• gbak –c backup database –par 8 …

Also, to control the number of threads and set their default number in firebird.conf, two new
parameters are introduced that affect only sweep and restore, but not backup:

============================
Settings for parallel work
============================
Limit number of parallel workers for the single task. Per-process.
Valid values are from 1 (no parallelism) to 64. All other values
silently ignored and default value of 1 is used.
MaxParallelWorkers = 64

Example: if you set MaxParallelWorkers = 10, then you can

• run gfix –sweep database –par 10

• run gfix –sweep database –par 5 and gbak –c –par 5 …

That is, no more than 10 threads will be used in total. In case of exceeding (for example, if you set 6
threads for sweep and 6 threads for restore), for a process that exceeds the limit, the message “No
enough free worker attachments” will be displayed).

Thus, to enable the multi-threaded capabilities of sweep and restore, you must set the
MaxParallelWorkers parameter in firebird.conf

MaxParallelWorkers = 64

Chapter 7. Performance enhancements

200

and then restart Firebird.

The ParallelWorkers sets the number of threads used by sweep and restore by default if the –par n
option is not specified.

Default number of parallel workers for the single task. Per-process.
Valid values are from 1 (no parallelism) to MaxParallelWorkers (above).
Values less than 1 is silently ignored and default value of 1 is used.
#
ParallelWorkers = 1

For example, if ParallelWorkers = 8, then starting

gfix –sweep

without the –par n option will use 8 threads to execute sweep in parallel.

For restore, filling tables from backup is always performed in one thread, and only
creating indexes is parallelized. Thus, the acceleration for restore depends on the
number of indexes in the database and their size. Also, the ParallelWorkers
parameter automatically affects the creation of indexes performed by the CREATE
INDEX and ALTER INDEX … ACTIVE operations.

As mentioned above, these options do not affect backup. The multi-threading of backup is regulated
only by the –par n parameter in the command line:

• gbak –b –par 6 …

• gbak –b –par 8 –se …

Chapter 7. Performance enhancements

201

If the database is in shutdown single state, when only 1 connection is allowed to
the database, then in version 2.5 both sweep and backup with –par 2 or more will
produce an error several seconds after starting:

• sweep — connection lost to database

• backup — ERROR: database … shutdown (via xnet protocol, a line with this
message will not be displayed in the backup log)

This is due to the fact that for these operations an appropriate number of database
connections is required, more than 1.

In 3.0, only backup will throw an error “ERROR: database … shutdown”, sweep will
work.

Multi-threaded restore, Firebird 2.5, 3.0 and 4.0, creates the database in shutdown
multi mode, so such errors do not occur. However, there is a risk of connecting
other applications from SYSDBA or the owner to the database in the restore
process.

Notes

• The new parameters in firebird.conf only affect sweep and restore, to simplify
administration and eliminate ambiguity, it is recommended that you always
explicitly specify the –par n parameter for gfix and gbak if you need to perform
multi-threaded sweep, restore, and backup operations. For example, if you set
ParallelWorkers = 4 and do not specify –par n, then sweep and restore will use
4 threads by default, and backup will use 1 thread, because it does not use the
values from firebird.conf neither locally nor with –se.

• The performance improvement does not necessarily depend on the number of
processor cores and their compliance with the set value –par n. It depends on
the number of cores, the Firebird architecture, and the disk subsystem
performance (IOPS). Therefore, the optimal value –par n for your system must
be selected experimentally.

7.6. BLOB_APPEND function
Regular operator || (concatenation) with BLOB arguments creates temporary BLOB per every pair
of args with BLOB. This could lead to the excessive memory consumption and growth of database
file. The BLOB_APPEND function is designed to concatenate BLOBs without creating intermediate
BLOBs.

In order to achieve this, the result BLOB is left open for writing instead of been closed immediately
after it is filled with data. I.e. such blob could be appended as many times as required. Engine
marks such blob with new internal flag BLB_close_on_read and closes it automatically when
necessary.

Available in: DSQL, PSQL.

Chapter 7. Performance enhancements

202

Syntax:

BLOB_APPEND(<blob> [, <value1>, ... <valueN]>

Table 5. Parameters of BLOB_APPEND function

Parameter Description

blob BLOB or NULL.

value Any type of value.

Return type: BLOB, temporary, not closed (i.e. open for writting), marked by flag BLB_close_on_read.

Input Arguments:

• The first argument is BLOB or NULL. The following options are possible:

◦ NULL: creates new temporary blob, not closed, with flag BLB_close_on_read

◦ permanent BLOB (from table) or temporary already closed BLOB: will create a new empty
unclosed BLOB with the flag BLB_close_on_read and the contents of the first BLOB will be
added to it

◦ temporary unclosed BLOB with the BLB_close_on_read flag: it will be used further

• other arguments can be of any type. The following behavior is defined for them:

◦ NULL ignored

◦ non-BLOBs are converted to string (as usual) and appended to the content of the result

◦ BLOBs, if necessary, are transliterated to the character set of the first argument and their
contents are appended to the result

The BLOB_APPEND function returns a temporary unclosed BLOB with the` BLB_close_on_read` flag.
This is either a new BLOB or the same as in the first argument. Thus, a series of operations like blob
= BLOB_APPEND (blob, …) will result in the creation of at most one BLOB (unless you try to add a
BLOB to itself). This BLOB will be automatically closed by the engine when the client tries to read it,
assign it to a table, or use it in other expressions that require reading the content.

Testing a BLOB for NULL value using the IS [NOT] NULL operator does not read it,
and therefore a temporary BLOB with the` BLB_close_on_read` flag will not be
closed during such test.

Chapter 7. Performance enhancements

203

execute block
returns (b blob sub_type text)
as
begin
 -- will create a new temporary not closed BLOB
 -- and will write to it the string from the 2nd argument
 b = blob_append(null, 'Hello ');
 -- adds two strings to the temporary BLOB without closing it
 b = blob_append(b, 'World', '!');
 -- comparing a BLOB with a string will close it, because for this you need to read
the BLOB
 if (b = 'Hello World!') then
 begin
 -- ...
 end
 -- will create a temporary closed BLOB by adding a string to it
 b = b || 'Close';
 suspend;
end

Use the LIST and` BLOB_APPEND` functions to concatenate BLOBs. This will save
memory consumption, disk I/O, and prevent database growth due to the creation
of many temporary BLOBs when using concatenation operators.

Chapter 7. Performance enhancements

204

Let’s say you need to build JSON on the server side. We have a PSQL package JSON_UTILS with
a set of functions for converting primitive data types to JSON notation. Then the JSON building
using the BLOB_APPEND function will look like this:

EXECUTE BLOCK
RETURNS (
 JSON_STR BLOB SUB_TYPE TEXT CHARACTER SET UTF8)
AS
 DECLARE JSON_M BLOB SUB_TYPE TEXT CHARACTER SET UTF8;
BEGIN
 FOR
 SELECT
 HORSE.CODE_HORSE,
 HORSE.NAME,
 HORSE.BIRTHDAY
 FROM HORSE
 WHERE HORSE.CODE_DEPARTURE = 15
 FETCH FIRST 1000 ROW ONLY
 AS CURSOR C
 DO
 BEGIN
 SELECT
 LIST(
 '{' ||
 JSON_UTILS.NUMERIC_PAIR('age', MEASURE.AGE) ||
 ',' ||
 JSON_UTILS.NUMERIC_PAIR('height', MEASURE.HEIGHT_HORSE) ||
 ',' ||
 JSON_UTILS.NUMERIC_PAIR('length', MEASURE.LENGTH_HORSE) ||
 ',' ||
 JSON_UTILS.NUMERIC_PAIR('chestaround', MEASURE.CHESTAROUND) ||
 ',' ||
 JSON_UTILS.NUMERIC_PAIR('wristaround', MEASURE.WRISTAROUND) ||
 ',' ||
 JSON_UTILS.NUMERIC_PAIR('weight', MEASURE.WEIGHT_HORSE) ||
 '}'
) AS JSON_M
 FROM MEASURE
 WHERE MEASURE.CODE_HORSE = :C.CODE_HORSE
 INTO JSON_M;

 JSON_STR = BLOB_APPEND(
 JSON_STR,
 IIF(JSON_STR IS NULL, '[', ',' || ascii_char(13)),
 '{',
 JSON_UTILS.INTEGER_PAIR('code_horse', C.CODE_HORSE),
 ',',
 JSON_UTILS.STRING_PAIR('name', C.NAME),
 ',',

Chapter 7. Performance enhancements

205

 JSON_UTILS.TIMESTAMP_PAIR('birthday', C.BIRTHDAY),
 ',',
 JSON_UTILS.STRING_VALUE('measures') || ':[', JSON_M, ']',
 '}'
);
 END
 JSON_STR = BLOB_APPEND(JSON_STR, ']');
 SUSPEND;
END

A similar example using the usual concatenation operator || is an order of magnitude slower
and does 1000 times more disk writes.

7.7. Transform LEFT joins into INNER
HQbird Enterprise allow transform LEFT joins into INNER ones if the WHERE condition violates the
outer join rules.

Example:

SELECT *
FROM T1 LEFT JOIN T2 ON T1.ID = T2.ID
WHERE T2.FIELD1 = 0

In this case the condition T2.FIELD1 = 0 effectively removes all the "fake NULL" rows of T2, so the
result is the same as for the INNER JOIN. However, the optimizer is forced to use the T1→T2 join
order while T2→T1 could also be considered. It makes sense to detect this case during join
processing and internally replace LEFT with INNER before optimization starts.

This is primarily intended to improve "ad hoc" and machine-generated (e.g. ORM) queries.

This optimization will not be enabled if a NULL value is checked, for example

SELECT *
FROM T1 LEFT JOIN T2 ON T1.ID = T2.ID
WHERE T2.ID IS NULL

or

SELECT *
FROM T1 LEFT JOIN T2 ON T1.ID = T2.ID
WHERE T2.ID IS NOT NULL

Chapter 7. Performance enhancements

206

Chapter 8. Encryption support
Since HQbird 2020, HQbird Enterprise includes the encryption plugin and provides support to work
with encryption databases in web interface. This feature is supported only in HQBird Enterprise
with Firebird 3.0.

Please note!

The encryption plugin requires the separate license file, it is sent in the purchase
email.

Please note!

The encryption plugin can be purchased separately and used with community
version of Firebird: https://ib-aid.com/download-demo-firebird-encryption-plugin

8.1. OpenSSL files
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.
(http://www.openssl.org/)

HQbird Enterprise for Windows already includes necessary binary files from OpenSSL 1.1, in order
to use encryption features on Linux it is necessary to install OpenSSL 1.1.

8.1.1. How to encrypt and decrypt Firebird database

In this short guide below, we will demonstrate the key features of the encryption: how to encrypt
your Firebird database on the server, how to implement an encrypted client connection, and
perform backup/restore of the encrypted database. The demo of FEPF is fully functional, with the
only exception — it is limited until December 30, 2019.

Demo package with client applications examples

Please download demo package with client applications examples from https://ib-aid.com/
download/crypt/CryptTest.zip

Stage 1 — Initial encryption of the database

At the point, we suppose that you have some database to be encrypted. Put unencrypted database
to some path, for example, into c:\temp\employee30\employee.fdb

We suppose that all actions are made with 64-bit version of the Firebird 3.0.3+, in case of 32-bit
version simply use the files from WinSrv32bit_ServerPart folder.

1. Create the following alias in databases.conf

Chapter 8. Encryption support

207

https://ib-aid.com/download-demo-firebird-encryption-plugin
http://www.openssl.org/
https://ib-aid.com/download/crypt/CryptTest.zip
https://ib-aid.com/download/crypt/CryptTest.zip

crypt = C:\Temp\EMPLOYEE30\EMPLOYEE30.FDB
{
 KeyHolderPlugin = KeyHolder
}

Also, you can declare KeyHolder plugin for all databases at the server, for this add the following
parameter to firebird.conf:

KeyHolderPlugin = KeyHolder

or, simply copy firebird.conf at step 2 (see below).

2. Check that the following files to server/plugins from the folderWinSrv64Bit_ServerPart\plugins

• DbCrypt.dll

• DbCrypt.conf

• KeyHolder.dll

• KeyHolder.conf — this is the text file with keys, it is only for developer’s usage, it should not be
sent to end users!

3. Put the following files into Firebird root from the folderWinSrv64Bit_ServerPart

• fbcrypt.dll

• libcrypto-1_1-x64.dll

• libssl-1_1-x64.dll

• gbak.exe

• firebird.msg

• firebird.conf (optional, can be used as an example)

4. Connect to the unencrypted database with isql and encrypt thedatabase:

Chapter 8. Encryption support

208

isql localhost:C:\Temp\EMPLOYEE30\EMPLOYEE30.FDB -user SYSDBA -pass masterkey
SQL>alter database encrypt with dbcrypt key red;
SQL> show database;
Database: localhost:C:\Temp\EMPLOYEE30\EMPLOYEE30.FDB
 Owner: ADMINISTRATOR
PAGE_SIZE 8192
Number of DB pages allocated = 326
Number of DB pages used = 301
Number of DB pages free = 25
Sweep interval = 20000
Forced Writes are OFF
Transaction - oldest = 2881
Transaction - oldest active = 2905
Transaction - oldest snapshot = 2905
Transaction - Next = 2909
ODS = 12.0
Database encrypted
Default Character set: NONE

Let’s consider the encryption command:

alter database encrypt with dbcrypt key red;

Here, dbcrypt is the name of the encryption plugin, and red is the name of the key to being used.
Keys are defined in KeyHolder.conf file.

Please note — on Linux it is necessary to use quotes and case-sensitive plugin name:

alter database encrypt with "DbCrypt" key Red;

After that, the database is encrypted with server-side authentication: the keys are located in the file
KeyHolder.conf.

At the figure below you can see files we have on the server to enable the encryption, and what we
need on the client side:

On the server’s side: On the client’s side (demo - CryptTest.exe) -
32bit

Mandatory files: Mandatory files:

plugins/dbcrypt.dll fbclient.dll

plugins/keyholder.dll fbcrypt.dll

DbCrypt.conf libcrypto-1_1.dll

libssl-1_1-x64.dll Optional files:

libcrypto-1_1-x64.dll firebird.conf

Chapter 8. Encryption support

209

On the server’s side: On the client’s side (demo - CryptTest.exe) -
32bit

fbcrypt.dll

Files for gbak with encryption:

gbak.exe

firebird.msg

Optional files:

plugins/KeyHolder.conf (for initial encryption in
development mode)

firebird.conf (contains parameter to set
encryption plugin)

Stage 2 — Connect to the encrypted database with the clientapplication

After the initial encryption, we suppose that the database will be copied to the customer
environment, where access to it will be done only through the authorized application.

To imitate such environment, we need to remove (or simply rename) the file with keys
(KeyHolder.conf) from the folder plugins.

Without KeyHolder.conf, the encryption plugin will require receiving the key from the connected
application. The example of such application is included in the archive with demo plugin — there is
a compiled version and full sources for it on Delphi XE8.

The code to initialize encrypted connection is very simple — before the usual connection, several
calls should be done to send an appropriate key. After that, the client application works with
Firebird as usual.

Run the demo application to test the work with the encrypted database, it is in the folder
CryptTest\EnhancedCryptTestClient\Win32\Debug.

Do the following steps:

1. Specify database path or alias in “1. Setup Login”. This database will be used in the next steps.

2. Specify the key name and value to be used. If you have previously used key RED, set Key Name =
RED and copy the key value from the KeyHolder.conf file.

3. You can encrypt and decrypt database with the specified key. Please note — encryption takes
time, and it requires to have an active connection to the database

4. Click Execute query to test the connection to the encrypted database with the simple

Chapter 8. Encryption support

210

Please note!

The test application can connect to the encrypted database only through TCP/IP,
xnet is not supported.

In the example of the client application, all database operations (connection, transaction start,
transaction’s commit, query start, etc) are made in the very straightforward way to demonstrate all
steps of the operation against the encrypted database. You can use this code as an example for the
implementing encryption in your applications.

Chapter 8. Encryption support

211

Step 3: backup and restore of the encrypted database

The full verified backup with gbak.exe is the primary backup method for Firebird databases. The
standard Firebird distribution includes command line tool gbak.exe to perform it, however, it will
not work with the encrypted database in the production mode (without keys on the server). After
the encryption, only authorized applications can access an encrypted database, and standard gbak
is not an authorized application.

We all know how important backup and restore for the database health and performance, so, in
order to perform backup and restore for the encrypted databases, we have developed gbak.exe with
the encryption support, and included it into the FEPF.

It is important to say, that this gbak.exe produces the encrypted backup file: it encrypts the backup
with the same key as for the database encryption.

If you run gbak.exe from the plugin files with the switch -?, you will see the new parameters of

Chapter 8. Encryption support

212

gbak.exe, which are used to work with the encrypted databases:

 -KEYFILE name of a file with DB and backup crypt key(s)
 -KEYNAME name of a key to be used for encryption
 -KEY key value in "0x5A," notation

Let’s consider how to use gbak.exe with encrypted databases and backups.

Backup encrypted Firebird database

To backup an encrypted Firebird database, gbak.exe must provide the key for the server. This key
will be used to connect and read the database and to encrypt the backup file.

There are 2 ways to supply the key for gbak.exe: store key in the key file or explicitly put it in the
command line:

Example 1. Example of backup with the encryption key in the key file

gbak.exe -b -KEYFILE h:\Firebird\Firebird-3.0.3.32900-0_Win32\examplekeyfile.txt
 -KEYNAME RED localhost:h:\employee_30.fdb h:\testenc4.fbk -user SYSDBA
 -pass masterkey

Here, in the parameter -KEYFILE we specify the location of the files with keys, and in -
KEYNAME — the name of the key being used. Please note, that the file examplekeyfile.txt has the
same structure as KeyHolder.conf.

If you apply backup with encryption (gbak -b -keyfile … -keyname …) on the unencrypted
database, the backup will be encrypted.

Example 2. Example of backup with the explicit key

gbak -b -KEY 0xec,0xa1,0x52,0xf6,0x4d,0x27,0xda,0x93,0x53,0xe5,0x48,0x86,0xb9,
 0x7d,0xe2,0x8f,0x3b,0xfa,0xb7,0x91,0x22,0x5b,0x59,0x15,0x82,0x35,0xf5,0x30,
 0x1f,0x04,0xdc,0x75, -keyname RED localhost:h:\employee30\employee30.fdb
 h:\testenc303.fbk -user SYSDBA -pass masterkey

Here, we specify the key value in the parameter -KEY, and the name of the key in the parameter
-KEYNAME. It is necessary to specify key name even if we supply the explicit key value.

Restore the backup to the encrypted Firebird database

The gbak can also restore from the backup files to the encrypted databases. The approach is the
same: we need to provide the key name and key value to restore the backup file.

See below examples of the restore commands:

Chapter 8. Encryption support

213

Example of restore with the encryption key in the keyfile

gbak -c -v -keyfile h:\Firebird\Firebird-3.0.3.32900-0_Win32\examplekeyfile.txt
 -keyname white h:\testenc4.fbk localhost:h:\employeeenc4.fdb -user SYSDBA
 -pass masterkey

Example 3. Example of restore with the explicit key

gbak -c -v -key 0xec,0xa1,0x52,0xf6,0x4d,0x27,0xda,0x93,0x53,0xe5,0x48,0x86,
 0xb9,0x7d,0xe2,0x8f,0x3b,0xfa,0xb7,0x91,0x22,0x5b,0x59,0x15,0x82,0x35,0xf5,
 0x30,0x1f,0x04,0xdc,0x75, -keyname RED h:\testenc4.fbk
 localhost:h:\employeeenc4.fdb -user SYSDBA -pass masterkey

If you restore from an unencrypted backup file with encryption keys (gbak -c -keyfile …
-keyname …) , the restored database will be encrypted.

Chapter 8. Encryption support

214

Chapter 9. Authentication plugin for Execute
Statement On External
Firebird has a convenient mechanism of cross-database queries: Execute Statement On External
(ESOE). For example, the typical ESOE can look like this:

EXECUTE STATEMENT 'SELECT * FROM RDB$DATABASE'
ON EXTERNAL 'server:db1' AS USER 'MYUSER' PASSWORD 'mypassword'

As you can see, the statement contains username and password in the open form, which is not
secure: for example, if ESOE is called from the stored procedure code, connected users can see the
password.

