Firebird 2.5 Language Reference

Release 1.00

Dmitry Filippov
Alexander Karpeykin
Alexey Kovyazin
Dmitry Kuzmenko
Denis Simonov
Paul Vinkenoog
Dmitry Yemanov

22 January 2018, document version 1.001

Firebird 2.5 Language Reference
Release 1.00

22 January 2018, document version 1.001

by Dmitry Filippov, Alexander Karpeykin, Alexey Kovyazin, Dmitry Kuzmenko, Denis Simonov, Paul Vinkenoog, and
Dmitry Y emanov

The source of much copied reference material: Paul Vinkenoog

Copyright © 2017 Firebird Project and all contributing authors, under the Public Documentation License Version 1.0.
Please refer to the License Notice in the Appendix.

Abstract

This volume represents a compilation of topics concerning Firebird's SQL language written by members of the Rus-
sian-speaking community of Firebird developers and users. In 2014, it culminated in alanguage reference manual, in Rus-
sian. At the instigation of Alexey Kovyazin, a campaign was launched amongst Firebird users world-wide to raise funds
to pay for a professional trandation into English, from which tranglations into other languages would proceed under the
auspices of the Firebird Documentation Project.

http://www.firebirdsql.org/manual/pdl.html

Table of Contents

1. About the Firebird SQL Language REFEIENCEuuveiiieiiii et 1
ST o= Y = =, T 1
U 11 g0 £ g 1T o TSRS 1

Language REfErenCe UPLALESceeiieeiiiiiiiiee ettt e e e e e e e e e s e et eaees 1
Gestation of the Big BOOKcoiiiiiiiiiiic et a e e e 2
(000411 11 (o= PR TPPR 2
ACKNOWIEAGMENLSiiiiiieiie e e s e e e e s e s e e e e e e e e e st b ea e et aaeeessaasataaeeeaeeesaannnsaaneeeeens 3

AR O]I - 10 1170 1= o L= 5

Background to Firebird's SQL LANQUAGEevveeeeeiiiiiiiieiee i e e e e e eeittte e e e e e s e et e e e e e e s s s sannenaeeeaaeessannes 5
SOL FlAVOUIScooeeeeeieeeeeeeeee 5
SOL DIAIECES ..ttt bbb e e as b aaaaasasaasaasaaeasaabasabeaaaabaarbrnnnrararnrabarararnrnrns 6
EXTOr CONTITIONS ..ottt e e e st e e e aab et e e et e e e e annne e e e enees 7

Basic Elements: Statements, Clauses, KEYWOITSueiiieieiiiiiiiieiiie et e e e e e e 7

Lo [< 0 L) 1= T PR PPUUPRPORPPRR 8

== PP RPI 9

Operators and SPECial CharaCterSc.uuviiiiiee et e e e e e e e s e e e e e e e e s annneees 9

(0001101011 1| £ TP PTPTR PP 10

3. Data TYPES ANU SUDLYPES ...ttt e e e e e s e et e et e e e e e e e saate e e e eeaeeseaanntbnaeeeeaeeeaanns 12

L0 = = Gl D = Y 0 14
R Y I 1 PP 14
I PPN 14
L T N O PP 14
Hexadecimal Format for Integer NUMDEKSovviiiiiiei et a e 15

FlOAtiNg-POINt DELA TYPES +.vvuuetettieetetteeetettteeeettreeestaaeeeata e e eata e eeata e eeataaeeatanaaeestaaeeesnaaesesnnnnns 15
I N PP UPRPPRUPRPPRPRR 16
DOUBLE PRECISION ...eiiiiiiiiiiieie et e e e e et e et e s et e et s et es e s eaaesaeaaanenaenenenns 16

FiXEO-POINT DBEA TYPES eevvvtuunieieeeieeiettiiiaaeeeeeeeetettt e aeeeeesee sttt aaeaeaeee sttt aeeesersestan s aeeeseresstanaaeaas 16
NUMERIC .ottt et e e et e e e e e et e e e e e e et e e e e e e e e e e e e e e ens 17
DEC M A L ettt ettt et et e et e e e e e rernaen 17

Data Types for DateS and TiMESccuvviiiiiiee e e e e e e e e e e st r e e e e e e s e nanneees 17
[N PP PPPPPP 18
I PP 19
I EE ST A P e et e e e et e et et et et e e et e e et et e e e et e et e a e e a e annas 19
Operations Using Date and Time ValUESuuvviiiieeiiiiciiiiieie et e e e e e 19

(O o (= gl DT = B Y o= J PSR PP 20
L] oo L= PSP P PRI 21
ClIENt CharaCtler SELveiiiiiie et e e e e e e s sbbe e e e s annaeee s 21
SPECIAl CharaCEr SELSuviiiiieei it e s e e e e e s e e et e e e e e e e s ssanaraeeeeaeesaannnes 21
COllatioN SEUENCEeeiiiiiie e et c et e e e e e e st e e e e e e e e s as bbb e eeeaeesssssnbaaneeeaeeeaannnes 21
CEraCLEr INAEXES ...ttt e st bt e e s e e e s annbe e e e e nees 23
Character TYPES iN DELAIccooeiiiiiieiie e e e e e e e e e e e e 24

2T VA D= = T Y o= SRR 25
BLOB SUDLYPES ..oeiiieiiieiitieee e sttt e e e e s ettt e e e e e s e st a e e e e e e e s s e satbaeeeeaeesaaanntranreeaaeeeaans 25
BLOB SPECITICS ..uvvtviieiieeeiiieiite ettt e st e e e e e e e et e e e e e e e s s et e e e e e e e e eannnrraaeeeas 26
N L A 1Y/ = PN 26

S ST DT - T Y/ 0 1= TSRS 28
SQL_NULL DA TYP .. s sssssnnnsnsnnns 28

(000101%7= £ To a o B T v N)Y =< PP PPRRPPR 29

Firebird 2.5 Language Reference

EXplicit Data TYPE CONVEISIONuuiiiiiieeeeeiiiiiiieeee e e e e e s e satare e e e e e e s s seatbbeeeeaeesssastsrareeaaeeaaaans 29
Implicit Data TYPE CONVEISIONuuiiiiiieeeeeiieiiiteeee e e e e e s e st re e e e e e e s s ssabbbeeeeeaeessasasrbareeeaaeaaaans 33
Custom Data TYPES—DOMEINSceeiiieiiiiiiiiieei e e e e e e s e e e e e s e st e e e ea e e e s ssaarrraeeeaaeas 35
DOMAIN ALITDULES ...ttt et e e e et e e e s st e e e e nbne e e s sneaeeeaans 35
DOMAIN OVEITIAR ...eeiiiiiiie ettt ettt e et e e e s bt e e e asba e e e asbe e e e e ansbeeeeeanneeeeeann 35
Creating and AdMINIStEring DOMEINSucviiiieiiiiiiiiiie e e e e e e arraaeea s 36

4, CommON LangUage ElEMENTSc.ooooi ittt e e e e s et e e e e e e s st e e e e e e e e s eenneees 38
(o= 0] 1 SRR 38
CONSLBINES ...tttk nn e 39

SO O ol = (0] £ PSSP 42
CoNditioNal EXPrESSIONSccccoiiiiiiiiiee et e et e e e e e e e e e e e e e e s s st r e e e eee e e s ananrrrereeaeeeeaanes 45
NULL 1N EXPIrESSIONS ...oeeiiiiiiiiiiie e e e e ettt e e e e e sttt e e e e e s e et e e e e e e e s s s anabtbaeeeaeeessennsnrneeeeas 46
SUDGUETTESeeiteeieee e ettt e et e e e e e s e ettt e e e e eee e e s aa b b eaeeeeaeeessaasbebaeeeaeeesaanassraeeeeeaseaaanes 47
0= 0 ([0 (= PP PRTRRR 49
AASSEITIONS ...ttt ettt ettt e e ettt e e e et e e e et e e ettt e e e aab e e e e e nba et e e e nbe e e e e nnraeeeeans 49
CoMPAriSON PraICALESccceiiiiiiiiii e e e e e e e e e e e e e e e e s st e e e e eeeeeeeenneees 49
EXIStential PrediCAlESveiiiiiiieie ettt nees 60
Quantified SUDQUENY PrediCatesiiiieiii e e e et e e e e e e e e aa e e e e aa e e e enaaas 64

5. Data Definition (DDL) SEAatEMENESuvviiiiiiee e ee e et e e e e s e r e e e e e e e s st b e e e e e e e s e ennenees 66
DA T A B A SE .o et 66
CREATE DA T ABASE ..o e e e et e et e et et et et ea et enaannannas 66
ALTER DA T AB A SE ..o e e et e e e et e et st e e et e e e e 70
DROP DA T AB A SE ..o e e e e e e e nns 73
S I L PP PPR 73
CREATE SHADOW ..ttt et et et et e et e e e e e et e e et e e et e e et e e et aeneens 74
DROP SHADOWV ..ottt e e e et e et e e et e e et e e e e e e e e e e e et e e et e e e en 75

DOM AN Lt r e e e aeans 76
CREATE DOM AN ettt e et e e et e e e e et et e e et e e et e e et eanesaenennannns 76
ALTER DOMAIN .ttt ettt st s e s st et et st e e s et s e e e s e e s e e e s e aenns 81
DIROP DOM AN Lottt e e e e et e e et et et e e et e e et e e e e e e e e e et anerns 84

B I = PP PP PP TPPPT 85
CREATE TABLE ..o e e e e e e e et e e e e et ea e et en e et en e e ena et enaenaennns 85
ALTER TABLE oottt e et e et e et e et e et e et e e e et e e e e anans 98
DIROP T A BLE et aan 105
RECREATE TABLE ...ttt ettt et r s s e e e e e r e r e renneans 105
LNl PP 106
CREATE INDEX ntiiti ittt e et e e e et e e e e e e e e e et e e et e e et e e et eee s ennenns 106
ALTER INDEX ittt e s et s et s et s et s e e e s e e e e e e eas 110
DIROP IND X ettt et e e e et e et e e e e e et e e e e e e e e e aaen 111

SE T ST AT ST ICS ettt et e et e e s et s et s e et e e e e e e e s e e e e ens 112

VL PP PR UPTPRPRPRN 113
CREATE VIEW ettt e et e et e e e s e e e e r et e e e et e e et e e et e e et e a et ae et enennaes 113
ALTER VW ot e e e e et e et enaen 116
CREATE OR ALTER VIEW .ttt ettt et et et e e e e e e e e e ens 117
DIROP VIEW o e et e et e e e e e e e e 118
RECREATE VIEW ottt ettt et et e e e e s s e et e e e e n e e e e e neneeans 119

LI L] = PP 120
CREATE TRIGGER ...ttt e et e et e e e e e et a et et e e e e e s e e e naa e s enenns 120
ALTER TRIGGER ...ttt e et et et s et e e e e e s e e e e e e ens 126
CREATE OR ALTER TRIGGEReiiiiiiiiiie et e e e e e e e e et e e eaneen 128
DROP TRIGGER ...eiiiiiiiiie e e e e e e et e e et e e et e e et e e et ean et eeesenannaen 129
RECREATE TRIGGER ...ttt e e e et e e e e et e e et e e et e e et e e e e eeneens 129

Firebird 2.5 Language Reference

PROCEDURE .. .iiiii ittt e et e ettt e e et e e e s s s e s e s ea s a s e aeaeaeaeasarararararararererenenenenens 130
CREATE PROCEDURE ..ottt ettt e e e e e e e a e e e s e s e e e s s s e s e s s srnenenenens 130
ALTER PROCEDUREouiiiiiiiiiiiii ettt ettt e e e e e e et e e e e st e e e e s e s e s snensnenenenenenenns 135
CREATE OR ALTER PROCEDUREccititiiiiiiiii e e s st sasaeasaesea e e s s s s s snsnenenens 138
DROP PROCEDUREuitititititi st et e ea e et e e s s e s s s s s s s s sasasararararararareransnenenen 138
RECREATE PROCEDUREcuiuiiiiiiii ittt e e e e et et et et et eaea e s ea s e s s s s snsnsnsnenensn 139

L I = A I o 1 N [N 0 PR 140
DECLARE EXTERNAL FUNCTION ittt ee et se e snesssnsnsnensasasasasassrsrsrarsnenes 140
ALTER EXTERNAL FUNGCTION ittt eae et etsa st saeaeaesesssn s snsnsnsnsnsnenss 143
DROP EXTERNAL FUNGCTION .iiiiiiiiiiiiiiiiie e e e e e eataseeste e s s ssnsnsnsnsnsastsassearseananens 144

e I PP 145
DECLARE FILTER .uiiiiiiii ittt ettt et et e s e et e e s e e e s e e s s s s saeaeararararararararersnensnenen 145
[0] I T I =T P 147

SEQUENCE (GENERATOR) ...itiiitiiititis ettt ettt st s e e s et s et e e e e et e et e et e et e ea s e ean e e e e s s eaeeaeenees 147
CREATE SEQUENCE ...ttt et e e et e et e e e e e e e e e e e et e e eneanenns 148
ALTER SEQUENCEE ..ottt et et e e e e e et et e e e e e s e e e e e e e e e e s aeenaanenanns 149
SET GENERA T OR ottt ittt e et e e e e e e e eaeaeaeaeaeaeaeaeaeseereesssnsnsnenensn 150
DROP SEQUENCE ...ttt e e e e e et e e e e ettt e e s e e e e et e e e e eaeanens 150

L 8 =t N 1 P 151
CREATE EXCEPTION ittt e et eaeaeaes e e s s s s s s s s easasararararararararararensnsnenen 151
ALTER EXCEPTION ..ottt ettt e ittt e e e s e e s e s s s taeataeasararaearararsrererenensnenenenen 152
CREATE OR ALTER EXCEPTION ..uitititiiiiiiiiii ittt st st sasasasaesesnsn s snsnsnsnsnsnsnenensnnes 153
LD] QO = I T N PSPPI 154
RECREATE EXCEPTION ittt eaeae s ee et et et s e s s s easasasarararararararerarensnensnenen 155

[I N 1 1 PP 155
CREATE COLLATION ittt et et ea e s ea s a e s e e s s ettt easaearararararararararerererenenenens 155
[0] O | N I 0 N PP 158

(O o O I S 159
ALTER CHARACTER SET oottt ittt ettt s e e e e e a e e e e e e ra e e e e ranenenenenens 159

(PP 160
CREATE ROLE ittt ettt e e e e e e s e s et a e e et e e e s e s snsnenenenenenenanenesennanens 160
ALTER ROLE ..oiiiiiiiiiii ettt e et et e s e s e et e e e e e e e e s s s s e eneararsrararararararananens 161
LD] (| 161

(O 1YY/ = 15 TN 162
COMMENT ON ittt a et e e e e e s s e s e s saeaeasasaeaeasararararasararersreeensnensnenenens 162

6. Data Manipulation (DML) SEALEMENESccoiiiiiiiiiei e e e e e s e e e e e s s sanrraareeaaeas 164

S I = PP 164
L S R PP 165
The SELECT COlUMNS LISt ...ttt e e e e et s e e e e e s e e eaeb s e essesenenes 167
THE FROM ClAUSE ...cvvvviiiiiieeiieeettee e e e ettt e e e e e e e e et et s e e e e e e e ee bbb e e seessesaabaa s eeeesseeserannnss 170
0T Y 176
B S = R = F= T I ST 184
ThE GROUP BY ClAUSEcevvtuiniiieeiiiieete et e e ettt s e e e e e s ettt s e s e e e s e e et ab s e eeesseessabaan s eseeeseenes 186
THE PLAN ClAUSE .. .coeeeiiie ettt e ettt e e e e e e e et a e seeeeesee e bbb s eeesaseessbaaaseeeeeseseseres 191
L1\ PP 195
L 1D = = 2N 196
L 1YY A PP 200
FOR UPDATE [OF] ettt et ettt ee et et ee et ee s e e aeeees st e e es s e sateeaeeaeeseeeeaeseaesneeseeeeeseeens 202
R N L0 L PP 203
N 10 206
Common Table Expressions (“WITH ... AS ... SELECT”) .uuueiiiieeiiiiiiieier e e e et e e e 207

N I =t S 211

Vi

Firebird 2.5 Language Reference

INSERT ... VALUES ... it e et et e et r e et s n e e e e ens 212
INSERT ... SEL R C T ettt ettt et et et et et e e e e et e e e e e e e e e e e e e anans 212
INSERT ... DEFAULT VALUES ..ottt e e e e et e et e e e e ees 213

The RETURNING ClAUSEeeiiiiiiiieiiiiiie ettt sttt e st e e e e e e s b e e e e e 214
INserting into BLOB COIUMNSccoiiiiiiiiiiee e ettt e e e et e e e e e e e s st e e e e e e e e e s narrnaeeeas 215
(0] N PP 215
(01T oo = 1= = RPN 216

THE SET ClBLSE ..oiiiteiie ettt ettt e ettt e e ettt e e e e bt e e e s sbb e e e e s nnbreaeeennnneeeeane 216

THE WHERE ClAUSEveiieiiiiiiee ettt ettt et ettt e et e e e s s e e e s annb e e e s nntneeeeannneeas 217

The ORDER BY aNC0 ROWS ClAUSESeevvveiieeieeeeeeeeeeeeeeeeeeeeeeeeseeesseseesssessesessssssssssssesrssreeeeee. 219

The RETURNING ClaAUSEuuuuuuiuiiiiiiiiiiiiiinisanssassnssssssssssnsnsasssssasssssssssssnsssssnsnsnsnsnsnsnsnsnnns 219
Updating BLOB COIUMNSuuiiiiiieieeeeiiiiteeeeeeeeeesseittaaeseaeeessenntbeseeeeaseessnasssaaeeeaeeessannnneens 220
UPDATE OR INSERT ettt ettt et e st s e st e e et s e e e s e st e e e e eaeenen 220
The RETURNING ClAUSEceiiiiiiiieeiiiiie ettt ettt s ettt e e st e e s e e e s e e e e nees 221

[0 I I PP UPPPP 222
ALTBSES ettt ettt e e e a e e e e e ab et e e e bne e e e e nnnreeas 223

MW HERE ... et aaanns 223

L I N PSPPSR P PPRUPRPPTPR 224
ORDER BY QN0 ROWSovvviiiieeieeeeeeeeessseeseesesseseesssessresssssssssessssssssseseesesrereererrerereerrereee. 224
RETURNING .ottt et e et et e et e s et e e et e e et e e et e e et e e et e n et aenesanernennenns 225
MERGE ... e e e nnas 226
EXECUTE PROCEDURE ...ttt ettt et et e et e e s enen 228
“Executabl€” StOred PrOCEAUIEccoiiiiiieiiiiiee ittt seaee e 229
EXECUTE BLOCK ..iiiiiiiiietet et et e e et e et e et e e et e e et e e et e e et e e et e e et e e et aa et eeneanannesnannns 230
INPUt aNd OULPUL PAIEIMELETSeviiieiiee e e e e eeeitee e e e e e s et e e e e e e e s s st e e e e e e e e s sennnsaeneeeaaeeenans 232
StaAteMENt TEIMINGBIONSveieeiiiiiee ettt et e e e e s rrb e e e e st e e e s enbe e e e e annreeeesnnbeeeeennrees 233

7. Procedural SQL (PSQL) SEALEMENTS ...eeeiieiiiiiiiiieiee e e e e ettt e e s ettt e e e e e e e s et are e e e e e e e s s snnrraereaaeeas 234
Elements Of PSOQLooooiiiiieeee 234
DML Statements With Parametersccuueiiiiiiiiee e 234
L2152 o £ SR OPPRR 234
MOTUIE SEFUCTUIE ..ttt e ettt e e s e e e e st e e e s nnbae e e e annneee s 235

S (0] o 1000 o [0S PP 237
Benefits of SIOred PrOCEAUIEScoiiiiiie ittt 237
TYpPeS Of SLOred PrOCEAUIESuviiiiiee et e e e e e e e e e 237
Creating a StOred ProCEAUIEouiiiiiiie et e e e e e e s st ra e e e e e e e e eaaes 238
Modifying a StOred PrOCEAUEccooiiiiiiieei et e e e e e e e e e e e e s s enneees 238
Deleting a Stored PrOCEAUNEcoiiii it e e e e e e e e e ennreees 239

S (0] o [T 0T o T PRSP RR 239
S O I =] [o o < 240
LI 10 1= £ RSP 240
Firing Order (Order Of EXECULION)eeiviieeiiiiiiiiieee e ettt e e et e e e e e e e e e e e e e e e 241
1Y T o = £ USRS 241

(DL = o7z o I I (0o = R PPRPPR 242
(= (T o I I Lo o == PRSP PPRRRR 242

1Y Koo [l A L aTo TR I T o= £ PSRRI 243
(D1C L L aTo = T I Lo o = PP PPPRPR 244
WIIting the BOAy COUEouiiiiiiii e e e e e s r e e e e e e s e eb b ee e e e e e e e aaanes 244
ASSIGNMENT SEALEMENTS ...vveiiiiee i e s e e e e s e e e e e e e e s s e b eereeeeeseaanrbreeeeeaeeaaaans 245
DECLARE CURSOR ..oiiiiiiiiie et e e et e e et et et e e e e e e eaa et ea et ea et esaasnannennannns 246
DECLARE VARIABLE ...ttt ettt e e e e e e e e ens 248
BEGIN ... EN DD oottt e e e e e e e e 251