The HQbird Enterprise includes an authentication plugin for ESOE allows to establish trusted
relationships between Firebird servers and perform the authentication of ESOE without a
password:

EXECUTE STATEMENT 'SELECT * FROM RDB$DATABASE'
ON EXTERNAL 'server:db1' AS USER 'MYUSER';

Let’s consider how to install and configure HQbird Authentication plugin for ESOE.

9.1. Installation of authentication plugin for ESOE

9.1.1. Authentication plugin files

• Windows

◦ plugins\cluster.dll

◦ clusterkeygen.exe

• Linux

◦ plugins\libcluster.so

◦ bin\ClusterKeygen # executable

Please note!

The plugin files are already included into HQbird Enterprise, so you don’t need to
copy them. There are different files for 32 and 64 bit versions of Firebird.

9.1.2. Configuration

In firebird.conf

First of all, it is necessary to add plugin name (Cluster) to the AuthServer and AuthClient parameters

Chapter 9. Authentication plugin for Execute Statement On External

215

in firebird.conf on all servers which will trust each other:

AuthServer = Srp, Legacy_Auth, Cluster
AuthClient = Srp, Srp256, Legacy_Auth, Cluster

Keyfile

Then, it is necessary to generate keyfile for the plugin. This key should be placed to the all Firebird
servers which should trust to each other.

In order to generate keyfile cluster.conf run the following command:

C:\HQbird\Firebird30>clusterkeygen.exe > cluster.conf

As a result, the key file cluster.conf will be generated. It contains 2048 digits key, something like this:

Then, we need to copy the key file to the all Firebird servers with trusted relationships to the
plugins folder. Key, created on Windows, can be used on Linux, and vice versa.

Please note!

The keyfile name should be exactly cluster.conf. It should be located in plugins
folder of Firebird.

Mapping

In order to use authentication plugin inside the particular database, it is necessary to create
mapping between users of cluster plugin and regular Firebird users.

For example, if we run the following ESOE

Chapter 9. Authentication plugin for Execute Statement On External

216

EXECUTE STATEMENT 'SELECT * FROM RDB$DATABASE'
ON EXTERNAL 'server:db1' AS USER 'MYUSER';

we need to map user MYUSER to the actual user in the destination database db1. Let’s assume we
have a user MYUSER2 in the destination database, in this case we need to create the following
command in the destination database db1:

SQL> CREATE MAPPING usr_mapping_cluster1 USING PLUGIN CLUSTER
CON> FROM USER MYUSER TO user MYUSER2;
SQL> commit;

As a result, the mapping usr_mapping_cluster1 will be created in db1, to map user MYUSER to
MYUSER2.

Please note!

The both users should exist, even if they have the same name. Otherwise there will
be the following error:

Execute statement error at attach:

335544472: Your user name and password are not defined. Ask your
database
administrator to set up a Firebird login.

You can create as many mapping as you need. Existing mapping can be found in the table
RDB$AUTH_MAPPING with the following query:

 SQL> select rdbmap_name, rdbmap_from, rdb$map_to from RDB$AUTH_MAPPING
 CON> where RDB$MAP_PLUGIN ='CLUSTER';

 RDB$MAP_NAME RDB$MAP_FROM RDB$MAP_TO
 ==
 USR_MAPPING_CLUSTER1 MYUSER MYUSER2

Global mappings

It is possible to create mapping between users for all databases on the server — in this case the
following command should be used:

CREATE GLOBAL MAPPING global_usr_mapping_cluster1 USING PLUGIN CLUSTER
FROM USER MYUSER TO user MYUSER2;

In this case, mappings will be stored in security database, to see them use the following query:

Chapter 9. Authentication plugin for Execute Statement On External

217

 SQL> select SECMAP_NAME, SECMAP_USING, SECMAP_FROM, SECMAP_TO
 CON> from SEC$GLOBAL_AUTH_MAPPING where SEC$MAP_PLUGIN ='CLUSTER';

 SEC$MAP_NAME SEC$MAP_USING SEC$MAP_FROM SEC$MAP_TO
 ===
 GLOBAL_USR_MAPPING_CLUSTER1 P MYUSER MYUSER2

Role mappings

In order to map user to the role in the destination database, it is necessary to create 2 mappings:

CREATE MAPPING USR_CLUSTER9 USING PLUGIN CLUSTER
FROM USER MUSER TO ROLE RDB$ADMIN;

CREATE MAPPING USR_CLUSTER_X USING PLUGIN CLUSTER
FROM ANY USER TO USER MYUSER;

9.1.3. How to test

The following query can be used to test the work of the authentication plugin for ESOE:

execute block
returns (
 CUSER varchar(255),
 CCONNECT bigint,
 CROLE varchar(31))
as
begin
 execute statement
 'select CURRENT_USER, CURRENT_CONNECTION, CURRENT_ROLE FROM RDB$DATABASE'
 on external 'server:db1'
 into :CUSER, :CCONNECT, :CROLE;
 suspend;
end

As a result, this query will return username, connection id and user role from the destination
database db1.

Chapter 9. Authentication plugin for Execute Statement On External

218

Chapter 10. RSA-UDR — security functions to
sign documents and verify signatures
HQbird Enterprise includes RSA-UDR which contains the set of useful security functions. These
functions can be useful to protect documents (stored as varchars, BLOBS and even external files)
with digital signature.

Important

This RSA-UDR is not required if using Firebird 4.0, as these functions are built-in.

Please note!

To use RSA-UDR functions, you need to register them in your database with an
appropriate SQL script. The script is available in plugin/UDR/crypto.sql

Let’s consider functions from this library and examples their usage.

Function Name Description

BIN2HEX Convert binary representation to HEX

BIN2HEXB Convert BLOB binary representation to HEX

CRC32 Calculate checksum

CRC32B Calculate BLOB checksum

DECODE_BASE64 Decode to Base64

DECODE_BASE64B Decode BLOB to Base64

ENCODE_BASE64 Encode to Base64

ENCODE_BASE64B Encode BLOB to Base64

HEX2BIN Convert HEX to binary

HEX2BINB Convert NEX BLOB to binary

MD5 Calculate MD5 hash sum

MD5B Calculate BLOB MD5 hash sum

RSA_PUBLIC_KEY Generate public key

RSA_PRIVATE_KEY Generate private key

RSA_SIGN Sign object

RSA_VERIFY Verify the signature

SHA1 Calculate SHA

SHA1B Calculate SHA for BLOB

SHA256 Calculate SHA256

SHA256B Calculate SHA256 for BLOB

Chapter 10. RSA-UDR — security functions to sign documents and verify signatures

219

Let’s consider the simplified example how to use these functions to sign some document and verify
the signature.

For simplicity, we will put the document, private key, public key, digest (hash sum of the document)
and signature will be in the same table, in the single column:

 SQL> show table TBL;

 DOC BLOB segment 80, subtype BINARY Nullable
 DIGEST VARCHAR(32) CHARACTER SET OCTETS Nullable
 SALTLEN INTEGER Nullable
 PRIVATE_KEY VARCHAR(2048) CHARACTER SET OCTETS Nullable
 SIGN VARCHAR(1024) CHARACTER SET OCTETS Nullable
 PUBLIC_KEY VARCHAR(512) CHARACTER SET OCTETS Nullable
 BAD_SIGN VARCHAR(1024) CHARACTER SET OCTETS Nullable

Then, let’s go through the example:

 -- First, we will connect to the database:

 C:\HQbird\Firebird30>isql localhost:c:\temp\rsatest.fdb -user SYSDBA -pass masterkey
 Database: localhost:c:\temp\rsatest.fdb, User: SYSDBA

 -- and then we will check that functions are registered
 SQL> show functions;
 Global functions

 Function Name Invalid Dependency, Type
 ================================= ======= =====================================
 RSA_PRIVATE_KEY
 RSA_PUBLIC_KEY
 RSA_SIGN
 RSA_VERIFY
 SHA256

 -- clean the test table
 SQL>delete from tbl
 SQL>commit;

 -- generate private key and write
 -- it into table TBL (normally, the private will be kept in the - secret place)

 SQL>insert into tbl(PRIVATE_KEY) values(rsa_private_key(1024));

 -- generate public key
 SQL>update tbl set PUBLIC_KEY = rsa_public_key(PRIVATE_KEY);

 -- create BLOB document

Chapter 10. RSA-UDR — security functions to sign documents and verify signatures

220

 SQL>update TBL set DOC='testtesttest';

 -- and calculate its digest
 SQL>update tbl set digest = sha256(doc);

 –- sign document and remember its signature
 SQL>update tbl set sign = rsa_sign(digest, PRIVATE_KEY, 8);

 -- check the signature
 SQL> select RSA_VERIFY(SIGN, DIGEST, PUBLIC_KEY, SALTLEN) from tbl;

 RSA_VERIFY
 ==========
 <true>
 -- as you can see, signature is valid

 –- change the document (BLOB)
 SQL> update TBL set DOC='testtesttest222';

 -- recalculate its digest
 SQL> update tbl set digest = sha256(doc);

 -- check signature
 SQL> select rsa_verify(sign, digest, PUBLIC_KEY, 8) from tbl;

 RSA_VERIFY
 ==========
 <false>
 -- we can see that protected document was changed

Examples of BIN2HEX and HEX2BIN functions

 SQL> set list;
 SQL> select bin2hex('Test string') from rdb$database;

 BIN2HEX 5465737420737472696E67

 SQL> select cast (hex2bin('5465737420737472696E67') as varchar(32))
 CON> from rdb$database;

 CAST Test string

10.1. How to use RSA-UDR security and conversion
functions
In general, RSA-UDR functions allow to seal electronic documents of all types (DOC, PDF, XML, JPG,
PNG, etc), and then detect unauthorized changes.

Chapter 10. RSA-UDR — security functions to sign documents and verify signatures

221

Conversion functions make easy BIN→HEX and HEX→BIN conversions, as well as Base64 encoding
and decoding.

Chapter 10. RSA-UDR — security functions to sign documents and verify signatures

222

Chapter 11. SPLIT-UDR — procedures to
splitting lines by separator
HQbird Enterprise includes SPLIT-UDR which contains the set of useful stored procedures. These
procedures can be useful to splitting string (stored as varchars or BLOBS) by separator.

Please note!

To use SPLIT-UDR functions, you need to register them in your database with an
appropriate SQL script. The script is available in plugin/UDR/split-udr.sql

For convenience, procedures for splitting text by separator are packed in the SPLIT_UTILS package.

Let’s consider procedures from this library and examples their usage.

Procedure Name Description

SPLIT_BOOLEAN Splits the string at the delimiter and returns a
set of BOOLEAN values.

SPLIT_SMALLINT Splits the string at the delimiter and returns a
set of SMALLINT values.

SPLIT_INT Splits the string at the delimiter and returns a
set of INTEGER values.

SPLIT_BIGINT Splits the string at the delimiter and returns a
set of BIGINT values.

SPLIT_STR Splits the string at the delimiter and returns a
set of VARCHAR(8191) values.

SPLIT_DATE Splits the string at the delimiter and returns a
set of DATE values.

SPLIT_TIME Splits the string at the delimiter and returns a
set of TIME values.

SPLIT_TIMESTAMP Splits the string at the delimiter and returns a
set of TIMESTAMP values.

SPLIT_DOUBLE Splits the string at the delimiter and returns a
set of DOUBLE PRECISION values.

The first argument of these procedures is a BLOB with subtype TEXT, the second is a string of type
VARCHAR (10). The output type depends on the name of the procedure.

Let’s look at simple examples of how to use these procedures.

Chapter 11. SPLIT-UDR — procedures to splitting lines by separator

223

SQL> select cast(out_str as varchar(10)) from SPLIT_UTILS.split_str('abc##defg##aa',
'##');

CAST
==========
abc
defg
aa

SQL> select out_int from SPLIT_UTILS.split_int('1,2,3,4,5', ',');

 OUT_INT
============
 1
 2
 3
 4
 5

In addition, SplitUDR also contains procedures for splitting text into tokens (the text is split into
several separators). These procedures are declared as follows:

CREATE OR ALTER PROCEDURE SPLIT_WORDS (
 IN_TXT BLOB SUB_TYPE TEXT CHARACTER SET UTF8,
 IN_SEPARATORS VARCHAR(50) CHARACTER SET UTF8 DEFAULT NULL)
RETURNS (
 WORD VARCHAR(8191) CHARACTER SET UTF8)
EXTERNAL NAME 'splitudr!strtok' ENGINE UDR;

CREATE OR ALTER PROCEDURE SPLIT_WORDS_S (
 IN_TXT VARCHAR(8191) CHARACTER SET UTF8,
 IN_SEPARATORS VARCHAR(50) CHARACTER SET UTF8 DEFAULT NULL)
RETURNS (
 WORD VARCHAR(8191) CHARACTER SET UTF8)
EXTERNAL NAME 'splitudr!strtok_s' ENGINE UDR;

Input parameters:

• IN_TXT - input text of type BLOB SUB_TYPE TEXT or VARCHAR (8191)

• IN_SEPARATORS - a list of separators (a string with separator symbols), if not specified, then
separators are used " \n\r\t,.?!:;/\|<>[]{}()@#$%^&*-+='"~`"

Example:

Chapter 11. SPLIT-UDR — procedures to splitting lines by separator

224

 SELECT
 w.WORD
 FROM DOCS
 LEFT JOIN SPLIT_WORDS(DOCS.CONTENT) w
 WHERE DOCS.DOC_ID = 4

Chapter 11. SPLIT-UDR — procedures to splitting lines by separator

225

Chapter 12. OCR-UDR — function to
recognizing text from images
HQbird Enterprise includes OCR-UDR which contains function to recognizing text from images.

UDR OCR is based on the free text recognition library Tesseract OCR 4.1, released under the Apache
License, Version 2.0.

To register ocr-udr, you need to execute the following script:

CREATE OR ALTER FUNCTION GET_OCR_TEXT (
 PIX_DATA BLOB SUB_TYPE BINARY,
 PPI SMALLINT = NULL)
RETURNS BLOB SUB_TYPE TEXT
EXTERNAL NAME 'ocrudr!getOcrText!eng' ENGINE UDR;

COMMENT ON FUNCTION GET_OCR_TEXT IS
'Recognizing text from images';

COMMENT ON PARAMETER GET_OCR_TEXT.PIX_DATA IS
'Image';

COMMENT ON PARAMETER GET_OCR_TEXT.PPI IS
'Pix Per Inch. Some image formats do not store this information. For scanned
pages are usually 200-300 ppi. The minimum value is 70.';

Pay attention to the EXTERNAL NAME in it after the module name and entry point
with "!" the name of the dictionary is indicated.

Where is eng a dictionary from tessdata catalog, which is used for recognition.
Several dictionaries can be listed here, for example rus+eng. If absent, then the
dictionary eng is used.

The set contains a limited number of dictionaries. A complete list of dictionaries is
available at: https://github.com/tesseract-ocr/tessdata_best (high recognition
quality) or https://github.com/tesseract-ocr/tessdata_fast (high recognition speed).

The library supports text recognition from images in PNG, JPEG, GIF formats.

12.1. Example of using OCR-UDR
Suppose you have a DOCS table that stores scans of documents, defined as follows:

Chapter 12. OCR-UDR — function to recognizing text from images

226

https://github.com/tesseract-ocr/tessdata_best
https://github.com/tesseract-ocr/tessdata_fast

CREATE TABLE DOCS (
 ID BIGINT GENERATED BY DEFAULT AS IDENTITY,
 NAME VARCHAR(127) NOT NULL,
 PIC BLOB SUB_TYPE BINARY,
 TXT BLOB SUB_TYPE TEXT,
 PROCESSED BOOLEAN default FALSE NOT NULL,
 CONSTRAINT PK_DOCS PRIMARY KEY (ID)
);

Images for recognition are saved in the PIC field, the recognized text in the TXT field.

To recognize text from a single image, you can use the query:

SELECT GET_OCR_TEXT(pic, 200) as txt
FROM docs
WHERE docs.id = 2;

The next query recognizes text from images and saves it to the TXT field.

update docs
UPDATE DOCS
SET TXT = GET_OCR_TEXT(PIC, 200),
 PROCESSED = TRUE
WHERE PROCESSED IS FALSE;

Chapter 12. OCR-UDR — function to recognizing text from images

227

Chapter 13. LK-JSON-UDR — building and
parsing JSON
HQbird Enterprise includes UDR library udr-lkJSON for building and parsing JSON on the server
side. The library is distributed open source under the MIT license and is free to use. It is written in
Free Pascal. Source code is available at https://github.com/mnf71/udr-lkJSON

13.1. Install UDR lkJSON
To use the UDR lkJSON library, you need to register it in your database. To do this, run one of the
scripts plugin/UDR/udrJSON.sql or plugin/UDR/udrJSON-utf8.sql, depending on the encoding of your
database (the first will work for any single-byte encoding).

After installing the UDR, it can be verified using the https://github.com/mnf71/udr-lkJSON/blob/
main/verify.sql script.

The script calls a function to parse the JSON and build it back into a string. If the original JSON is
the same as the newly assembled JSON, then everything is in order. In reality, the strings will not
completely match, since the JSON is assembled without taking into account the beautiful
formatting. But the content must be identical.

Verification occurs for two sets (procedure + function):

• js$func.ParseText — parsing JSON given as BLOB. js$func.GenerateText — JSON assembly with
BLOB return.

• js$func.ParseString — parsing JSON given as VARCHAR(N). js$func.GenerateString — JSON
assembly returning VARCHAR(N).

13.2. How it works?
The udr-lkJSON library is based on the free lkJSON library for generating and parsing JSON.
Therefore, in order to have a good idea of how to work with UDR-lkJSON, it is advisable to
familiarize yourself with the lkjson library (see https://sourceforge.net/projects/lkjson/).

When parsing JSON, some elements can be simple types that exist in Firebird (INTEGER, DOUBLE
PRECISION, VARCHAR (N), BOOLEAN), and some complex ones are objects and arrays. Complex
objects are returned as a pointer to an internal object from the lkJSON library. The pointer maps to
the TY$POINTER domain. This domain is defined as follows:

CREATE DOMAIN TY$POINTER AS
CHAR(8) CHARACTER SET OCTETS;

In addition, if NULL is encountered in JSON, then it will not be returned to simple types! You will
have to recognize this value separately. This is because the UDR-lkJSON library simply copies the
methods of the lkJSON library classes into PSQL packages. And as you know, simple types in Pascal
do not have a separate state for NULL.

Chapter 13. LK-JSON-UDR — building and parsing JSON

228

https://github.com/mnf71/udr-lkJSON
https://github.com/mnf71/udr-lkJSON/blob/main/verify.sql
https://github.com/mnf71/udr-lkJSON/blob/main/verify.sql
https://sourceforge.net/projects/lkjson/

13.3. Description of PSQL packages from UDR-lkJSON

13.3.1. JS$BASE package

The header of this package looks like this:

CREATE OR ALTER PACKAGE JS$BASE
AS
BEGIN
 /* TlkJSONbase = class
 TlkJSONtypes =
 (jsBase, jsNumber, jsString, jsBoolean, jsNull, jsList, jsObject);
 0 1 2 3 4 5 6
 */
 FUNCTION Dispose(Self TY$POINTER) RETURNS SMALLINT; /* 0 - succes */

 FUNCTION Field(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE /* = Idx */)
RETURNS TY$POINTER;

 FUNCTION Count_(Self TY$POINTER) RETURNS INTEGER;
 FUNCTION Child(Self TY$POINTER, Idx INTEGER, Obj TY$POINTER = NULL /* Get */)
RETURNS TY$POINTER;

 FUNCTION Value_(Self TY$POINTER, Val VARCHAR(32765) CHARACTER SET NONE = NULL /* Get
*/) RETURNS VARCHAR(32765) CHARACTER SET NONE;
 FUNCTION WideValue_(Self TY$POINTER, WVal BLOB SUB_TYPE TEXT = NULL /* Get */)
RETURNS BLOB SUB_TYPE TEXT;

 FUNCTION SelfType(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
SMALLINT;
 FUNCTION SelfTypeName(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
VARCHAR(32) CHARACTER SET NONE;
END

As you can see from the comment, this package is a blueprint for the TlkJSONbase class. It contains
basic functionality for working with JSON.

The Dispose function is designed to release a pointer to a JSON object. Pointers to be forcibly freed
are the result of parsing or JSON generation. You should not call it on intermediate objects when
parsing or assembling JSON. It is only required for the top-level object.

The Field function returns a pointer to an object field. The first parameter is a pointer to the object,
the second is the field name. If the field does not exist, then the function will return a null pointer
(This is not NULL, but x'0000000000000000').

The Count_ function returns the number of items in a list or fields in an object. A pointer to an
object or a list is specified as a parameter.

The Child function returns or sets the value for the element at index Idx in the Self object or list. If

Chapter 13. LK-JSON-UDR — building and parsing JSON

229

the Obj parameter is not specified, then it returns a pointer to the element from the Idx indices. If
Obj is specified, then sets its value to the element with indices Idx. Note Obj is a pointer to one of the
TlkJSONbase descendants.

The Value_ function returns or sets in the form of a JSON string (VARCHAR) the value for the object
specified in the Self parameter. If the Val parameter is not specified, then the value is returned;
otherwise, it is set.

The WideValue_ function returns or sets as a JSON string (BLOB SUB_TYPE TEXT) the value for the object
specified in the Self parameter. If the Val parameter is not specified, then the value is returned;
otherwise, it is set.

The SelfType function returns the type of the object for the pointer specified in the Self parameter.
The object type is returned as a number, where

• 0 — jsBase

• 1 — jsNumber

• 2 — jsString

• 3 — jsBoolean

• 4 — jsNull

• 5 — jsList

• 6 — jsObject

If the Self parameter is not specified, it will return 0.

The SelfTypeName function returns the object type for the pointer specified in the Self parameter.
The object type is returned as a string. If the Self parameter is not specified, it will return 'jsBase'.

13.3.2. JS$BOOL package

The header of this package looks like this:

Chapter 13. LK-JSON-UDR — building and parsing JSON

230

CREATE OR ALTER PACKAGE JS$BOOL
AS
BEGIN
 /* TlkJSONbase = class
 TlkJSONboolean = class(TlkJSONbase)
 */
 FUNCTION Value_(Self TY$POINTER, Bool BOOLEAN = NULL /* Get */) RETURNS BOOLEAN;

 FUNCTION Generate(Self TY$POINTER = NULL /* NULL - class function */, Bool BOOLEAN =
TRUE) RETURNS TY$POINTER;

 FUNCTION SelfType(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
SMALLINT;
 FUNCTION SelfTypeName(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
VARCHAR(32) CHARACTER SET NONE;
END

As you can see from the comment, this package is a blueprint for the TlkJSONboolean class. It is
designed to work with the BOOLEAN datatype.

The Value_ function returns or sets to a boolean value for the object specified in the Self parameter.
If the Bool parameter is not specified, then the value will be returned, if specified — set. Note that
NULL is not returned and cannot be set by this method, there is a separate JS$NULL package for this.

The Generate function returns a pointer to a new TlkJSONboolean object, which is a Boolean value in
JSON. The Self parameter is a pointer to the JSON object on the basis of which the TlkJSONboolean
object is created. The boolean value is specified in the Bool parameter.

The SelfType function returns the type of the object for the pointer specified in the Self parameter.
The object type is returned as a number. If the Self parameter is not specified, it will return 3.

The SelfTypeName function returns the object type for the pointer specified in the Self parameter.
The object type is returned as a string. If the Self parameter is not specified, it will return
'jsBoolean'.

13.3.3. JS$CUSTLIST package

The header of this package looks like this:

Chapter 13. LK-JSON-UDR — building and parsing JSON

231

CREATE OR ALTER PACKAGE JS$CUSTLIST
AS
BEGIN
 /* TlkJSONbase = class
 TlkJSONcustomlist = class(TlkJSONbase)
 */
 PROCEDURE ForEach
 (Self TY$POINTER) RETURNS (Idx Integer, Name VARCHAR(128) CHARACTER SET NONE, Obj
TY$POINTER /* js$Base */);

 FUNCTION Field(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE /* = Idx */)
RETURNS TY$POINTER;
 FUNCTION Count_(Self TY$POINTER) RETURNS INTEGER;
 FUNCTION Child(Self TY$POINTER, Idx INTEGER, Obj TY$POINTER = NULL /* Get */)
RETURNS TY$POINTER;

 FUNCTION GetBoolean(Self TY$POINTER, Idx INTEGER) RETURNS BOOLEAN;
 FUNCTION GetDouble(Self TY$POINTER, Idx INTEGER) RETURNS DOUBLE PRECISION;
 FUNCTION GetInteger(Self TY$POINTER, Idx INTEGER) RETURNS INTEGER;
 FUNCTION GetString(Self TY$POINTER, Idx INTEGER) RETURNS VARCHAR(32765) CHARACTER
SET NONE;
 FUNCTION GetWideString(Self TY$POINTER, Idx INTEGER) RETURNS BLOB SUB_TYPE TEXT;
END

As you can see from the comment, this package is a blueprint for the TlkJSONcustomlist class. This
type is basic when working with objects and lists. All procedures and functions of this package can
be used as JSON of the object type, and JSON of the list type.

The ForEach procedure retrieves each list item or each object field from the JSON pointer specified
in Self. The following values are returned:

• Idx — the index of the list item or the number of the field in the object. Starts at 0.

• Name — the name of the next field, if Self is an object. Or the index of the list item, starting at 0, if
Self is a list.

• Obj is a pointer to the next element of the list or object field.

The Field function returns a pointer to a field by its name from the object specified in Self. Instead
of a field name, you can specify the item number in the list or the field number. Numbering starts
from 0.

The Count_ function returns the number of items in a list or fields in an object specified in the Self
parameter.

The Child function returns or sets the value for the element at index Idx in the Self object or list.
Indexing starts from 0. If the Obj parameter is not specified, then it returns a pointer to the element
from the Idx indices. If Obj is specified, then sets its value to the element with indices Idx. Note Obj is
a pointer to one of the TlkJSONbase descendants.

The GetBoolean function returns the boolean value of an object field or array element with index

Chapter 13. LK-JSON-UDR — building and parsing JSON

232

Idx. Indexing starts at 0.

The GetDouble function returns the floating point value of an object field or array element with
index Idx. Indexing starts at 0.

The GetInteger function returns the integer value of an object field or array element with index Idx.
Indexing starts at 0.

The GetString function returns the character value (VARCHAR) of an object field or array element with
index Idx. Indexing starts at 0.

The GetWideString function returns the BLOB SUB_TYPE TEXT of an object field or array element with
index Idx. Indexing starts at 0.

The functions GetBoolean, GetDouble, GetInteger, GetString, GetWideString cannot
return NULL. There is a separate set of functions for handling NULL values in the
JS$NULL package.

13.3.4. JS$FUNC package

The header of this package looks like this:

CREATE OR ALTER PACKAGE JS$FUNC
AS
BEGIN
 FUNCTION ParseText(Text BLOB SUB_TYPE TEXT, Conv BOOLEAN = FALSE) RETURNS TY$
POINTER;
 FUNCTION ParseString(String VARCHAR(32765) CHARACTER SET NONE, Conv BOOLEAN = FALSE)
RETURNS TY$POINTER;

 FUNCTION GenerateText(Obj TY$POINTER, Conv BOOLEAN = FALSE) RETURNS BLOB SUB_TYPE
TEXT;
 FUNCTION GenerateString(Obj TY$POINTER, Conv BOOLEAN = FALSE) RETURNS VARCHAR(32765)
CHARACTER SET NONE;

 FUNCTION ReadableText(Obj TY$POINTER, Level INTEGER = 0, Conv BOOLEAN = FALSE)
 RETURNS BLOB SUB_TYPE TEXT;
END

This package contains a set of functions for parsing JSON or converting JSON to string.

The ParseText function parses JSON specified as a string of BLOB SUB_TYPE TEXT type in the Text
parameter. If you pass TRUE in the Conv parameter, then the JSON text of the string will be
converted from UTF8 encoding to general.

The ParseString function parses the JSON specified as a VARCHAR (N) string in the String parameter.
If you pass TRUE in the Conv parameter, then the JSON text of the string will be converted from
UTF8 encoding to general.

Chapter 13. LK-JSON-UDR — building and parsing JSON

233

The GenerateText function returns JSON as a BLOB SUB_TYPE TEXT string. If TRUE is passed in the Conv
parameter, then the text returned by this function will be converted to UTF8.

The GenerateString function returns JSON as a VARCHAR (N) string. If TRUE is passed in the Conv
parameter, then the text returned by this function will be converted to UTF8.

The ReadableText function returns JSON as a human-readable string of type BLOB SUB_TYPE TEXT. The
Level parameter sets the number of indents for the first level. This is required if the generated
string is part of another JSON. If TRUE is passed in the Conv parameter, then the text returned by
this function will be converted to UTF8.

Use of the Conv parameter set to TRUE is left for compatibility with the original
lkJSON library. There is no special need for it, since external services
independently know how to convert the source string into the format required for
the DBMS and vice versa.

13.3.5. JS$LIST package

The header of this package looks like this:

Chapter 13. LK-JSON-UDR — building and parsing JSON

234

CREATE OR ALTER PACKAGE JS$LIST
AS
BEGIN
 /* TlkJSONbase = class
 TlkJSONcustomlist = class(TlkJSONbase)
 TlkJSONlist = class(TlkJSONcustomlist)
 */
 PROCEDURE ForEach
 (Self TY$POINTER) RETURNS (Idx Integer, Name VARCHAR(128) CHARACTER SET NONE, Obj
TY$POINTER /* js$Base */);

 FUNCTION Add_(Self TY$POINTER, Obj TY$POINTER) RETURNS INTEGER;
 FUNCTION AddBoolean(Self TY$POINTER, Bool BOOLEAN) RETURNS INTEGER;
 FUNCTION AddDouble(Self TY$POINTER, Dbl DOUBLE PRECISION) RETURNS INTEGER;
 FUNCTION AddInteger(Self TY$POINTER, Int_ INTEGER) RETURNS INTEGER;
 FUNCTION AddString(Self TY$POINTER, Str VARCHAR(32765) CHARACTER SET NONE) RETURNS
INTEGER;
 FUNCTION AddWideString(Self TY$POINTER, WStr BLOB SUB_TYPE TEXT) RETURNS INTEGER;

 FUNCTION Delete_(Self TY$POINTER, Idx Integer) RETURNS SMALLINT;
 FUNCTION IndexOfObject(Self TY$POINTER, Obj TY$POINTER) RETURNS INTEGER;
 FUNCTION Field(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE /* = Idx */)
RETURNS TY$POINTER;

 FUNCTION Count_(Self TY$POINTER) RETURNS INTEGER;
 FUNCTION Child(Self TY$POINTER, Idx INTEGER, Obj TY$POINTER = NULL /* Get */)
RETURNS TY$POINTER;

 FUNCTION Generate(Self TY$POINTER = NULL /* NULL - class function */) RETURNS TY
$POINTER;

 FUNCTION SelfType(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
SMALLINT;
 FUNCTION SelfTypeName(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
VARCHAR(32) CHARACTER SET NONE;
END

As you can see from the comment, this package is a blueprint for the TlkJSONlist class. It is
designed to work with a list.

The ForEach procedure retrieves each list item or each object field from the JSON pointer specified
in Self. The following values are returned:

• Idx — the index of the list item or the number of the field in the object. Starts at 0.

• Name — the name of the next field, if Self is an object. Or the index of the list item, starting at 0, if
Self is a list.

• Obj is a pointer to the next element of the list or object field.

The Add_ function adds a new item to the end of the list, the pointer to which is specified in the Self

Chapter 13. LK-JSON-UDR — building and parsing JSON

235

parameter. The element to add is specified in the Obj parameter, which must be a pointer to one of
the TlkJSONbase descendants. The function returns the index of the newly added element.

The AddBoolean function adds a new boolean element to the end of the list pointed to by the Self
parameter. The function returns the index of the newly added element.

The AddDouble function adds a new element of real type to the end of the list, the pointer to which is
specified in the Self parameter. The function returns the index of the newly added element.

The AddInteger function adds a new integer element to the end of the list pointed to by the Self
parameter. The function returns the index of the newly added element.

The AddString function adds a new element of string type (VARCHAR (N)) to the end of the list pointed
to by the Self parameter. The function returns the index of the newly added element.

The AddWideString function adds a new BLOB SUB_TYPE TEXT to the end of the list pointed to by the
Self parameter. The function returns the index of the newly added element.

The Delete_ function removes an element from the list with index Idx. The function returns 0.

The IndexOfObject function returns the index of an item in a list. The pointer to the list is specified
in the Self parameter. The Obj parameter specifies a pointer to the element whose index is being
defined.

The Field function returns a pointer to a field by its name from the object specified in Self. Instead
of a field name, you can specify the item number in the list or the field number. Numbering starts
from 0.

The Count_ function returns the number of items in a list or fields in an object specified in the Self
parameter.

The Child function returns or sets the value for the element at index Idx in the Self object or list.
Indexing starts from 0. If the Obj parameter is not specified, then it returns a pointer to the element
from the Idx indices. If Obj is specified, then sets its value to the element with indices Idx. Note Obj is
a pointer to one of the TlkJSONbase descendants.

The Generate function returns a pointer to a new TlkJSONlist object, which is an empty list. The Self
parameter is a pointer to the JSON object on the basis of which the TlkJSONlist is created.

The SelfType function returns the type of the object for the pointer specified in the Self parameter.
The object type is returned as a number. If the Self parameter is not specified, it will return 5.

13.3.6. JS$METH package

The header of this package looks like this:

Chapter 13. LK-JSON-UDR — building and parsing JSON

236

CREATE OR ALTER PACKAGE JS$METH
AS
BEGIN
 /* TlkJSONbase = class
 TlkJSONobjectmethod = class(TlkJSONbase)
 */
 FUNCTION MethodObjValue(Self TY$POINTER) RETURNS TY$POINTER;
 FUNCTION MethodName(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE = NULL /*
Get */) RETURNS VARCHAR(128) CHARACTER SET NONE;
 FUNCTION MethodGenerate(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE, Obj
TY$POINTER /* js$Base */)
 RETURNS TY$POINTER /* js$Meth */;
END

As you can see from the comment, this package is a blueprint for the TlkJSONobjectmethod class. It is
a key-value pair.

The MethodObjValue function returns a pointer to the value from the key-value pair specified in the
Self parameter.

The MethodName function returns or sets the key name for the key-value pair specified in the Self
parameter. If the Name parameter is not specified, then returns the name of the key, if specified, then
sets the new name of the key.

The MethodGenerate function creates a new key-value pair and returns a pointer to it. The Name
parameter specifies the name of the key, and the Obj parameter specifies a pointer to the key value.

13.3.7. JS$NULL package

The header of this package looks like this:

CREATE OR ALTER PACKAGE JS$NULL
AS
BEGIN
 /* TlkJSONbase = class
 TlkJSONnull = class(TlkJSONbase)
 */
 FUNCTION Value_(Self TY$POINTER) RETURNS SMALLINT;

 FUNCTION Generate(Self TY$POINTER = NULL /* NULL - class function */) RETURNS TY
$POINTER;

 FUNCTION SelfType(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
SMALLINT;
 FUNCTION SelfTypeName(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
VARCHAR(32) CHARACTER SET NONE;
END

Chapter 13. LK-JSON-UDR — building and parsing JSON

237

As you can see from the comment, this package is a blueprint for the TlkJSONnull class. It is
designed to handle NULL values.

Value_ returns 0 if the value of the object in Self is null (jsNull), and 1 otherwise.

The Generate function returns a pointer to a new TlkJSONnull object, which is null. The Self
parameter is a pointer to the JSON object on the basis of which TlkJSONnull is created.

The SelfType function returns the type of the object for the pointer specified in the Self parameter.
The object type is returned as a number. If the Self parameter is not specified, it will return 4.

The SelfTypeName function returns the object type for the pointer specified in the Self parameter.
The object type is returned as a string. If the Self parameter is not specified, it will return 'jsNull'.

13.3.8. JS$NUM package

The header of this package looks like this:

CREATE OR ALTER PACKAGE JS$NUM
AS
BEGIN
 /* TlkJSONbase = class
 TlkJSONnumber = class(TlkJSONbase)
 */
 FUNCTION Value_(Self TY$POINTER, Num DOUBLE PRECISION = NULL /* Get */) RETURNS
DOUBLE PRECISION;

 FUNCTION Generate(Self TY$POINTER = NULL /* NULL - class function */, Num DOUBLE
PRECISION = 0) RETURNS TY$POINTER;

 FUNCTION SelfType(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
SMALLINT;
 FUNCTION SelfTypeName(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
VARCHAR(32) CHARACTER SET NONE;
END

As you can see from the comment, this package is a blueprint for the TlkJSONnumber class. It is
designed to handle numeric values.

The Value_ function returns or sets to a value of a numeric type for the object specified in the Self
parameter. If the Num parameter is not specified, then the value will be returned, if specified — set.
Note that NULL is not returned and cannot be set by this method, there is a separate JS$NULL package
for this.

The Generate function returns a pointer to a TlkJSONnumber object, which is a JSON numeric value.
The Self parameter is a pointer to the JSON object on the basis of which the TlkJSONnumber object is
created. The Num parameter is a numeric value.

The SelfType function returns the type of the object for the pointer specified in the Self parameter.
The object type is returned as a number. If the Self parameter is not specified, it will return 1.

Chapter 13. LK-JSON-UDR — building and parsing JSON

238

The SelfTypeName function returns the object type for the pointer specified in the Self parameter.
The object type is returned as a string. If the Self parameter is not specified, it will return
'jsNumber'.

13.3.9. JS$OBJ package

The header of this package looks like this:

CREATE OR ALTER PACKAGE JS$OBJ
AS
BEGIN
 /* TlkJSONbase = class
 TlkJSONcustomlist = class(TlkJSONbase)
 TlkJSONobject = class(TlkJSONcustomlist)
 */
 FUNCTION New_(UseHash BOOLEAN = TRUE) RETURNS TY$POINTER;
 FUNCTION Dispose(Self TY$POINTER) RETURNS SMALLINT; /* 0 - succes */

 PROCEDURE ForEach(Self TY$POINTER) RETURNS (Idx INTEGER, Name VARCHAR(128)
CHARACTER SET NONE, Obj TY$POINTER /* js$Meth */);

 FUNCTION Add_(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE, Obj TY$POINTER)
RETURNS INTEGER;
 FUNCTION AddBoolean(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE, Bool
BOOLEAN) RETURNS INTEGER;
 FUNCTION AddDouble(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE, Dbl DOUBLE
PRECISION) RETURNS INTEGER;
 FUNCTION AddInteger(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE, Int_
INTEGER) RETURNS INTEGER;
 FUNCTION AddString(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE, Str
VARCHAR(32765) CHARACTER SET NONE) RETURNS INTEGER;
 FUNCTION AddWideString(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE, WStr
BLOB SUB_TYPE TEXT) RETURNS INTEGER;

 FUNCTION Delete_(Self TY$POINTER, Idx Integer) RETURNS SMALLINT;
 FUNCTION IndexOfName(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE) RETURNS
INTEGER;
 FUNCTION IndexOfObject(Self TY$POINTER, Obj TY$POINTER) RETURNS INTEGER;
 FUNCTION Field(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE /* = Idx */,
Obj TY$POINTER = NULL /* Get */) RETURNS TY$POINTER;

 FUNCTION Count_(Self TY$POINTER) RETURNS INTEGER;
 FUNCTION Child(Self TY$POINTER, Idx INTEGER, Obj TY$POINTER = NULL /* Get */)
RETURNS TY$POINTER;

 FUNCTION Generate(Self TY$POINTER = NULL /* NULL - class function */, UseHash
BOOLEAN = TRUE) RETURNS TY$POINTER;

 FUNCTION SelfType(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
SMALLINT;

Chapter 13. LK-JSON-UDR — building and parsing JSON

239

 FUNCTION SelfTypeName(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
VARCHAR(32) CHARACTER SET NONE;

 FUNCTION FieldByIndex(Self TY$POINTER, Idx INTEGER, Obj TY$POINTER = NULL /* Get */)
RETURNS TY$POINTER;
 FUNCTION NameOf(Self TY$POINTER, Idx INTEGER) RETURNS VARCHAR(128) CHARACTER SET
NONE;

 FUNCTION GetBoolean(Self TY$POINTER, Idx INTEGER) RETURNS BOOLEAN;
 FUNCTION GetDouble(Self TY$POINTER, Idx INTEGER) RETURNS DOUBLE PRECISION;
 FUNCTION GetInteger(Self TY$POINTER, Idx INTEGER) RETURNS INTEGER;
 FUNCTION GetString(Self TY$POINTER, Idx INTEGER) RETURNS VARCHAR(32765) CHARACTER
SET NONE;
 FUNCTION GetWideString(Self TY$POINTER, Idx INTEGER) RETURNS BLOB SUB_TYPE TEXT;

 FUNCTION GetBooleanByName(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE)
RETURNS BOOLEAN;
 FUNCTION GetDoubleByName(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE)
RETURNS DOUBLE PRECISION;
 FUNCTION GetIntegerByName(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE)
RETURNS INTEGER;
 FUNCTION GetStringByName(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE)
RETURNS VARCHAR(32765) CHARACTER SET NONE;
 FUNCTION GetWideStringByName(Self TY$POINTER, Name VARCHAR(128) CHARACTER SET NONE)
RETURNS BLOB SUB_TYPE TEXT;
END

As you can see from the comment, this package is a blueprint for the TlkJSONobject class. It is
designed to handle object values.