IF o THEN L B SE ot e e e et e et et et e e et e e e e e eens 252

Vii

Firebird 2.5 Language Reference

WHILE .. DO ittt et e e e et et e e et e e e e e e e st et e e et e e e e e e e 254
LB AV E e e e e e e e e e e e et e e e e e anaar 255
) PPN 257
SUSPEND Lottt et e e e e e e e e e e e e e e e e e e aneans 257
EXECUTE STATEMENT ettt s r e e e e eas 258
FOR SEL T ittt ettt et e e e et e s e e e e e et e e a e et e ar et e e e e n e ea e e n e e n e e naeneen 263
FOR EXECUTE STATEMENT ..ottt e e e et e e et s e ea s e e a s e e nnennenaennennas 266
1O = PP PRUPRPPRP 267
o 1 PRSPPI 269
L I 1 PPN 270
IN AUTONOMOUS TRANSACTION ..uitiiiiiieiiitiee et e et ee s e ease e saa et eas e ensesnsnnennenaennennns 271
[O Y I Y N PPN 272
Trapping and Handling EITOISeeiiiiiiiiiiieee e e e e e e s eaaraeeeeeeeas 273
SYSIEM EXCEPLIONS ... e e e e e e e e e et e e e e e s e aaaens 273
CUSLOM EXCEPLIONSuuiiiiiieiee e i ittt e e e e s e s e e e e s e et e e e e e e e s e ab b b e e eeeeaesssansntbaneeeaaeeeaanes 274
E X CEPT ION ettt e e et e et et e et e e et e e et e e et e e e e e e e e aaen 274
WHEN L. DO ittt et ettt ettt 276
8. BUilt-in functions and Variallescooouuiiiiiiiiie e 280
(0001011 AR = T T= o S PRSP 280
CURRENT _CONNECTION ..tiitiitetsiete et s et e et e e et et e aaa e eaa et ea et eaa et aa et esnesnannesnsnnns 280
CURREN T D A T E ettt e et e e e e et e e et e e et e e et e e et eaneenaen 280
CURRENT _ROLE ...ttt ettt et e et e et e e e e e e e e e et e e e e s e e e e e e e ens 281
CURRENT _TIME ettt ettt e e e s e e e e e e s e e e s e e e s e e e s e e ea e e enrennenes 281
CURRENT _TIMESTAMP .ottt e e e et e e e et e e et e e et e e et s e et aeeenannns 282
CURRENT _TRANSACTION .tiitiitiiiiieineeee et et ee et es e s eas e s eeen s e en s ensen s e s ensensensensensensenrenns 283
CURRENT _USER ..ttt ettt ettt s e e e e s e s e s e e e s e s e s e s e s e e e e e s e e e e e e ennen 283
[I I N PP UPRPTEN 283
LS 000 | 5 PP PP PP 284
INSERTING ettt et e e et e et e e e e et e e et e e et e e et e e et e e et e e et aaeaenesnaen 284
N TR 285
[PRSPPI 285
] 5 SRR 286
O AT O 16\ PP 286
SOLCODE .ttt ettt et e et et e et et e et e et e et et e et e et e et et e rt e e e et e et e reeeee e 287
SOL ST ATE ettt ettt et et e e et e e et e et et e et e et et e et et e r— e et e et et e n e e e e 287
O N PP PPTPRPPRPRN 288
"TOMORROM ' .ttt st et et et et et st e e s e et e e e e e e s e e e s e e e e e e enaen 289
L0 1 7N I PPN 289
Y E ST E R D A Y | ittt ettt e e 290
L1 PP 290
SCAIAI FUNCLIONS ..ottt et e e e ettt e e ettt e e e bt et e e s anbb e e e e anbneeeeennbeeeeenntneeeeans 291
Functions for Working with Context Variablesccccviiieiii i 291
MathematiCal FUNCLIONSuuiiiiiiiiie ettt e et e e e e s e s 294
Functions for Working With SEHNQScevviiieiiee e 306
Date and Time FUNCLIONSccoiiiiiieiiiiiie et e ettt e st e et e e et e e s bae e e e e snsaeaeeennseeeeeans 322
TYPE Casting FUNCLIONSueiiiiiiii e e e e e e e e e s s rereeaeeas 326
Functions for BitwiSe OPEralionsuueiiieeeeiiiiiiiiiee e e e ccr e e e e e e e s st e e e e e e s e ennreaeeeeas 329
Functions for Working With UUIDcooiiiiiiiiiie e a e 332
Functions for Working with Generators (SEQUENCES)ccevevurrrierieeeeeiiiriieeeeeeeeeeseivveeeeeens 334
ConditioNal FUNCLIONScooiiiiiie ittt st e e e e s et e e s anbne e e e s nnnneeas 335
AQOregate FUNCLIONScoiiiiiiiiiee e et e e e e e e e e e e e s ettt e e e e e e e s seaa et aeeeeaeessasntbaneeeeaeeesans 339
AV G() ettt ettt ettt et ettt ettt e et et et e et e et e e e et et et e et e e eteete st eans 340

viii

Firebird 2.5 Language Reference

(o0 18] N (TR T TP RTT 340

(TS 0 TSRO 341

IVIAX() +eevt et eeeeeeeeeee et et e e ea e et e et e e et et e e et e ee e et e e et e ea e e e eeereeeteeateeeeeeae e eeereeeteete e e e eteereeeraeareaeeas 343

Y TN TP 343

SUMU) vttt ettt et e et et et et et et et et e et et et e et et et et ettt et et et et et e et et et et et et e e et en s 344

9. TranSACION CONIOleiiiiiiiiee ittt e e et e e ettt e e s st et e e e s nab e e e e e anbae e e e ansn e e e s annbeeeeennnes 346
TranNSACHION SEALEIMENLSceiiiiiiiie ettt e e e e s e e e s st e e e e b b e e e s snbte e e e e anbeeeeeannseeeeennneees 346

SET TRANSACTION ottt e e e et e et e et e et e et e ea et et et eaaenaenaenaenennenns 346

L0017 1 1 I PP P PP UPPPP 352

O I I = N X TP 353
SN Al © | I PRSPPI 355
RELEASE SAVEPOINT ..ottt ettt st e e st e e st e e nnneeennteeennneeeneees 356

INtEN@l SAVEPOINTSuviiiiiiiee e e e e e e e e e s e e e e e e e e e s e e ssaabbaeeeeeeeeseenantbraeeeaaeeaaanns 356
SaVEPOINES AN PSOL ..ooiiiiiiiiiiieie e e e e e e e e e s et e e e e e e e s s santbrereeeaeeesaannnreees 357

S ot SRR 358
LU 1191 g (o= (] o PSPPSR 358
Specially Privileged USEY'Suviiiiiie it e s e e 358
RDBSADMIN ROIE ..o 360

F X [0 T 0TS (= 0] £ PR PPRR 363

SQL Statements for User ManagemeNtcc.vvveeeiiee e e e s esstrree e e e e e s s snrrae e e e e e e e e e 364

SOQL PriVIIEOES ...t e e e et e e e e e e s e e e e e e e e —r e e e e e e s aarrrarraaaans 368

THE OBJECE OWIES ... e e s e e e e e e e e e s bbb e e e e e e e e s saaanrraeeeaaens 368
Statements for Granting PriVIIEJESooociiiiieiie e 368
Statements for REVOKING PriVIIEOESuvveiiiieii i 374
Appendix A: Supplementary INfOrMatioNoociiiiiiiiiee e e e 379
The RDBSVALID BLR FIEIAeviviiiiiiiiiiieiiiiiieieteteretetssssesssssersssssssssrersrsrsrsrsrersrsrsrrrerrrrrrrr—... 379
HOW INVAlTAAION WOTKSeeiiiiiiiiiee ettt ettt e e e e nnnneee e e 379

A NOE ON EQUAITTY ©vveeiieiee e e e e e e e e e e e e s s et e e e ea e e e s seanrrrareeaaeas 381
Appendix B: EXception Codes and MESSAESuveiriieeiiiiiiiiiiei e e e e s seitirae e e e e e e e st er e e e e e e s saaaaaaeeeaaeesans 382
SQLSTATE Error Codes and DESCIHPLIONSvvveiieeeiiiiiiiieiie ettt e e e s e e e e sanrvae e e e e 382
SQLCODE and GDSCODE Error Codes and DeSCIiptionscccvveieeeeeeiiiciiieec e 390
Appendix C: Reserved Words and KEYWOITScccuiiiiiiie ettt a e 424
RESEIVEA WOITS ...ttt e et e e e et b e e e e st e e e s enbb e e e e s nb e e e e e annnneeeennnees 424
(=Y AT o o < RPN 425
ApPPENdiX D: SYSIEM TaDIESuviieiiie e e e e e e e e e e e e s e a e e e e e e anrraes 429
RDBSBACKUP_HISTORY ...ttt ettt a bt e e s et e e e s s e e e s nnnneeeeennees 430
RDBSCHARACTER _SETS ...ttt ettt et et e et e e e s e e e e nees 430
RDBSCHECK _CONSTRAINTS .. ceiiiieiitiee ettt ettt et e s st a e st e e e s nnse e e e e annaeeees 431
RDBBCOLLATIONS ...ttt ettt e e sttt e e e e e e e e s enbe e e e e anbb e e e e anbeeeesanneeeeeans 432
RDBEDATABASE ...ttt e e e ettt e e ettt e e et e e e e e b e e e e nna e e e nnes 432
RDBSDEPENDENCIESccoiiiiiie ittt e e st e e s et e e s asee e e e s nnsaeaeesnnteeeeeane 433
RDBSBEXCEPTIONScoiiiiiiiieeiiiiee ettt sit et e e sttt e e e s st a e e e sttt e e s anste e e e aannae e e e anbeeeessnnneeeeans 434
RDBBFIELDS ...ttt ettt e e e ettt e e e e bbbt e e e e bt e e e e e nbte e e e entneeeeannneeeas 434
RDBSFIELD_DIMENSIONSiiiiieiiiieie ettt e sttt e s st e e s s e e e s ansbe e e e s nntneeeeannaeeas 438
RDBBFILES ...ttt e e et e e e st e e s e bttt e e e et e e e e e nbe e e e e enbr e e e e nnnneeas 438
RDBBFILTERSoeiiiiitiiie ittt ettt e ettt e e e s a et e e e sttt e e e e e nb bt e e e e nbe e e e e snnneeeeannneeeas 439
RDBBFORMATS ..ttt e e e e e sttt e e e ettt e e e e bttt e e e anbee e e e asbaeeeeannbaeeeeanseeeeeaas 439
RDBBFUNGCTIONS ...ttt e e e ettt e e e e st et e e s et b e e e e e enba e e e e enbeeeesannbeeeeennnes 440
RDBSFUNCTION_ARGUMENTS ...ttt e e s nneea s 441
RDBSGENERATORSoeiiiiiiiiiie ittt ettt ettt e e e st e e e e nsb et e e e s nte e e e e anbae e e e e nnnaeeeennnees 442
RDBBINDICEScoiiiiiiiie ittt s ittt e e ettt e e e e sttt e e e s bt e e e e e nbb et e e e nbe e e e e ansneeeeennnaeeas 442
RDBSINDEX_SEGMENTSoeiiiiiiiiiiie ettt ettt e ettt e et e e s st e e e s anbe e e e s nnneeeennnees 444

Firebird 2.5 Language Reference

RDBBLOG _FILESeieiee ittt ettt ettt e ettt e e et e e e et e e e e anbae e e e e nnneeas 444
RDBBPAGES ..ottt ettt e et e ettt e e et e e e Rt e e e e n b e e e e e a b e e e e anraeeeeans 444
RDBSPROCEDUREScooiitiiieiiiiiee ettt se ettt e e e st e e s st e e e e enb bt e e e s snbae e e e e nnaneeeennneees 445
RDB$PROCEDURE_PARAMETERSooiiiiiiiie ittt 446
RDBSREF_CONSTRAINTS ...ttt sttt et e e st e e et e e e snn e e e e annneee s 447
RDBBRELATIONS ...ttt ettt ettt et e e sttt e e e ettt e e s sn bt e e e s bt e et e e ansbe e e e e nnaneeeennneeeeeaan 448
RDBSRELATION_CONSTRAINTS ...oeiiiiiiiiiie ettt st e e s e e e s snbaea e s ansaeeeeanes 449
RDBSRELATION_FIELDSottt ettt e st e et e e e s e e e ennnes 450
RDBBROLES ..ottt ettt e e ettt e e e n bt e e e e nbe e e e s sbbe e e e e annbe e e e e nnbeeeeeans 451
RDBSSECURITY _CLASSESoiiiieiiiiite ettt e sttt e site e ettt e e s sttt e e s nnsae e e e anbaeeessnnneeeeans 452
RDBSTRANSACTIONS ...ttt ettt e et e e e st e e e s antb e e e e sbe e e e s sbee e e e s annneeeeennees 452
RDBSBTRIGGERScooiiiiiiiiiiiitie ettt e ettt e e ettt e e e st et e e e s bt e e s anbbe e e e aanbe e e e e anbeeeeennnnes 453
RDBSTRIGGER _MESSAGESoiiiiiiiiiii ettt sttt e e s 454
(= I o s R PS 454
RDBBUSER_PRIVILEGESccoiitiiiiiiiiie ettt sttt e ettt e et e e e s nntae e e e s nneeees 455
RDBSVIEW _RELATIONSoiiiiiieiie ittt e sttt e et e e st e e s anbne e e e e nnnne e e s annneeeeaas 456
AppendiX E: MONItoring TaIESueeiiiiiiiiiciiiiiee e e e e e s e e e e e e e st ra e e e e e e 457
MONSATTACHMENTS .ot e e e st e e e e e nbe e e e s e sbeeeesanneeeeeanns 458
Using MONSATTACHMENTS to Kill @ CONNECLIONcccovviiieiiiiiiieeeiieee e 459
MONSBCALL_STACK ettt e e ettt e e e s bt e e e sttt e e e e nbb e e e e enbeeeesanbeeeeeannneeeas 459
MONSCONTEXT_VARIABLES ..ottt e s e es 460
MONSDATABASE ...ttt e bt e e e e sttt e e e et b et e e e e bb et e e e anbee e e e asbeeeeaannbeeeeennnes 461
IMONSBIO ST ATS ittt e e et e e e st te e e e e e s bb et e e e n b et e e e enbbe e e e sanaeeeeeanbeeeeennnees 462
MONSMEMORY _USAGEooiiiiiiiiiie ettt ettt e e st e e e snb e e e e nte e e e e anaeeeeennnees 463
MONSRECORD _STATS ..oiiiiiitiieeeiitite et tee ettt e e sttt e e s ssbe e e s s sbe e e e s asbe e e e e snbeeeeesanseeeeeannneeeeennnes 464
MONSSTATEMENTS ..ottt e e e e e e nsb et e e e st e e e e anbae e e e e nnneeeeanrees 464
Using MONSSTATEMENTS t0 Cancel @ QUENYueiieiieiiiiee et 465
MONSTRANSACTIONS ...ttt et a et e e e s bt e e s et b e e e s snbee e e e saneeeeeeanneeeeennnes 465
Appendix F: Character Sets and Collation SEQUENCESuuviiiiieeiiiiciiee e 467
APPENiX G: LICENSE NOLICE ...ttt e et e e e e e et r e e e e e e s e st e e e e aeessaantbraaeeaaeeeaans 473
AppendiX H: DOCUMENT HISIOMY ..ooiiiiiiiiiiiieiee e e e e e e e e e e e s et e e e e e e e s e ennreees 474

List of Tables

3. 1. OVEIVIEW Of DAB TYPES ...eeeeeiiiiieee ittt e e ettt e ettt e e sttt e e et e e e e s b e e e s s e e e e e b e e e e anbe e e e e anne e e e e annreeas 12
3.2. Method of Physical Storage for Real NUMDENScoooiiiiiiiiiii e 16
3.3. Arithmetic Operations for Date and Time Data TYPEScocuvvrveeiiiiiiieiiiiie e 19
3.4. Collation Sequences for Character SEt UTFSccoiiiiiiiiiiiec et 22
3.5. Maximum Index Lengths by Page Size and CharaCter Sizeoccvveiiiiiiiieiiiiiee e 23
3.6. CONVEISIONS WItN CAST ..ottt e e e e e e e e e s e s e e e e e annne s 30
3.7. Date and Time Literal FOrmat ATQUIMENESuviiiiiiiiie it eeee e e nnee e 31
3.8. Literals with Predefined Values of Date and TimMeeveiiiiiiiieiiiieiee e 32
3.9. Rules for Overriding Domain Attributes in Column Definitionoccovveiiiiiieeinieee e 35
4.1. Description of EXPression EIEMENESueiiiiiiiieeii et 38
4.2. OPErator TYPE PrECEUENCEcouiiiieeiiiie ettt ekt e et e e e e e e e s r e e e s anne e e e e aanes 42
4.3. ArithmetiC OPEraior PrECEUEBNCEuviieiiiiiee ettt e e e e s e e e e e e snnneee s 43
4.4. Comparison OPErator PrECEOEINCEcuiiiiiiiee ittt e e e e nnnreee s 43
4.5. LogiCal Operator PrECEUBINCEcoiiiiiiieiiiiie ettt e e e e e e e e s e e e e e anneeeas 44
5.1. CREATE DATABASE Statement ParameLerScooiuuiiiiiiiiieeiiiiiee et 67
5.2. ALTER DATABASE Statlement ParameELerScoociiiiiiiiiiieeiiiee et e e e e e 71
5.3. CREATE SHADOW Statement ParaMELErScccoiiuriiiiiiiiiieeiiiieeessieeee st e e e snreeesnnnneee e 74
5.4. DROP SHADOW Statement ParaMeterccoiiiirieeiiiiiieeiiieee e st ee e e e e s e e anneee e 76
5.5. CREATE DOMAIN Statement ParaMeLersScccoiiurieiiiiiiiiieeiiiiieessiiee e st e e e snre e e snneee e 77
5.6. ALTER DOMAIN Statement ParaMeELersSccoiiireieiiiiiieeiiiiiee e st e s e e e e 82
5.7. CREATE TABLE Stafement ParameLerscoocuiiiiiiiiieeiiie et 87
5.8. ALTER TABLE Stafement ParameLersccoouiiiiiiiiiieeiieee e 100
5.9. DROP TABLE StAEMENT ParaMELerccciiiiiiieiiiiiie ettt e e e s e e e e 105
5.10. CREATE INDEX Statement ParameLerscoocueiiiiiiiieeiiiiiee e 107
5.11. Maximum INdeXeS Per TaDIcoooiiiiiee it 108
5.12. Maximum indexable (VAR)CHAR 1ENGNoooiiiii e 108
5.13. ALTER INDEX Stalement ParameELerccueiiiiiiiiiieiiiie e e 110
5.14. DROP INDEX Statement ParaMeELerccoocuriieiiiiiiieeiiiiiee e st e s st e e e e s e e e e e s annneee s 111
5.15. SET STATISTICS Statement ParaMeterccooiiuieieiiiiiieeaiiiiee et e e e s nnneee e 112
5.16. CREATE VIEW Statement Parametersc.ueiiiiiiiieeeiiiee e 113
5.17. ALTER VIEW Statement ParameLersccuueiiiiiiiieeiiiii et e e e 117
5.18. CREATE OR ALTER VIEW Statement Parametersc.cccuveieiiiieieeiiieeeesiieee e sineeee e 118
5.19. DROP VIEW StAEMENT ParaMELErccoiiiiiiiiiiiiiee ettt e et e e e e s nnrnee e 119
5.20. RECREATE VIEW Statement ParameELerSccooiuuriiiiiiiiee ittt e e nnnnee e 119
5.21. CREATE TRIGGER Statement Parametersccuueieiiiiiieeiiiiiee e 121
5.22. ALTER TRIGGER Statement Parameterscuviiiiiiiieeiiiiiie e 126
5.23. DROP TRIGGER StalemMeNt ParameLerccuveieiiiiiieeiiiiee et 129
5.24. CREATE PROCEDURE Statement ParaMetersccooiurrreeiiiiiee e e e e s 131
5.25. ALTER PROCEDURE Statement Parametersoeeiiiiiirieiiieiee e 136
5.26. DROP PROCEDURE Statement Parameteroeeiiiiriiieiiiii et e e e e 139
5.27. DECLARE EXTERNAL FUNCTION Statement Parameterscceveeiiirreeiiiiriee s s e 141
5.28. ALTER EXTERNAL FUNCTION Statement Parametersovviiirmieeiiiiieeessiieee e 143
5.29. DROP EXTERNAL FUNCTION Statement Parameteroeviiiiiiieiiiiiiee e 144
5.30. DECLARE FILTER Statement Par@Meterscoouiuurreeiiiieieeiiireeeaaiieee e e s e e e 145
5.31. DROP FILTER StAEMENT ParaMELErccooiiiiiiiiiiiiee ettt e e e e e e e annneee s 147
5.32. CREATE SEQUENCE | CREATE GENERATOR Statement Parametercccoocvvveeiiinieeininneee. 148
5.33. ALTER SEQUENCE Statement ParameLersScoocueeieiiiiiieeiiiieee st e e 149
5.34. SET GENERATOR Statement Parametersc.ceeviiiiiiieiiiieie e 150
5.35. DROP SEQUENCE | DROP GENERATOR Statement Parameterccccveviiiieeeininnee e 151
5.36. CREATE EXCEPTION Statement ParaMeterscoiiiirrrieiiiiiiee st e e 151

Xi

Firebird 2.5 Language Reference

5.37. ALTER EXCEPTION Statement ParaMeterSueeiiirreieiiiieeeesiieeesssseeesssnsseeesssneeesssnseeessane 153
5.38. CREATE OR ALTER EXCEPTION Statement Parametersccuevveiiiiiieiiiieiee i 153
5.39. DROP EXCEPTION Statement Parameterc..eeveiiiiiieiiiieieeesiiiee et e e ineee e 154
5.40. RECREATE EXCEPTION Statement Parametersoccuveieiiiiiiieiiiiiee et sieeee e 155
5.41. CREATE COLLATION Statement ParametersSccoiiueeieiiiieieeiiieieessiieeeesnnseeessnnseeesssnseeessanes 156
5.42. Specific Collation AITDULESooiiciiiiiee e e e e e e e e e s s er e e e e e e e e e eanns 157
5.43. DROP COLLATION Statement Palr@MeEterSeueiiuueeeeiniieieeeiiieeeessiieeessseeeesssseeesesnsnseeessnnes 159
5.44. ALTER CHARACTER SET Statement ParaMeterscoeeiiuuriieiiiieeeeesieeeessiieeeessnieeesssnseeeesnnes 159
5.45. CREATE ROLE Statement Parameterc.ueiiiiiiiiieiiiiiee et siieee e siree e e s s e e s ssnneeeeeans 161
5.46. COMMENT ON Statement PalraiMEter'Scceeiiureiieiiiiieeeiiiieeeessiieeeesssieeeessssseeesssnseessssnseeeseans 163
6.1. Arguments for the FIRST and SKIP ClaUSEScovviiiiiiiiiiiiee ettt 165
6.2. Arguments for the SELECT CoOlUMNS LIStuuiiiiieiiiiiiiiieccee et e e 167
6.3. Arguments for the FROM ClaAUSEeciiii ittt e e e e e s e st re e e e e e e e s snaaarraeeeas 170
6.4. Arguments fOr JOIN ClAUSESccoiiiiiiiiiiii et e e e e e e e e s e st ae e e e e e e s s s sanrraeeeeeeeseannnes 176
6.5. Arguments for the GROUP BY ClaAUSEcuiiiieiiiiiiiiiiiiee et e e setrree e e e e e e s sarranee e e e e e e 187
6.6. Arguments fOr the PLAN ClaUSEc.cooiiiiiiieiee ettt e e e e eab e e e e e e e s s eanrraeeeeae s 191
6.7. Arguments for the ORDER BY ClaUSEcciiiiiiiiiiiiiieiiee ettt e e e e e s rar e e e e e e e 197
6.8. Arguments fOr the ROWS ClaUSEcooiiiiiiiiiii ettt e e st e e e e s et e s e e e e e s s eanrraeeeeae s 200
6.9. How TPB settings affect eXpliCit IOCKINGuvviiiieiiiiiiecee e 204
6.10. Arguments for Common Table EXPreSSIONSuuvieiiieiiiiiiiiiee e ee st e e e srarae e e e e e e e e e 207
6.11. Arguments for the INSERT Statement Parameterseeevieeiiiiiiiiiieieee et 211
6.12. Arguments for the UPDATE Statement ParametersScooooiuiiieieiee e ee e e e e e 215
6.13. Arguments for the UPDATE OR INSERT Statement Parametersccccvveeeeeeeeeiicciiieeeeeeee s 221
6.14. Arguments for the DELETE Statement Parameterscoevveeiiiiiiiiiieiiee et eeivvneeee s 222
6.15. Arguments for the MERGE Statement Parameterseeevvveiiiiiiiiiieiieee et 226
6.16. Arguments for the EXECUTE PROCEDURE Statement Parametersccceeeevvevciivveeeeeeeeeeccnnene, 228
6.17. Arguments for the EXECUTE BLOCK Statement Parameterseevvveeeiiiiiiiiieeeiee e ccciiineeeeenn 230
7.1, SET TERM Pal8MELENSueeiieiiiiiiee ettt sttt at e ettt e e e et e e e e sabe e e e s anneeeeeannbeeeesannteeeeeans 236
A o @ I Yo o S = = 1 01 (= (T 240
7.3. Assignment SEAtEMENt ParaMELEN'Sccviiiei it ee e e e e e e e e s e et e e e e e e e s senneees 245
7.4. DECLARE CURSOR Statement ParaMeLerSueieeiiieieeiiiiieeeasiieeesssiieeeessineeeessssseessssnseeeesnnes 246
7.5. DECLARE VARIABLE Statement ParaMetersueeieiiiiiieiiiieieeesiiiee e siiiee e siieee e snseeesssnnneeee s 249
7.6. IF ... THEN ... ELSE PalAMELENrScccuuviieiiiiiieeeiiiiie ettt ettt e et e e st e e e s bt e e s anbae e e s snneeeeans 253
T7.7. WHILE ... DO PaIAIMELEN'Sciiutiiiieiiiiieeeiiiieeeasiteeeeassteeeesstaeeeeasssteeeeaanteeeesasseeeesansseeeessnseeesssnns 254
7.8. LEAVE Statement Parametersooooiiiiiiiii 255
7.9. EXECUTE STATEMENT Statement PalraMetersccoiiueeieiiiiiieeiiiiieeessiieeessniieeeessneeeesssnnneees 259
7.10. FOR SELECT Statement Palr@MELEN'Sueieiiiuiiieiiiiiieeeiiteeeessineeeesssieeessssseeessssseeesssnsseesssnnees 264
7.11. FOR EXECUTE STATEMENT Statement Parameterscocvevieiiiieieeiniiiee s esiiee e ssiieeee e 266
7.12. OPEN Statement ParaMELErccueeieiiiiiie ettt e et e e e s b e e e s nbe e e e s snbneeeeannnneeas 267
7.13. FETCH Statement Palr@MELEN'Scuuueieiiiiieeiiiiiieessiieeesssiteeeesasaeeeeasssseeessseeeesssnsseeeeannseeeessnnens 270
7.14. CLOSE Statement PalraiMEtereeeiiiiiiieeiiiiieeessiieeeessiteee e s steeeessstneeessnbeeeessnbseeessnnnneeesanneeas 271
7.15. IN AUTONOMOUS TRANSACTION Statement Parameterc..eeveiivreeeiiiiieee i 272
7.16. POST_EVENT Statement ParaMeterceieiiiieeieeiiiieieeanieieessiieee s snneeesssnnneessssneeesssnnneeessnnnes 273
7.17. EXCEPTION Statement Par@MELErSc.ueeieiiieeeeeiiiieeessiieeeessiseeesssssaeeesssteeessssseeessnnsseesssnnees 274
7.18. WHEN ... DO Statement ParamELErSccuiiiiiiiiiiiiiiiiiiiieiee ettt 277
8.1. CURRENT _TIME PaIAMELENcuveiieiiuiiiieeiiiiieeseiieeeessiiieeeeasnsteeesssteeeessntseeeesnnnaeeessnseeeesannneeas 281
8.2. CURRENT _TIMESTAMP PalAMELENueeiiiiiiiiieiiiiiiieeesiieeesssiteeeesssseeesssseeeessnnsseesssnseeeessnsees 282
8.3. RDBSGET_CONTEXT FUNCLION ParameELErsScoouvviieiiiiiiee ettt 291
8.4. Context variables in the SYSTEM NAMESPACEuvvveieiieeeiiiiiiiieeiee e e e e eesiiiaree e e e e e e s seinnreereeaaeeeenans 292
8.5. RDB$SET_CONTEXT FUNCLION ParamMELErScoiiiiiiiieiiiiiie ettt st 293
8.6. ABS FUNCLION Par@MELESeiiiiiiiiie ittt ettt e e st e e e sttt e e s ansbe e e e e anreeeeeans 294
8.7. ACOS FUNCLION PAIGIMELEYc.vviiieiiiiiiieeiiieie e ettt e e et ee e e st e e e s st e e e s ssbt e e e e abteeeesanteeeeeannneeeeennnes 294