The New_ function creates and returns a pointer to a new empty object. If UseHash is set to TRUE (the
default value), then the HASH table will be used to search for fields within the object, otherwise the
search will be performed by simple iteration.

The Dispose function is designed to release a pointer to a JSON object. Pointers to be forcibly freed
are the result of parsing or JSON generation. You should not call it on intermediate objects when
parsing or assembling JSON. It is only required for the top-level object.

The ForEach procedure retrieves each object field from the JSON pointer specified in Self. The
following values are returned:

• Idx — the index of the list item or the number of the field in the object. Starts at 0.

• Name — the name of the next field, if Self is an object. Or the index of the list item, starting at 0, if
Self is a list.

• Obj is a pointer to a key-value pair (to handle such a pair, you must use the JS$METH package).

The Add_ function adds a new field to the object, the pointer to which is specified in the Self
parameter. The element to add is specified in the Obj parameter, which must be a pointer to one of
the TlkJSONbase descendants. The field name is specified in the Name parameter. The function

Chapter 13. LK-JSON-UDR — building and parsing JSON

240

returns the index of the newly added field.

The AddBoolean function adds a new boolean field to the object pointed to by the Self parameter.
The field name is specified in the Name parameter. The field value is specified in the Bool parameter.
The function returns the index of the newly added field.

The AddDouble function adds a new field of real type to the object, the pointer to which is specified
in the Self parameter. The field name is specified in the Name parameter. The field value is specified
in the Dbl parameter. The function returns the index of the newly added field.

The AddInteger function adds a new integer field to the object pointed to by the Self parameter. The
field name is specified in the Name parameter. The field value is specified in the Int_ parameter. The
function returns the index of the newly added field.

The AddString function adds a new field of string type (VARCHAR (N)) to the object pointed to by the
Self parameter. The field name is specified in the Name parameter. The field value is specified in the
Int_ parameter. The function returns the index of the newly added field.

The AddWideString function adds a new BLOB SUB_TYPE TEXT field to the object pointed to by the Self
parameter. The field name is specified in the Name parameter. The field value is specified in the Int_
parameter. The function returns the index of the newly added field.

The Delete_ function removes a field from the object with the Idx index. The function returns 0.

The IndexOfName function returns the index of a field by its name. A pointer to an object is specified
in the Self parameter. The Obj parameter specifies a pointer to the element whose index is being
defined.

The IndexOfObject function returns the index of a field value in an object. A pointer to an object is
specified in the Self parameter. The Obj parameter specifies a pointer to the values of the field
whose index is being determined.

The Field function returns or sets the value of a field by its name. A pointer to an object is specified
in the Self parameter. The field name is specified in the Name parameter. Instead of a field name,
you can specify the item number in the list or the field number. Numbering starts from 0. If a value
other than NULL is specified in the Obj parameter, then the new value will be written in the field,
otherwise the function will return a pointer to the field value.

The Count_ function returns the number of fields in the object specified in the Self parameter.

The Child function returns or sets the value for the element at index Idx in the Self object. Indexing
starts from 0. If the Obj parameter is not specified, then it returns a pointer to the element from the
Idx indices. If Obj is specified, then sets its value to the element with indices Idx. Note Obj is a
pointer to one of the TlkJSONbase descendants.

The Generate function returns a pointer to a TlkJSONobject, which is a JSON object. If UseHash is set to
TRUE (the default value), then the HASH table will be used to search for fields within the object,
otherwise the search will be performed by simple iteration. In the Self parameter, a pointer to the
object is passed on the basis of which a new object of the TlkJSONobject type is created.

The SelfType function returns the object type for the pointer specified in the Self parameter. The

Chapter 13. LK-JSON-UDR — building and parsing JSON

241

object type is returned as a number. If the Self parameter is not specified, it will return 6.

The SelfTypeName function returns the object type for the pointer specified in the Self parameter.
The object type is returned as a string. If the Self parameter is not specified, it will return
'jsObject'.

The FieldByIndex function returns or sets the property as a key-value pair at the specified Idx index.
A pointer to an object is specified in the Self parameter. You must use the JS$METH package to
handle the key-value pair. If a value other than NULL is specified in the Obj parameter, then the
new value will be written to the field at the specified index, otherwise the function will return a
pointer to the field.

The NameOf function returns the name of the field at its index specified in the Idx parameter. A
pointer to an object is specified in the Self parameter.

The GetBoolean function returns the boolean value of the object field with the Idx index. Indexing
starts at 0.

The GetDouble function returns the floating point value of the field of the object with the Idx index.
Indexing starts at 0.

The GetInteger function returns the integer value of the object field with the Idx index. Indexing
starts at 0.

The GetString function returns the character value (VARCHAR) of the object field with index Idx.
Indexing starts at 0.

The GetWideString function returns the BLOB SUB_TYPE TEXT of the object field with the Idx index.
Indexing starts at 0.

The GetBooleanByName function returns the boolean value of an object field by its name Name.

The GetDoubleByName function returns the floating point value of an object field by its name Name.

The GetIntegerByName function returns the integer value of the object field by its name Name.

The GetStringByName function returns the character value (VARCHAR) of an object field by its name
Name.

The GetWideStringByName function returns the BLOB SUB_TYPE TEXT of an object field by its Name.

13.3.10. JS$PTR package

The header of this package looks like this:

Chapter 13. LK-JSON-UDR — building and parsing JSON

242

CREATE OR ALTER PACKAGE JS$PTR
AS
BEGIN
 FUNCTION New_
 (UsePtr CHAR(3) CHARACTER SET NONE /* Tra - Transaction, Att - Attachment */,
UseHash BOOLEAN = TRUE)
 RETURNS TY$POINTER;
 FUNCTION Dispose(UsePtr CHAR(3) CHARACTER SET NONE) RETURNS SMALLINT;

 FUNCTION Tra RETURNS TY$POINTER;
 FUNCTION Att RETURNS TY$POINTER;

 FUNCTION isNull(jsPtr TY$POINTER) RETURNS BOOLEAN;
END

This package helps keep track of pointers that occur when creating JSON objects.

The New_ function creates and returns a pointer to a new empty object. If the value 'Tra' is passed
to the UsePtr parameter, then the pointer will be attached to the transaction, and upon its
completion it will be automatically deleted. If the 'Att' value is passed to the UsePtr parameter,
then the pointer will be attached to the connection, and when it is closed, it will be automatically
deleted. If UseHash is set to TRUE (the default value), then the HASH table will be used to search for
fields within the object, otherwise the search will be performed by simple iteration.

The Dispose function removes a pointer to a JSON object bound to a transaction or connection. If the
'Tra' value is passed to the UsePtr parameter, the pointer associated with the transaction will be
deleted. If the 'Att' value is passed to the UsePtr parameter, then the pointer bound to the
connection will be deleted.

The Tra function returns the pointer associated with the transaction.

The Att function returns the pointer attached to the connection.

The isNull function checks if the pointer is not null (with a null address). A null pointer returns the
functions js$func.ParseText and js$func.ParseString in case of incorrect JSON input, access to a
nonexistent field through the Field method, and more. This function can be used to detect such
errors.

13.3.11. JS$STR package

The header of this package looks like this:

Chapter 13. LK-JSON-UDR — building and parsing JSON

243

CREATE OR ALTER PACKAGE JS$STR
AS
BEGIN
 /* TlkJSONbase = class
 TlkJSONstring = class(TlkJSONbase)
 */
 FUNCTION Value_(Self TY$POINTER, Str VARCHAR(32765) CHARACTER SET NONE = NULL /* Get
*/) RETURNS VARCHAR(32765) CHARACTER SET NONE;
 FUNCTION WideValue_(Self TY$POINTER, WStr BLOB SUB_TYPE TEXT = NULL /* Get */)
RETURNS BLOB SUB_TYPE TEXT;

 FUNCTION Generate(Self TY$POINTER = NULL /* NULL - class function */, Str VARCHAR
(32765) CHARACTER SET NONE = '') RETURNS TY$POINTER;
 FUNCTION WideGenerate(Self TY$POINTER = NULL /* NULL - class function */, WStr BLOB
SUB_TYPE TEXT = '') RETURNS TY$POINTER;

 FUNCTION SelfType(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
SMALLINT;
 FUNCTION SelfTypeName(Self TY$POINTER = NULL /* NULL - class function */) RETURNS
VARCHAR(32) CHARACTER SET NONE;
END

As you can see from the comment, this package is a blueprint for the TlkJSONstring class. It is
designed to handle string values.

The Value_ function returns or sets to a value of a string type (VARCHAR (N)) for the object specified
in the Self parameter. If the Str parameter is not specified, then the value will be returned, if
specified — set. Note that NULL is not returned and cannot be set by this method, there is a separate
JS$NULL package for this.

The WideValue_ function returns or sets to a value of the BLOB SUB_TYPE TEXT type for the object
specified in the Self parameter. If the Str parameter is not specified, then the value will be
returned, if specified — set. Note that NULL is not returned and cannot be set by this method, there
is a separate JS$NULL package for this.

The Generate function returns a pointer to a` TlkJSONstring` object, which is a JSON string value.
The Self parameter is a pointer to a JSON object on the basis of which a new TlkJSONstring object is
created. The string value is specified in the Str parameter.

The WideGenerate function returns a pointer to the TlkJSONstring object, which is a JSON string
value. The Self parameter is a pointer to a JSON object for which a long string value (BLOB SUB_TYPE
TEXT) is set in the Str parameter. The value of the Self parameter will be returned by the function if
it is non-NULL, otherwise it will return a pointer to a new TlkJSONstring object.

The SelfType function returns the object type for the pointer specified in the Self parameter. The
object type is returned as a number. If the Self parameter is not specified, it will return 2.

The SelfTypeName function returns the object type for the pointer specified in the Self parameter.
The object type is returned as a string. If the Self parameter is not specified, it will return

Chapter 13. LK-JSON-UDR — building and parsing JSON

244

'jsString'.

13.4. Examples

13.4.1. Building JSON

Let’s take the employee database as an example.

 The examples use a modified employee database converted to UTF8 encoding.

The MAKE_JSON_DEPARTMENT_TREE function displays a list of departments in JSON format in a
hierarchical format.

CREATE OR ALTER FUNCTION MAKE_JSON_DEPARTMENT_TREE
RETURNS BLOB SUB_TYPE TEXT
AS
 DECLARE VARIABLE JSON_TEXT BLOB SUB_TYPE TEXT;
 DECLARE VARIABLE JSON TY$POINTER;
 DECLARE VARIABLE JSON_SUB_DEPS TY$POINTER;
BEGIN
 JSON = JS$OBJ.NEW_();
 FOR
 WITH RECURSIVE R
 AS (SELECT
 :JSON AS JSON,
 CAST(NULL AS TY$POINTER) AS PARENT_JSON,
 D.DEPT_NO,
 D.DEPARTMENT,
 D.HEAD_DEPT,
 D.MNGR_NO,
 D.BUDGET,
 D.LOCATION,
 D.PHONE_NO
 FROM DEPARTMENT D
 WHERE D.HEAD_DEPT IS NULL
 UNION ALL
 SELECT
 JS$OBJ.NEW_() AS JSON,
 R.JSON,
 D.DEPT_NO,
 D.DEPARTMENT,
 D.HEAD_DEPT,
 D.MNGR_NO,
 D.BUDGET,
 D.LOCATION,
 D.PHONE_NO
 FROM DEPARTMENT D
 JOIN R
 ON D.HEAD_DEPT = R.DEPT_NO)

Chapter 13. LK-JSON-UDR — building and parsing JSON

245

 SELECT
 JSON,
 PARENT_JSON,
 DEPT_NO,
 DEPARTMENT,
 HEAD_DEPT,
 MNGR_NO,
 BUDGET,
 LOCATION,
 PHONE_NO
 FROM R AS CURSOR C_DEP
 DO
 BEGIN
 -- for each departure, fill in the value of the JSON object fields
 JS$OBJ.ADDSTRING(C_DEP.JSON, 'dept_no', C_DEP.DEPT_NO);
 JS$OBJ.ADDSTRING(C_DEP.JSON, 'department', C_DEP.DEPARTMENT);
 IF (C_DEP.HEAD_DEPT IS NOT NULL) THEN
 JS$OBJ.ADDSTRING(C_DEP.JSON, 'head_dept', C_DEP.HEAD_DEPT);
 ELSE
 JS$OBJ.ADD_(C_DEP.JSON, 'head_dept', JS$NULL.GENERATE());
 IF (C_DEP.MNGR_NO IS NOT NULL) THEN
 JS$OBJ.ADDINTEGER(C_DEP.JSON, 'mngr_no', C_DEP.MNGR_NO);
 ELSE
 JS$OBJ.ADD_(C_DEP.JSON, 'mngr_no', JS$NULL.GENERATE());
 -- here ADDSTRING is probably better, since it is guaranteed to preserve the
precision of the number
 JS$OBJ.ADDDOUBLE(C_DEP.JSON, 'budget', C_DEP.BUDGET);
 JS$OBJ.ADDSTRING(C_DEP.JSON, 'location', C_DEP.LOCATION);
 JS$OBJ.ADDSTRING(C_DEP.JSON, 'phone_no', C_DEP.PHONE_NO);
 -- add a list to each departure in which the subordinate departures will be
entered.
 JS$OBJ.ADD_(C_DEP.JSON, 'departments', JS$LIST.GENERATE());
 IF (C_DEP.PARENT_JSON IS NOT NULL) THEN
 BEGIN
 -- where there are departments, there is also an object of the parent JSON
object,
 -- we get a field with a list from it
 JSON_SUB_DEPS = JS$OBJ.FIELD(C_DEP.PARENT_JSON, 'departments');
 -- and add the current departure to it
 JS$LIST.ADD_(JSON_SUB_DEPS, C_DEP.JSON);
 END
 END
 -- generate JSON as text
 JSON_TEXT = JS$FUNC.READABLETEXT(JSON);
 -- don't forget to release the pointer
 JS$OBJ.DISPOSE(JSON);
 RETURN JSON_TEXT;
 WHEN ANY DO
 BEGIN
 -- if there was an error, release the pointer anyway
 JS$OBJ.DISPOSE(JSON);

Chapter 13. LK-JSON-UDR — building and parsing JSON

246

 EXCEPTION;
 END
END

Here’s a trick: at the very top level of the recursive statement, a pointer to a previously created
JSON root object is used. In the recursive part of the query, we output a JSON object for the parent
departure PARENT_JSON and a JSON object for the current departure PARENT_JSON. Thus, we
always know in which JSON object to add the departure.

Then we loop through the cursor and add field values for the current departure at each iteration.
Note that in order to add a NULL value, you have to use the JS$NULL.GENERATE() call. If you don’t,
then when you call JS$OBJ.ADDSTRING (C_DEP.JSON, 'head_dept', C_DEP.HEAD_DEPT) when
C_DEP.HEAD_DEPT is NULL, the head_dept field will simply not be added.

Also, for each department, you need to add a JSON list to which subordinate departments will be
added.

If the JSON object of the parent unit is not NULL, then we get the list added for it differently using
the JS$OBJ.FIELD function and add the current JSON object to it.

Further, the JSON of the object of the highest level, you can generate the text, after which we no
longer need the object itself and we need to clear the pointer allocated for it using the
JS$OBJ.DISPOSE function.

Pay attention to the WHEN ANY DO exception handling block. It is required, because even when it
happens, we need to free the pointer to avoid a memory leak.

13.4.2. Parse JSON

Parsing JSON is somewhat more difficult than collecting it. The fact is that you need to take into
account that incorrect JSON may be received at the input, not only by itself, but also with a
structure that does not correspond to your logic.

Suppose you have a JSON that contains a list of people with their characteristics.

This JSON looks like this:

[
 {"id": 1, "name": "John"},
 {"id": 2, "name": null}
]

The following procedure returns a list of people from this JSON:

create exception e_custom_error 'custom error';

set term ^;

CREATE OR ALTER PROCEDURE PARSE_PEOPLES_JSON (

Chapter 13. LK-JSON-UDR — building and parsing JSON

247

 JSON_STR BLOB SUB_TYPE TEXT)
RETURNS (
 ID INTEGER,
 NAME VARCHAR(120))
AS
declare variable json TY$POINTER;
declare variable jsonId TY$POINTER;
declare variable jsonName TY$POINTER;
begin
 json = js$func.parsetext(json_str);
 -- If JSON incorrect js$func.parsetext will not throw an exception,
 -- but return a null pointer, so you need to handle this case yourself
 if (js$ptr.isNull(json)) then
 exception e_custom_error 'invalid json';
 -- Again, functions from this library do not check the correctness of element types
 -- and do not return an understandable error. We need to check if the type we are
processing.
 -- Otherwise, when calling js$list.foreach, an "Access violation" will occur
 if (js$base.SelfTypeName(json) != 'jsList') then
 exception e_custom_error 'Invalid JSON format. The top level of the JSON item must
be a list. ';
 for
 select Obj
 from js$list.foreach(:json)
 as cursor c
 do
 begin
 -- Checking that the array element is an object,
 -- Otherwise, when calling js$obj.GetIntegerByName, an "Access violation" will
occur
 if (js$base.SelfTypeName(c.Obj) != 'jsObject') then
 exception e_custom_error 'Element of list is not object';
 -- js$obj.GetIntegerByName does not check for the existence of an element with the
given name
 -- it will simply return 0 if it is missing. Therefore, such a check must be done
independently.
 -- And js$obj.Field will return a null pointer.
 if (js$obj.indexofname(c.Obj, 'id') < 0) then
 exception e_custom_error 'Field "id" not found in object';
 jsonId = js$obj.Field(c.Obj, 'id');
 if (js$base.selftypename(jsonId) = 'jsNull') then
 id = null;
 else if (js$base.selftypename(jsonId) = 'jsNumber') then
 id = js$obj.GetIntegerByName(c.Obj, 'id');
 else
 exception e_custom_error 'Field "id" is not number';

 if (js$obj.indexofname(c.Obj, 'name') < 0) then
 exception e_custom_error 'Field "name" not found in object';
 jsonName = js$obj.Field(c.Obj, 'name');
 if (js$str.selftypename(jsonName) = 'jsNull') then

Chapter 13. LK-JSON-UDR — building and parsing JSON

248

 name = null;
 else
 name = js$str.value_(jsonName);
 suspend;
 end
 js$base.dispose(json);
 when any do
 begin
 js$base.dispose(json);
 exception;
 end
end^

set term ;^

Run the following query to check if it is correct

select id, name
from parse_peoples_json('[{"id": 1, "name": "John"}, {"id": 2, "name": null}]')

Let’s take a closer look at the JSON parsing script. The first feature is that the js$func.parsetext
function will not throw an exception if any other string is input instead of JSON. It will just return a
null pointer. But, this is not NULL as you thought, but a pointer with the content
x'0000000000000000'. Therefore, after executing this function, you need to check what was returned
to you, otherwise the calls of the subsequent functions will return an "Access violation" error.

Next, it is important to check what type of JSON object was returned. If an object or any other type
appears in the input instead of a list, then the js$list.foreach call will cause an "Access violation".
The same will happen if you call any other function that expects a pointer to a different type that is
not intended for it.

The next feature is that you should always check for the presence of fields (object properties). If
there is no field with the specified name, then in some cases an incorrect value may be returned (as
in the case of js$obj.GetIntegerByName), in others it will lead to a type conversion error.

Note that functions like js$obj.GetIntegerByName or js$obj.GetSrtingByName cannot return NULL. To
recognize a null value, you need to check the field type with the js$base.selftypename function.

As with the JSON assembly, remember to free the top-level JSON pointer and also do this in the WHEN
ANY DO exception handling block.

Below is an example of parsing JSON that was collected by the MAKE_JSON_DEPARTMENT_TREE function
in the example above. The text of the example contains comments explaining the principle of
parsing.

SET TERM ^ ;

CREATE OR ALTER PACKAGE JSON_PARSE_DEPS

Chapter 13. LK-JSON-UDR — building and parsing JSON

249

AS
BEGIN
 PROCEDURE PARSE_DEPARTMENT_TREE (
 JSON_TEXT BLOB SUB_TYPE TEXT)
 RETURNS (
 DEPT_NO CHAR(3),
 DEPARTMENT VARCHAR(25),
 HEAD_DEPT CHAR(3),
 MNGR_NO SMALLINT,
 BUDGET DECIMAL(18,2),
 LOCATION VARCHAR(15),
 PHONE_NO VARCHAR(20));
END^

RECREATE PACKAGE BODY JSON_PARSE_DEPS
AS
BEGIN
 PROCEDURE GET_DEPARTMENT_INFO (
 JSON TY$POINTER)
 RETURNS (
 DEPT_NO CHAR(3),
 DEPARTMENT VARCHAR(25),
 HEAD_DEPT CHAR(3),
 MNGR_NO SMALLINT,
 BUDGET DECIMAL(18,2),
 LOCATION VARCHAR(15),
 PHONE_NO VARCHAR(20),
 JSON_LIST TY$POINTER);

 PROCEDURE PARSE_DEPARTMENT_TREE (
 JSON_TEXT BLOB SUB_TYPE TEXT)
 RETURNS (
 DEPT_NO CHAR(3),
 DEPARTMENT VARCHAR(25),
 HEAD_DEPT CHAR(3),
 MNGR_NO SMALLINT,
 BUDGET DECIMAL(18,2),
 LOCATION VARCHAR(15),
 PHONE_NO VARCHAR(20))
 AS
 DECLARE VARIABLE JSON TY$POINTER;
 BEGIN
 JSON = JS$FUNC.PARSETEXT(JSON_TEXT);
 -- If JSON is incorrect js$func.parsetext will not throw an exception,
 -- but simply return a null pointer, so you need to handle this case
 -- yourself.
 IF (JS$PTR.ISNULL(JSON)) THEN
 EXCEPTION E_CUSTOM_ERROR 'invalid json';
 FOR
 SELECT
 INFO.DEPT_NO,

Chapter 13. LK-JSON-UDR — building and parsing JSON

250

 INFO.DEPARTMENT,
 INFO.HEAD_DEPT,
 INFO.MNGR_NO,
 INFO.BUDGET,
 INFO.LOCATION,
 INFO.PHONE_NO
 FROM JSON_PARSE_DEPS.GET_DEPARTMENT_INFO(:JSON) INFO
 INTO
 :DEPT_NO,
 :DEPARTMENT,
 :HEAD_DEPT,
 :MNGR_NO,
 :BUDGET,
 :LOCATION,
 :PHONE_NO
 DO
 SUSPEND;
 JS$OBJ.DISPOSE(JSON);
 WHEN ANY DO
 BEGIN
 JS$OBJ.DISPOSE(JSON);
 EXCEPTION;
 END
 END

 PROCEDURE GET_DEPARTMENT_INFO (
 JSON TY$POINTER)
 RETURNS (
 DEPT_NO CHAR(3),
 DEPARTMENT VARCHAR(25),
 HEAD_DEPT CHAR(3),
 MNGR_NO SMALLINT,
 BUDGET DECIMAL(18,2),
 LOCATION VARCHAR(15),
 PHONE_NO VARCHAR(20),
 JSON_LIST TY$POINTER)
 AS
 BEGIN
 IF (JS$OBJ.INDEXOFNAME(JSON, 'dept_no') < 0) THEN
 EXCEPTION E_CUSTOM_ERROR 'field "dept_no" not found';
 DEPT_NO = JS$OBJ.GETSTRINGBYNAME(JSON, 'dept_no');
 IF (JS$OBJ.INDEXOFNAME(JSON, 'department') < 0) THEN
 EXCEPTION E_CUSTOM_ERROR 'field "department" not found';
 DEPARTMENT = JS$OBJ.GETSTRINGBYNAME(JSON, 'department');
 IF (JS$OBJ.INDEXOFNAME(JSON, 'head_dept') < 0) THEN
 EXCEPTION E_CUSTOM_ERROR 'field "head_dept" not found';
 IF (JS$BASE.SELFTYPENAME(JS$OBJ.FIELD(JSON, 'head_dept')) = 'jsNull') THEN
 HEAD_DEPT = NULL;
 ELSE
 HEAD_DEPT = JS$OBJ.GETSTRINGBYNAME(JSON, 'head_dept');
 IF (JS$OBJ.INDEXOFNAME(JSON, 'mngr_no') < 0) THEN

Chapter 13. LK-JSON-UDR — building and parsing JSON

251

 EXCEPTION E_CUSTOM_ERROR 'field "mngr_no" not found';
 IF (JS$BASE.SELFTYPENAME(JS$OBJ.FIELD(JSON, 'mngr_no')) = 'jsNull') THEN
 MNGR_NO = NULL;
 ELSE
 MNGR_NO = JS$OBJ.GETINTEGERBYNAME(JSON, 'mngr_no');
 IF (JS$OBJ.INDEXOFNAME(JSON, 'budget') < 0) THEN
 EXCEPTION E_CUSTOM_ERROR 'field "budget" not found';
 BUDGET = JS$OBJ.GETDOUBLEBYNAME(JSON, 'budget');
 IF (JS$OBJ.INDEXOFNAME(JSON, 'location') < 0) THEN
 EXCEPTION E_CUSTOM_ERROR 'field "location" not found';
 LOCATION = JS$OBJ.GETSTRINGBYNAME(JSON, 'location');
 IF (JS$OBJ.INDEXOFNAME(JSON, 'phone_no') < 0) THEN
 EXCEPTION E_CUSTOM_ERROR 'field "phone_no" not found';
 PHONE_NO = JS$OBJ.GETSTRINGBYNAME(JSON, 'phone_no');
 IF (JS$OBJ.INDEXOFNAME(JSON, 'departments') >= 0) THEN
 BEGIN
 -- get a list of child departures
 JSON_LIST = JS$OBJ.FIELD(JSON, 'departments');
 IF (JS$BASE.SELFTYPENAME(JSON_LIST) != 'jsList') THEN
 EXCEPTION E_CUSTOM_ERROR 'Invalid JSON format. Field "departments" must be
list';
 SUSPEND;
 -- This list is traversed and the procedure for retrieving information about
each
 -- departure is recursively called for it.
 FOR
 SELECT
 INFO.DEPT_NO,
 INFO.DEPARTMENT,
 INFO.HEAD_DEPT,
 INFO.MNGR_NO,
 INFO.BUDGET,
 INFO.LOCATION,
 INFO.PHONE_NO,
 INFO.JSON_LIST
 FROM JS$LIST.FOREACH(:JSON_LIST) L
 LEFT JOIN JSON_PARSE_DEPS.GET_DEPARTMENT_INFO(L.OBJ) INFO
 ON TRUE
 INTO
 :DEPT_NO,
 :DEPARTMENT,
 :HEAD_DEPT,
 :MNGR_NO,
 :BUDGET,
 :LOCATION,
 :PHONE_NO,
 :JSON_LIST
 DO
 SUSPEND;
 END
 ELSE

Chapter 13. LK-JSON-UDR — building and parsing JSON

252

 EXCEPTION E_CUSTOM_ERROR 'Invalid JSON format. Field "departments" not found' ||
DEPT_NO;
 END
END
^

SET TERM ; ^

Chapter 13. LK-JSON-UDR — building and parsing JSON

253

Chapter 14. NANODBC-UDR — working with
ODBC Data Sources
Starting from version 2.5, Firebird DBMS has the ability to work with external data through the
EXECUTE STATEMENT .. ON EXTERNAL DATA SOURCE statement. Unfortunately, working with external
data sources is limited only to Firebird databases.

To be able to work with other DBMS, UDR nanodbc was developed. Fully open source library
licensed under the MIT license and free to use. It is written in C++. Source code is available at
https://github.com/mnf71/udr-nanodbc

The library is based on a thin C ++ wrapper around the native C ODBC API https://github.com/
nanodbc/nanodbc

14.1. Install UDR nanodbc
To be able to use UDR nanodbc, it must be registered in your database. To do this, you need to
execute the plugin/UDR/nanodbc_install.sql script.

14.2. How it works?
UDR nanodbc is based on the free library nanodbc, therefore, for a complete understanding, we
recommend that you study the API of this library in its source codes and documentation (see
https://github.com/mnf71/udr-nanodbc).

When working with library objects, so-called descriptors (pointers to nanodbc objects) are used.
Pointers are described by a domain defined as:

CREATE DOMAIN TY$POINTER AS
CHAR(8) CHARACTER SET OCTETS;

in Firebird 4.0 it can be described in the following way

CREATE DOMAIN TY$POINTER AS BINARY(8);

After finishing work with the object, the pointer to it must be released using the release_()
functions, which are located in the corresponding PSQL packages. Which package to use depends
on the type of object you want to free the pointer to.

In HQbird, it is impossible to create a function that does not return a result, therefore, for C++
functions with a void return type, UDR functions return the type described by the TY$NANO_BLANK
domain. It makes no sense to analyze the result of such functions. Domain TY$NANO_BLANK is
described as:

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

254

https://github.com/mnf71/udr-nanodbc
https://github.com/nanodbc/nanodbc
https://github.com/nanodbc/nanodbc
https://github.com/mnf71/udr-nanodbc

CREATE DOMAIN TY$NANO_BLANK AS SMALLINT;

Before you start working with the UDR, you need to initialize the nanodbc library. This is done by
calling the nano$udr.initialize() function. And upon completion of the work, call finalization
function nano$udr.finalize(). It is recommended to call nano$udr.initialize() function in the ON
CONNECT trigger, and nano$udr.finalize() function in the ON DISCONNECT trigger.

14.3. Description of PSQL packages from UDR-nanodbc

14.3.1. NANO$UDR package

The header of this package looks like this:

CREATE OR ALTER PACKAGE NANO$UDR
AS
BEGIN

 FUNCTION initialize RETURNS TY$NANO_BLANK;
 FUNCTION finalize RETURNS TY$NANO_BLANK;
 FUNCTION expunge RETURNS TY$NANO_BLANK;

 FUNCTION locale(
 set_locale VARCHAR(20) CHARACTER SET NONE DEFAULT NULL /* NULL - Get */
) RETURNS CHARACTER SET NONE VARCHAR(20);

 FUNCTION error_message RETURNS VARCHAR(512) CHARACTER SET UTF8;

END

The NANO$UDR package contains functions for initializing and finalizing UDRs.

The initialize() function initializes the nanodbc UDR. It is recommended to call this function in
the ON CONNECT trigger. It must be called before the first call to any other function from the nanodbc
UDR.

The finalize() function terminates the nanodbc UDR. After calling it, it is impossible to work with
UDR nanodbc. When called, the function automatically releases all previously allocated resources.
It is recommended to call this function in the ON DISCONNECT trigger.

The expunge() function automatically releases all previously allocated resources (connections,
transactions, prepared statements, cursors).

The locale() function returns or sets the default encoding for connections. If the set_locale
parameter is specified, then a new encoding will be set, otherwise the function will return the value
of the current encoding. This is necessary to transform transmitted and received strings, before and
after exchanging with an ODBC source. The default encoding is cp1251.

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

255

If initially the connection to the database is established with UTF8 encoding, then you can set utf8,
according to the names of iconv. If the encoding is NONE, then it is better to convert to your
language encoding using the convert_[var]char() functions.

The error_message() function returns the text of the last error.

14.3.2. NANO$CONN package

The header of this package looks like this:

CREATE OR ALTER PACKAGE NANO$CONN
AS
BEGIN

 /* Note:
 CHARACTER SET UTF8
 attr VARCHAR(512) CHARACTER SET UTF8 DEFAULT NULL
 ...
 CHARACTER SET WIN1251
 attr VARCHAR(2048) CHARACTER SET WIN1251 DEFAULT NULL
 */

 FUNCTION connection(
 attr VARCHAR(512) CHARACTER SET UTF8 DEFAULT NULL,
 user_ VARCHAR(63) CHARACTER SET UTF8 DEFAULT NULL,
 pass VARCHAR(63) CHARACTER SET UTF8 DEFAULT NULL,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$POINTER;

 FUNCTION valid(conn TY$POINTER NOT NULL) RETURNS BOOLEAN;

 FUNCTION release_(conn TY$POINTER NOT NULL) RETURNS TY$POINTER;
 FUNCTION expunge(conn ty$pointer NOT NULL) RETURNS TY$NANO_BLANK;

 FUNCTION allocate(conn ty$pointer NOT NULL) RETURNS TY$NANO_BLANK;
 FUNCTION deallocate(conn ty$pointer NOT NULL) RETURNS TY$NANO_BLANK;

 FUNCTION txn_read_uncommitted RETURNS SMALLINT;
 FUNCTION txn_read_committed RETURNS SMALLINT;
 FUNCTION txn_repeatable_read RETURNS SMALLINT;
 FUNCTION txn_serializable RETURNS SMALLINT;

 FUNCTION isolation_level(
 conn TY$POINTER NOT NULL,
 level_ SMALLINT DEFAULT NULL /* NULL - get usage */
) RETURNS SMALLINT;

 FUNCTION connect_(
 conn TY$POINTER NOT NULL,
 attr VARCHAR(512) CHARACTER SET UTF8 NOT NULL,

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

256

 user_ VARCHAR(63) CHARACTER SET UTF8 DEFAULT NULL,
 pass VARCHAR(63) CHARACTER SET UTF8 DEFAULT NULL,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

 FUNCTION connected(conn TY$POINTER NOT NULL) RETURNS BOOLEAN;

 FUNCTION disconnect_(conn ty$pointer NOT NULL) RETURNS TY$NANO_BLANK;

 FUNCTION transactions(conn TY$POINTER NOT NULL) RETURNS INTEGER;

 FUNCTION get_info(conn TY$POINTER NOT NULL, info_type SMALLINT NOT NULL)
 RETURNS VARCHAR(256) CHARACTER SET UTF8;

 FUNCTION dbms_name(conn ty$pointer NOT NULL) RETURNS VARCHAR(128) CHARACTER SET
UTF8;
 FUNCTION dbms_version(conn ty$pointer NOT NULL) RETURNS VARCHAR(128) CHARACTER SET
UTF8;
 FUNCTION driver_name(conn TY$POINTER NOT NULL) RETURNS VARCHAR(128) CHARACTER SET
UTF8;
 FUNCTION database_name(conn TY$POINTER NOT NULL) RETURNS VARCHAR(128) CHARACTER SET
UTF8;
 FUNCTION catalog_name(conn TY$POINTER NOT NULL) RETURNS VARCHAR(128) CHARACTER SET
UTF8;

END

The NANO$CONN package contains functions for setting up an ODBC data source and getting some
connection information.

The connection() function establishes a connection to an ODBC data source. If more than one
parameter is not specified, the function will return a pointer to the "connection" object. The actual
connection to the ODBC data source can be made later using the connect_() function. Function
parameters:

• attr specifies the connection string or the so-called DSN;

• user_ specifies the username;

• pass sets the password;

• timeout specifies the idle timeout.

The valid() function returns whether the connection object pointer is valid.

The release_() function releases the connection pointer and all associated resources (transactions,
prepared statements, cursors).

The expunge() function releases all resources associated with the connection (transactions,
prepared statements, cursors).

The allocate() function allows you to allocate descriptors on demand for setting the environment

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

257

and ODBC attributes prior to establishing a connection to the database. Typically, the user does not
need to make this call explicitly.

The deallocate() function frees the connection handles.

The txn_read_uncommitted() function returns the numeric constant required to set the transaction
isolation level to READ UNCOMMITTED.

The txn_read_committed() function returns the numeric constant required to set the transaction
isolation level to READ COMMITTED.

The txn_repeatable_read() function returns a numeric constant required to set the isolation level of
the REPEATABLE READ transaction.

The txn_serializable() function returns the numeric constant required to set the transaction
isolation level to SERIALIZABLE.

The isolation_level() function sets the isolation level for new transactions. Function parameters:

• conn - pointer to the connection object;

• attr specifies the connection string or the so-called DSN;

• user_ specifies the username;

• pass sets the password;

• timeout specifies the idle timeout.

The connected() function returns whether a database connection has been established for the given
pointer to the connection object.

The disconnect_() function disconnects from the database. A pointer to the connection object is
passed as a parameter.

The transactions() function returns the number of active transactions for a given connection.

The get_info() function returns various information about the driver or data source. This low-level
function is the ODBC analogue of the SQLGetInfo function. It is not recommended use it directly.
Function parameters:

• conn - pointer to the connection object;

• info_type - the type of information returned. Numeric constants with return types can be found
at https://github.com/microsoft/ODBC-Specification/blob/master/Windows/inc/sql.h

The dbms_name() function returns the name of the DBMS to which the connection was made.

The dbms_version() function returns the version of the DBMS to which the connection was made.

The driver_name() function returns the name of the driver.

The database_name() function returns the name of the database to which the connection was made.

The catalog_name() function returns the name of the database catalog to which the connection was

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

258

https://github.com/microsoft/ODBC-Specification/blob/master/Windows/inc/sql.h

made.

14.3.3. NANO$TNX package

The header of this package looks like this:

CREATE OR ALTER PACKAGE NANO$TNX
AS
BEGIN

 FUNCTION transaction_(conn TY$POINTER NOT NULL) RETURNS TY$POINTER;

 FUNCTION valid(tnx TY$POINTER NOT NULL) RETURNS BOOLEAN;

 FUNCTION release_(tnx ty$pointer NOT NULL) RETURNS TY$POINTER;

 FUNCTION connection(tnx TY$POINTER NOT NULL) RETURNS TY$POINTER;

 FUNCTION commit_(tnx TY$POINTER NOT NULL) RETURNS TY$NANO_BLANK;

 FUNCTION rollback_(tnx TY$POINTER NOT NULL) RETURNS TY$NANO_BLANK;

END

The NANO$TNX package contains functions for explicitly managing transactions.

The transaction _() function disables the automatic confirmation of the transaction and starts a
new transaction with the isolation level specified in the NANO$CONN.isolation_level() function. The
function returns a pointer to a new transaction.

The valid() function returns whether the pointer to the transaction object is valid.

The release_() function releases the pointer to the transaction object. When the pointer is freed,
the uncommitted transaction is rolled back and the driver returns to the automatic transaction
confirmation mode.

The connection() function returns a pointer to the connection for which the transaction was
started.

The commit_() function confirms the transaction.

The rollback_() function rolls back the transaction.