Xii

Firebird 2.5 Language Reference

8.8. ASIN FUNCLION PArAMELEScoiiieieii ettt e e e e e et e e e e s e e e e et seeeseseesbabseeeas 295
8.9. ATAN FUNCLION PArAMELESoeeiiiieeiiie et e ettt e e e e e e et e s e e e s e s e e s bbb e e e e s e sesabaaanaaes 295
8.10. ATANZ FUNCLION PAraMELELScevvveiiiiieeiieeeee et e e e et s e e e e e e e e e b s e e e s e e e s e bab e eeas 296
8.11. CEIL[ING] FUNCLION Par@mMELErScccuviieiiiee ettt e e e e e e et re e e e e e e s e b raaeeeaeeeaaans 296
8.12. COS FUNCLION ParaMELEYoeeviiieii et e et e e e e e et e et s e e e e e s eesbaba s eeeeaseeens 297
8.13. COSH FUNCLION ParaMELEYoevviviii ettt e e e e e e et s e e e e e e e aebb e eeeas 297
8.14. COT FUNCLION PArAMELESuniiiiiiieeieie ettt e e e e ettt e e e e e e e e e et s e e s s e s e e s bbb s eeeessessbarannses 298
8.15. EXP FUNCHON PArGIMELETuvueniiiiieiiiiete e ettt s e e e e e e ettt s e e e e e s e e saab s e e e e s s eesaabaa e seessesessses 298
8.16. FLOOR FUNCLION PAraMELEccoiiieeiiiiei ettt e e e e st e s e e e e e s e e et e b e e e e e s e e eeebanans 298
8.17. LN FUNCLION ParGMELEYoevvvieiiiiiiei it e e e e ettt e e e e e e e e e e e et e s e e s s eesaabbb e seeeeesenenes 299
8.18. LOG FUNCHION PArGMELETSvveeiiiiiiieeeiieee ettt e e e et e e e e e e e e e et e e e e e e s s e seabbbseeeasseessbrans 299
8.19. LOGI0 FUNCLION PAraIMELETvvueiiieeiiiieiiiee e e eee ettt s e e e e e e e et s e e e s e s ee s bbb s e e sesseesbbaaaseeseeseenses 300
8.20. MOD FUNCHION PArBIMELEISiiiiiiieetiiiee ettt e ettt e e e e e e e e e et b eeeeeasseaabbb s eeseeseeerarans 300
8.21. POWER FUNCLON PArBIMELEISiiiiiiieiiiee ettt e e e ettt s e e e e s e e ea b s s e e easeseaabbaeeeesseneneses 301
8.22. ROUND FUNCLION PAraMELELSuvveeiiiieiieeeee ettt e e e e e e e e e e e e e e ae b e e 302
8.23. SIGN FUNCLION PAr8MELETuvveeiiiiiiiieieee ettt e e e e e ettt s e e e e e s e e ab b s e eesaseeesbbaseeesaseees 303
8.24. SIN FUNCHION PAr8MELETuvueniiiiiiiiieiieee ettt e e e e et s e e e e e s e e et it b s e e eesseeeaabba s seesseseneres 303
8.25. SINH FUNCEION PAr8MELETuvveiiiiiiiieiiiee ettt e e e et e e e s e e e e e e bbb s e e e s e sesaabbaseeesanaens 304
8.26. SQRT FUNCHION PArBIMELESuuvviriiiiriririrererererererrrrrarerrrrr.—.————————————————————.—.——....—.———..........—.—————. 304
8.27. TAN FUNCHION PAr8MELETvvueniiiiiiiiieeiie ettt e e e e s ettt e e e e e s e e eeab e s eesseseesbaa e seessesensnes 304
8.28. TANH FUNCLION PArGMELET'Suvneeiiiiiiiieiee ettt e ettt e s e e e e e s e e e s e e e esssesaaba e eeeaseeens 305
8.29. TRUNC FUNCLION PAraMELELSevveiiii ittt sttt e e e e e e s e e bbb s e e e e e s e e eaa b e eeeaeas 305
8.30. ASCII_CHAR FUNCLION Palr@MELESuviiiiiieeiiiiiiiiiee e et e e e st ee e e e e e e s s sanraae e e e e e e e e ennnes 306
8.31. ASCII_VAL FUNCLON ParaMELEScoiiiiiiiiieee e ettt e e e e e st e e e e e e e s s sanaraaeeeaaeas 307
8.32. BIT_LENGTH FUNCLON ParaMmELESoiiiiiiieeee ettt e sttt a e e et e e e e e e e s e e nntrnneeeae s 307
8.33. CHAR[ACTER]_LENGTH FUNCLION Parameterccoviiiiiiiiiiiiieeee e et e e e s e e e e 308
8.34. HASH FUNCLION PArAMELESuiiiiiiieeeieee ettt e e e e e e e e et e s e e e e s e s ea bbb s e eeeeseeeraaans 309
8.35. LEFT FUNCLION ParaMELEI'Svvviiiiiiiiieeee ettt e e e e e et e bt s e e e e e s eesbb e eeeeseeenes 310
8.36. LOWER FUNCLION ParamMELErSooviiiiiiii ettt s e e e e e e et s e e e e e e e e aaraaaaas 310
8.37. LPAD FUNCLION PArBIMELENS ... iiiiiieeiitee ettt e e e e e ettt s e e e e e e et et b s e e e e e s e e eaabba s eeseeeeeebaaans 311
8.38. OCTET_LENGTH FUNCLION Para@mMELESccciiiiiiiiiieiiee e ettt eee e et e e e e e enarrn e e e e e e e e e 312
8.39. OVERLAY FUNCLION PAr@MELErSccoiiieiiiiii ettt e ettt s e e e e e s e e et s e e e e e s ereaaba e eeeaseenes 313
8.40. POSITION FUNCLION PAraMELEr'Sevvviiiiiieiieeeeee et e e e e e e et e e e e e e e eaabaan s 314
8.41. REPLACE FUNCLION PArAMELELSoovveriiiii et e e ettt e e e e e e e e et e s e e e s e s eaabaa s eeseeseennes 315
8.42. REVERSE FUNCLION PAIrAMELENcooiiiieeeieee et ettt e e e e e e ettt e e e e e e e eesabaseeeeeaeeees 316
8.43. RIGHT FUNCLION PArBIMELEISuuiiiiiiiieeiiee ettt e e e ettt e s e e e s e s e e e b seesesseesbabaseeeeasennns 317
8.44. RPAD FUNCLION PArAMELEISvvveeiiiiiiiieeee ettt e e e et s e e e e e e e e et s e e e s e s eea bbb e eeeeeseeenes 318
8.45. SUBSTRING FUNCEION PArGMELE'Sevveiiiiiiiiiieeiee ettt e e et e e e e e e e ea it s s e e e e s e eeeaaaans 319
8.46. TRIM FUNCLION PArGMELEISvvvniiiiiiiiieete ettt e ettt s e e e e e e e e et s e e e e s s e e eaaba s e eeeeaeeens 320
8.47. UPPER FUNCLION ParaMELETooeeeiiieei ettt e e e e et e e e e e s e e e 321
8.48. DATEADD FUNCHION PArAMELEScvvvviiiiieeiieeeee ettt e e e e e e et e e e e e s e e e aabaan s 322
8.49. DATEDIFF FUNCLION PAraMELEISvvveeii ettt e e e e e e e e e e e e e e e e babaaa s 323
8.50. EXTRACT FUNCLION PAr@MELErSccoiiieeiiiieiee et e ettt e s e e e e e s e e et s e e e e e s eesbaba s eeeeeseeens 324
8.51. Types and ranges Of EXTRACT FESUILScciiciiiiiciiiiieeeee e e sttt e e e e e st e e e e e e s ssaanr e e e e e e e e s e e annees 325
8.52. CAST FUNCLION PArAMELELSoevvviii ittt e et e e e e e s e e e e e e e e e e s e e e aabba e eeeas 326
8.53. Possible Type-CastingS With CASTcoiiiiiiieiie et e e e e e e s st aeeeeeeeas 327
8.54. BIN_AND FUNCLION Palr@MELErSociiiiieiiee ettt e e e et e e e e e e e s e sntnraaeeaaeeeaans 329
8.55. BIN_NOT FUNCLION Par@mEterccoiiiiiiiiiiiiiiiei e e e e s st e e e e s st rae e e e e e e e e e e eanneeees 330
8.56. BIN_OR FUNCLION ParamELErSuueiiieeiiiiiiiiiiiiee e et e e e e et e e e e s e st e e e e e e e e e s s nanneeees 330
8.57. BIN_SHL FUNCLION Palr@MELErS ...ttt e sttt e e e e s st re e e e e e e s s s entnraaeeaaeeeaans 331
8.58. BIN_SHR FUNCLION Par@mELENSceiiiiieiiiiiiiiiee et e e et e e e e e e e s eanernes 331
8.59. BIN_XOR FUNCLION PAraMELEN'Sciiieiiiiiiiiieiie e ettt e e e e s ettt e e e e e e et e e e e e e e e s sanrraeeeeaae s 332

Xiii

Firebird 2.5 Language Reference

8.60. CHAR_TO_UUID FUNCLION ParGMELENeviieiiiiiiieeiiieieessiieeeeasiieee s siieeeesssneeesssnsaeaessneeeeesns 333
8.61. UUID_TO_CHAR FUNCLON PAramELEr'Sccceeiiiiiiiieieieee e e ettt ee e e e e e s s et e e e e e e s e e sntaraneeeaeeeeaans 334
8.62. GEN_ID FUNCLION Para@mMELENSuuviiiiieeii ittt e e e e e e e s e st ee e e e e e e e e sanneees 334
8.63. COALESCE FUNCLION PAraMELEL'Sceeieii ittt ee e ettt e e e e s e ettt e e e e e e e s st e e e e e e e e s e enntrneeeeaens 335
8.64. DECODE FUNCLION PAraMELES'Sciiiieiiiiiiiiieiee e e e e e ettt e e e e s s etaae e e e e e e s e et e e e e e e e e e s s snnraaeeeeeeens 336
8.65. [IF FUNCLION PaIaMELENSc.oeiiiiiiiiiiee ettt e e e e e s r e e e e e e s s e bbb e e e e e e e e s e e snnareeeeeeas 337
8.66. MAXVALUE FUNCLION ParaMELEN'Sccoiiiiiiieeee ettt e e e e e s st ae e e e e e e s s entrnneeeae s 338
8.67. MINVALUE FUNCHION PalraMELErScoo it ie ettt e e e e et e s e e e e e s snnnraaneeeaens 338
8.68. NULLIF FUNCHION PalramMELErSccoiiiiiiiiiee ettt e e e e e e e et e e e e e e e s s ennareaeeaaeeeaaans 339
8.69. AVG FUNCLION PAraMELEL'Seeiiieeei ittt e e ettt e e e e e e e e e e e e e e s e et e e e e e e e e e sssasnraaeeaeeeesaananes 340
8.70. COUNT FUNCLION ParamMEtErSuvviieiieeeiiiiiiiiiei e e e e s ee sttt e e e e e e e s s et ee e e e e e e s s e sntar e e e e aaeessanannenens 341
8.71. LIST FUNCLION Par8MELEISuviiiiieeeei ittt e s ettt e e e e e s et e e e e e e e s e st ba e e e e e e e e s s anntraneeeaens 342
8.72. MAX FUNCLION PalraMELErS ... iiiiieiie ettt e st e e e e e e e e e e e e e s s anbbae e e e e e e e e s annnrenes 343
8.73. MIN FUNCLION Para@MELErSccuiiiiiiiiee ettt e e e e s e s e e e e e e e e et a e e e e e e e s e ennnerenees 344
8.74. SUM FUNCLION PAraMELEL'Seiiiiee et ittt e e e e ettt e e e e e e e et e e e e e e e s e et b be e e e aaeesassnntaaeeeaeeeseannnes 344
9.1. SET TRANSACTION Statement ParameELerscooiueieeiiiiieeeiiiiiieessiieee e sieee e sieeee e sneee e s snneeeee s 347
9.2. Compatibility of Access Options for RESERVINGcocooiiiiiiiiiiiiice et 351
9.3. COMMIT StAEMENT ParaIMELENveiieiiiiiiie ettt et e e st e e et e e s stbe e e e s snbae e e e sanbeeeeeannneeas 352
9.4. ROLLBACK Statement ParaimMELErSccuuuuuiieeeeiiieeiiiiiis e e e e e e eeettisas s e s e e e eeeabenanseeesaseeasennnseeasanennes 353
9.5. SAVEPOINT Statement PalraiMeEterccoiiiiieeiiiiiieeeiiiieesssiiieeessiteeeessseeeesssssaeeesssnneeeessseeeeeans 355
9.6. RELEASE SAVEPOINT Statement ParaMetercooiieeeieiiiiiieeiiieieessiieeeesnieeeesssneeesssnseeessanes 356
10.1. Parameters for RDBSADMIN Role GRANT and REVOKEccoiiiiiiiiiiiiiie e 360
10.2. Administrator (“Superuser”) CharaCleriStiCScoiiiiuiiiiiie e a e 363
10.3. CREATE USER Statement ParameLersSccoiiuiiiiiiiiiieeeiiiiie e eiieee e iieee e e s snnnee e e 364
10.4. ALTER USER Statement ParamELErSccooiuiieeiiiiiieeeiiiiee e eiiiee e siiee et a et ee e snaeeesannnneee s 366
10.5. DROP USER Statement PalraMetercccoiueeieiiiiiiieeiiiiieeesiiieeesssiieeeesssneeesssnnseeesssnsneesssssneses 367
10.6. GRANT StaLeMENt ParaMELENSiiiiiiieeiiiiiie et e et e e e e e e e et e e e e e e e eesaenaeeeeeaeennes 369
10.7. List of Privileges 0n TablEScuiiiiiiiiee e e e e e e 372
10.8. REVOKE Stalement ParamELarSiii ittt e et e e e e e e e et s e e e e e e e enaeea e e e s 375
B.1. SQLSTATE Codes and MeSSAgE TEXISccoiiiiiiiiiiie e e ettt e e e e s s e e e e e e e s eaaneees 382
B.2. SQLCODE and GDSCODE Error Codes and Message TeXIS (1) .ooeeevviviviiieieeeee e 390
B.3. SQLCODE and GDSCODE Error Codes and Message TeXIS (2) ..oeeevvvvcvirieiieeee e 399
B.4. SQLCODE and GDSCODE Error Codes and Message TexXIS (3) .ooveevviviiirieieieee e e 407
B.5. SQLCODE and GDSCODE Error Codes and Message TeXIS (4) .ooeeevvivciivieiieee e 415
D.1. LiSt Of SyStemM TaDIESeeeiiiiiiiie ettt e e e et e e e e st e e e s annb e e e e nnees 429
E.1 List of MONITONNG TADIES ...ccceiiiiiiiiiiieiee e e e e e s e e e e s e et e e e e e e e s s nanneaees 457
F.1. Character Sets and Collation SEOUENCESuuviiiieeeeiiiiiiiiiiee e e e e s eeetre e e e e e e s s ar e e e e e e s e e enarneeeeeas 467

Xiv

Chapter 1

About the Firebird SQL
Language Reference

for Firebird 2.5

ThisFirebird SQL Language Referenceisthefirst comprehensive manual to cover all aspectsof thequery
language used by developers to communicate, through their applications, with the Firebird relational
database management system. It hasalong history.

Subject Matter

The subject matter of thisvolumeiswholly Firebird's implementation of the SQL relational database language.
Firebird conforms closely with international standards for SQL, from data type support, data storage structures,
referential integrity mechanisms, to data manipulation capabilities and access privileges. Firebird also imple-
ments arobust procedural language—procedural SQL (PSQL)— for stored procedures, triggers and dynamical -
ly-executable code blocks. These are the areas addressed in this volume.

Authorship

Thematerial for assembling this Language Reference has been accumulating in thetribal lore of the open source
community of Firebird core devel opers and user-developersfor 15 years. The gift of the InterBase 6 open source
codebase in July 2000 from the (then) Inprise/Borland conglomerate was warmly welcomed. However, it came
without rights to existing documentation. Once the code base had been forked by its owners for private, com-
mercial development, it became clear that the open source, non-commercial Firebird community would never
be granted right of use.

The two important books from the InterBase 6 published set were the Data Definition Guide and the Language
Reference. The former covered the data definition language (DDL) subset of the SQL language, while the latter
covered most of the rest. Fortunately for Firebird users over the years, both have been easy to find on-line as
PDF books.

Language Reference Updates

The Data Definition Guide, covering the creation and maintenance of metadata for databases, was “good
enough” for several years: the data definition language (DDL) of a DBMS is stable and grows slowly in com-
parison to the data manipulation language (DML) employed for queries and the PSQL used for server-based
programming.

About the Firebird SQL Language Reference

The leader of the Firebird Project's documentation team, Paul Vinkenoog, took up the cause for documenting
the huge volume of improvements and additions to DML and PSQL as Firebird advanced through its releases.
Paul was personally responsible for collating, assembling and, to a great extent, authoring a cumulative series
of “Language Reference Updates’—one for every major release from v.1.5 forward.

Gestation of the Big Book

From around 2010, Paul, with Firebird Project lead Dmitry Yemanov and a documenter colleague Thomas
Woinke, set about the task of designing and assembling a complete SQL language reference for Firebird. They
began with the material from the LangRef Updates, which is voluminous. It was going to be a big job but, for
al concerned, a spare-time one.

Then, in 2013-4, two benefactor companies—MICEX amd |BSurgeon—funded three writers to take up this
stalled book outline and publish a Firebird 2.5 Language Reference in Russian. They wrote the bulk of the
missing DDL section from scratch and wrote, translated or reused DML and PSQL materia from the LangRef
Updates, Russian language support forums, Firebird release notes, read-me files and other sources. By the end
of 2014, they had the task almost complete, in the form of a Microsoft Word document.

Translation . ..

The Russian sponsors, recognising that their efforts needed to be shared with the world-wide Firebird commu-
nity, asked some Project membersto initiate a crowd-funding campaign to have the Russian text professionally
translated into English. The trandlated text would be edited and converted to the Project's standard DocBook
format for addition to the open document library of the Firebird Project. From there, the source text would be
available for translation into other languages for addition to the library.

The fund-raising campaign happened at the end of 2014 and was successful. In June, 2015, professiona trans-
lator Dmitry Borodin began trandating the Russian text. From him, the raw English text went in stages for edit-
ing and DocBook conversion by Helen Borrie—and here is The Firebird SQL Language Reference for V.2.5,
by...everyone!

...and More Translation

Oncethe DocBook source appearsin CV'S, we hope the trusty translators will start making versionsin German,
Japanese, Italian, French, Portuguese, Spanish, Czech. Certainly, we never have enough trandators so please,
you Firebirders who have English as a second language, do consider translating some sections into your first
language.

Contributors

Direct Content

e Dmitry Filippov (writer)

» Alexander Karpeykin (writer)

» Alexey Kovyazin (writer, editor)

e Dmitry Kuzmenko (writer, editor)

» Denis Simonov (writer, editor, coordinator)

About the Firebird SQL Language Reference

» Paul Vinkenoog (writer, designer)
e Dmitry Yemanov (writer)

Resour ce Content

» Adriano dos Santos Fernandes
» Alexander Peshkov

» Vladydav Khorsun

» Claudio Valderrama

» Helen Borrie

» and others

Trandation
» Dmitry Borodin, megaTranslations.ru
Editing and Conversion of English Text

 Helen Borrie

Acknowledgments

Thefirst full language reference manual for Firebird would not have eventuated without the funding that finally
brought it to fruition. We acknowledge these contributions with gratitude and thank you all for stepping up.