14.3.4. NANO$STMT package

The header of this package looks like this:

CREATE OR ALTER PACKAGE NANO$STMT
AS

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

259

BEGIN

 FUNCTION statement_(
 conn TY$POINTER DEFAULT NULL,
 query VARCHAR(8191) CHARACTER SET UTF8 DEFAULT NULL,
 scrollable BOOLEAN DEFAULT NULL /* NULL - default ODBC driver */,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$POINTER;

 FUNCTION valid(stmt TY$POINTER NOT NULL) RETURNS BOOLEAN;

 FUNCTION release_(stmt TY$POINTER NOT NULL) RETURNS TY$POINTER;

 FUNCTION connected(stmt TY$POINTER NOT NULL) RETURNS BOOLEAN;
 FUNCTION connection(stmt TY$POINTER NOT NULL) RETURNS TY$POINTER;

 FUNCTION open_(
 stmt TY$POINTER NOT NULL,
 conn TY$POINTER NOT NULL
) RETURNS TY$NANO_BLANK;

 FUNCTION close_(stmt TY$POINTER NOT NULL) RETURNS TY$NANO_BLANK;

 FUNCTION cancel(stmt TY$POINTER NOT NULL) RETURNS TY$NANO_BLANK;

 FUNCTION closed(stmt TY$POINTER NOT NULL) RETURNS BOOLEAN;

 FUNCTION prepare_direct(
 stmt TY$POINTER NOT NULL,
 conn TY$POINTER NOT NULL,
 query VARCHAR(8191) CHARACTER SET UTF8 NOT NULL,
 scrollable BOOLEAN DEFAULT NULL /* NULL - default ODBC driver */,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

 FUNCTION prepare_(
 stmt TY$POINTER NOT NULL,
 query VARCHAR(8191) CHARACTER SET UTF8 NOT NULL,
 scrollable BOOLEAN DEFAULT NULL /* NULL - default ODBC driver */,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

 FUNCTION scrollable(
 stmt TY$POINTER NOT NULL,
 usage_ BOOLEAN DEFAULT NULL /* NULL - get usage */
) RETURNS BOOLEAN;

 FUNCTION timeout(
 stmt TY$POINTER NOT NULL,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

260

 FUNCTION execute_direct(
 stmt TY$POINTER NOT NULL,
 conn TY$POINTER NOT NULL,
 query VARCHAR(8191) CHARACTER SET UTF8 NOT NULL,
 scrollable BOOLEAN DEFAULT NULL /* NULL - default ODBC driver */,
 batch_operations INTEGER NOT NULL DEFAULT 1,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$POINTER;

 FUNCTION just_execute_direct(
 stmt TY$POINTER NOT NULL,
 conn TY$POINTER NOT NULL,
 query VARCHAR(8191) CHARACTER SET UTF8 NOT NULL,
 batch_operations INTEGER NOT NULL DEFAULT 1,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

 FUNCTION execute_(
 stmt TY$POINTER NOT NULL,
 batch_operations INTEGER NOT NULL DEFAULT 1,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$POINTER;

 FUNCTION just_execute(
 stmt TY$POINTER NOT NULL,
 batch_operations INTEGER NOT NULL DEFAULT 1,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

 FUNCTION procedure_columns(
 stmt TY$POINTER NOT NULL,
 catalog_ VARCHAR(128) CHARACTER SET UTF8 NOT NULL,
 schema_ VARCHAR(128) CHARACTER SET UTF8 NOT NULL,
 procedure_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL,
 column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS TY$POINTER;

 FUNCTION affected_rows(stmt TY$POINTER NOT NULL) RETURNS INTEGER;
 FUNCTION columns(stmt TY$POINTER NOT NULL) RETURNS SMALLINT;
 FUNCTION parameters(stmt TY$POINTER NOT NULL) RETURNS SMALLINT;
 FUNCTION parameter_size(stmt TY$POINTER NOT NULL, parameter_index SMALLINT NOT NULL)
 RETURNS INTEGER;

 --

 FUNCTION bind_smallint(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ SMALLINT
) RETURNS TY$NANO_BLANK;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

261

 FUNCTION bind_integer(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ INTEGER
) RETURNS TY$NANO_BLANK;

/*
 FUNCTION bind_bigint(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ BIGINT
) RETURNS TY$NANO_BLANK;
*/

 FUNCTION bind_float(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ FLOAT
) RETURNS TY$NANO_BLANK;

 FUNCTION bind_double(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ DOUBLE PRECISION
) RETURNS TY$NANO_BLANK;

 FUNCTION bind_varchar(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ VARCHAR(32765) CHARACTER SET NONE,
 param_size SMALLINT NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

 FUNCTION bind_char(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ CHAR(32767) CHARACTER SET NONE,
 param_size SMALLINT NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

 FUNCTION bind_u8_varchar(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ VARCHAR(8191) CHARACTER SET UTF8,
 param_size SMALLINT NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

 FUNCTION bind_u8_char(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

262

 value_ CHAR(8191) CHARACTER SET UTF8,
 param_size SMALLINT NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

 FUNCTION bind_blob(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ BLOB
) RETURNS TY$NANO_BLANK;

 FUNCTION bind_boolean(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ BOOLEAN
) RETURNS TY$NANO_BLANK;

 FUNCTION bind_date(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ DATE
) RETURNS TY$NANO_BLANK;

/*
 FUNCTION bind_time(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ TIME
) RETURNS TY$NANO_BLANK
 EXTERNAL NAME 'nano!stmt_bind'
 ENGINE UDR;
*/

 FUNCTION bind_timestamp(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 value_ TIMESTAMP
) RETURNS TY$NANO_BLANK;

 FUNCTION bind_null(
 stmt TY$POINTER NOT NULL,
 parameter_index SMALLINT NOT NULL,
 batch_size INTEGER NOT NULL DEFAULT 1 -- <> 1 call nulls all batch
) RETURNS TY$NANO_BLANK;

 FUNCTION convert_varchar(
 value_ VARCHAR(32765) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0
) RETURNS VARCHAR(32765) CHARACTER SET NONE;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

263

 FUNCTION convert_char(
 value_ CHAR(32767) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0
) RETURNS CHAR(32767) CHARACTER SET NONE;

 FUNCTION clear_bindings(stmt TY$POINTER NOT NULL) RETURNS TY$NANO_BLANK;

 --

 FUNCTION describe_parameter(
 stmt TY$POINTER NOT NULL,
 idx SMALLINT NOT NULL,
 type_ SMALLINT NOT NULL,
 size_ INTEGER NOT NULL,
 scale_ SMALLINT NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

 FUNCTION describe_parameters(stmt TY$POINTER NOT NULL) RETURNS TY$NANO_BLANK;

 FUNCTION reset_parameters(stmt TY$POINTER NOT NULL, timeout INTEGER NOT NULL DEFAULT
0)
 RETURNS TY$NANO_BLANK;

END

The NANO$STMT package contains functions for working with SQL queries.

The statement_() function creates and returns a pointer to an SQL query object. Parameters:

• conn - pointer to the connection object;

• query - the text of the SQL query;

• scrollable - whether the cursor is scrollable (if, of course, the operator returns a cursor), if not
set (NULL value), then the default behavior of the ODBC driver is used;

• timeout - SQL statement timeout.

If no parameter is specified, then it returns a pointer to the newly created SQL query object,
without binding to the connection. You can later associate this pointer with a connection and set
other query properties.

The valid() function returns whether the pointer to the SQL query object is valid.

The release_() function releases the pointer to the SQL query object.

The connected() function returns whether the request is attached to a connection.

The connection() function is a pointer to the bound connection.

The open_() function opens a connection and binds it to the request. Parameters:

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

264

• stmt - pointer to SQL query;

• conn - connection pointer.

The close_() function closes a previously opened request and clears all resources allocated by the
request.

The cancel() function cancels the execution of the request.

The closed() function returns whether the request is closed.

The prepare_direct() function prepares an SQL statement and binds it to the specified connection.
Parameters:

• stmt - a pointer to the statement;

• conn - connection pointer;

• query - the text of the SQL query;

• scrollable - whether the cursor is scrollable (if, of course, the operator returns a cursor), if not
set (NULL value), then the default behavior of the ODBC driver is used;

• timeout - SQL statement timeout.

The prepare_() function prepares the SQL query. Parameters:

• stmt - a pointer to the statement;

• query - the text of the SQL query;

• scrollable - whether the cursor is scrollable (if, of course, the operator returns a cursor), if not
set (NULL value), then the default behavior of the ODBC driver is used;

• timeout - SQL statement timeout.

The scrollable_() function returns or sets whether the cursor is scrollable. Parameters:

• stmt - a pointer to the statement;

• usage_ - whether the cursor is scrollable (if, of course, the operator returns a cursor), if not set
(NULL value), then it returns the current value of this flag.

The timeout() function sets the timeout for the SQL query.

The execute_direct() function prepares and executes an SQL statement. The function returns a
pointer to a data set (cursor), which can be processed using the functions of the NANO$RSLT package.
Parameters:

• stmt - a pointer to the statement;

• conn - connection pointer;

• query - the text of the SQL query;

• scrollable - whether the cursor is scrollable (if, of course, the operator returns a cursor), if not
set (NULL value), then the default behavior of the ODBC driver is used;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

265

• batch_operations - the number of batch operations. The default is 1;

• timeout - SQL statement timeout.

The just_execute_direct() function prepares and executes an SQL statement. The function is
designed to execute SQL statements that do not return data (do not open a cursor). Parameters:

• stmt - a pointer to the statement;

• conn - connection pointer;

• query - the text of the SQL query;

• batch_operations - the number of batch operations. The default is 1;

• timeout - SQL statement timeout.

The execute_() function executes the prepared SQL statement. The function returns a pointer to a
data set (cursor), which can be processed using the functions of the NANO$RSLT package. Parameters:

• stmt - a pointer to a prepared statement;

• batch_operations - the number of batch operations. By default, NANO $ STMT is 1;

• timeout - SQL statement timeout.

The just_execute() function executes the prepared SQL statement. The function is designed to
execute SQL statements that do not return data (do not open a cursor). Parameters:

• stmt - a pointer to a prepared statement;

• batch_operations - the number of batch operations. The default is 1;

• timeout - SQL statement timeout.

The procedure_columns() function — returns the description of the output field of the stored
procedure as a nano$rslt dataset. Function parameters:

• stmt - a pointer to the statement;

• catalog_ - the name of the catalog to which the SP belongs;

• schema_ - the name of the schema in which the SP is located;

• procedure_ - the name of the stored procedure;

• column_ - the name of the output column of the SP.

The affected_rows() function returns the number of rows affected by the SQL statement. This
function can be called after the statement is executed.

The columns() function returns the number of columns returned by the SQL query.

The parameters() function returns the number of SQL query parameters. This function can be called
only after preparing the SQL query.

The parameter_size() function returns the size of the parameter in bytes.

• stmt - a pointer to a prepared statement;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

266

• parameter_index - parameter index.

Functions of the bind_<type> … family bind a value to a parameter if the DBMS supports batch
operations see. execute() parameter batch_operations, then the number of transmitted values is not
limited, within reasonable limits. Otherwise, only the first set of values entere d is transmitted. The
binding itself occurs already when you call execute().

The bind_smallint() function binds a SMALLINT value to an SQL parameter.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value.

The bind_integer() function binds an INTEGER value to a SQL parameter.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value.

The bind_bigint() function binds a BIGINT value to a SQL parameter.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value.

The bind_float() function binds a FLOAT value to an SQL parameter.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value.

The bind_double() function binds a DOUBLE PRECISION value to an SQL parameter.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value.

The bind_varchar() function binds a VARCHAR value to a SQL parameter. Used for single-byte
encodings.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value;

• param_size - the size of the parameter (string).

The bind_char() function binds a CHAR value to a SQL parameter. Used for single-byte encodings.

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

267

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value;

• param_size - the size of the parameter (string).

The bind_u8_varchar() function binds a VARCHAR value to a SQL parameter. Used for UTF8 encoded
strings.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value;

• param_size - the size of the parameter (string).

The bind_u8_char() function binds a VARCHAR value to a SQL parameter. Used for UTF8 encoded
strings.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value;

• param_size - the size of the parameter (string).

The bind_blob() function binds a BLOB value to an SQL parameter.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value.

The bind_boolean() function binds a BOOLEAN value to an SQL parameter.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value.

The bind_date() function binds a DATE value to a SQL parameter.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value.

The bind_time() function binds a TIME value to an SQL parameter.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value.

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

268

 Using bind_time() loses milliseconds unlike bind_timestamp().

The bind_timestamp() function binds a TIMESTAMP value to a SQL parameter.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• value_ - parameter value.

The bind_null() function binds a NULL value to an SQL parameter. It is not fundamentally
necessary to assign a NULL value directly to a single value, unless it follows from the processing
logic. You can also bind NULL by calling the corresponding function bind _… if NULL is passed to it.

• stmt - a pointer to a prepared statement;

• parameter_index - parameter index;

• batch_size - batch size (default 1). Allows you to set the NULL value for the parameter with the
specified index, in several elements of the package at once.

The convert_varchar() function converts a VARCHAR value to a different encoding. Parameters:

• value_ - string value;

• from_ - encoding from which to recode the string;

• to_ - encoding into which you want to recode the string;

• convert_size - sets the size of the input buffer for conversion (for speed), for UTF8, for example,
the number of characters should be * 4. The size of the output buffer is always equal to the size
of the returns declaration (you can create your own functions), the size change depends on
where and from where it is converted string value: single-byte encoding to multibyte - possibly
increasing relative to convert_size and vice versa - decreasing if multibyte encoding is
converted to single-byte. The result is always truncated according to the size of the received
parameter.

This is a helper function for converting strings to the desired encoding, since the other ODBC side
may not always respond in the correct encoding.

The convert_char() function converts a CHAR value to a different encoding. Parameters:

• value_ - string value;

• from_ - encoding from which to recode the string;

• to_ - encoding into which you want to recode the string;

• convert_size - sets the size of the input buffer for conversion (for speed), for UTF8, for example,
the number of characters should be * 4. The size of the output buffer is always equal to the size
of the returns declaration (you can create your own functions), the size change depends on
where and from where it is converted string value: single-byte encoding to multibyte - possibly
increasing relative to convert_size and vice versa - decreasing if multibyte encoding is
converted to single-byte. The result is always truncated according to the size of the received
parameter.

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

269

This is a helper function for converting strings to the desired encoding, since the other ODBC side
may not always respond in the correct encoding.

The clear_bindings () function clears the current bindings for parameters. This function call is
required when reusing a prepared statement with new values.

The describe_parameter() function fills a buffer for describing the parameter, that is, it allows you
to specify the type, size and scale of the parameter.

• stmt - a pointer to a prepared request;

• idx - parameter index;

• type_ - parameter type;

• size_ - size (for strings);

• scale_ - scale.

The describe_parameters() function sends this parameter description buffer to ODBC, actually
describes the parameters.

The reset_parameters() function resets the parameter information of a prepared query.

14.3.5. NANO$RSLT package

The header of this package looks like this:

CREATE OR ALTER PACKAGE NANO$RSLT
AS
BEGIN

 FUNCTION valid(rslt TY$POINTER NOT NULL) RETURNS BOOLEAN;

 FUNCTION release_(rslt TY$POINTER NOT NULL) RETURNS TY$POINTER;

 FUNCTION connection(rslt TY$POINTER NOT NULL) RETURNS TY$POINTER;

 FUNCTION rowset_size(rslt TY$POINTER NOT NULL) RETURNS INTEGER;
 FUNCTION affected_rows(rslt TY$POINTER NOT NULL) RETURNS INTEGER;
 FUNCTION has_affected_rows(rslt TY$POINTER NOT NULL) RETURNS BOOLEAN;
 FUNCTION rows_(rslt TY$POINTER NOT NULL) RETURNS INTEGER;
 FUNCTION columns(rslt TY$POINTER NOT NULL) RETURNS SMALLINT;

 --

 FUNCTION first_(rslt TY$POINTER NOT NULL) RETURNS BOOLEAN;
 FUNCTION last_(rslt TY$POINTER NOT NULL) RETURNS BOOLEAN;
 FUNCTION next_(rslt TY$POINTER NOT NULL) RETURNS BOOLEAN;
 FUNCTION prior_(rslt TY$POINTER NOT NULL) RETURNS BOOLEAN;
 FUNCTION move(rslt TY$POINTER NOT NULL, row_ INTEGER NOT NULL) RETURNS BOOLEAN;
 FUNCTION skip_(rslt TY$POINTER NOT NULL, row_ INTEGER NOT NULL) RETURNS BOOLEAN;
 FUNCTION position_(rslt TY$POINTER NOT NULL) RETURNS INTEGER;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

270

 FUNCTION at_end(rslt TY$POINTER NOT NULL) RETURNS BOOLEAN;

 --

 FUNCTION get_smallint(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS SMALLINT;

 FUNCTION get_integer(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS INTEGER;

/*
 FUNCTION get_bigint(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS BIGINT;
*/

 FUNCTION get_float(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS FLOAT;

 FUNCTION get_double(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS DOUBLE PRECISION;

 FUNCTION get_varchar_s(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS VARCHAR(64) CHARACTER SET NONE;

 FUNCTION get_varchar(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS VARCHAR(256) CHARACTER SET NONE;

 FUNCTION get_varchar_l(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS VARCHAR(1024) CHARACTER SET NONE;

 FUNCTION get_varchar_xl (
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS VARCHAR(8192) CHARACTER SET NONE;

 FUNCTION get_varchar_xxl (
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS VARCHAR(32765) CHARACTER SET NONE;

 FUNCTION get_char_s (
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS CHAR(64) CHARACTER SET NONE;

 FUNCTION get_char (

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

271

 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS CHAR(256) CHARACTER SET NONE;

 FUNCTION get_char_l (
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS CHAR(1024) CHARACTER SET NONE;

 FUNCTION get_char_xl(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS CHAR(8192) CHARACTER SET NONE;

 FUNCTION get_char_xxl(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS CHAR(32767) CHARACTER SET NONE;

 FUNCTION get_u8_varchar(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS VARCHAR(64) CHARACTER SET UTF8;

 FUNCTION get_u8_varchar_l(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS VARCHAR(256) CHARACTER SET UTF8;

 FUNCTION get_u8_varchar_xl(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS VARCHAR(2048) CHARACTER SET UTF8;

 FUNCTION get_u8_varchar_xxl(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS VARCHAR(8191) CHARACTER SET UTF8;

 FUNCTION get_u8_char(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS CHAR(64) CHARACTER SET UTF8;

 FUNCTION get_u8_char_l(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS CHAR(256) CHARACTER SET UTF8;

 FUNCTION get_u8_char_xl(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS CHAR(2048) CHARACTER SET UTF8;

 FUNCTION get_u8_char_xxl(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS CHAR(8191) CHARACTER SET UTF8;

 FUNCTION get_blob(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS BLOB;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

272

 FUNCTION get_boolean(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS BOOLEAN;

 FUNCTION get_date(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS DATE;

/*
 FUNCTION get_time(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS TIME;
*/

 FUNCTION get_timestamp(
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL
) RETURNS TIMESTAMP;

 FUNCTION convert_varchar_s(
 value_ VARCHAR(64) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0
) RETURNS VARCHAR(64) CHARACTER SET NONE;

 FUNCTION convert_varchar(
 value_ VARCHAR(256) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0
) RETURNS VARCHAR(256) CHARACTER SET NONE;

 FUNCTION convert_varchar_l(
 value_ VARCHAR(1024) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0
) RETURNS VARCHAR(1024) CHARACTER SET NONE;

 FUNCTION convert_varchar_xl(
 value_ VARCHAR(8192) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0
) RETURNS VARCHAR(8192) CHARACTER SET NONE;

 FUNCTION convert_varchar_xxl(
 value_ VARCHAR(32765) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

273

) RETURNS VARCHAR(32765) CHARACTER SET NONE;

 FUNCTION convert_char_s(
 value_ CHAR(64) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0
) RETURNS CHAR(64) CHARACTER SET NONE;

 FUNCTION convert_char(
 value_ CHAR(256) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0
) RETURNS CHAR(256) CHARACTER SET NONE;

 FUNCTION convert_char_l(
 value_ CHAR(1024) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0
) RETURNS CHAR(1024) CHARACTER SET NONE;

 FUNCTION convert_char_xl(
 value_ CHAR(8192) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0
) RETURNS CHAR(8192) CHARACTER SET NONE;

 FUNCTION convert_char_xxl(
 value_ CHAR(32767) CHARACTER SET NONE,
 from_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 to_ VARCHAR(20) CHARACTER SET NONE NOT NULL,
 convert_size SMALLINT NOT NULL DEFAULT 0
) RETURNS CHAR(32767) CHARACTER SET NONE;

 --

 FUNCTION unbind(rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT
NULL)
 RETURNS TY$NANO_BLANK;

 FUNCTION is_null(rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8
NOT NULL)
 RETURNS BOOLEAN;

 FUNCTION is_bound(-- now hiding exception out of range
 rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8 NOT NULL)
 RETURNS BOOLEAN;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

274

 FUNCTION column_(rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET UTF8
NOT NULL)
 RETURNS SMALLINT;

 FUNCTION column_name(rslt TY$POINTER NOT NULL, index_ SMALLINT NOT NULL)
 RETURNS VARCHAR(63) CHARACTER SET UTF8;

 FUNCTION column_size(rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET
UTF8 NOT NULL)
 RETURNS INTEGER;

 FUNCTION column_decimal_digits(rslt TY$POINTER NOT NULL, column_ VARCHAR(63)
CHARACTER SET UTF8 NOT NULL)
 RETURNS INTEGER;

 FUNCTION column_datatype(rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER SET
UTF8 NOT NULL)
 RETURNS INTEGER;

 FUNCTION column_datatype_name(rslt TY$POINTER NOT NULL, column_ VARCHAR(63)
CHARACTER SET UTF8 NOT NULL)
 RETURNS VARCHAR(63) CHARACTER SET UTF8;

 FUNCTION column_c_datatype(rslt TY$POINTER NOT NULL, column_ VARCHAR(63) CHARACTER
SET UTF8 NOT NULL)
 RETURNS INTEGER;

 FUNCTION next_result(rslt TY$POINTER NOT NULL) RETURNS BOOLEAN;

 --

 FUNCTION has_data(rslt TY$POINTER NOT NULL) RETURNS BOOLEAN;

END

The NANO$RSLT package contains functions for working with a dataset returned by an SQL query.