Sponsors and Other Donors

Sponsors of the Russian Language Reference Manual

Moscow Exchange (Russia)

Moscow Exchange is the largest exchange holding in Russia and Eastern Europe, founded on De-
cember 19, 2011, through the consolidation of the MICEX (founded in 1992) and RTS (founded in
1995) exchange groups. Moscow Exchange ranks among the world's top 20 exchanges by trading
in bonds and by the total capitalization of shares traded, as well as among the 10 largest exchange
platforms for trading derivatives.

IBSurgeon (ibase.ru) (Russia)

Technical support and developer of administrator tools for the Firebird DBMS.
Sponsors of the Translation Project

Syntess Software BV (Netherlands)
Mitaro Business Solutions (Liechtenstein)

Other Donors

Listed below are the names of companies and individual s whose cash contributions covered the costs for trans-
lation into English, editing of the raw, trandated text and conversion of the whole into the Firebird Project's
standard DocBook 4 documentation source format.

http://www.moex.com
http://www.ib-aid.com
http://ibase.ru
http://www.syntess.nl
http://www.mitaro.li

About the Firebird SQL Language Reference

Integrity Software Design, Inc. (U.S.A))

beta Eigenheim GmbH (Germany)
Jason Wharton (U.S.A)

Sanchez Balcewich (Uruguay)
Aage Johansen (Norway)

André Knappstein (Germany)
Marcus Marques da Rocha (Brazil)
Thomas Vedel (Denmark)
Alexandre Benson Smith (Brazil)
Pierre Vairin (France)

Doug Chamberlin (U.S.A.)
OMNEet, Inc. (Switzerland)
Konrad Butz (Germany)

Carlos H. Cantu (Brazil)

Laszlo Urmenyi (Brazil)

Rudolf Grauberger (Germany)
Rene Lobsiger (Switzerland)
Xavier Codina

Russell Belding (New Zealand)
LucaMinuti (Italy)

Chris Mathews (U.S.A))
Wolfgang Lemmermeyer (Germany)
Acosta Belzusarri

Alberto Alfonso Luna

Cees Meijer

Olivier Dehorter (France)

Web Express

Marc Bleuwart

Shaymon Gracia Campos

David Keith

Daniele Teti (Italy)

Istvan Szabo

J. L. GarciaNaranjo

Helen Cullen (New Zealand)

dimari GmbH (Germany)
KIMData GmbH (Germany)
Trans-X (Sweden)

Cointec Ingenierosy Consultores, S.L. (Spain)
Mattic Software (Netherlands)
Paul F. McGuire (U.S.A))
Martin Kerkhoff

Bulhan Bulhan (Australia)
Guillermo Nabrink (Brazil)
Heiko Tappe (Germany)
Craig Cox (U.S.A)

Alfred Steller (Germany)
Thomas Smekal (Canada)
XTRALOG SARL (France)
Fernando Pimenta (Brazil)
Thomas Steinmaurer (Austria)
Hian Pin Tjioe

Mick Arundell (Australia)
Anticlei Scheid (Brazil)

Mark Rotteveel (Netherlands)
Hannes Streicher (Germany)
Paolo Sciarrini (Italy)

Daniel Motos Guerra

Simeon Bodurov

Robert Nixon

Andrds Omacht (Hungary)
Sergio Conzaez

Gabor Boros

Cserna Zsombor (Hungary)
Uwe Gerold

Pedro Pablo Busto Criado
Spiridon Pavlovic

A. Moraes Moraes
Francisco Ibarra Ozuna

Chapter 2

SQL Language Structure

This reference describes the SQL language supported by Firebird.

Background to Firebird's SQL Language

To begin, afew points about some characteristics that are in the background to Firebird's language implemen-
tation.

SQL Flavours

Distinct subsets of SQL apply to different sectors of activity. The SQL subsetsin Firebird's language implemen-
tation are:

» Dynamic SQL (DSQL)

» Procedural SQL (PSQL)
« Embedded SQL (ESQL)
« Interactive SQL (ISQL)

Dynamic SQL isthe mgjor part of the language which corresponds to the Part 2 (SQL/Foundation) part of the
SQL specification. DSQL represents statements passed by client applications through the public Firebird AP
and processed by the database engine.

Procedural SQL augments Dynamic SQL to allow compound statements containing local variables, assign-
ments, conditions, loops and other procedural constructs. PSQL correspondsto the Part 4 (SQL/PSM) part of the
SQL specifications. Originally, PSQL extensions were available in persistent stored modules (procedures and
triggers) only, but in more recent rel eases they were surfaced in Dynamic SQL aswell (see EXECUTE BLOCK).

Embedded SQL defines the DSQL subset supported by Firebird gpre, the application which allows you to
embed SQL constructs into your host programming language (C, C++, Pascal, Coboal, etc.) and preprocess those
embedded constructs into the proper Firebird API calls.

Note

Only aportion of the statements and expressions implemented in DSQL are supported in ESQL.

Interactive | SQL refersto the language that can be executed using Firebird isgl, the command-line application
for accessing databases interactively. Asaregular client application, its native languageis DSQL. It also offers
afew additional commands that are not available outside its specific environment.

SQL Language Structure

Both DSQL and PSQL subsets are completely presented in this reference. Neither ESQL nor 1SQL flavours are
described here unless mentioned explicitly.

SQL Dialects

L dialect isaterm that defines the specific features of the SQL language that are available when accessing a
database. SQL dialects can be defined at the database level and specified at the connection level. Three diaects
are available:

» Dialect 1isintended solely to alow backward comptibility with legacy databases from very old InterBase
versions, v.5 and below. Dialect 1 databases retain certain language features that differ from Dialect 3, the
default for Firebird databases.

Date and time information are stored in a DATE datatype. A TIMESTAMP data type is also available,
that isidentical to this DATE implementation.

Double quotes may be used as an alternative to apostrophes for delimiting string data. Thisis contrary to
the SQL standard—double quotes are reserved for a distinct syntactic purpose both in standard SQL and
in Diaect 3. Double-quoting strings is therefore to be avoided strenuously.

The precision for NUMERIC and DECIMAL datatypesis smaller than in Dialect 3 and, if the precision
of afixed decimal number is greater than 9, Firebird storesit internally as along floating point value.

The BIGINT (64-bit integer) datatype is not supported.

Identifiers are case-insensitive and must always comply with the rules for regular identifiers—see the
section entitled Identifiers, below.

Although generator values are stored as 64-bit integers, a Dialect 1 client request, SELECT GEN_I D
(MyGen, 1), for example, will return the generator value truncated to 32 bits.

» Dialect 2 isavailable only on the Firehird client connection and cannot be set in the database. It is intended
to assist debugging of possible problems with legacy data when migrating a database from dialect 1 to 3.

e |nDialect 3 databases,

numbers (DECIMAL and NUMERIC data types) are stored internally as long fixed point values (scaled
integers) when the precision is greater than 9.

The TIME datatypeis available for storing time-of-day data only.
The DATE data type stores only date information.
The 64-bit integer datatype BIGINT is available.

Double quotes are reserved for delimiting non-regular identifiers, enabling object names that are case-
sensitive or that do not meet the requirements for regular identifiersin other ways.

All strings must be delimited with single quotes (apostrophes).

Generator values are stored as 64-hit integers.

SQL Language Structure

Important

Use of Dialect 3is strongly recommended for newly developed databases and applications. Both database and
connection dialects should match, except under migration conditions with Dialect 2.

This reference describes the semantics of SQL Dialect 3 unless specified otherwise.

Error Conditions

Processing of every SQL statement either completes successfully or fails due to a specific error condition.

Basic Elements: Statements, Clauses, Keywords

The primary construct in SQL is the statement. A statement defines what the database management system
should dowith aparticular dataor metadata object. More complex statements contain simpler constructs—claus-
es and options.

Clauses: A clause definesacertain type of directivein astatement. For instance, the WHERE clausein aSELECT
statement and in some other data manipulation statements (UPDATE, DELETE) specifies criteria for searching
one or more tables for the rows that are to be selected, updated or deleted. The ORDER BY clause specifies how
the output data—result set— should be sorted.

Options: Options, being the simplest constructs, are specified in association with specific keywordsto provide
gualification for clause elements. Where aternative options are available, it is usual for one of them to be the
default, used if nothing is specified for that option. For instance, the SELECT statement will return all of the
rows that match the search criteria unless the DISTINCT option restricts the output to non-duplicated rows.

Keywords: All wordsthat areincluded inthe SQL lexicon are keywords. Some keywords are reserved, meaning
their usage asidentifiersfor database objects, parameter names or variablesis prohibited in some or all contexts.
Non-reserved keywords can be used as identifiers, although it is not recommended. From time to time, non-
reserved keywords may become reserved when some new language feature is introduced.

For instance, the following statement will be executed without errors because, although ABS is a keyword, it
is not areserved word.

CREATE TABLE T (ABS | NT NOT NULL);

On the contrary, the following statement will return an error because ADD is both a keyword and
areserved word.

CREATE TABLE T (ADD | NT NOT NULL);

Refer to the list of reserved words and keywords in the chapter Reserved Words and Keywords.

SQL Language Structure

ldentifiers

All database objects have names, often called identifiers. Two types of names are valid as identifiers: regular
names, similar to variable names in regular programming languages, and delimited names that are specific to
SQL. To bevalid, each type of identifier must conform to a set of rules, asfollows:

Rulesfor Regular Object Identifiers:
» Length cannot exceed 31 characters

* The name must start with an unaccented, 7-bit ASCII alphabetic character. It may be followed by other 7-
bit ASCII letters, digits, underscores or dollar signs. No other characters, including spaces, are valid. The
name is case-insensitive, meaning it can be declared and used in either upper or lower case. Thus, from the
system's point of view, the following names are the same:

ful | nane
FULLNANE
FuLl NaMe
Ful | Name

Regular name syntax

<name> ::=
<letter> | <nane><letter> | <name><digit> | <name>_ | <name>$
<letter> ::= <upper letter> | <lower letter>
<upper letter>::=A| B| C| D| E| F| G| H| I | J|] K| L | M|
NI Ol P QI R S| T| U] V] W] X]| Y] Z
<lower letter>::=a| b| c| d] e]|] f | gl h| i | j | k]I] m
nfoflplalr|s|t]lulv]w]x]y]:z
<digit>::=0] 1| 2| 3| 4] 5| 6] 7] 8] 9

Rulesfor Delimited Object Identifiers:
» Length cannot exceed 31 characters
» Theentire string must be enclosed in double-quotes, e.g. "anldentifier"

» It may contain characters from any Latin character set, including a accented characters, spaces and special
characters

e Anidentifier can be areserved word
« Deimited identifiers are case-sensitive in all contexts

» Trailing spaces in delimited names are removed, as with any string constant

SQL Language Structure

» Delimited identifiers are available in Dialect 3 only. For more details on dialects, see SQL Dialect

Delimited name syntax

<delimted name> ::= "<permitted character>[<pernmitted character> .]"

Note

A delimited identifier such as" FULLNAME" isthe same asthe regular identifiers FULLNAME, fullname,
FullName, and so on. The reason isthat Firebird storesall regular namesin upper case, regardless of how they
were defined or declared. Delimited identifiers are always stored according to the exact case of their definition
or declaration. Thus, " FullName" (quoted) isdifferent from FullName (unquoted, i.e., regular) whichisstored
as FULLNAME in the metadata.

Literals

Literals are used to represent datain a direct format. Examples of standard types of literals are:

integer - 0, -34, 45, 0X080000000;

real - 0.0, -3.14, 3.23e-23;

string - "text', 'don''t!";

binary string - x'48656C6C6F20776F726C64'
date - DATE 2018-01-19';

time - TIME 15:12:56";

timestanp - TI MESTAMP' 2018-01-19 13: 32: 02';
null state - null

Details about handling theliterals for each datatype are discussed in the next chapter, Data Types and Subtypes.

Operators and Special Characters

A set of special charactersisreserved for use as operators or separators.

<special char> ::= <space> | " | %| & | '
LA s <=

— N
—_——
_ %
——
— +
p—
_~——
—~ —

Some of these characters, alone or in combinations, may be used as operators (arithmetical, string, logical), as
SQL command separators, to quote identifiers and to mark the limits of string literals or comments.

Operator Syntax:

<operator> ::=
<string concatenation operator> |

SQL Language Structure

<arithmetic operator>

<conpari son oper at or >

<l ogi cal operator>

<string concatentation operator> ::= {||}
<arithmetic operator> ::=* | [| + | -
<conparison operator> ::=

{= 1 {<>} | {t= | {=} | {"=} |

{1 {1 {>= | {<=2 | {32] (== | {">}]
(<1 {~<t | {"<

<l ogi cal operator> ::= NOT | AND | OR

For more details on operators, see Expressions.

Comments

Comments may be present in SQL scripts, SQL statements and PSQL modules. A comment can be any text
specified by the code writer, usually used to document how particular parts of the code work. The parser ignores
the text of comments.

Firebird supports two types of comments: block and in-line.

Syntax:

<comment > ::= <block coment> | <single-line coment>

<bl ock conment> ::=
/* <ASCI| char>[<ASCI| char> .] */

<single-line coment> ::=
-- <ASCI| char>[<ASCI| char> .]<end |ine>

Block comments start with the /* character pair and end with the */ character pair. Text in block comments may
be of any length and can occupy multiple lines.

In-line comments start with a pair of hyphen characters, -- and continue up to the end of the current line.

Example:

CREATE PROCEDURE P(APARAM | NT)
RETURNS (B | NT)
AS
BEG N
/* This text will be ignored during the execution of the statenent
since it is a conment

*/
B=A+1; -- In-line comment
SUSPEND;

10

SQL Language Structure

END

11

Chapter 3

Data Types and Subtypes

Data of various types are used to:

define columnsin adatabase table in the CREATE TABLE statement or change columnsusing ALTER TABLE

declare or change a domain using the CREATE DOMAIN or ALTER DOMAIN statements

declare local variablesin stored procedures, PSQL blocks and triggers and specify parametersin stored pro-

cedures

indirectly specify arguments and return values when declaring external functions (UDFs—user-defined func-

tions)

provide arguments for the CAST() function when explicitly converting data from one type to another

Table 3.1. Overview of Data Types

Name Size Precision & Limits Description

BIGINT 64 bits From -2% to (2% - | Thedatatypeisavailablein Dialect 3 only
1)

BLOB Varying Thesize of aBLOB | A datatype of adynamically variable size
segment is limited | for storing large amounts of data, such
to 64K. The max- | as images, text, digital sounds. The basic
imum size of a| structura unit isasegment. The Blob sub-
BLOB fieldis4 GB | type defines its content

CHAR(n), n characters. Size|from 1 to 32,767 | A fixed-length character data type. When

CHARACTER(n) |in bytes depends on | bytes its data is displayed, trailing spaces are

the encoding, the added to the string up to the specified

number of bytesina length. Trailing spaces are not stored inthe

character database but are restored to match the de-
fined length when the column is displayed
on the client side. Network traffic is re-
duced by not sending spacesover the LAN.
If the number of charactersisnot specified,
1isused by default.

DATE 32 bits From 01.01.0001 | ISC_DATE. Date only, no time element

AD to 31.12.9999
AD

DECIMAL (pre-
ci sion,scal e)

Varying (16, 32 or
64 bits)

preci si on=from
1 to 18, defines the
least possible num-
ber of digitsto store;

A number with a decimal point that
has scal e digits after the point. scal e
must be less than or equal to preci -
si on. Example. DECIMAL(10,3) con-

12

Data Types and Subtypes

Name

Size

Precision & Limits

Description

scal e =from O to
18, definesthe num-

tainsanumber in exactly thefollowing for-
mat: pPpPPPPP.SSS

ber of digitsafter the

decimal point
DOUBLE PRECI- | 64 hits 2.225 * 10°% to | Double-precision IEEE, ~15 digits, reli-
SION 1.797 * 10°%® able size depends on the platform
FLOAT 32 bits 1.175 * 10 to| Single-precision IEEE, ~7 digits

3.402* 10%
INTEGER, INT 32 bits -2,147,483,648 up | Signed long

to 2,147,483,647

NUMERIC (pre-
ci sion,scal e)

Varying (16, 32 or
64 bits)

pr eci si on=from
1 to 18, defines
the exact number
of digits to store;
scal e =from 0 to
18, definesthe num-

A number with a decima point that
has scal e digits after the point. scal e
must be less than or equal to preci -
si on. Example: NUMERIC(10,3) con-
tainsanumber in exactly the following for-

mat: pPpPPPPP.Sss

ber of digitsafter the
decimal point
SMALLINT 16 bits -32,768t0 32,767 | Signed short (word)
TIME 32 bits 0:00 to | ISC_TIME. Time of day. It cannot be used
23:59:59.9999 to store an interval of time
TIMESTAMP 64 bits (2 X 32 bits) | From start of | Date and time of day
day 01.01.0001 AD
to end of day
31.12.9999 AD
VARCHAR(N), n characters. Size|from 1 to 32,765 | Variable length string type. The total size
CHAR VARY- | in bytes depends on | bytes of charactersin bytes cannot be larger than
ING, CHARAC- |the encoding, the (32KB-3), taking into account their en-
TERVARYING number of bytesina coding. The two trailing bytes store the

character

declared length. There is no default size:
the n argument is mandatory. Leading and
trailing spaces are stored and they are not
trimmed, except for those trailing charac-
tersthat are past the declared length.

Note About Dates

Bear in mind that atime series consisting of datesin past centuriesis processed without taking into account the
actual historical facts, asthough the Gregorian calendar were applicable throughout the entire series.

13

Data Types and Subtypes

Integer Data Types

The SMALLINT, INTEGER and BIGINT data types are used for integers of various precision in Dialect 3.
Firebird does not support an unsigned integer datatype.

SMALLINT

The 16-bit SMALLINT datatype isfor compact data storage of integer data for which only a narrow range of
possible values is required for storing them. Numbers of the SMALLINT type are within the range from -226 to
2161, that is, from -32,768 to 32,767.

SMALLINT Examples:
CREATE DOVAI N DFLAG AS SMALLI NT DEFAULT O NOT NULL
CHECK (VALUE=-1 OR VALUE=0 OR VALUE=1);

CREATE DOVAI N RGB_VALUE AS SMALLI NT;

INTEGER

The INTEGER datatypeisa 32-bit integer. The shorthand name of the datatype is INT. Numbers of the INTE-
GER type are within the range from -2%? to 22 - 1, that i, from -2,147,483,648 to 2,147,483,647.

INTEGER Example:

CREATE TABLE CUSTOVER (
CUST_NO | NTEGER NOT NULL,
CUSTOMER VARCHAR(25) NOT NULL,
CONTACT_FI RST VARCHAR(15) ,
CONTACT_LAST VARCHAR(20),

PRI MARY KEY (CUST_NO))

BIGINT

BIGINT is an SQL:99-compliant 64-bit integer data type, available only in Dialect 3. If aclient uses Dialect 1,
the generator value sent by the server is reduced to a 32-bit integer (INTEGER). When Dialect 3 is used for
connection, the generator value is of type BIGINT.

Numbers of the BIGINT type are within the range from -2%% to 2% - 1, or from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

14

Data Types and Subtypes

Hexadecimal Format for Integer Numbers

Starting from Firebird 2.5, constants of the three integer types can be specified in hexadecimal format by means
of 9 to 16 hexadecimal digits for BIGINT or 1 to 8 digits for INTEGER. Hex representation for writing to
SMALLINT isnot explicitly supported but Firebird will transparently convert a hex number to SMALLINT if
necessary, provided it falls within the ranges of negative and positive SMALLINT.

The usage and numerical value ranges of hexadecimal notation are described in more detail in the discussion of
number constants in the chapter entitled Common Language Elements.

Examples Using I nteger Types:
CREATE TABLE WHOLELOTTARECORDS (

I D Bl G NT NOT NULL PRI MARY KEY,
DESCRI PTI ON VARCHAR(32)

);

| NSERT | NTO MYBI G NTS VALUES (

-236453287458723,

328832607832,

22,

-56786237632476,

OX6F55A09D42, -- 478177959234
OX7FFFFFFFFFFFFFFF, -- 9223372036854775807
OXFFFFFFFFFFFFFFFF, -- -1

0X80000000, -- -2147483648, an | NTEGER
0X080000000, -- 2147483648, a Bl G NT
OXFFFFFFFF, -- -1, an | NTEGER

OXOFFFFFFFF -- 4294967295, a BI G NT
)

The hexadecima INTEGERSs in the above example are automatically cast to BIGINT before being inserted
into the table. However, this happens after the numerical value is determined, so 0x80000000 (8 digits) and
0x080000000 (9 digits) will be saved as different BIGINT values.

Floating-Point Data Types

Floating point data types are stored in an |EEE 754 binary format that comprises sign, exponent and mantissa
Precision is dynamic, corresponding to the physical storage format of the value, which is exactly 4 bytesfor the
FLOAT type and 8 bytes for DOUBLE PRECISION.

Considering the peculiarities of storing floating-point numbers in a database, these data types are not recom-
mended for storing monetary data. For the same reasons, columns with floating-point data are not recommended
for use as keys or to have uniqueness constraints applied to them.

For testing datain columns with floating-point data types, expressions should check using arange, for instance,
BETWEEN, rather than searching for exact matches.

When using these datatypesin expressions, extreme careis advised regarding the rounding of evaluation results.

15

Data Types and Subtypes

FLOAT

This data type has an approximate precision of 7 digits after the decimal point. To ensure the safety of storage,
rely on 6 digits.

DOUBLE PRECISION

This datatype is stored with an approximate precision of 15 digits.

Fixed-Point Data Types

Fixed-point data types ensure the predictability of multiplication and division operations, making them the
choice for storing monetary values. Firebird implements two fixed-point data types: NUMERIC and DECIMAL.
According to the standard, both types limit the stored number to the declared scale (the number of digits after
the decimal point).

Different treatments limit precision for each type: precision for NUMERIC columns is exactly “as declared”,
while DECIMAL columns accepts numbers whose precision is at least equal to what was declared.

For instance, NUMERIC(4, 2) defines a number consisting altogether of four digits, including two digits after
the decimal point; that is, it can have up to two digits before the point and no more than two digits after the
point. If the number 3.1415 is written to a column with this data type definition, the value of 3.14 will be saved
in the NUMERIC(4, 2) column.

The form of declaration for fixed-point data, for instance, NUMERIC(p, s), is common to both types. It is
important to realise that the s argument in this template is scale, rather than “a count of digits after the decimal
point”. Understanding the mechanism for storing and retrieving fixed-point data should help to visualise why:
for storage, the number is multiplied by 10° (10 to the power of s), converting it to an integer; when read, the
integer is converted back.

The method of storing fixed-point datain the DBMS depends on several factors: declared precision, database
dialect, declaration type.

Table 3.2. Method of Physical Storage for Real Numbers

Scale Datatype Dialect 1 Dialect 3
1-4 NUMERIC SMALLINT SMALLINT
1-4 DECIMAL INTEGER INTEGER
5-9 NUMERIC OR DECIMAL | INTEGER INTEGER
10- 18 NUMERIC OR DECIMAL | DOUBLE PRECISION BIGINT

16

Data Types and Subtypes

NUMERIC

Data Declaration Format:

NUVERI C(p, s)

Storage Examples. Further to the explanation above, the DBM S will store NUMERIC data according the de-
clared precision (p) and scale (s). Some more examples are;

NUMERI C(4) stored as SMALLI NT (exact data)

NUMERI C(4, 2) SMALLI NT (data * 102

NUMERI C(10, 4) (Dial ect 1) DOUBLE PRECI SI ON
(Dialect 3) BIGNT (data * 10%

Caution

Always keep in mind that the storage format depends on the precision. For instance, you define the column
type as NUMERIC(2,2) presuming that its range of values will be -0.99...0.99. However, the actual range of
values for the column will be -327.68..327.67, which is due to storing the NUMERIC(2,2) data type in the
SMALLINT format. In storage, the NUMERIC(4,2), NUMERIC(3,2) and NUMERIC(2,2) data types are the
same, in fact. It meansthat if you really want to store datain a column with the NUMERIC(2,2) data type and
limit the range to -0.99...0.99, you will have to create a constraint for it.

DECIMAL

Data Declaration Format:

DECI MAL(p, s)

Storage Examples: The storage format in the database for DECIMAL isvery similar to NUMERIC, with some
differences that are easier to observe with the help of some more examples:

DECI MAL(4) stored as | NTEGER (exact data)

DECI MAL(4, 2) | NTEGER (data * 10?)

DECI MAL(10, 4) (Dial ect 1) DOUBLE PRECI SI ON
(Dialect 3) BIGNT (data * 10%

Data Types for Dates and Times

The DATE, TIME and TIMESTAMP data types are used to work with data containing dates and times. Dialect 3
supports all the three types, while Dialect 1 has only DATE. The DATE typein Dialect 3 is“date-only”, whereas

17

Data Types and Subtypes

the Dialect 1 DATE type stores both date and time-of-day, equivalent to TIMESTAMP in Dialect 3. Dialect 1
has no “date-only” type.

Note

Dialect 1 DATE data can be defined aternatively as TIMESTAMP and thisis recommended for new definitions
in Dialect 1 databases.

Fractions of Seconds: If fractions of seconds are stored in date and time data types, Firebird stores them to ten-
thousandths of asecond. If alower granularity ispreferred, thefraction can be specified explicitly asthousandths,
hundredths or tenths of a second in Dialect 3 databases of ODS 11 or higher.

Some useful knowledge about subseconds precision:

Thetime-part of aTIME or TIMESTAMP isa4-byte WORD, with room for decimilliseconds precision and time
values are stored as the number of deci-milliseconds elapsed since midnight. The actual precision of values
stored in or read from time(stamp) functions and variablesis:

« CURRENT_TIME defaults to seconds precision and can be specified up to milliseconds precision with
CURRENT _TI ME (0| 1| 2| 3)

e CURRENT_TIMESTAMP milliseconds precision. Precision from seconds to milliseconds can be specified
with CURRENT_TI MESTAMP (0] 1] 2| 3)

e Literal 'NOW': milliseconds precision

¢ Functions DATEADD() and DATEDIFF() support up to milliseconds precision. Deci-milliseconds can be
specified but they are rounded to the nearest integer before any operation is performed

¢ The EXTRACT() function returns up to deci-milliseconds precision with the SECOND and MILLISECOND
arguments

* For TIME and TIMESTAMP literal s Firebird happily accepts up to deci-milliseconds precision, but truncates
(not rounds) the time part to the nearest lower or equal millisecond. Try, for example, SELECT TI ME
'14: 37:54.1249" FROM r db$dat abase

e the'+ and -' operators work with deci-milliseconds precision, but only within the expression. As soon as

something is stored or even just SELECTed from RDB$DATABASE, it reverts to milliseconds precision
Deci-milliseconds precisionis rare and is not currently stored in columns or variables. The best assumption to
make from al thisisthat, although Firebird stores TIME and the TIMESTAMP time-part val ues as the number
of deci-milliseconds (10'4 seconds) elapsed since midnight, the actual precision could vary from seconds to
milliseconds.

DATE

The DATE data type in Diaect 3 stores only date without time. The available range for storing data is from
January 01, 1 to December 31, 9999.

Dialect 1 has no “date-only” type.

18

Data Types and Subtypes

Tip
In Dialect 1, date literals without atime part, as well as TODAY", 'YESTERDAY' and 'TOMORROW' automati-
cally get a zero time part.

If, for some reason, it is important to you to store a Dialect 1 timestamp literal with an explicit zero time-part,
the engine will accept aliteral like' 25. 12. 2016 00: 00: 00. 0000' . However, ' 25. 12. 2016' would
have precisely the same effect, with fewer keystrokes!

TIME

The TIME datatypeisavailablein Diaect 3 only. It stores the time of day within the range from 00:00:00.0000
to 23:59:59.9999.

If you need to get the time-part from DATE in Dialect 1, you can use the EXTRACT function.
Examples Using EXTRACT():
EXTRACT (HOUR FROM DATE_FI ELD)

EXTRACT (M NUTE FROM DATE_FI ELD)
EXTRACT (SECOND FROM DATE_FI ELD)

See also the EXTRACT() function in the chapter entitled Built-in Functions and Variables.

TIMESTAMP

The TIMESTAMP data type is available in Dialect 3 and Dialect 1. It comprises two 32-bit words—a date-part
and a time-part—to form a structure that stores both date and time-of-day. It is the same as the DATE typein
Dialect 1.

The EXTRACT function works equally well with TIMESTAMP as with the Dialect 1 DATE type.

Operations Using Date and Time Values

The method of storing date and time values makes it possible to involve them as operands in some arithmetic
operations. In storage, a date value or date-part of a timestamp is represented as the number of days elapsed
since “date zero”—November 17, 1898—whilst a time value or the time-part of atimestamp is represented as
the number of seconds (with fractions of seconds taken into account) since midnight.

An example is to subtract an earlier date, time or timestamp from a later one, resulting in an interval of time,
in days and fractions of days.

Table 3.3. Arithmetic Operationsfor Date and Time Data Types

Operand 1 Operation Operand 2 Result

DATE + TIME TIMESTAMP

19

Data Types and Subtypes

Operand 1

Operation

Operand 2

Result

DATE

Numeric valuen

DATE increased by n whole days. Bro-
ken values are rounded (not floored) to the
nearest integer

TIME

DATE

TIMESTAMP

TIME

Numeric valuen

TIME increased by n seconds. The frac-
tional part istaken into account

TIMESTAMP

Numeric valuen

TIMESTAMP, where the date will ad-
vance by the number of days and part of a
day represented by number n—so “+ 2.75”
will push the date forward by 2 days and
18 hours

DATE

DATE

Number of days elapsed, within the range
DECIMAL(9, 0)

DATE

Numeric valuen

DATE reduced by n whole days. Broken
values are rounded (not floored) to the
nearest integer

TIME

TIME

Number of seconds elapsed, within the
range DECIMAL(9, 4)

TIME

Numeric valuen

TIME reduced by n seconds. The fraction-
a part istaken into account

TIMESTAMP

TIMESTAMP

Number of days and part-day, within the
range DECIMAL(18, 9)

TIMESTAMP

Numeric valuen

TIMESTAMP where the date will retreat
by the number of days and part of a day
represented by number n—so “- 2.25” will
reduce the date by 2 days and 6 hours

Notes

The DATE typeis considered as TIMESTAMP in Dialect 1.

See also: DATEADD, DATEADD

Character Data Types

For working with character data, Firebird has the fixed-length CHAR and the variable-length VARCHAR data
types. The maximum size of text data stored in these data typesis 32,767 bytesfor CHAR and 32,765 bytes for
VARCHAR. The maximum number of characters that will fit within these limits depends on the CHARACTER
SET being used for the data under consideration. The collation sequence does not affect this maximum, although
it may affect the maximum size of any index that involves the column.

20

Data Types and Subtypes

If no character set is explicitly specified when defining a character object, the default character set specified
when the database was created will be used. If the database does not have a default character set defined, the
field gets the character set NONE.

Unicode

Most current development tools support Unicode, implemented in Firebird with the character sets UTF8 and
UNICODE_FSS. UTF8 comes with collations for many languages. UNICODE_FSS is more limited and is used
mainly by Firebird internally for storing metadata. Keep in mind that one UTF8 character occupies up to 4 bytes,
thus limiting the size of CHAR fields to 8,191 characters (32,767/4).

Note

Theactual “ bytes per character” value depends on the range the character belongsto. Non-accented L atin | etters
occupy 1 byte, Cyrillic letters from the WIN1251 encoding occupy 2 bytes, characters from other encodings
may occupy up to 4 bytes.

The UTF8 character set implemented in Firebird supports the latest version of the Unicode standard, thus rec-
ommending its use for international databases.

Client Character Set

While working with strings, it is essential to keep the character set of the client connection in mind. If thereis
amismatch between the character sets of the stored data and that of the client connection, the output results for
string columns are automatically re-encoded, both when data are sent from the client to the server and when they
are sent back from the server to the client. For example, if the database was created in the WIN1251 encoding
but KOI8R or UTF8 is specified in the client's connection parameters, the mismatch will be transparent.

Special Character Sets

Character set NONE: The character set NONE is a special character set in Firebird. It can be characterized
such that each byte is a part of a string, but the string is stored in the system without any clues about what
constitutes any character: character encoding, collation, case, etc. are simply unknown. It is the responsibility
of the client application to deal with the data and provide the meansto interpret the string of bytesin some way
that is meaningful to the application and the human user.

Character set OCTETS: Datain OCTETS encoding are treated as bytes that may not actually be interpreted as
characters. OCTETS provides away to store binary data, which could be the results of some Firebird functions.
The database engine has no concept of what it is meant to do with a string of bitsin OCTETS, other than just
store it and retrieve it. Again, the client side is responsible for validating the data, presenting them in formats
that are meaningful to the application and its users and handling any exceptions arising from decoding and
encoding them.

Collation Sequence

Each character set has a default collation sequence (COLLATE) that specifies the collation order. Usually, it
provides nothing more than ordering based on the numeric code of the characters and a basic mapping of upper-

21

Data Types and Subtypes

and lower-case characters. If some behaviour is needed for strings that is not provided by the default collation
sequence and a suitable alternative collation is supported for that character set, aCOLLATE col | at i on clause
can be specified in the column definition.

A COLLATE col | ati on clause can be applied in other contexts besides the column definition. For greater-
than/less-than comparison operations, it can be added in the WHERE clause of a SELECT statement. If output
needs to be sorted in a specia aphabetic sequence, or case-insensitively, and the appropriate collation exists,
then a COLLATE clause can be included with the ORDER BY clause when rows are being sorted on a character
field and with the GROUP BY clause in case of grouping operations.

Case-Insensitive Searching

For a case-insensitive search, the UPPER function could be used to convert both the search argument and the
searched strings to upper-case before attempting a match:

wher e upper (nanme) = upper(:flt_nane)

For strings in a character set that has a case-insensitive collation available, you can simply apply the collation,
to compare the search argument and the searched strings directly. For example, using the WIN1251 character set,
the collation PXW_CYRL is case-insensitive for this purpose:

WHERE FI RST_NAME COLLATE PXW CYRL >= : FLT_NAME

ORDER BY NAME COLLATE PXW CYRL

See also: CONTAINING

UTF8 Collation Sequences

The following table shows the possible collation sequences for the UTF8 character set.

Table 3.4. Collation Sequencesfor Character Set UTF8

Collation Characteristics
UCS BASIC Collation works according to the position of the character in the table (binary).
- Added in Firebird 2.0
UNICODE Coallation works according to the UCA agorithm (Unicode Collation Algorithm)
(alphabetical). Added in Firebird 2.0
UTES The default, binary collation, identical to UCS _BASIC, which was added for SQL
compatibility
UNICODE_Cl Case-insensitive collation, works without taking character case into account.

Added in Firebird 2.1

UNICODE_CI_Al

Case-insensitive, accent-insensitive collation, works al phabetical ly without taking
character case or accents into account. Added in Firebird 2.5

22

Data Types and Subtypes

Example: An example of collation for the UTF8 character set without taking into account the case or accentu-
ation of characters (similar to COLLATE PXW_CYRL).

ORDER BY NAME COLLATE UNI CODE_CI _Al

Character Indexes

In Firebird earlier than version 2.0, a problem can occur with building an index for character columns that use
a non-standard collation sequence: the length of an indexed field is limited to 252 bytes with no COLLATE
specified or 84 bytes if COLLATE is specified. Multi-byte character sets and compound indexes limit the size
even further.

Starting from Firebird 2.0, the maximum length for an index equals one quarter of the page size, i.e. from 1,024
to 4,096 bytes. The maximum length of an indexed string is 9 bytes less than that quarter-page limit.

Calculating Maximum Length of an Indexed String Field: The following formula cal culates the maximum
length of an indexed string (in characters):

max_char_length = FLOOR((page_size / 4 - 9) /| N)
where N is the number of bytes per character in the character set.

The table below shows the maximum length of an indexed string (in characters), according to page size and
character set, calculated using this formula.

Table 3.5. Maximum Index L engths by Page Size and Character Size

Bytes per character
Page Size
1 2 3 4 6
4,096 1,015 507 338 253 169
8,192 2,039 1,019 679 509 339
16,384 4,087 2,043 1,362 1,021 682
Note

With case-insensitive collations (“_CI"), one character in the index will occupy not 4, but 6 (six) bytes, so the

maximum key length for a page of, for example, 4,096 bytes, will be 169 characters.

See also: CREATE DATABASE, Collation sequence, SELECT, WHERE, GROUP BY, ORDER BY

23

Data Types and Subtypes

Character Types in Detail

CHAR

CHAR is afixed-length data type. If the entered number of charactersis less than the declared length, trailing
spaces will be added to the field. Generally, the pad character does not have to be a space: it depends on the
character set, For example, the pad character for the OCTETS character set is zero.

The full name of this datatype is CHARACTER, but there is no requirement to use full names and people rarely
do so.

Fixed-length character data can be used to store codes whose length is standard and has a definite “width” in
directories. An example of such acodeisan EAN13 barcode—13 characters, al filled.

Declaration Syntax:

CHAR [(length)] [CHARACTER SET <set>] [COLLATE <nane>]

Note
If nol engt h isspecified, it is taken to be 1.

A valid | engt h isfrom 1 to the maximum number of characters that can be accommodated within 32,767
bytes.

VARCHAR

VARCHAR is the basic string type for storing texts of variable length, up to a maximum of 32,765 bytes. The
stored structure is equal to the actual size of the data plus 2 bytes where the length of the datais recorded.

All charactersthat are sent from the client application to the database are considered meaningful, including the
leading and trailing spaces. However, trailing spaces are not stored: they will be restored upon retrieval, up to
the recorded length of the string.

Thefull name of thistypeisCHARACTER VARYING. Another variant of the nameiswritten asCHARVARYING.

Syntax:

VARCHAR (I ength) [CHARACTER SET <set>] [COLLATE <nane>]

NCHAR

NCHAR is a fixed-length character data type with the 1SO8859 1 character set predefined. In al other respects
it isthe same as CHAR.

24

Data Types and Subtypes

Syntax:

NCHAR (I engt h)

The synonymous name isNATIONAL CHAR. A similar datatype isavailable for the variable-length string type:
NATIONAL CHARACTER VARYING.

Binary Data Types

BLOBs (Binary Large Objects) are complex structures used to store text and binary data of an undefined length,
often very large.

Syntax:

BLOB [SUB_TYPE <subt ype>]
[SEGVENT SI ZE <segnent size>]
[CHARACTER SET <char act er set >]

Shortened syntax:

BLOB (<segnment size>)
BLOB (<segment size>, <subtype>)
BLOB (, <subtype>)

Segment Size: Specifying the BLOB segment is throwback to times past, when applications for working with
BLOB data were written in C (Embedded SQL) with the help of the gpre pre-compiler. Nowadays, it is effec-
tively irrelevant. The segment size for BLOB data is determined by the client side and is usually larger than
the data page size, in any case.

BLOB Subtypes

The optional SUB_TY PE parameter specifiesthe nature of datawritten to the column. Firebird providestwo pre-
defined subtypes for storing user data:

Subtype 0: BINARY:: If asubtype is not specified, the specification is assumed to be for untyped data and the
default SUB_TYPE 0 is applied. The alias for subtype zero is BINARY . Thisis the subtype to specify when the
data are any form of binary file or stream: images, audio, word-processor files, PDFs and so on..

Subtype1l: TEXT: Subtype 1 hasan alias, TEXT, which can be used in declarations and definitions. For instance,

BLOB SUB_TYPE TEXT. Itisaspecialized subtype used to store plain text data that istoo large to fit into a
string type. A CHARACTER SET may be specified, if the field is to store text with a different encoding to that
specified for the database. From Firebird 2.0, a COLLATE clause is aso supported.

Custom Subtypes: It is aso possible to add custom data subtypes, for which the range of enumeration from
-1t0-32,768 is reserved. Custom subtypes enumerated with positive numbers are not allowed, as the Firebird
engine uses the numbers from 2-upward for some internal subtypes in metadata.

25

Data Types and Subtypes

BLOB Specifics

Size: The maximum size of aBLOB field is limited to 4GB, regardless of whether the server is 32-bit or 64-bit.
(Theinternal structures related to BLOBS maintain their own 4-byte counters.) For a page size of 4 KB (4096
bytes) the maximum sizeis lower—dlightly less than 2GB.

Operationsand Expressions. Text BLOBs of any length and any character set—including multi-byte—can be
operandsfor practically any statement or internal functions. The following operators are supported completely:

= (assignment)

=, <>, <, <=, >, >= (comparison)

I (concatenation)
BETWEEN, IS[NOT] DISTINCT FROM,
IN, ANY |[SOME,

ALL
Partial support:

e An error occurs with these if the search argument is larger than or equal to 32 KB:

STARTING [WITH], LIKE,
CONTAINING

» Aggregation clauses work not on the contents of the field itself, but on the BLOB ID. Aside from that, there
are some quirks:

SELECT DISTINCT returns several NULL values by mistake if they are
present

ORDER BY —

GROUPBY concatenates the same strings if they are adjacent to
each other, but does not do it if they are remote from
each other

BLOB Storage:

e By default, aregular record is created for each BLOB and it is stored on a data page that is allocated for it.
If the entire BLOB fits onto this page, itiscalled alevel 0 BLOB. The number of this special record is stored
in the table record and occupies 8 bytes.

» |If aBLOB does not fit onto one data page, its contents are put onto separate pages allocated exclusively to it
(blob pages), while the numbers of these pages are stored into the BLOB record. Thisisalevel 1 BLOB.

» If the array of page numbers containing the BLOB data does not fit onto a data page, the array is put on
separate blob pages, while the numbers of these pages are put into the BLOB record. Thisisalevel 2 BLOB.

* Levelshigher than 2 are not supported.

Seealso: FILTER, DECLARE FILTER

ARRAY Type

The support of arrays in the Firebird DBMS is a departure from the traditional relational model. Supporting
arraysinthe DBMS could make it easier to solve some data-processing tasksinvolving large sets of similar data.

26

Data Types and Subtypes

ArraysinFirebird are stored in BLOB of aspeciaized type. Arrays can be one-dimensional and multidimensional
and of any datatype except BLOB and ARRAY .

Example:

CREATE TABLE SAMPLE_ARR (
I D I NTEGER NOT NULL PRI MARY KEY,
ARR_| NT | NTEGER [4]);

This example will create atable with afield of the array type consisting of four integers. The subscripts of this
array arefrom 1to 4.

Specifying Explicit Boundaries for Dimensions

By default, dimensions are 1-based—subscripts are numbered from 1. To specify explicit upper and lower
bounds of the subscript values, use the following syntax:

[<l ower >: <upper >]

Adding More Dimensions

A new dimension isadded after acommain the syntax. In this example we create atable with atwo-dimensional
array, with the lower bound of subscripts in both dimensions starting from zero:

CREATE TABLE SAVPLE_ARR2 (
| D | NTEGER NOT NULL PRI MARY KEY,
ARR I NT | NTEGER [0:3, 0:3]);

The DBMS does not offer much in the way of language or tools for working with the contents of arrays.
Thedatabaseenpl oyee. f db, foundinthe. . / exanpl es/ enpbui | d directory of any Firebird distribution
package, contains a sample stored procedure showing some simple work with arrays:

PSQL Sourcefor SHOW_LANGS, a procedureinvolving an array:

CREATE OR ALTER PROCEDURE SHOW LANGS (
CODE VARCHAR(5),
GRADE SMALLI NT,
CTY VARCHAR(15))
RETURNS (LANGUAGES VARCHAR(15))
AS
DECLARE VARI ABLE | | NTEGER;
BEG N
I = 1;
WHI LE (I <= 5) DO
BEG N
SELECT LANGUAGE REQ : 1]
FROM JOB
WHERE (JOB_CODE = : CODE)

27

Data Types and Subtypes

AND (JOB_GRADE = : GRADE)

AND (JOB_COUNTRY = : CTY)

AND (LANGUAGE_REQ |'S NOT NULL))
| NTO : LANGUAGES;

| F (LANGUAGES = '') THEN
/* PRINTS ' NULL' | NSTEAD OF BLANKS */
LANGUAGES = ' NULL';
I =1 +1;
SUSPEND,
END
END

If the features described are enough for your tasks, you might consider using arraysin your projects. Currently,
no improvements are planned to enhance support for arraysin Firebird.

Special Data Types

“Special” datatypes...

SQL_NULL Data Type

The SQL_NULL type holds no data, but only a state: NULL or NOT NULL. It is not available as a data type for
declaring table fields, PSQL variables or parameter descriptions. It was added to support the use of untyped
parameters in expressions involving the ISNULL predicate.

An evaluation problem occurs when optional filters are used to write queries of the following type:

VWHERE col 1 = :paranl OR :paranl IS NULL

After processing, at the API level, the query will look like this:

VWHERE col1l = ? OR ? | S NULL

Thisisacasewherethe devel oper writesan SQL query and considers: par anil asthough it were avariablethat
he can refer to twice. However, at the API level, the query contains two separate and independent parameters.
The server cannot determine the type of the second parameter since it comes in association with ISNULL.

The SQL_NULL data type solves this problem. Whenever the engine encountersan’ ? 1S NULL' predicate
in a query, it assigns the SQL_NULL type to the parameter, which will indicate that parameter is only about
“nullness’ and the data type or the value need not be addressed.

The following example demonstrates its use in practice. It assumes two named parameters—say, : si ze and
: col our —which might, for example, get values from on-screen text fields or drop-down lists. Each named
parameter corresponds with two positional parametersin the query.

SELECT

28

Data Types and Subtypes

SH. SI ZE, SH. COLOUR, SH. PRI CE
FROM SHI RTS SH
VWHERE (SH. SIZE = ? OR ? | S NULL)
AND (SH. COLOUR = ? OR ? IS NULL)

Explaining what happens here assumesthe reader isfamiliar with the Firebird APl and the passing of parameters
in XSQLVAR structures—what happens under the surface will not be of interest to those who are not writing
drivers or applications that communicate using the “naked” API.

The application passes the parameterized query to the server in the usual positional ?-form. Pairs of “identical”
parameters cannot be merged into one so, for two optional filters, for example, four positional parameters are
needed: one for each ?in our example.

Afterthecal toi sc_dsql _descri be_bi nd() , the SQLTY PE of the second and fourth parameters will be
set to SQL_NULL. Firebird has no knowledge of their special relation with the first and third parameters: that
responsibility lies entirely on the application side.

Oncethevaluesfor size and colour have been set (or left unset) by the user and the query is about to be executed,
each pair of XSQLVARs must be filled as follows:

User has supplied a value
First parameter (value compare): set * sgldata to the supplied value and * sglind to O (for NOT NULL)

Second parameter (NULL test): set sgldatato null (null pointer, not SQL NULL) and *sglind to O (for NOT
NULL)

User has left the field blank

Both parameters: set sgldata to null (null pointer, not SQL NULL) and *sglind to -1 (indicating NULL)
In other words: The value compare parameter isalways set asusual. The SQL_NULL parameter is set the same,
except that sgldataremains null at all times.