The valid() function returns whether the pointer to the dataset is valid.

The release_() function releases the pointer to the dataset.

The connection() function returns a pointer to a database connection.

The rowset_size() function returns the size of the dataset (how many active cursors are in the
dataset).

The affected_rows() function returns the number of rows affected by the statement (fetched in the
cursor).

The has_affected_rows() function returns whether at least one row is affected by the statement.

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

275

The rows_() function returns the number of records in the open cursor.

The columns() function returns the number of columns in the current cursor.

The first_() function moves the current cursor to the first record. Works only for bidirectional
(scrollable cursors). Returns true if the operation is successful.

The last_() function moves the current cursor to the last record. Works only for bidirectional
(scrollable cursors). Returns true if the operation is successful.

The next_() function moves the current cursor to the next record. Returns true if the operation is
successful.

The prior_() function moves the current cursor to the previous record. Works only for bidirectional
(scrollable cursors). Returns true if the operation is successful.

The move() function moves the current cursor to the specified record. Works only for bidirectional
(scrollable cursors). Returns true if the operation is successful.

• rslt - a pointer to a prepared dataset;

• row_ - record number.

The skip_() function moves the current cursor by the specified number of records. Works only for
bidirectional (scrollable cursors). Returns true if the operation is successful.

• rslt - a pointer to a prepared dataset;

• row_ - how many records to skip.

The position_() function returns the current position of the cursor.

The at_end() function returns whether the cursor has reached the last record.

The get_smallint() function returns the value of the SMALLINT column.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The get_integer() function returns the value of an INTEGER column.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The get_bigint() function returns the value of a BIGINT column.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The get_float() function returns the value of a FLOAT column.

• rslt - a pointer to a prepared dataset;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

276

• column_ - the name of the column or its number 0..n-1.

The get_double() function returns the value of a DOUBLE PRECISION column.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The get_varchar() function returns the value of column VARCHAR (256) CHARACTER SET NONE. The
function is intended for single-byte encodings.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

There is a whole family of these suffixed functions. The maximum size of the returned string
changes depending on the suffix:

• _s - VARCHAR (64) CHARACTER SET NONE;

• _l - VARCHAR (1024) CHARACTER SET NONE;

• _xl - VARCHAR (8192) CHARACTER SET NONE;

• _xxl - VARCHAR (32765) CHARACTER SET NONE.

The data retrieval speed depends on the maximum row size. So filling the buffer for a VARCHAR
(32765) string is several times slower than for a VARCHAR (256) string, so you need to choose the size
of a smaller value if you don’t need a larger one.

The get_char() function returns the value of column CHAR (256) CHARACTER SET NONE. The function is
intended for single-byte encodings.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

There is a whole family of these suffixed functions. The maximum size of the returned string
changes depending on the suffix:

• _s - CHAR (64) CHARACTER SET NONE;

• _l - CHAR (1024) CHARACTER SET NONE;

• _xl - CHAR (8192) CHARACTER SET NONE;

• _xxl - CHAR (32767) CHARACTER SET NONE.

The data retrieval speed depends on the maximum row size. So filling the buffer for the CHAR
(32767) string is several times slower than for the CHAR (256) string, so you need to choose the size
of a smaller value if you don’t need a larger one.

The get_u8_varchar() function returns the value of column VARCHAR (64) CHARACTER SET UTF8.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

277

There is a whole family of these suffixed functions. The maximum size of the returned string
changes depending on the suffix:

• _l - VARCHAR (256) CHARACTER SET UTF8;

• _xl - VARCHAR (2048) CHARACTER SET UTF8;

• _xxl - VARCHAR (8191) CHARACTER SET UTF8.

The get_u8_char() function returns the value of column CHAR (64) CHARACTER SET UTF8.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

There is a whole family of these suffixed functions. The maximum size of the returned string
changes depending on the suffix:

• _l - CHAR (256) CHARACTER SET UTF8;

• _xl - CHAR (2048) CHARACTER SET UTF8;

• _xxl - CHAR (8191) CHARACTER SET UTF8.

The get_blob() function returns the value of a BLOB column.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The get_boolean() function returns the value of a BOOLEAN column.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The get_date() function returns the value of a DATE column.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The get_time() function returns the value of a TIME column.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The get_timestamp() function returns the value of a TIMESTAMP column.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The convert_varchar() function converts a VARCHAR value to a different encoding. Parameters:

• value_ - string value;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

278

• from_ - encoding from which to recode the string;

• to_ - encoding into which you want to recode the string;

• convert_size - sets the size of the input buffer for conversion. See nano$stmt.convert_[var]char.

There is a whole family of these suffixed functions. The maximum size of the returned string
changes depending on the suffix:

• _s - VARCHAR (64) CHARACTER SET NONE;

• _l - VARCHAR (1024) CHARACTER SET NONE;

• _xl - VARCHAR (8192) CHARACTER SET NONE;

• _xxl - VARCHAR (32765) CHARACTER SET NONE.

The convert_char() function converts a CHAR value to a different encoding. Parameters:

• value_ - string value;

• from_ - encoding from which to recode the string;

• to_ - encoding into which you want to recode the string;

• convert_size - set the size of the input buffer for conversion. See nano$stmt.convert_[var]char.

There is a whole family of these suffixed functions. The maximum size of the returned string
changes depending on the suffix:

• _s - CHAR (64) CHARACTER SET NONE;

• _l - CHAR (1024) CHARACTER SET NONE;

• _xl - CHAR (8192) CHARACTER SET NONE;

• _xxl - CHAR (32765) CHARACTER SET NONE.

The unbind() function unbinds a buffer from a given column. The peculiarity of transferring large
data types in some ODBC implementations.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The is_null() function returns whether the value of a column is null.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The is_bound() function checks if a buffer of values for a given column is bound.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The column_() function returns the number of a column by its name.

• rslt - a pointer to a prepared dataset;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

279

• column_ is the name of the column.

The column_name() function returns the name of a column by its index.

• rslt - a pointer to a prepared dataset;

• index_ - column number 0..n-1.

The column_size() function returns the size of a column. For string fields, the number of characters.

The column_decimal_digits() function returns the precision for numeric types.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The column_datatype() function returns the type of the column.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The column_datatype_name() function returns the name of the column type.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The column_c_datatype() function returns the type of the column as encoded in ODBC constants.

• rslt - a pointer to a prepared dataset;

• column_ - the name of the column or its number 0..n-1.

The next_result() function switches to the next data set.

• rslt - a pointer to a prepared dataset.

The has_data() function returns whether there is data in a dataset.

• rslt - a pointer to a prepared dataset.

14.3.6. NANO$FUNC package

The header of this package looks like this:

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

280

CREATE OR ALTER PACKAGE NANO$FUNC
AS
BEGIN

 /* Note:
 Result cursor by default ODBC driver (NANODBC implementation),
 scrollable into NANO$STMT
 */

 FUNCTION execute_conn(
 conn TY$POINTER NOT NULL,
 query VARCHAR(8191) CHARACTER SET UTF8 NOT NULL,
 batch_operations INTEGER NOT NULL DEFAULT 1,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$POINTER;

 FUNCTION just_execute_conn(
 conn TY$POINTER NOT NULL,
 query VARCHAR(8191) CHARACTER SET UTF8 NOT NULL,
 batch_operations INTEGER NOT NULL DEFAULT 1,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

 FUNCTION execute_stmt(
 stmt TY$POINTER NOT NULL, batch_operations INTEGER NOT NULL DEFAULT 1
) RETURNS TY$POINTER;

 FUNCTION just_execute_stmt(
 stmt TY$POINTER NOT NULL, batch_operations INTEGER NOT NULL DEFAULT 1
) RETURNS TY$NANO_BLANK;

 FUNCTION transact_stmt(
 stmt TY$POINTER NOT NULL, batch_operations INTEGER NOT NULL DEFAULT 1
) RETURNS TY$POINTER;

 FUNCTION just_transact_stmt(
 stmt TY$POINTER NOT NULL, batch_operations INTEGER NOT NULL DEFAULT 1
) RETURNS TY$NANO_BLANK;

 FUNCTION prepare_stmt(
 stmt TY$POINTER NOT NULL,
 query VARCHAR(8191) CHARACTER SET UTF8 NOT NULL,
 timeout INTEGER NOT NULL DEFAULT 0
) RETURNS TY$NANO_BLANK;

END

The NANO$FUNC package contains functions for working with SQL queries. This package is a
lightweight version of the NANO$STMT package. The peculiarity is that the functions performed have

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

281

inherited the behavior of NANODBC without changes and their own modifications of the UDR in
terms of the exchange of parameters and values. Possible direction of use: performing ODBC
connection settings through executing SQL commands (just_execute …), if supported, event logging,
etc. simple operations.

The execute_conn() function prepares and executes an SQL statement. The function returns a
pointer to a data set (cursor), which can be processed using the functions of the NANO$RSLT package.
Parameters:

• conn - connection pointer;

• query - the text of the SQL query;

• batch_operations - the number of batch operations. The default is 1;

• timeout - SQL statement timeout.

The just_execute_conn() function prepares and executes the SQL statement. The function is
designed to execute SQL statements that do not return data (do not open a cursor). A pointer to the
SQL query object is not created. Parameters:

• conn - connection pointer;

• query - the text of the SQL query;

• batch_operations - the number of batch operations. The default is 1;

• timeout - SQL statement timeout.

The execute_stmt() function executes the prepared SQL statement. The function returns a pointer to
a data set (cursor), which can be processed using the functions of the NANO$RSLT package.
Parameters:

• stmt - a pointer to a prepared statement;

• batch_operations - the number of batch operations. The default is 1.

The transact_stmt() function - executes a previously prepared SQL statement, starting and ending
its own (autonomous) transaction. The function returns a pointer to a data set (cursor), which can
be processed using the functions of the NANO$RSLT package. Parameters:

• stmt - a pointer to a prepared statement;

• batch_operations - the number of batch operations. The default is 1.

Function just_transact_stmt() - executes a previously prepared SQL statement, starting and ending
its own (autonomous) transaction. The function is designed to execute SQL statements that do not
return data (do not open a cursor). Parameters:

• stmt - a pointer to a prepared statement;

• batch_operations - the number of batch operations. The default is 1.

The prepare_stmt() function prepares the SQL query. Parameters:

• stmt - a pointer to the statement;

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

282

• query - the text of the SQL query;

• timeout - SQL statement timeout.

14.4. Examples

14.4.1. Fetching data from a Postgresql table

This example fetches from a Postgresql database. The block text is provided with comments to
understand what is happening.

EXECUTE BLOCK
RETURNS (
 id bigint,
 name VARCHAR(1024) CHARACTER SET UTF8
)
AS
 DECLARE conn_str varchar(512) CHARACTER SET UTF8;
 declare variable sql_txt VARCHAR(8191) CHARACTER SET UTF8;
 DECLARE conn ty$pointer;
 DECLARE stmt ty$pointer;
 DECLARE rs ty$pointer;
 DECLARE tnx ty$pointer;
BEGIN
 conn_str = 'DRIVER={PostgreSQL ODBC
Driver(UNICODE)};SERVER=localhost;DATABASE=test;UID=postgres;PASSWORD=mypassword';
 sql_txt = 'select * from t1';

 -- initialize nanodbc
 -- this function can be called in the ON CONNECT trigger
 nano$udr.initialize();

 BEGIN
 -- connect to ODBC data source
 conn = nano$conn.connection(conn_str);
 WHEN EXCEPTION nano$nanodbc_error DO
 BEGIN
 -- if the connection was unsuccessful
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();
 -- rethrow exception
 EXCEPTION;
 END
 END

 BEGIN
 -- allocate a pointer to an SQL statement
 stmt = nano$stmt.statement_(conn);

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

283

 -- prepare query
 nano$stmt.prepare_(stmt, sql_txt);
 -- execute query
 -- function returns a pointer to a dataset
 rs = nano$stmt.execute_(stmt);
 -- while there are records in the cursor, move forward along it
 while (nano$rslt.next_(rs)) do
 begin
 -- for each column, depending on its type, it is necessary to call
 -- the corresponding function or function with the type to which
 -- the initial column can be converted
 id = nano$rslt.get_integer(rs, 'id');
 -- note, since we are working with UTF8, the function is called with u8
 name = nano$rslt.get_u8_char_l(rs, 'name');
 suspend;
 end

 -- release the previously allocated resource
 /*
 rs = nano$rslt.release_(rs);
 stmt = nano$stmt.release_(stmt);
 */
 -- the above functions can be omitted, since calling
 -- nano$conn.release_ will automatically release all resources
 -- bound to the connection
 conn = nano$conn.release_(conn);
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();

 WHEN EXCEPTION nano$invalid_resource,
 EXCEPTION nano$nanodbc_error,
 EXCEPTION nano$binding_error
 DO
 BEGIN
 -- if an error occurs
 -- release previously allocated resources
 /*
 rs = nano$rslt.release_(rs);
 stmt = nano$stmt.release_(stmt);
 */
 -- the above functions can be omitted, since calling
 -- nano$conn.release_ will automatically release all resources
 -- bound to the connection
 conn = nano$conn.release_(conn);
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();
 -- rethrow exception

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

284

 EXCEPTION;
 END
 END
END

14.4.2. Inserting data into a Postgresql table

This example inserts a new row into a table. The block text is provided with comments to
understand what is happening.

EXECUTE BLOCK
RETURNS (
 aff_rows integer
)
AS
 DECLARE conn_str varchar(512) CHARACTER SET UTF8;
 declare variable sql_txt VARCHAR(8191) CHARACTER SET UTF8;
 DECLARE conn ty$pointer;
 DECLARE stmt ty$pointer;
 DECLARE tnx ty$pointer;
BEGIN
 conn_str = 'DRIVER={PostgreSQL ODBC
Driver(UNICODE)};SERVER=localhost;DATABASE=test;UID=postgres;PASSWORD=mypassword';
 sql_txt = 'insert into t1(id, name) values(?, ?)';

 -- initialize nanodbc
 -- this function can be called in the ON CONNECT trigger
 nano$udr.initialize();

 BEGIN
 -- connect to ODBC data source
 conn = nano$conn.connection(conn_str);
 WHEN EXCEPTION nano$nanodbc_error DO
 BEGIN
 -- if the connection was unsuccessful
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();
 EXCEPTION;
 END
 END

 BEGIN
 -- allocate a pointer to an SQL statement
 stmt = nano$stmt.statement_(conn);
 -- prepare query
 nano$stmt.prepare_(stmt, sql_txt);
 -- set query parameters
 -- index starts from 0!

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

285

 nano$stmt.bind_integer(stmt, 0, 4);
 nano$stmt.bind_u8_varchar(stmt, 1, 'Row 4', 4 * 20);
 -- execute INSERT statement
 nano$stmt.just_execute(stmt);
 -- get the number of affected rows
 aff_rows = nano$stmt.affected_rows(stmt);
 -- release the previously allocated resource
 conn = nano$conn.release_(conn);
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();

 WHEN EXCEPTION nano$invalid_resource,
 EXCEPTION nano$nanodbc_error,
 EXCEPTION nano$binding_error
 DO
 BEGIN
 -- release the previously allocated resource
 conn = nano$conn.release_(conn);
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();
 EXCEPTION;
 END
 END

 suspend;
END

14.4.3. Batch insert into a Postgresql table

If the DBMS and ODBC driver support batch execution of queries, then batch operations can be
used.