Conversion of Data Types

When composing an expression or specifying an operation, the aim should be to use compatible data types for
the operands. When aneed arisesto use amixture of datatypes, it should prompt you to ook for away to convert
incompatible operands before subjecting them to the operation. The ability to convert data may well be an issue
if you are working with Dialect 1 data.

Explicit Data Type Conversion

The CAST function enables explicit conversion between many pairs of data types.

Syntax:

CAST ({ <value> | NULL } AS <data_type>)

<data_type> ::= sql _datatype |
[TYPE OF] domain |

29

Data Types and Subtypes

TYPE OF COLUW r el nane. col nane

Casting to a Domain

When you cast to adomain, any constraints declared for it are taken into account, i.e., NOT NULL or CHECK
constraints. If the <value> does not pass the check, the cast will fail.

If TYPE OF is additionally specified—casting to its base type—any domain constraints are ignored during the
cast. If TYPE OF is used with a character type (CHAR/VARCHAR), the character set and collation are retained.

Casting to TYPE OF COLUMN

When operands are cast to the type of a column, the specified column may be from atable or aview.

Only the type of the column itself is used. For character types, the cast includes the character set, but not the
collation. The constraints and default values of the source column are not applied.

Example:

CREATE TABLE TTT (
S VARCHAR (40)
CHARACTER SET UTF8 COLLATE UNI CODE_Cl_Al);

COW T,

SELECT
CAST ('I

have many friends' AS TYPE OF COLUW TTT. S)

FROM RDB$DATABASE;

Conversions Possible for the CAST Function

Table 3.6. Conversionswith CAST

From Data Type

To Data Type

Numeric types

Numeric types, [VAR]CHAR, BLOB

[VAR]CHAR [VAR]CHAR, BLOB, Numeric types, DATE, TIME, TIMESTAMP
BLOB [VAR]CHAR, BLOB, Numeric types, DATE, TIME, TIMESTAMP
DATE, TIME [VAR]CHAR, BLOB, TIMESTAMP
TIMESTAMP [VAR]CHAR, BLOB, DATE, TIME
I mportant

Keep in mind that partial information lossis possible. For instance, when you cast the TIMESTAMP data type
to the DATE datatype, the time-part islost.

30

Data Types and Subtypes

Literal Formats

To cast string data types to the DATE, TIME or TIMESTAMP data types, you need the string argument to be
one of the predefined date and time literals (see Table 3.7) or arepresentation of the date in one of the allowed
date-time literal formats:

<datetinme_literal> ::={
[YYYY<p>] MVkp>DD[<p>HH[<p>mm{ <p>SS[<p>NNNN]|
MVKp>DD <p>YYYY[<p>HH] <p>m{ <p>SS[<p>NNNN]
DD<p>MM <p>YYYY[<p>HH[<p>m{ <p>SS[<p>NNNN]
MVkp>DD[<p>YY[<p>HH[<p>m{ <p>SS[<p>NNNN]]]
DD<p>MM <p>YY[<p>HH[<p>m{ <p>SS[<p>NNNN]]]
NOW |
TODAY |
TOVORROW |
YESTERDAY

}

111 |
1111 1
1111 1
11 |
11 1

<date literal> ::={
[YYYY<p>] MVkp>DD |
MVkp>DD[<p>YYYY] |
DD<p>MV <p>YYYY] |
Mkp>DD[<p>YY] |
DD<p>MM <p>YY] |
TODAY |
TOVORROW |
YESTERDAY

}
<tine_ literal> := HH <p>mi <p>SS[<p>NNNN]]]

<p> ::= whitespace | . | : | , | - |/

Table 3.7. Dateand Time Literal Format Arguments

Argument Description
datetime literal Date and time literal
time_literal Time literal
date litera Date literal
YYYY Four-digit year
YY Two-digit year

Month. It may contain 1 or 2 digits (1-12 or 01-12). You can al-
MM so specify the three-letter shorthand name or the full name of a
month in English. Case-insensitive

DD Day. It may contain 1 or 2 digits (1-31 or 01-31)

31

Data Types and Subtypes

Argument Description
HH Hour. It may contain 1 or 2 digits (0-23 or 00-23)
mm Minutes. It may contain 1 or 2 digits (0-59 or 00-59)
SS Seconds. It may contain 1 or 2 digits (0-59 or 00-59)
NNNN Ten-thousandths of a second. It may contain from 1 to 4 digits
(0-9999)
0 A separator, any of permitted characters. Leading and trailing

spaces are ignored

Table3.8. Literalswith Predefined Values of Date and Time

Data Type
Literal Description
Dialect 1 Dialect 3
'NOW!' Current date and time DATE TIMESTAMP
‘TODAY" Current date DATE with zero time DATE
TOMORROW' | Current date + 1 (day) DATE with zero time DATE
'YESTERDAY' | Current date - 1 (day) DATE with zero time DATE
Important

Use of the complete specification of the year in the four-digit form—YYYY—is strongly recommended, to
avoid confusion in date cal culations and aggregations.

Sample Date Literal Interpretations:

sel ect
cast (' 04.12.2014' as date) as dl, -- DD. MM YYYY
cast('04 12 2014' as date) as d2, -- MM DD YYYY
cast (' 4-12-2014'" as date) as d3, -- Mw DD YYYY
cast('04/12/2014' as date) as d4, -- MV DD YYYY
cast (' 04, 12,2014' as date) as d5, -- MV DD, YYYY
cast('04.12.14' as date) as d6, -- DD. MM YY

-- DD.MMw th current year
cast('04.12' as date) as d7,
-- MMDD with current year
cast('04/12' as date) as d8,

cast (' 2014/ 12/ 04' as date) as d9, -- YYYY/ W DD
cast('2014 12 04' as date) as di0, -- YYYY MM DD
cast (' 2014.12. 04' as date) as dl11, -- YYYY. MW DD
cast (' 2014-12-04' as date) as d12, -- YYYY- M\ DD
cast('4 Jan 2014' as date) as d13, -- DD MM YYYY
cast(' 2014 Jan 4' as date) as dt14, -- YYYY MM DD
cast('Jan 4, 2014' as date) as dtl5, -- MM DD, YYYY
cast('11:37" as tine) as t1l, -- HH mm

cast('11:37:12' as tine) as t2, -- HH nmmss
cast('11:31:12.1234" as tinme) as t3, -- HH mMm ss.nnnn

32

Data Types and Subtypes

cast('11.37.12' as time) as t4, -- HH mmss
-- DD. MM YYYY HH: mm
cast('04.12.2014 11:37' as tinestanp) as dt1,
-- MM DD YYYY HH: nm ss
cast('04/12/2014 11:37:12' as timestanp) as dt2,
-- DD. MM YYYY HH: nm ss. nnnn
cast('04.12.2014 11:31:12.1234' as timestanp) as dt3,
-- MM DD YYYY HH. nm ss
cast('04/12/2014 11.37.12' as tinestanp) as dt4
from rdb$dat abase

Shorthand Casts for Date and Time Data Types

Firebird allows the use of a shorthand “ C-style” type syntax for casts from string to the types DATE, TIME and
TIMESTAMP.

Syntax:
data_type 'date_literal _string'

Example:

UPDATE PEOPLE
SET AGECAT = ' SENI OR
VHERE BI RTHDATE < DATE ' 1-Jan-1943';

-- 2
| NSERT | NTO APPOI NTMVENTS
(EMPLOYEE_| D, CLIENT_ID, APP_DATE, APP_TIME)
VALUES (973, 8804, DATE 'today' + 2, TIME '16:00');
-- 3

NEW LASTMOD = TI MESTAMP ' now ;

Note

These shorthand expressions are evaluated directly during parsing, as though the statement were already pre-
pared for execution. Thus, even if the query is run several times, the value of, for instance, ti mest anp
"now remainsthe same no matter how much time passes.

If you need the time to be evaluated at each execution, use the full CAST syntax. An example of using such
an expression in atrigger:

NEW CHANGE_DATE = CAST(' now AS Tl MESTAWP) ;

Implicit Data Type Conversion

Implicit data conversion is not possible in Dialect 3—the CAST function is aimost always required to avoid
data type clashes.

33

Data Types and Subtypes

In Didect 1, in many expressions, one type is implicitly cast to another without the need to use the CAST
function. For instance, the following statement in Dialect 1 isvalid:

UPDATE ATABLE
SET ADATE = '25.12.2016' + 1

and the date literal will be cast to the date type implicitly.

In Dialect 3, this statement will throw error 35544569, "Dynamic SQL Error: expression evaluation not sup-
ported, Strings cannot be added or subtracted in dialect 3"—a cast will be needed:

UPDATE ATABLE
SET ADATE = CAST ('25.12.2016' AS DATE) + 1

or, with the short cast:

UPDATE ATABLE
SET ADATE = DATE ' 25.12.2016" + 1

In Dialect 1, mixing integer data and numeric strings is usually possible because the parser will try to cast the
string implicitly. For example,

will be executed correctly.

In Dialect 3, an expression like thiswill raise an error, so you will need to write it as a CAST expression:

2 + CAST('1'" AS SMALLI NT)

The exception to the rule is during string concatenation.

Implicit Conversion During String Concatenation

When multiple data elements are being concatenated, all non-string data will undergo implicit conversion to
string, if possible.

Example:

SELECT 30| |' days hath Septenber, April, June and Novenber' CONCAT$
FROM RDB$DATABASE

30 days hath Septenber, April, June and Novenber

Data Types and Subtypes

Custom Data Types—Domains

In Firebird, the concept of a “user-defined data type” is implemented in the form of the domain. Creating a
domain does not truly create anew datatype, of course. A domain provides the meansto encapsulate an existing
datatype with aset of attributes and make this*“capsule”’ available for multiple usage across the whole database.
If several tables need columns defined with identical or nearly identical attributes, a domain makes sense.

Domain usage is not limited to column definitions for tables and views. Domains can be used to declare input
and output parameters and variablesin PSQL code.

Domain Attributes

A domain definition contains required and optional attributes. The data type is a required attribute. Optional
attributes include:

» adefault value

+ toallow or forbid NULL

* CHECK constraints

» character set (for character data types and text BLOB fields)
+ collation (for character data types)

Sample domain definition:

CREATE DOVAI N BOOL3 AS SMALLI NT
CHECK (VALUE 1S NULL OR VALUE IN (0, 1));

See also: Explicit Data Type Conversion for the description of differences in the data conversion mechanism
when domains are specified for the TYPE OF and TYPE OF COLUMN modifiers.

Domain Override

While defining a column using a domain, it is possible to override some of the attributes inherited from the
domain. Table 3.9 summarises the rules for domain override.

Table 3.9. Rulesfor Overriding Domain Attributesin Column Definition

Attribute Override? Comments
Datatype No
Default value Yes

35

Data Types and Subtypes

Attribute Override? Comments
Text character set Yes It can be also used to restore the default database val-
ues for the column
Text collation sequence Yes

To add new conditions to the check, you can use the

CHECK constraints Yes corresponding CHECK clausesin the CREATE and
ALTER statements at the table level.
Often it is better to leave domain nullable in its def-

NOT NULL No inition and decide whether to make it NOT NULL

when using the domain to define columns.

Creating and Administering Domains

A domain is created with the DDL statement CREATE DOMAIN.

Short Syntax:

See also: CREATE DOMAIN in the Data Definition Language (DDL) section.

CREATE DOMAI N <nane> [AS] <type>

[DEFAULT {<const> | <literal> | NULL |

[NOT NULL] [CHECK (<condition>)]
[COLLATE col l ation];

Altering a Domain

To change the attributes of adomain, use the DDL statement ALTER DOMAIN. With this statement you can

rename the domain

change the datatype

delete the current default value

set anew default value

delete an existing CHECK constraint

add anew CHECK constraint

Short Syntax:

ALTER DOMAI N nane
[{TO new_nane}]

36

<cont ext _var>}]

Data Types and Subtypes

[{SET DEFAULT {literal | NULL | <context_var>} |
DROP DEFAULT}]
[{ ADD [CONSTRAI NT] CHECK (<dom condition>) |
DROP CONSTRAI NT}]
[{TYPE <dat atype>}];

When planning to alter adomain, its dependencies must be taken into account: whether there are table columns,
any variables, input and/or output parameters with the type of this domain declared in the PSQL code. If you
change domainsin haste, without carefully checking them, your code may stop working!

Important

When you convert data types in a domain, you must not perform any conversions that may result in dataloss.
Also, for example, if you convert VARCHAR to INTEGER, check carefully that al data using this domain can
be successfully converted.

See also: ALTER DOMAIN in the Data Definition Language (DDL) section.

Deleting (Dropping) a Domain

The DDL statement DROP DOMAIN deletes a domain from the database, provided it is not in use by any other
database objects.

Syntax:

DROP DOVAI N nane

Important

Any user connected to the database can delete a domain.

Example:

DROP DOVAI N Test Dormai n

See also: DROP DOMAIN in the Data Definition Language (DDL) section.

37

Chapter 4

Common Language Elements

This chapter covers the elements that are common throughout the implementation of the SQL language—the
expressions that are used to extract and operate on assertions about data and the predicates that test the truth

of those assertions.

Expressions

SQL expressions provide forma methods for evaluating, transforming and comparing values. SQL expressions
may include table columns, variables, constants, literals, various statements and predicates and also other ex-
pressions. The complete list of possible tokensin expressions follows.

Table4.1. Description of Expression Elements

Element Description
Identifier of a column from a specified table used in evaluations or asa
Column name search condition. A column of the array type cannot be an element in an ex-
pression except when used with the IS[NOT] NULL predicate.
An expression may contain areference to an array member i.e.,
Array element <array_nanme>[s], wheres isthe subscript of the member in the array

<array_nane>

Arithmetic operators

The +, -, *, / characters used to calculate values

Concatenation operator

The || (“double-pipe”) operator used to concatenate strings

Logical operators

The reserved words NOT, AND and OR, used to combine simple search
conditionsin order to create complex assertions

Comparison operators

Thesymbols =, <>, 1=, ~=, "=, <, <=, >, >z, I<, ~<, A<, 1> ~> and >

Comparison predicates

LIKE, STARTING WITH, CONTAINING, SIMILAR TO, BETWEEN, IS[NOT]
NULL and IS[NOT] DISTINCT FROM

Existential predicates

Predicates used to check the existence of valuesin a set. The IN predicate
can be used both with sets of comma-separated constants and with sub-
gueriesthat return asingle column. The EXISTS, SINGULAR, ALL, ANY and
SOME predicates can be used only with subqueries

Constant A number; or astring literal enclosed in apostrophes
An expression, similar to a string literal enclosed in apostrophes, that can
be interpreted as a date, time or timestamp value. Date literals can be pre-
Date/time literal defined literals (TODAY', 'NOW', etc.) or strings of characters and numer-

als, such as'25.12.2016 15:30:35', that can be resolved as date and/or time
strings

38

Common Language Elements

Element Description
Context variable Aninternally-defined context variable
Local variable Declared local variable, input or output parameter of a PSQL module (stored
procedure, trigger, unnamed PSQL block in DSQL)
Positional parameter A member of in an ordered group of one or more unnamed parameters
P passed to a stored procedure or prepared query
Subauer A SELECT statement enclosed in parentheses that returns a single (scalar)
query value or, when used in existential predicates, a set of values
Function identifier Theidentifier of aninternal or external function in a function expression
An expression explicitly converting data of one data type to another using
Tvpe cast the CAST function (CAST (<val ue> AS <dat at ype>)). For date/
yp time literals only, the shorthand syntax <datatype> <value> is also supported
(DATE ' 25. 12. 2016")
Conditional expression Expressions using CASE and related internal functions
Bracket pairs (...) used to group expressions. Operations inside the parenthe-
Parentheses ses are performed before operations outside them. When nested parentheses
are used, the most deeply nested expressions are evaluated first and then the
evaluations move outward through the levels of nesting.
COLLATE clause Cl ause applle(_j to CHAR and VA RCHAR types to_speC| fy the character-set-
specific collation sequence to use in string comparisons
NEXT VALUE FOR se- Expression for obtaining the next value of a specified generator (sequence).
guence Theinternal GEN_ID() function does the same
Constants

A constant isavaluethat is supplied directly in an SQL statement, not derived from an expression, a parameter,
acolumn reference nor avariable. It can be a string or a number.

String Constants (Literals)

A string constant isaseries of charactersenclosed between apair of apostrophes (“ singlequotes’). Themaximum
length of astring is 32,767 bytes; the maximum character count will be determined by the number of bytes used
to encode each character.

Note
* Double quotes are NOT VALID for quoting strings. SQL reserves a different purpose for them.

« If aliteral apostrophe is required within a string constant, it is“escaped” by prefixing it with another apos-
trophe. For example,' Mot her O ' Reilly' s hone- made hooch'.

e Careshouldbetakenwith the string lengthif thevalueisto bewrittento aVARCHAR column. The maximum
length for aVARCHAR is 32,765 bytes.

39

Common Language Elements

The character set of astring constant is assumed to be the same as the character set of its destined storage.

String Constants in Hexadecimal Notation

From Firebird 2.5 forward, string literals can be entered in hexadecimal notation, so-called “binary strings”.
Each pair of hex digits defines one byte in the string. Strings entered this way will have character set OCTETS
by default but the introducer syntax can be used to force astring to be interpreted as another character set.

Syntax:

{x] X}' <hexstring>'

<hexstring>> ::= an even nunber of <hexdigit>
<hexdi gi t > ::= one of 0..9, A.F a..f
Examples:

sel ect x' 4E657276656E from r db$dat abase
-- returns 4E657276656E, a 6-byte 'binary' string

sel ect _ascii x'4E657276656E from rdb$dat abase
-- returns 'Nerven' (sane string, nowinterpreted as ASCI| text)

sel ect _is08859 1 x'53E46765' from rdb$dat abase
-- returns 'Sage' (4 chars, 4 bytes)

select _utf8 x'53C3A46765' from rdb$dat abase
-- returns 'Sage' (4 chars, 5 bytes)

Notes

The client interface determines how binary strings are displayed to the user. The isgl utility, for example,
uses upper case letters A-F, while FlameRobin uses lower case letters. Other client programs may use other
conventions, such as displaying spaces between the byte pairs: '4E 65 72 76 65 6E'.

The hexadecimal notation alows any byte value (including 00) to be inserted at any position in the string.
However, if you want to coerce it to anything other than OCTETS, it is your responsibility to supply the bytes
in asequencethat isvalid for the target character set.

Introducer Syntax for String Literals

If necessary, a string literal may be preceded by a character set name, itself prefixed with an underscore *_”.
This is known as introducer syntax. Its purpose is to inform the engine about how to interpret and store the
incoming string.

Example

I NSERT | NTO Peopl e
VALUES (_IS08859 1 'Hans-Jodrg Schafer')

40

Common Language Elements

Number Constants

A number constant is any valid number in a supported notation:

* InSQL, for numbersin the standard decimal notation, the decimal point isaways represented by period (full-
stop, dot) character and thousands are not separated. Inclusion of commas, blanks, etc. will cause errors.

» Exponential notation is supported. For example, 0.0000234 can be expressed as 2. 34e- 5.

» Hexadecimal notation is supported by Firebird 2.5 and higher versions—see below.

Hexadecimal Notation for Numerals

From Firebird 2.5 forward, integer values can be entered in hexadecimal notation. Numberswith 1-8 hex digits
will be interpreted as type INTEGER; numbers with 9-16 hex digits astype BIGINT.

Syntax:

0{ x| X} <hexdi gi t s>

<hexdi gi t s>
<hexdi gi t >

1-16 of <hexdigit>
one of 0..9, A.F a..f

Examples:

sel ect Ox6FAAOD3 from rdb$dat abase

sel ect 0x4F9 from rdb$dat abase

sel ect Ox6E44F9A8 from r db$dat abase

sel ect Ox9E44F9A8 from r db$dat abase

sel ect Ox09E44F9A8 from rdb$dat abase

sel ect Ox28ED678A4C987 from r db$dat abase
sel ect OxFFFFFFFFFFFFFFFF from r db$dat abase

Hexadecimal Value Ranges

returns
returns
returns
returns
returns
returns
returns

117088467
1273

1850014120

- 1639646808 (an | NTEGER)
2655320488 (a Bl G NT)
720001751632263

-1

* Hex numbers in the range O .. 7FFF FFFF are positive INTEGERSs with values between 0 .. 2147483647
decimal. To coerce a number to BIGINT, prepend enough zeroes to bring the total number of hex digits to

nine or above. That changes the type but not the value.

* Hex numbers between 8000 0000 .. FFFF FFFF require some attention:

- When written with eight hex digits, asin OxX9E44F9AS8, avaueisinterpreted as 32-bit INTEGER. Since
the leftmost bit (sign bit) is set, it maps to the negative range -2147483648 .. -1 decimal.

- With one or more zeroes prepended, as in 0X09E44F9A8, avalue isinterpreted as 64-bit BIGINT in the
range 0000 0000 8000 0000 .. 0000 0000 FFFF FFFF. The sign hit is not set now, so they map to the

positive range 2147483648 .. 4294967295 decimal.

41

Common Language Elements

Thus, in this range—and only in this range—prepending a mathematically insignificant O resultsin atotally
different value. Thisis something to be aware of.

» Hex numbers between 1 0000 0000 .. 7FFF FFFF FFFF FFFF are all positive BIGINT.

» Hex numbers between 8000 0000 0000 0000 .. FFFF FFFF FFFF FFFF are all negative BIGINT.

e A SMALLINT cannot be written in hex, strictly speaking, since even 0x1 is evaluated as INTEGER. How-
ever, if you write apositive integer within the 16-bit range 0x0000 (decimal zero) to Ox7FFF (decimal 32767)
it will be converted to SMALLINT transparently.

It is possible to write to a negative SMALLINT in hex, using a 4-byte hex number within the range
OxFFFF8000 (decimal -32768) to OxFFFFFFFF (decimal -1).

SQL Operators

SQL operators comprise operators for comparing, calculating, evaluating and concatenating values.

Operator Precedence

SQL Operators are divided into four types. Each operator type has a precedence, aranking that determines the
order in which operators and the values obtained with their help are evaluated in an expression.The higher the
precedence of the operator typeis, the earlier it will be evaluated. Each operator hasits own precedence within
itstype, that determines the order in which they are evaluated in an expression.

Operators with the same precedence are evaluated from left to right. To force a different evaluation order,
operations can be grouped by means of parentheses.

Table4.2. Operator Type Precedence

Operator Type Precedence Explanation
Concatenation 1 Strings are concatenated before any other operations take place
Arithmetic 5 Arithmetic operations are performed after strings are concate-

nated, but before comparison and logical operations

Comparison operations take place after string concatenation and

Comparison 3 arithmetic operations, but before logical operations

Logica 4 Logical operators are executed after all other types of operators

Concatenation Operator

The concatenation operator, two pipe characters known as* double pipe”— || — concatenates (connectstogether)
two character stringsto form asingle string. Character strings can be constants or values obtained from columns
or other expressions.

Example:

42

Common Language Elements

SELECT LAST_NAME || ', ' || FIRST_NAME AS FULL_NAME
FROM EMPLOYEE

Arithmetic Operators

Table4.3. Arithmetic Operator Precedence

Operator Purpose Precedence
+si gned_nunber Unary plus 1
- si gned_nunber Unary minus 1
* Multiplication 2
/ Division 2
+ Addition 3
- Subtraction 3
Example:
UPDATE T
SET A= 4 + 1/(B-Q*D
Note
Where operators have the same precedence, they are evaluated in | eft-to-right sequence.
Comparison Operators
Table 4.4. Comparison Operator Precedence
Operator Pur pose Precedence
= Isequal to, isidentical to 1
<>, =, ~= A= Isnot equal to 1
> Is greater than 1
< Islessthan 1
>= Is greater than or equal to 1
<= Islessthan or equal to 1
1> ~> N> Is not greater than 1
I<, ~<, A< Isnot less than 1

43

Common Language Elements

This group also includes comparison predicates BETWEEN, LIKE, CONTAINING, SIMILAR TO, IS and others.

Example:

| F (SALARY > 1400) THEN

See also: Other Comparison Predicates.

Logical Operators

Table4.5. Logical Operator Precedence

Operator Purpose Precedence
NOT Negation of a search condition 1
AND Combines two or more predicates, each of which 5

must be true for the entire predicate to be true

Combines two or more predicates, of
OR which at least one predicate must be 3
true for the entire predicate to be true

Example:

IF(A<BOR(A>CANDA>D) ANDNOT (C = D)) THEN ...

NEXT VALUE FOR
Available: DSQL, PSQL
NEXT VALUE FOR returns the next value of a sequence. SEQUENCE is an SQL-compliant term for a generator

in Firebird and its ancestor, InterBase. The NEXT VALUE FOR operator is equivalent to the legacy GEN_ID (...,
1) function and is the recommended syntax for retrieving the next sequence value.

Syntax for NEXT VALUE FOR:

NEXT VALUE FOR sequence- name

Example:

NEW CUST_I D = NEXT VALUE FOR CUSTSEQ

Common Language Elements

Note

Unlike GEN_ID (..., 1), the NEXT VALUE FOR variant does not take any parameters and thus, provides no way
to retrieve the current value of a sequence, nor to step the next value by more than 1. GEN_ID (..., <step value>)
is still needed for these tasks. A <step value> of 0 returns the current sequence value.

Seealso: SEQUENCE (GENERATOR), GEN_ID()

Conditional Expressions

A conditional expression is one that returns different values according to how a certain condition is met. It
is composed by applying a conditional function construct, of which Firebird supports several. This section de-
scribes only one conditional expression construct: CASE. All other conditional expressions apply internal func-
tions derived from CASE and are described in Conditional Functions.

CASE

Available: DSQL, PSQL

The CASE construct returnsasingle value from anumber of possible ones. Two syntactic variants are supported:
* Thesimple CASE, comparable to a case construct in Pascal or aswitchin C

e The searched CASE, which workslikeaseriesof “if ... else if ... else if” clauses.

Simple CASE

Syntax:

CASE <t est - expr >
WHEN <expr> THEN <resul t >
[WHEN <expr> THEN <result> ...]
[ELSE <defaul tresult>]

END

When this variant isused, <t est-expr> iscompared to <expr> 1, <exp> 2 etc., until a match is found
and the corresponding result is returned. If no match isfound, <defaultresult> from the optional ELSE clauseis
returned. If there are no matches and no ELSE clause, NULL is returned.

Thematchingworksidentically tothe"=" operator. That is, if <test-expr>isNULL, it doesnot match any <expr>,
not even an expression that resolvesto NULL.

Thereturned result does not haveto be aliteral value: it might be afield or variable name, compound expression
or NULL literal.

Example:

45

Common Language Elements

SELECT

NANE,

AGE,

CASE UPPER(SEX)
WHEN ' M THEN ' Mal €'
WHEN ' F* THEN ' Fenual €'
ELSE ' Unknown'

END GENDER,

RELI G ON
FROM PECPLE

A short form of the simple CASE construct is used in the DECODE function.

Searched CASE

Syntax:

CASE
VWHEN <bool _expr> THEN <resul t >
[WHEN <bool _expr> THEN <result> .]
[ELSE <def aul tresult>]
END

The <bool_expr> expression is one that gives aternary logical result: TRUE, FALSE or NULL. Thefirst expres-
sion to return TRUE determines the result. If no expressions return TRUE, <defaultresult> from the optional
ELSE clauseisreturned as the result. If no expressions return TRUE and there is no EL SE clause, the result will
be NULL.

As with the smple CASE construct, the result need not be aliteral value: it might be afield or variable name,
a compound expression, or be NULL.

Example:

CANVOTE = CASE
VWHEN AGE >= 18 THEN ' Yes'
WHEN AGE < 18 THEN ' No'
ELSE ' Unsure'
END

NULL in Expressions

NULL isnot avauein SQL, but a state indicating that the value of the element either unknown or it does not
exigt. It isnot a zero, nor avoid, nor an “empty string”, and it does not act like any value.

When you use NULL in numeric, string or date/time expressions, the result will always be NULL. When you
use NULL in logical (Boolean) expressions, the result will depend on the type of the operation and on other
participating values. When you compare a value to NULL, the result will be unknown.

46

Common Language Elements

Important to Note

NULL means NULL but, in Firebird, the logical result unknown is also represented by NULL.

Expressions Returning NULL

Expressionsin thislist will always return NULL:

1+ 2+ 3+ NULL

"Honme ' || 'sweet ' || NULL
MyField = NULL

MyField <> NULL

NULL = NULL

not (NULL)

If it seems difficult to understand why, remember that NULL is a state that stands for “unknown”.

NULL in Logical Expressions

It has already been shownthat not (NULL) resultsin NULL. Theinteraction isabit more complicated for

the logical AND and logical OR operators:

NULL or false = NULL
NULL or true = true
NULL or NULL = NULL
NULL and false = fal se
NULL and true NUL L
NULL and NULL NULL

Up to and including Firebird 2.5.x, there is no implementation for alogical (Boolean) datatype—that is coming
in Firebird 3. However, there are logical expressions (predicates) that can return true, false or unknown.

Examples:
(1 = NULL) or (1 <> 1) -- returns NULL
(1 = NULL) or (1 =1) -- returns TRUE
(1 = NULL) or (1 = NULL) -- returns NULL
(1 = NULL) and (1 <> 1) -- returns FALSE
(1 = NULL) and (1 = 1) -- returns NULL
(1 = NULL) and (1 = NULL) -- returns NULL
Subqueries

A subguery is a special form of expression that is actually a query embedded within another query. Subqueries
are written in the same way as regular SELECT queries, but they must be enclosed in parentheses. Subquery

expressions can be used in the following ways:

» To specify an output column in the SELECT list

47

Common Language Elements

» To obtain values or conditions for search predicates (the WHERE, HAVING clauses).

» Toproduce aset that the enclosing query can select from, as though were aregular table or view. Subqueries
like this appear in the FROM clause (derived tables) or in a Common Table Expression (CTE)

Correlated Subqueries

A subquery can be correlated. A query is correlated when the subquery and the main query are interdependent.
To process each record in the subquery, it is necessary to fetch a record in the main query; i.e., the subquery
fully depends on the main query.

Sample Correlated Subquery:

SELECT *
FROM Cust oners C
VWHERE EXI STS
(SELECT *
FROM Orders O
VWHERE C. cnum = O cnum
AND O adate = DATE ' 10.03.1990');

When subqueries are used to get the values of the output column in the SELECT list, a subquery must return
ascalar result.

Scalar Results

Subqueries used in search predicates, other than existential and quantified predicates, must return ascalar result;
that is, not more than one column from not more than one matching row or aggregation. If the result would
return more, arun-time error will occur (“Multiple rowsin asingleton select...”).

Note

Although it is reporting a genuine error, the message can be dlightly misleading. A “singleton SELECT” is
a query that must not be capable of returning more than one row. However, “singleton” and “scalar” are not
synonymous: not all singleton SELECT Sarerequired to be scalar; and single-column selects can return multiple
rows for existential and quantified predicates.

Subquery Examples:
1. A subquery asthe output column in a SELECT list:
SELECT

e.first_nane,
e. |l ast _nane,

(SELECT
sh. new_sal ary
FROM
sal ary_history sh
VWHERE

sh.enp_no = e. enp_no

48

Common Language Elements

ORDER BY sh. change_date DESC ROAS 1) AS | ast_sal ary
FROM
enpl oyee e

2. A subguery in the WHERE clause for obtaining the employee's maximum salary and filtering by it:

SELECT
e.first_nane,
e. |l ast _nane,

e.sal ary
FROM

enpl oyee e
VWHERE

e.salary = (
SELECT MAX(i e. sal ary)
FROM enpl oyee ie
)

Predicates

A predicate is a simple expression asserting some fact, let's call it P. If P resolves as TRUE, it succeeds. If it
resolvesto FALSE or NULL (UNKNOWN), it fails. A trap lies here, though: suppose the predicate, P, returns
FALSE. Inthiscase NOT(P) will return TRUE. On the other hand, if P returns NULL (unknown), then NOT(P)
returns NULL aswell.

In SQL, predicates can appear in CHECK constraints, WHERE and HAVING clauses, CASE expressions, the I1F()
function and in the ON condition of JOIN clauses.

Assertions

An assertion is a statement about the data that, like a predicate, can resolveto TRUE, FALSE or NULL. Asser-
tions consist of one or more predicates, possibly negated using NOT and connected by AND and OR operators.
Parentheses may be used for grouping predicates and controlling evaluation order.

A predicate may embed other predicates. Evaluation sequence is in the outward direction, i.e., the innermost

predicates are evaluated first. Each “level” is evaluated in precedence order until the truth of the ultimate asser-
tion isresolved.

Comparison Predicates

A comparison predicate consists of two expressions connected with a comparison operator. There are six tradi-
tional comparison operators:

=, > <, >z, <=, <>

49

Common Language Elements

(For the complete list of comparison operators with their variant forms, see Comparison Operators.)

If one of the sides (left or right) of a comparison predicate has NULL in it, the value of the predicate will be
UNKNOWN.

Examples:

Retrieve information about computers with the CPU frequency not less than 500 MHz and the price lower
than $800:

SELECT *
FROM Pc
WHERE speed >= 500 AND price < 800;

Retrieve information about all dot matrix printers that cost less than $300:

SELECT *
FROM Pri nter
VWHERE ptrtype = 'matrix" AND price < 300;

Thefollowing query will return no data, even if there are printers with no type specified for them, because
apredicate that compares NULL with NULL returns NULL:

SELECT *
FROM Pri nter
VWHERE ptrtype = NULL AND price < 300;

Ontheother hand, pt r t ype can betested for NULL and return aresult: itisjust that it isnot acomparison
test:

SELECT *
FROM Pri nter
WHERE ptrtype I'S NULL AND price < 300;

—see IS[NOT] NULL.

Note about String Comparison

When CHAR and VARCHAR fields are compared for equality, trailing spaces are ignored in all cases.

Other Comparison Predicates

Other comparison predicates are marked by keyword symbols.

BETWEEN

Available: DSQL, PSQL, ESQL

50

Common Language Elements

Syntax:

<val ue> [NOT] BETWEEN <val ue_1> AND <val ue_2>

The BETWEEN predicate tests whether a value falls within a specified range of two values. (NOT BETWEEN
tests whether the value does not fall within that range.)

Theoperandsfor BETWEEN predicate are two arguments of compatible datatypes. Unlikein some other DBMS,
the BETWEEN predicate in Firebird is not symmetrical—if the lower value is not the first argument, the BE-

TWEEN predicate will always return False. The search is inclusive (the values represented by both arguments
areincluded in the search). In other words, the BETWEEN predicate could be rewritten:

<val ue> >= <val ue_1> AND <val ue> <= <val ue_2>
When BETWEEN is used in the search conditions of DML queries, the Firebird optimizer can use an index on
the searched column, if it is available.
Example:

SELECT *

FROM EMPLOYEE
VWHERE HI RE_DATE BETWEEN date ' 01.01.1992" AND CURRENT_DATE

LIKE
Available: DSQL, PSQL, ESQL
Syntax:

<mat ch val ue> [NOT] LIKE <pattern>
[ESCAPE <escape charact er>]

<mat ch value> ::= character-type expression
<pattern> ::= search pattern

<escape character> ::= escape character

The LIKE predicate compares the character-type expression with the pattern defined in the second expression.
Case- or accent-sensitivity for the comparison is determined by the collation that isin use. A collation can be
specified for either operand, if required.

Wildcards

Two wildcard symbols are available for use in the search pattern:

51

Common Language Elements

* the percentage symbol (%) will match any sequence of zero or more charactersin the tested value

 the underscore character () will match any single character in the tested value

If the tested value matches the pattern, taking into account wildcard symbols, the predicate is True.

Using the ESCAPE Character Option
If the search string contains either of the wildcard symbols, the ESCAPE clause can be used to specify an escape
character. The escape character must precedethe'%' or '_' symbol in the search string, to indicate that the symbol
isto beinterpreted as aliteral character.

Examplesusing LIKE:

1. Find the numbers of departments whose names start with the word “ Software”:

SELECT DEPT_NO
FROM DEPT
WHERE DEPT_NAME LI KE ' Sof t war e% ;

It is possible to use an index on the DEPT_NAME field if it exists.

About LIKE and the Optimizer

Actually, the LIKE predicate does not use an index. However, if the predicate takes the form of LI KE
"string% ,itwill beconverted tothe STARTING WITH predicate, which will use an index.

So—if you need to search for the beginning of a string, it is recommended to use the STARTING WITH
predicate instead of the LIKE predicate.

2. Search for employees whose names consist of 5 letters, start with the letters “Sm” and end with “th”. The
predicate will be true for such names as “Smith” and “ Smyth”.

SELECT
first _nane
FROM
enpl oyee
WHERE first_name LIKE 'Smth'

3. Searchfor all clients whose address contains the string “ Rostov”:

SELECT *
FROM CUSTOMER
WHERE ADDRESS LI KE ' %Rost ov%

52

Common Language Elements

Note

If you need to do a case-insensitive search for something enclosed inside astring (LI KE ' %bc%),
use of the CONTAINING predicate is recommended, in preference to the LIKE predicate.

4. Search for tables containing the underscore character in their names. The “#" character is specified as the
escape character:

SELECT
RDBSRELATI ON_NAME
FROMV RDB$RELATI ONS
VWHERE RDB$RELATI ON_NAME LI KE ' %t % ESCAPE ' #'

See also: STARTING WITH, CONTAINING, SIMILAR TO

STARTING WITH
Available: DSQL, PSQL, ESQL

Syntax:

<val ue> [NOT] STARTI NG W TH <val ue>

The STARTING WITH predicate searches for a string or a string-like type that starts with the charactersin its
<value> argument. The search is case-sensitive.

When STARTING WITH is used in the search conditions of DML queries, the Firebird optimizer can use anindex
on the searched column, if it exists.

Example: Search for employees whose last names start with “ Jo”:

SELECT LAST_NAME, FI RST_NAME
FROM EMPLOYEE
VWHERE LAST_NAME STARTING WTH ' Jo'

See also: LIKE

CONTAINING
Available: DSQL, PSQL, ESQL

Syntax:

<val ue> [NOT] CONTAI NI NG <val ue>

53

Common Language Elements

The CONTAINING predicate searches for a string or a string-like type looking for the sequence of characters
that matches its argument. It can be used for an aphanumeric (string-like) search on numbers and dates. A
CONTAINING search is not case-sensitive. However, if an accent-sensitive collation is in use then the search
will be accent-sensitive.

When CONTAINING is used in the search conditions of DML queries, the Firebird optimizer can use an index
on the searched column, if a suitable one exists.

Examples:
1. Searchfor projects whose names contain the substring “Map”:
SELECT *

FROM PRQJECT
WHERE PRQJ_NAME CONTAI NI NG ' Map' ;

Two rows with the names “ AutoMap” and “MapBrowser port” are returned.
2. Search for changes in salaries with the date containing number 84 (in this case, it means changes that took
place in 1984):

SELECT *
FROM SALARY_HI STORY
WHERE CHANGE_DATE CONTAI NI NG 84;

See also: LIKE

SIMILAR TO

Available: DSQL, PSQL

Syntax:
string-expression [NOT] SIMLAR TO <pattern> [ESCAPE <escape- char >]
<pattern> ::= an SQL regul ar expression
<escape-char> ::= a single character

SIMILAR TO matches a string against an SQL regular expression pattern. Unlike in some other languages, the
pattern must match the entire string in order to succeed—matching a substring is not enough. If any operand is
NULL, theresult isNULL. Otherwise, the result is TRUE or FALSE.

Syntax: SQL Regular Expressions

The following syntax defines the SQL regular expression format. It is a complete and correct top-down defini-
tion. It isalso highly formal, rather long and probably perfectly fit to discourage everybody who hasn't already
some experience with regular expessions (or with highly formal, rather long top-down definitions). Fed free
to skip it and read the next section, Building Regular Expressions, which uses a bottom-up approach, aimed
at therest of us.

Common Language Elements

<regul ar expression> ::= <regular ternm> ['|' <regular term ...]
<regular termr ::= <regular factor> ..
<regular factor> ::= <regular primary> [<quantifier>]
<quantifier> ::=7?

| *

| +
|]

<P, <n> ::=unsigned int, with <nk <= <n> if both present

{" <m [,[<n>]] "}

<regul ar primary> ::= <character>
| <character class>
| %
| (<regul ar expression>)

<character> ::= <escaped character>
| <non-escaped character>

<escaped character> ::= <escape-char> <special character>
| <escape-char> <escape-char>

<special character> ::= any of the characters []()]|"-+*% ?{

<non- escaped character> ::= any character that is not a <special character>
and not equal to <escape-char> (if defined)

<character class> ::=

| '"[" <nenber> ... ']’
| "[* <non-member> ... ']
| '"[" <nenber> ... '~ <non-nenber> ... ']’
<menber >, <non-nmenber> ::= <character>
| <range>

| <predefined class>

<range> ::= <charact er>-<charact er>
<predefined class> ::= '[:' <predefined class name> ':]'
<predefined class nane> ::= ALPHA | UPPER | LONER | DIG T

| ALNUM | SPACE | WHI TESPACE

Building Regular Expressions

In this section are the elements and rules for building SQL regular expressions.

Characters

Within regular expressions, most characters represent themselves. The only exceptions are the special characters
below:

55

Common Language Elements

[1OM-+*% _?{}
...and the escape character, if it is defined.

A regular expression that contains no special or escape characters matches only stringsthat areidentical to itself

(subject to the collation in use). That is, it functions just like the “=" operator:
"Apple' similar to 'Apple’ -- true
"Apples' simlar to 'Apple' -- false
"Apple' similar to 'Apples' -- false
"APPLE' sinmilar to 'Apple' -- depends on collation
Wildcards

The known SQL wildcards _and % match any single character and a string of any length, respectively:

"Birne' simlar to 'B_rne' -- true
"Birne' sinmilar to 'B _ne' -- fal se
"Birne' simlar to ' B%e' -- true
'"Birne' simlar to 'Bir%me% -- true
"Birne' simlar to 'Birr%e' -- false

Notice how % also matches the empty string.

Character Classes

A bunch of characters enclosed in brackets define a character class. A character in the string matches aclassin
the pattern if the character is amember of the class:

"Citroen' simlar to "Cit[arju]oen -- true
"Citroen' sinmilar to "GCi[tr]oen -- fal se
"Citroen' simlar to "G [tr][tr]oen -- true

As can be seen from the second line, the class only matches a single character, not a sequence.

Within a class definition, two characters connected by a hyphen define a range. A range comprises the two
endpoints and al the charactersthat lie between them in the active collation. Ranges can be placed anywherein
the class definition without special delimitersto keep them apart from the other elements.

'Datte' similar to 'Dat[g-u]e' -- true
"Datte’ similar to 'Dat[abg-uy]e' -- true
'"Datte' similar to 'Dat[bcg-km pwz]e' -- fal se

Predefined Character Classes
The following predefined character classes can also be used in a class definition:

[:ALPHA:]: Latin letters a..z and A..Z. With an accent-insensitive collation, this class also matches accented
forms of these characters.

56

Common Language Elements

[:DIGIT:]: Decimal digits0..9.
[:ALNUM:]: Union of [:ALPHA:] and [:DIGIT:].

[:UPPER:]: Uppercase Latin letters A..Z. Also matches lowercase with case-insensitive collation and accented
forms with accent-insensitive collation.

[:LOWER:]: Lowercase Léatin |etters a..z. Also matches uppercase with case-insensitive collation and accented
forms with accent-insensitive collation.

[:SPACE:]: Matches the space character (ASCII 32).

[:WHITESPACE:]: Matches horizontal tab (ASCII 9), linefeed (ASCII 10), vertical tab (ASCII 11), formfeed
(ASCII 12), carriage return (ASCII 13) and space (ASCII 32).

Including apredefined class hasthe same effect asincluding all its members. Predefined classesare only allowed
within class definitions. If you need to match against a predefined class and nothing more, place an extra pair
of brackets around it.

"Erdbeere’ simlar to "Erd[[: ALNUM]] eere’ -- true
"Erdbeere' simlar to "Erd[[:DIGAT:]]eere' -- false
"Erdbeere’ similar to 'Erd[a[: SPACE:] b] eere' -- true
'Erdbeere' similar to [[:ALPHA:]] -- false
= simlar to [[:ALPHA:]] -- true

If aclass definition starts with a caret, everything that follows is excluded from the class. All other characters
match:

"Franmboi se' simlar to 'Fra[”ck-p]boise' -- false
'Framboi se' similar to 'Fr[”a][”a]boise' -- false
"Franmboi se' simlar to 'Fra[~*[:DIA@T:]]boise" -- true

If the caret is not placed at the start of the sequence, the class contains everything before the caret, except for
the elements that also occur after the caret:

"Grapefruit' sinmlar to 'Gap[a-mf-i]fruit’ -- true
"Grapefruit’ simlar to ' Gap[abcrxyz]fruit' -- fal se
"Grapefruit' simlar to ' Gap[abchde]fruit’ -- false
"Grapefruit' simlar to ' G ap[abetrde]fruit’ -- fal se
'3 simlar to '[[:DIGAT:]"4-8]" -- true
'6' simlar to '[[:DGET:]1"4-8]" -- false

Lastly, the already mentioned wildcard “_" is a character class of its own, matching any single character.

Quantifiers

A question mark immediately following a character or class indicates that the preceding item may occur O or
1 timesin order to match:

"Hal lon' similar to 'Hal ?on' -- fal se
"Hal lon' simlar to 'Hal ?l on' -- true

57

Common Language Elements

"Hal | on'
"Hal | on'
"Hal | on'
"Hal | on'

simlar
simlar
simlar
simlar

to
to
to
to

"Hal I | ?on’
"Hal I I'| ?on’
' Hal x?Il on'

"Ha-c]?llon[x-2]?

true
fal se
true
true

An asterisk immediately following a character or class indicates that the preceding item may occur O or more
timesin order to match:

' | caque'
'l caque'
' | caque'
'l caque'
'l caque'
'l caque'

simlar
simlar
simlar
simlar
simlar
simlar

to
to
to

to '

to
to

"l ca*que’

'l car*que'
"I[a-c]*que
“[[:ALPHA]]*"
"lca[xyz]*e

true
true
true
true
true
fal se

A plus sign immediately following a character or class indicates that the preceding item must occur 1 or more
timesin order to match:

" Juj ube
" Juj ube
" Juj ube
" Juj ube
" Juj ube

simlar
simlar
simlar
simlar
sililar

P Ju_+
" Ju+j ube'

" Juj uber +'

" J[] ux] +be'
"J[[: DA T:]1] +uj ube

true
true
fal se
true
fal se

If acharacter or class is followed by a number enclosed in braces, it must be repeated exactly that number of
timesin order to match:

"Kiwi '
"KW
"Kiwi '
"KW

to
to
to
to

simlar
simlar
simlar
simlar

YK {2} wi !
"Klipw {2}i"
"KL pw] {2}
"K[ipw {3}

fal se
true
fal se
true

If the number isfollowed by acomma, the item must be repeated at |east that number of timesin order to match:

"Linmone' simlar to 'Li{2,}none' -- false
"Linone' simlar to 'Li{1,}none -- true
"Linmone' simlar to 'Li[nezon{2,}' -- true

If the braces contain two numbers separated by a comma, the second number not smaller than thefirst, then the
item must be repeated at |east the first number and at most the second number of timesin order to match:

"Mandarijn' simlar to 'Ma-p]{2, 5}rijn -- true
"Mandarijn' simlar to "Ma-p]{2, 3}rijn -- fal se
"Mandarijn' simlar to 'Ma-p]{2, 3}tarijn’ -- true

The quantifiers ?, * and + are shorthand for {0,1}, {0,} and {1,}, respectively.