EXECUTE BLOCK
AS
 DECLARE conn_str varchar(512) CHARACTER SET UTF8;
 declare variable sql_txt VARCHAR(8191) CHARACTER SET UTF8;
 DECLARE conn ty$pointer;
 DECLARE stmt ty$pointer;
 DECLARE tnx ty$pointer;
BEGIN
 conn_str = 'DRIVER={PostgreSQL ODBC
Driver(UNICODE)};SERVER=localhost;DATABASE=test;UID=postgres;PASSWORD=mypassword';
 sql_txt = 'insert into t1(id, name) values(?, ?)';

 -- initialize nanodbc
 -- this function can be called in the ON CONNECT trigger

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

286

 nano$udr.initialize();

 BEGIN
 -- connect to ODBC data source
 conn = nano$conn.connection(conn_str);
 WHEN EXCEPTION nano$nanodbc_error DO
 BEGIN
 -- if the connection was unsuccessful
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();
 EXCEPTION;
 END
 END

 BEGIN
 -- allocate a pointer to an SQL statement
 stmt = nano$stmt.statement_(conn);
 -- prepare query
 nano$stmt.prepare_(stmt, sql_txt);
 -- set query parameters
 -- index starts from 0!
 -- first row
 nano$stmt.bind_integer(stmt, 0, 5);
 nano$stmt.bind_u8_varchar(stmt, 1, 'Row 5', 4 * 20);
 -- second row
 nano$stmt.bind_integer(stmt, 0, 6);
 nano$stmt.bind_u8_varchar(stmt, 1, 'Row 6', 4 * 20);
 -- execute an INSERT statement with a batch size of 2
 nano$stmt.just_execute(stmt, 2);
 -- release the previously allocated resource
 conn = nano$conn.release_(conn);
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();

 WHEN EXCEPTION nano$invalid_resource,
 EXCEPTION nano$nanodbc_error,
 EXCEPTION nano$binding_error
 DO
 BEGIN
 -- release the previously allocated resource
 conn = nano$conn.release_(conn);
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();
 EXCEPTION;
 END

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

287

 END
END

14.4.4. Using transaction

EXECUTE BLOCK
AS
 DECLARE conn_str varchar(512) CHARACTER SET UTF8;
 DECLARE sql_txt VARCHAR(8191) CHARACTER SET UTF8;
 DECLARE sql_txt2 VARCHAR(8191) CHARACTER SET UTF8;
 DECLARE conn ty$pointer;
 DECLARE stmt ty$pointer;
 DECLARE stmt2 ty$pointer;
 DECLARE tnx ty$pointer;
BEGIN
 conn_str = 'DRIVER={PostgreSQL ODBC
Driver(UNICODE)};SERVER=localhost;DATABASE=test;UID=postgres;PASSWORD=mypassword';
 sql_txt = 'insert into t1(id, name) values(?, ?)';
 sql_txt2 = 'insert into t2(id, name) values(?, ?)';

 -- initialize nanodbc
 -- this function can be called in the ON CONNECT triggerре
 nano$udr.initialize();

 BEGIN
 -- connect to ODBC data source
 conn = nano$conn.connection(conn_str);
 WHEN EXCEPTION nano$nanodbc_error DO
 BEGIN
 -- if the connection was unsuccessful
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();
 EXCEPTION;
 END
 END

 BEGIN
 -- prepare first SQL query
 stmt = nano$stmt.statement_(conn);
 nano$stmt.prepare_(stmt, sql_txt);
 -- prepare second SQL query
 stmt2 = nano$stmt.statement_(conn);
 nano$stmt.prepare_(stmt2, sql_txt2);
 -- start transaction
 tnx = nano$tnx.transaction_(conn);
 -- execute first statement within the transaction
 nano$stmt.bind_integer(stmt, 0, 8);
 nano$stmt.bind_u8_varchar(stmt, 1, 'Row 8', 4 * 20);

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

288

 nano$stmt.just_execute(stmt);
 -- execute second statement within the transaction
 nano$stmt.bind_integer(stmt2, 0, 1);
 nano$stmt.bind_u8_varchar(stmt2, 1, 'Row 1', 4 * 20);
 nano$stmt.just_execute(stmt2);
 -- commit transaction
 nano$tnx.commit_(tnx);

 -- release the previously allocated resource
 conn = nano$conn.release_(conn);
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();

 WHEN EXCEPTION nano$invalid_resource,
 EXCEPTION nano$nanodbc_error,
 EXCEPTION nano$binding_error
 DO
 BEGIN
 -- release the previously allocated resource
 -- in case of an error, the unconfirmed transaction will be rolled back
automatically
 conn = nano$conn.release_(conn);
 -- call the function to terminate nanodbc
 -- instead of an explicit call in the script, this function can be called
 -- in the ON DISCONNECT trigger
 nano$udr.finalize();
 EXCEPTION;
 END
 END
END

Chapter 14. NANODBC-UDR — working with ODBC Data Sources

289

Chapter 15. Firebird Streaming
The Firebird Streaming project is a set of libraries for parsing Firebird replication logs after being
processed by the fb_repl_print utility.For each event in the log, you can write your own handler by
inheriting the SegmentProcessEventListener interface.

The source code of project can be downloaded at https://github.com/sim1984/fbstreaming

This library can be used to notify about events through the queue system, or to write your own
replicator in other DBMS.

The release can be downloaded from the link https://github.com/sim1984/fbstreaming/releases/
download/v1.0/release.zip

The journals/incoming folder contains replication logs after being processed by the fb_repl_print
utility.

The journals/outgoing folder some output files that are the output of one of the plugins.

The journals/segments.journal file is a file in which the file names of the processed segments are
written.Used by some plugins.

JAR files containing plugins are located in the plugins folder.The example contains the following
plugins:

• converting replication segments to JSON format

• sending the associated DML statement data (in JSON format) to the RabbitMQ queue on a
transaction confirmation event

• writing DML statements to SQL files. Recording occurs on the event of a transaction
confirmation.

For configuration, the config.properties file is used, which must be located next to the fbstreaming-
1.0.jar file. Properties in the config file:

• pluginClassName — fully qualified plugin class name

• incomingFolder — folder with input logs (replication segments)

• outgoingFolder — folder with plugin results (used by JSON and SQL plugins)

• journalFileName — file with processed replication segments (used by SQL and RabbitMQ plugins)

• segmentFileNameMask — mask for input files (replication segments)

• segmentFileCharset — encoding of replication segments

• includeTables — regular expression for filtering tables (if not specified, all tables are processed)

• rabbit.host — host for RabbitMQ plugin

• rabbit.queueName — the name of the queue for the RabbitMQ plugin

To be able to process a replication segment, it must be processed with the fb_repl_print utility
using the following command:

Chapter 15. Firebird Streaming

290

https://github.com/sim1984/fbstreaming
https://github.com/sim1984/fbstreaming/releases/download/v1.0/release.zip
https://github.com/sim1984/fbstreaming/releases/download/v1.0/release.zip

fb_repl_print -d -b <archive_journal_file> > <journal_file_for_streaming>

Example

fb_repl_print -d -b f:\fbdata\archives\examples.fdb.arch-000000010 >
f:\journals\incoming\examples.fdb.arch-000000010.txt

To start the handler of received files, enter the command:

java -jar fbstreaming-1.0.jar

15.1. Json plugin description
Full name of plugin com.hqbird.fbstreaming.plugin.json.JsonStreamPlugin.

The JsonStreamPlugin plugin reads replication segment files and stores DML statement data over
tables in JSON format. A JSON data file is created for each replication segment file. JSON files are
saved in the folder specified in the outgoingFolder parameter.

The JSON file has the following format:

Chapter 15. Firebird Streaming

291

[
 {
 "transactionNumber": 409036118,
 "statements": [
 {
 "tableName": "CLBULLETS",
 "statementType": "INSERT",
 "keyValues": {
 "NUMBULL": 156803509
 },
 "newFieldValues": {
 "CLAGE": 45,
 "REPL$GRPID": 15,
 "PROFID": 990000090,
 "SENDSTATUS": 0,
 "POL": 1,
 "FILIAL": 15,
 "BDATE": "1976-05-03",
 "CLINICID": 38,
 "PRIMLIST": 1,
 "MODIFYDATE": "16-AUG-2021 23:50:14.2480",
 "DGOPEN": 14438,
 "DATEOPEN": "16-AUG-2021",
 "TREATCODE": 156802708,
 "PCODE": 150002994,
 "ISSUEDATE": "16-AUG-2021",
 "DISABILITYID": 150050614,
 "DCODEOPEN": 150000278,
 "NUMBULL": 156443509
 },
 "oldFieldValues": {}
 }
]
 }
]

The JSON file at the top level is an array of transactions. For each transaction, its number is stored
in the transactionNumber key. An array with a description of all DML statements on tables produced
within this transaction is stored in the statements key. The following data is saved for each DML
statement:

• tableName — the name of the table on which the operation is performed;

• statementType — the type of the statement (INSERT, UPDATE, DELETE);

• keyValues — values of key fields;

• newFieldValues — new field values;

• oldFieldValues — old field values.

Example configuration file config.properties:

Chapter 15. Firebird Streaming

292

pluginClassName=com.hqbird.fbstreaming.plugin.json.JsonStreamPlugin
incomingFolder=./journals/incoming
outgoingFolder=./journals/outgoing/json
segmentFileNameMask=.*txt
segmentFileCharset=windows-1251
includeTables=CLBULLETS|CLREFDET

15.2. Sql plugin description
Full name of plugin com.hqbird.fbstreaming.plugin.sql.SqlStreamPlugin.

The SqlStreamPlugin reads the replication segment files and saves them to files with DML
statements as SQL. For each transaction from the replication segment, a file with SQL statements is
created. SQL files are saved in the folder specified in the outgoingFolder parameter.

The file stores script DML statements separated by semicolons ";".BLOB of subtype TEXT is
converted to character literal, if subtype is BINARY, then it is converted to binary literal in
hexadecimal notation.Attention, for BLOBs longer than 65535 bytes, an error script will be
generated.This is planned to be fixed in the future.

Example configuration file config.properties:

pluginClassName=com.hqbird.fbstreaming.plugin.sql.SqlStreamPlugin
incomingFolder=./journals/incoming
outgoingFolder=./journals/outgoing/sql
journalFileName=./journals/segments.journal
segmentFileNameMask=.*txt
segmentFileCharset=windows-1251
includeTables=CLBULLETS|CLREFDET

15.3. Rabbitmq plugin description
Full name of plugin com.hqbird.fbstreaming.plugin.rabbitmq.RabbitMQStreamPlugin.

The RabbitMQStreamPlugin plugin reads replication segment files and stores DML statement data
over tables in JSON format. When a transaction commit event is detected, JSON data is sent to the
RabbitMQ queue. The JSON message format is similar to the one described above.

Example configuration file config.properties:

Chapter 15. Firebird Streaming

293

pluginClassName=com.hqbird.fbstreaming.plugin.rabbitmq.RabbitMQStreamPlugin
incomingFolder=./journals/incoming
journalFileName=./journals/segments.journal
segmentFileNameMask=.*txt
segmentFileCharset=windows-1251
includeTables=CLBULLETS|CLREFDET
rabbit.host=localhost
rabbit.queueName=hello

The delivery contains the simplest example of a client that reads a message from the RabbitMQ
queue: RabbitMQReceiver-1.0.jar.

The client is launched with the command:

java -jar RabbitMQReceiver-1.0.jar

Chapter 15. Firebird Streaming

294

Appendix A: Support contacts
We will answer all your questions regarding HQbird FBDataGuard. Please send all your inquiries to
support@ib-aid.com

Please note, that customers with active Firebird Support have the priority in the technical support
https://ib-aid.com/en/firebird-support-service/

Appendix A: Support contacts

295

mailto:support@ib-aid.com
https://ib-aid.com/en/firebird-support-service/

	HQbird 2022 User Guide
	Table of Contents
	Preface
	About this Guide
	About IBSurgeon

	Chapter 1. Overview of HQbird
	1.1. What is HQbird
	1.2. What’s new in HQbird 2022
	1.3. Feature matrix

	Chapter 2. Installation of HQbird
	2.1. Installing HQbird Server on Windows
	2.1.1. Silent installation on Windows

	2.2. Installing HQbird Server for Windows using the installer
	2.3. Installing HQbird Administrator on Windows
	2.3.1. How to install community version of Firebird on Windows

	2.4. Installing HQbird Server on Linux
	2.4.1. Installation of HQbird with Firebird 2.5 on Linux
	2.4.2. Installation of HQbird with Firebird 3.0 on Linux
	2.4.3. Installation of HQbird with Firebird 4.0 on Linux
	2.4.4. Installation of HQbird Standard on Linux
	2.4.5. Firewall settings

	2.5. Upgrade existing HQbird version
	2.6. Registration of HQbird
	2.6.1. How to activate HQbird
	Internet Activation via a Client Computer

	2.6.2. Offline Activation
	2.6.3. Activation in web interface

	Chapter 3. Configuration of HQbird
	3.1. Initial configuration of HQbird FBDataGuard (backups, monitoring, alerts,etc)
	3.1.1. Launch web-console
	Supported browsers
	Error message regarding webs-site certificate

	3.1.2. Auto discovery feature of FBDataGuard
	3.1.3. Firebird server registration
	3.1.4. Firebird database registration
	3.1.5. Email alerts in HQbird FBDataGuard
	3.1.6. Next steps with FBDataGuard

	3.2. Monitoring and maintenance configuration in FBDataGuard
	3.2.1. Overview of web-console.
	Parts of web-console.
	Jobs
	Jobs widgets
	Status types

	3.2.2. Server: Active server
	3.2.3. Server: Auto updates
	3.2.4. Server: Replication Log
	3.2.5. Server: Server log
	3.2.6. Server: Temp files
	3.2.7. Server: Firebird server folder
	3.2.8. Server: HQbird Output Folder
	3.2.9. Database: General configuration
	3.2.10. Database: Transactions
	3.2.11. Database: Lockprint
	3.2.12. Database: Index statistics recalculation
	3.2.13. Database: Verified Backup
	Important Note: Backup to the network locations

	3.2.14. Database: Incremental Backup
	3.2.15. Database: Dump Backup
	3.2.16. Database: RestoreDB
	3.2.17. Database: Transfer Replication Segments
	FTP/FTPS/FTPS over SSH
	FTP over SSL/TLS
	FTP over SSH

	3.2.18. Database: Transfer Files
	FTP/FTPS/FTPS over SSH
	FTP over SSL/TLS
	FTP over SSH

	Sending verified and incremental backups through Cloud Backups

	3.2.19. Database: Pump Files
	3.2.20. Database: File Receiver
	Embedded FTP server

	3.2.21. Database: Low-level metadata backup
	3.2.22. Database: Validate DB
	3.2.23. Database: Sweep Schedule
	3.2.24. Database: Delta
	3.2.25. Database: Disk space
	3.2.26. Database: Database statistics
	3.2.27. Database: Replica Check

	3.3. FBDataGuard tips&tricks
	3.3.1. Path to FBDataGuard configuration
	3.3.2. Adjusting web-console port
	3.3.3. How to change password for Admin user
	3.3.4. Guest user for HQbird FBDataGuard

	3.4. Appendix: CRON Expressions
	3.4.1. CRON Format
	3.4.2. Special characters
	3.4.3. CRON Examples
	3.4.4. Notes

	3.5. Configuring firebird.conf for the best performance

	Chapter 4. Monitoring
	4.1. Monitoring with HQbird FBDataGuard
	4.1.1. Overview
	4.1.2. Automatic monitoring with FBDataGuard (Trace API and MON$)
	4.1.3. What can we see in the performance report?
	Detailed information for the problematic SQL queries

	4.1.4. Automatic monitoring of long-running active transactions
	4.1.5. How to select a tool for detailed monitoring

	4.2. Monitoring with MON$ tables: HQbird MonLogger
	4.2.1. Aggregated performance statistics for users attachments
	Sequential reads / Indexed reads
	Write details
	Garbage collection details
	Memory usage

	4.2.2. Aggregated performance statistics for statements
	Sequential reads / Indexed reads
	Page reads/page writes
	Write details for statements
	Garbage collection details for statements
	Memory usage for statements

	4.2.3. Attachments
	4.2.4. Transactions
	4.2.5. Statements

	4.3. Advanced Monitor Viewer
	4.3.1. FetchesReadsWritesMarks
	4.3.2. Users
	4.3.3. Traces
	4.3.4. RAM and CPU Windows
	4.3.5. RAM and LoadAvg Linux
	4.3.6. Transactions
	4.3.7. Lock Table Info

	4.4. Monitoring with HQbird FBScanner
	4.4.1. What is FBScanner?
	4.4.2. Issues that FBScanner can help to resolve
	4.4.3. Performance Impact
	4.4.4. How to configure FBScanner for local computer?
	4.4.5. How to setup FBScanner for remote computer?
	4.4.6. How to setup logging?
	Logging to text files
	Example of text file logging
	Logging to Firebird database
	Transactions markers
	Using Embedded Firebird 2.5 for SQL log

	4.4.7. How to analyze FBScanner log?
	4.4.8. How to track 10054 errors, disconnects and failed login attempts?
	4.4.9. Backup/restore and mass load operations
	4.4.10. Real-Time Monitoring: FBScanner Viewer
	Tags
	FBScanner Viewer Menu
	Server
	Connections
	Kill
	Transactions
	Tools
	SQL log structure
	Logical structure
	Indices in the log

	4.4.11. FBScanner Feature Matrix

	Chapter 5. Database structure analysis
	5.1. Overview of Firebird database structure
	5.2. How to analyze database structure with HQbird Database Analyst (IBAnalyst)
	5.2.1. How to get statistics from Firebird database in right way
	Right time, right place
	If you does not experience periodical performance problems
	If you experience periodical performance problems
	What to do with this statistics
	When DBA can’t do nothing
	How IBAnalyst can help find problems in your Firebird database

	5.2.2. Summary View
	5.2.3. Tables view
	5.2.4. Index view

	Chapter 6. HQbird Enterprise configuration: Native Firebird replication and PerformanceEnhancements
	6.1. What is HQbird Enterprise?
	6.1.1. Compatibility
	6.1.2. How the replication works

	6.2. Installation
	6.3. Asynchronous replication for Firebird
	6.3.1. Step 1: Configure HQbird for replication at the master
	Asynchronous replication at master
	How to copy replication segments from master server to the replicaserver?
	Network share
	Cloud Backup/Cloud Backup Receiver

	6.3.2. Step 2: Create a copy of master database
	6.3.3. Step 3: Setup database for async replication at the replica(slave) server

	6.4. Automatic initialization and re-initialization of replica
	6.4.1. How re-initialization works
	6.4.2. Troubleshooting asynchronous replication

	6.5. Synchronous replication for Firebird
	6.5.1. Steps to setup synchronous replication
	6.5.2. Synchronous replication at master and replica
	6.5.3. Replication parameters for testing synchronous replication

	6.6. How to manually create replica of the database?
	6.6.1. Creating copy online (with nbackup)
	6.6.2. What is {DATABASEGUID}?
	6.6.3. How to set replica database to the master mode

	6.7. How to distinguish master database from replica
	6.7.1. Using gstat -h
	6.7.2. With SQL query to the context variable

	6.8. Optional parameters for replication

	Chapter 7. Performance enhancements
	7.1. Pool of external connections
	7.2. Cached prepared statements
	7.3. TempSpaceLogThreshold: monitoring of big sorting queries and BLOBs
	7.4. SortDataStorageThreshold: REFETCH instead SORT for wide record sets
	7.5. Multi-thread sweep, backup, restore
	7.6. BLOB_APPEND function
	7.7. Transform LEFT joins into INNER

	Chapter 8. Encryption support
	8.1. OpenSSL files
	8.1.1. How to encrypt and decrypt Firebird database
	Demo package with client applications examples
	Stage 1 — Initial encryption of the database
	1. Create the following alias in databases.conf
	2. Check that the following files to server/plugins from the folderWinSrv64Bit_ServerPart\plugins
	3. Put the following files into Firebird root from the folderWinSrv64Bit_ServerPart
	4. Connect to the unencrypted database with isql and encrypt thedatabase:

	Stage 2 — Connect to the encrypted database with the clientapplication
	Step 3: backup and restore of the encrypted database
	Backup encrypted Firebird database
	Restore the backup to the encrypted Firebird database

	Chapter 9. Authentication plugin for Execute Statement On External
	9.1. Installation of authentication plugin for ESOE
	9.1.1. Authentication plugin files
	9.1.2. Configuration
	In firebird.conf
	Keyfile
	Mapping
	Global mappings
	Role mappings

	9.1.3. How to test

	Chapter 10. RSA-UDR — security functions to sign documents and verify signatures
	10.1. How to use RSA-UDR security and conversion functions

	Chapter 11. SPLIT-UDR — procedures to splitting lines by separator
	Chapter 12. OCR-UDR — function to recognizing text from images
	12.1. Example of using OCR-UDR

	Chapter 13. LK-JSON-UDR — building and parsing JSON
	13.1. Install UDR lkJSON
	13.2. How it works?
	13.3. Description of PSQL packages from UDR-lkJSON
	13.3.1. JS$BASE package
	13.3.2. JS$BOOL package
	13.3.3. JS$CUSTLIST package
	13.3.4. JS$FUNC package
	13.3.5. JS$LIST package
	13.3.6. JS$METH package
	13.3.7. JS$NULL package
	13.3.8. JS$NUM package
	13.3.9. JS$OBJ package
	13.3.10. JS$PTR package
	13.3.11. JS$STR package

	13.4. Examples
	13.4.1. Building JSON
	13.4.2. Parse JSON

	Chapter 14. NANODBC-UDR — working with ODBC Data Sources
	14.1. Install UDR nanodbc
	14.2. How it works?
	14.3. Description of PSQL packages from UDR-nanodbc
	14.3.1. NANO$UDR package
	14.3.2. NANO$CONN package
	14.3.3. NANO$TNX package
	14.3.4. NANO$STMT package
	14.3.5. NANO$RSLT package
	14.3.6. NANO$FUNC package

	14.4. Examples
	14.4.1. Fetching data from a Postgresql table
	14.4.2. Inserting data into a Postgresql table
	14.4.3. Batch insert into a Postgresql table
	14.4.4. Using transaction

	Chapter 15. Firebird Streaming
	15.1. Json plugin description
	15.2. Sql plugin description
	15.3. Rabbitmq plugin description

	Appendix A: Support contacts