OR-ing Terms

Regular expression terms can be OR'ed with the | operator. A match is made when the argument string matches
at least one of the terms:

58

Common Language Elements

"Nektarin' simlar to 'Nek|tarin' -- fal se
"Nektarin' simlar to 'Nektarin|Persika' -- true
"Nektarin' simlar to ' M+ N_+ P_+' -- true

Subexpressions

One or more parts of the regular expression can be grouped into subexpressions (also called subpatterns) by
placing them between parentheses. A subexpression is aregular expression in its own right. It can contain all
the elements allowed in aregular expression, and can also have quantifiers added to it.

"Orange’ simlar to "Q(ralri]|ro)nge' -- true
'"Orange’ sinilar to "Q(r[a-e])+nge' -- true
"Orange’ simlar to "Q(ra){2, 4} nge' -- fal se
"Orange’ sinmilar to "Q(r(an|in)g|rong)?e' -- true

Escaping Special Characters

In order to match against acharacter that is special in regular expressions, that character hasto be escaped. There
is no default escape character; rather, the user specifies one when needed:

"Peer (Poire)' simlar to "P[~]+ \(P[*]+\)' escape '\’ -- true
"Pera [Pear]' simlar to 'P[»]+ #[P["]+#]' escape '# -- true
' Paron- Appl edryck' simlar to ' P%-A% escape '$' -- true
"Parondryck' simlar to ' P%-A% escape '-' -- fal se

The last line demonstrates that the escape character can also escape itself, if needed.

IS [NOT] DISTINCT FROM
Available: DSQL, PSQL

Syntax:

operandl IS [NOT] DI STI NCT FROM oper and2
Two operands are considered DISTINCT if they have adifferent value or if one of them isNULL and the other
non-null. They are NOT DISTINCT if they have the same value or if both of them are NULL.

See also: IS[NOT] NULL

IS [NOT] NULL
Available: DSQL, PSQL, ESQL

Syntax:

59

Common Language Elements

<val ue> IS [NOT] NULL

Since NULL is not a value, these operators are not comparison operators. The IS[NOT] NULL predicate tests
the assertion that the expression on the left side hasavalue (ISNOT NULL) or has no value (ISNULL).

Example: Search for sales entries that have no shipment date set for them:

SELECT * FROM SALES
WHERE SHI P_DATE |'S NULL;

Noteregarding the | S predicates

Uptoandincluding Firebird 2.5, the IS predicates, like the other comparison predicates, do not have precedence
over the others. In Firebird 3.0 and higher, these predicates take precedence above the others.

Existential Predicates
This group of predicates includes those that use subqueriesto submit values for al kinds of assertionsin search

conditions. Existential predicates are so called because they use various methodsto test for the existence or non-
existence of some assertion, returning TRUE if the existence or non-existence is confirmed or FALSE otherwise.

EXISTS
Available: DSQL, PSQL, ESQL
Syntax:

[NOT] EXI STS(<sel ect _stnt>)

The EXISTS predicate uses a subquery expression asits argument. It returns TRUE if the subquery result would
contain at least one row; otherwise it returns FALSE.

NOT EXISTS returns FALSE if the subquery result would contain at |east one row; it returns TRUE otherwise.

Note

The subquery can specify multiple columns, or SELECT *, because the evaluation is made on the number of
rows that match its criteria, not on the data.

Examples:

1. Find those employees who have projects.

SELECT *
FROM enpl oyee

60

Common Language Elements

WHERE EXI STS(SELECT *
FROM enpl oyee _project ep
WHERE ep. enp_no = enpl oyee. enp_no)

2. Find those employees who have no projects.

SELECT *
FROM enpl oyee
WHERE NOT EXI STS(SELECT *
FROM enpl oyee_proj ect ep
WHERE ep. enp_nho = enpl oyee. enp_no)

IN
Available: DSQL, PSQL, ESQL

Syntax:

<val ue> [NOT] IN(<select_stnt> | <value_list>)

<value_list> ::= <value_1> [, <value_2> .]

The N predicate tests whether the value of the expression on the left sideis present in the set of values specified
on theright side. The set of values cannot have more than 1500 items. The IN predicate could be replaced with
the following equivalent form:

(<val ue> = <val ue_1> [OR <val ue> = <value_2> .])

When the IN predicateis used in the search conditions of DML queries, the Firebird optimizer can use an index
on the searched column, if a suitable one exists.

Inits second form, the IN predicate tests whether the value of the expression on the |eft side is present (or not
present, if NOT IN isused) in the result of the executed subquery on the right side.

The subquery must be specified to result in only one column, otherwise the error “count of column list and
variable list do not match” will occur.

Queries specified using the IN predicate with a subguery can be replaced with asimilar query using the EXISTS
predicate. For instance, the following query:

SELECT
nodel , speed, hd
FROM PC
VHERE
nmodel I N (SELECT nodel
FROM pr oduct
WHERE maker = "A');

61

Common Language Elements

can be replaced with asimilar one using the EXISTS predicate:

SELECT

nodel , speed, hd
FROM PC
VHERE

EXI STS (SELECT *

FROM pr oduct
VWHERE maker = 'A
AND product . nodel = PC. nodel) ;

However, a query using NOT IN with a subquery does not aways give the same result as its NOT EXISTS
counterpart. The reason is that EXISTS always returns TRUE or FALSE, whereas IN returns NULL in one of
these two cases:

1. whenthetest valueisNULL and the IN () list is not empty

2. whenthetest value has no match inthe IN () list and at least one list element is NULL

It isin only these two cases that IN () will return NULL while the corresponding EXISTS predicate will return
FALSE (‘no matching row found'). In a search or, for example, an IF (...) statement, both results mean “failure’
and it makes no difference to the outcome.

But, for the same data, NOT IN () will return NULL, while NOT EXISTS will return TRUE, leading to opposite
results.

As an example, suppose you have the following query:

-- Looking for people who were not born
-- on the same day as any fanmous New York citizen
SELECT P1. nanme AS NAME
FROM Per sonnel P1
VWHERE P1. birthday NOT I N (SELECT C1. bi rt hday
FROM Cel ebrities Cl
VWHERE Cl.birthcity = 'New York');

Now, assume that the NY celebritieslist is not empty and contains at least one NULL birthday. Then for every
citizen who does not share his birthday with aNY celebrity, NOT IN will return NULL, because that is what IN
does. The search condition is thereby not satisfied and the citizen will be left out of the SELECT result, which
iswrong.

For citizens whose birthday does match with a celebrity's birthday, NOT IN will correctly return FALSE, so they
will be left out too, and no rows will be returned.

If the NOT EXISTS form is used:

-- Looking for people who were not born
-- on the sane day as any fampus New York citizen
SELECT P1. nane AS NAME
FROM Per sonnel P1
VWHERE NOT EXI STS (SELECT *
FROM Cel ebrities Cl1
WHERE Cl.birthcity = ' New York'
AND Cl1. bi rthday = P1. birt hday);

non-matches will have aNOT EXISTS result of TRUE and their records will be in the result set.

62

Common Language Elements

Advice

If there is any chance of NULLSs being encountered when searching for a non-match, you will want to use
NOT EXISTS.

Examples of use:

1. Find employees with the names “Pete”, “Ann” and “Roger”:

SELECT *
FROM EMPLOYEE
WHERE FI RST_NAME IN (' Pete', 'Ann', 'Roger');

2. Find al computers that have models whose manufacturer starts with the letter “A”:

SELECT

nodel , speed, hd
FROM PC
VHERE

nmodel | N (SELECT nodel

FROM pr oduct
WHERE nmaker STARTING WTH 'A');

See also: EXISTS

SINGULAR
Available: DSQL, PSQL, ESQL

Syntax:

[NOT] SI NGULAR(<sel ect _stmnt >)

The SINGULAR predicatetakesasubquery asitsargument and evaluatesit as Trueif the subquery returnsexactly
one result row; otherwise the predicate is evaluated as False. The subquery may list several output columns
sincethe rowsare not returned anyway. They are only tested for (singular) existence. For brevity, people usually
specify 'SELECT *'. The SINGULAR predicate can return only two values: TRUE or FALSE.

Example: Find those employees who have only one project.

SELECT *
FROM enpl oyee
VWHERE SI NGULAR(SELECT *
FROM
enpl oyee_proj ect ep
VHERE
ep. enp_no = enpl oyee. enp_no)

63

Common Language Elements

Quantified Subquery Predicates

A quantifier isalogical operator that setsthe number of objectsfor which thisassertionistrue. Itisnot anumeric
guantity, but alogical one that connects the assertion with the full set of possible objects. Such predicates are
based on logical universal and existential quantifiers that are recognised in formal logic.

In subquery expressions, quantified predicates make it possible to compare separate values with the results of

subqueries; they have the following common form:

<val ue expressi on> <conpari son operator> <quantifier> <subquery>

ALL
Available: DSQL, PSQL, ESQL

Syntax:

<val ue> <op> ALL(<sel ect_stnt>)

When the ALL quantifier is used, the predicate is TRUE if every value returned by the subquery satisfies the
condition in the predicate of the main query.

Example: Show only those clients whose ratings are higher than the rating of every client in Paris.

SELECT cl.*
FROM Custoners cl
WHERE cl.rating > ALL
(SELECT c2.rating
FROM Custoners c2
VWHERE c2.city = 'Paris')

Important

If the subquery returns an empty set, the predicate is TRUE for every left-side value, regardless of the operator.
This may appear to be contradictory, because every |eft-side value will thus be considered both smaller and
greater than, both equal to and unequal to, every element of the right-side stream.

Nevertheless, it aligns perfectly with formal logic: if the set is empty, the predicate is true O times, i.e., for
every row in the set.

ANY and SOME

Available: DSQL, PSQL, ESQL

Common Language Elements

Syntax:

<val ue> <op> {ANY | SOVE} (<select_stnt>)

ThequantifiersANY and SOME areidentical intheir behaviour. Apparently, both are present inthe SQL standard
so that they could be used interchangeably in order to improve the readability of operators. Whenthe ANY or the
SOME quantifier isused, the predicate istrue if any of the values returned by the subquery satisfiesthe condition
in the predicate of the main query. If the subquery would return no rows at al, the predicate is automatically
considered as False.

Example: Show only those clients whose ratings are higher than those of one or more clientsin Rome.

SELECT *
FROM Cust oner s
VWHERE rating > ANY
(SELECT rating
FROM Cust orrer s
WHERE city = ' Rone')

65

Chapter 5

Data Definition
(DDL) Statements

DDL is the data definition language subset of Firebird's SQL language. DDL statements are used to create,
modify and delete database objects that have been created by users. When a DDL statement is committed, the

metadata for the object are created, changed or del eted.

DATABASE

This section describes how to create a database, connect to an existing database, alter the file structure of a
database and how to delete one. It aso explains how to back up a database in two quite different ways and how

to switch the database to the “ copy-safe” mode for performing an external backup safely.

CREATE DATABASE

Used for: Creating a new database
Availablein: DSQL, ESQL

Syntax:

CREATE { DATABASE | SCHEMA} ' <fil espec>'
[USER ' usernanme' [PASSWORD ' password']]
[PACE_SI ZE [=] si ze]

[LENGTH [=] num [PAGE] 9]]

[SET NAMES ' charset']

[DEFAULT CHARACTER SET def aul t _charset

[COLLATION col lation]] -- not supported in ESQ
[<sec_file> [<sec_file> ...]]
[DI FFERENCE FILE 'diff_file']; -- not supported in ESQ
<filespec> ::= [<server_spec>]{filepath | db_alias}
<server_spec> ::= servernane [/{port]|service}]: | \\servernane\
<sec_file> ::= FILE 'filepath'
[LENGTH [=] num [PAGE[S]] [STARTI NG [AT [PAGE]] pagenuni

66

Data Definition (DDL) Statements

Table5.1. CREATE DATABASE Statement Parameters

Parameter Description
filespec File specification for primary database file
Remote server specification in TCP/IP or Windows Networking style. Optional-
server_spec .)
ly includes a port number or service name
filenath Full path and file name including its extension. The file name must be specified
P according to the rules of the platform file system being used.
db_dlias Database dlias previousdly created inthe al i ases. conf file
servername Host name or | P address of the server where the database is to be created
User name of the owner of the new database. It may consist of up to 31 charac-
username : »
ters. Case-insensitive
ord Password of the user name as the database owner. The maximum length is 31
P characters; however only the first 8 characters are considered. Case-sensitive
: Page size for the database, in bytes. Possible values are 4096 (the default), 8192
size
and 16384
num Maximum size of the primary database file, or a secondary file, in pages
charset Specifies the character set of the connection available to a client connecting after
the database is successfully created. Single quotes are required
default_charset Specifies the default character set for string data types
collation Default collation for the default character set
sec file File specificaton for a secondary file
pagenum Starting page number for a secondary database file
diff_file File path and name for DIFFERENCE files (.deltafiles)

The CREATE DATABASE statement creates a new database. You can use CREATE DATABASE or CREATE
SCHEMA.. They are synonymous.

A database may consist of one or several files. The first (main) fileis called the primary file, subsequent files

are called secondary file[] .

Multi-file Databases

Nowadays, multi-file databases are considered athrowback. It made sense to use multi-file databaseson old file
systemswherethesize of any fileislimited. For instance, you could not create afilelarger than 4 GB on FAT32.

The primary file specification is the name of the database file and its extension with the full path to it according
to the rules of the OS platform file system being used. The database file must not exist at the moment when the
database is being created. If it does exist, you will get an error message and the database will not be created.

If the full path to the database is hot specified, the database will be created in one of the system directories. The
particular directory depends on the operating system. For this reason, unless you have a strong reason to prefer
that situation, always specify the absolute path, when creating either the database or an aliasfor it.

67

Data Definition (DDL) Statements

Using a Database Alias

Y ou can use aliasesinstead of the full path to the primary databasefile. Aliases are defined inthe al i ases.
conf fileinthefollowing format:

alias = filepath

Creating a Database Remotely

If you create a database on a remote server, you should specify the remote server specification. The remote
server specification depends on the protocol being used. If you use the TCP/IP protocol to create a database, the
primary file specification should look like this:

servernane[/{port|service}]:{filepath | db_alias}

If you use the Named Pipes protocol to create a database on a Windows server, the primary file specification
should look like this:

\\servernane\{filepath | db_alias}

Optional Parameters for CREATE DATABASE

Optional USER and PASSWORD: Clauses for specifying the user name and the password, respectively, of an
existing user in the security databasesecuri t y2. f db. Y ou do not have to specify the username and password
if thelSC_USER and ISC_PASSWORD environment variables are set. The user specified in the process of creating
the database will be its owner. Thiswill be important when considering database and object privileges.

Optional PAGE_SIZE: Clause for specifying the database page size. This size will be set for the primary file
and all secondary files of the database. If you specify the database page size less than 4,096, it will be changed
automatically to the default page size, 4,096. Other values not equal to either 4,096, 8,192 or 16,384 will be
changed to the closest smaller supported value. If the database page size is not specified, it is set to the default
value of 4,096.

Optional LENGTH: Clause specifying the maximum size of the primary or secondary database file, in pages.
When adatabaseis created, its primary and secondary fileswill occupy the minimum number of pages necessary
to store the system data, regardless of the value specified in the LENGTH clause. The LENGTH value does not
affect the size of theonly (or last, in amulti-file database) file. Thefilewill keep increasing its size automatically
when necessary.

Optional SET NAMES: Clause specifying the character set of the connection available after the database is
successfully created. The character set NONE is used by default. Notice that the character set should be enclosed
in a pair of apostrophes (single quotes).

Optional DEFAULT CHARACTER SET: Clause specifying the default character set for creating data structures
of string datatypes. Character sets are applied to CHAR, VARCHAR and BLOB TEXT data types. The character

68

Data Definition (DDL) Statements

set NONE is used by default. It is also possible to specify the default COLLATION for the default character set,
making that collation sequence the default for the default character set. The default will be used for the entire
database except where an alternative character set, with or without a specified collation, is used explicitly for
afield, domain, variable, cast expression, etc.

STARTING AT: Clausethat specifiesthe database page number at which the next secondary database file should
start. When the previous file is completely filled with data according to the specified page humber, the system
will start adding new data to the next database file.

Optional DIFFERENCE FILE: Clause specifying the path and namefor thefile deltathat stores any mutationsto
the database file after it has been switched to the “ copy-safe” mode by the ALTER DATABASE BEGIN BACKUP
statement. For the detailed description of this clause, see ALTER DATABASE.

SET SQL DIALECT: Databases are created in Diaect 3 by default. For the database to be created in SQL dialect
1, you will need to execute the statement SET SQL DIALECT 1 from script or the client application, e.g. isql,
before the CREATE DATABASE statement.

Examples Using CREATE DATABASE

1. Creating a database in Windows, located on disk D with a page size of 8,192. The owner of the database
will bethe user wizard. The database will bein Dialect 1 and it will use WIN1251 asitsdefault character set.

SET SQ. DI ALECT 1;

CREATE DATABASE 'D:\test.fdb'

USER 'wi zard' PASSWORD ' pl ayer’

PACGE_SI ZE = 8192 DEFAULT CHARACTER SET W N1251;

2. Creating a database in the Linux operating system with a page size of 4,096. The owner of the database
will be the user wizard. The database will bein Dialect 3 and it will use UTF8 as its default character set,
with UNICODE_CI_Al asthe default collation.

CREATE DATABASE '/hone/firebird/test.fdb'
USER 'wi zard'" PASSWORD ' pl ayer'
DEFAULT CHARACTER SET UTF8 COLLATI ON UNI CODE_CI _Al;

3. Creating adatabase on the remote server “ baseserver” with the path specified inthealias“test” that hasbeen
defined previoudly in thefileal i ases. conf . The TCP/IP protocol is used. The owner of the database
will be the user wizard. The database will be in Dialect 3 and will use UTF8 as its default character set.

CREATE DATABASE ' baseserver:test'
USER 'wi zard'" PASSWORD ' pl ayer'
DEFAULT CHARACTER SET UTFS;

4. Creating a database in Dialect 3 with UTF8 as its default character set. The primary file will contain up
to 10,000 pages with a page size of 8,192. As soon as the primary file has reached the maximum number
of pages, Firebird will start allocating pages to the secondary filet est . f db2. If that fileisfilled up to
its maximum as well, t est . f db3 becomes the recipient of all new page allocations. As the last filg, it
has no page limit imposed on it by Firebird. New allocations will continue for as long as the file system

69

Data Definition (DDL) Statements

allowsit or until the storage device runs out of free space. If a LENGTH parameter were supplied for this
last file, it would be ignored.

SET SQL DI ALECT 3;

CREATE DATABASE ' baseserver: D:\test. fdb'
USER 'wi zard' PASSWORD ' pl ayer'

PACE_SI ZE = 8192

DEFAULT CHARACTER SET UTF8

FILE 'D:\test.fdb2'

STARTI NG AT PAGE 10001

FILE 'D:\test.fdb3'

STARTI NG AT PAGE 20001;

5. Creating a database in Dialect 3 with UTF8 as its default character set. The primary file will contain up to
10,000 pages with a page size of 8,192. Asfar asfile size and the use of secondary files are concerned, this
database will behave exactly like the one in the previous example.

SET SQL DI ALECT 3;

CREATE DATABASE ' baseserver: D \test. fdb'
USER 'wi zard' PASSWORD ' pl ayer'

PACE_SI ZE = 8192

LENGTH 10000 PAGES

DEFAULT CHARACTER SET UTF8

FILE 'D:\test.fdb2

FILE 'D:\test.fdb3'

STARTI NG AT PAGE 20001;

See also: ALTER DATABASE, DROP DATABASE

ALTER DATABASE

Used for: Altering the file organisation of a database or toggling its “ copy-safe” state
Available in: DSQL—Dboth functions. ESQL—file reorganisation only

Syntax:

ALTER { DATABASE | SCHEMA}

[<add_sec_cl ause> [<add_sec_cl ause> ...]]

[ADD DI FFERENCE FILE 'diff _file' | DROP DI FFERENCE FI LE]
[{BEG N | END} BACKUP];

<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]
<sec file> ::= FILE "fil epath’

ADD FI LE <sec_file>

[STARTI NG [AT [PAGE]] pagenuni
[LENGTH [=] num [PAGE[9]]

70

Data Definition (DDL) Statements

Note

Multiple files can be added in one ADD clause:

ALTER DATABASE
ADD FI LE x LENGTH 8000
FILE y LENGTH 8000
FILE z

Multiple ADD FILE clauses are allowed; and an ADD FILE clause that adds multiple files (as in the example
above) can be mixed with others that add only one file. The statement was incorrectly documented in the old
InterBase 6 Language Reference.

Table5.2. ALTER DATABASE Statement Parameters

Parameter Description
add_sec _clause Adding a secondary database file
sec file File specification for secondary file
filepath Full path and file name of the deltafile or the secondary database file
pagenum Page number from which the secondary database file isto start
num Maximum size of the secondary file in pages
diff_file File path and name of the .deltafile (difference file)

The ALTER DATABASE statement can

» add secondary filesto a database
» switch asingle-file database into and out of the “copy-safe” mode (DSQL only)
 set or unset the path and name of the deltafile for physical backups (DSQL only)

Only administrators have the authority to use ALTER DATABASE.

Parameters for ALTER DATABASE

The ADD FILE clause: adds a secondary file to the database. It is necessary to specify the full path to the file
and the name of the secondary file. The description for the secondary file is similar to the one given for the
CREATE DATABASE statement.

The ADD DIFFERENCE FILE clause: specifies the path and name of the delta file that stores any mutations
to the database whenever it is switched to the “copy-safe” mode. This clause does not actually add any file. It
just overrides the default name and path of the .deltafile. To change the existing settings, you should delete the
previoudy specified description of the .delta file using the DROP DIFFERENCE FILE clause before specifying
the new description of the deltafile. If the path and name of the .deltafile are not overridden, the file will have
the same path and name as the database, but withthe . del ta file extension.

71

Data Definition (DDL) Statements

Caution

If only afile nameis specified, the .deltafile will be created in the current directory of the server. On Windows,
this will be the system directory—a very unwise location to store volatile user files and contrary to Windows
file system rules.

DROP DIFFERENCE FILE: This is the clause that deletes the description (path and name) of the .delta file
specified previoudy in the ADD DIFFERENCE FILE clause. Thefileis not actually deleted. DROP DIFFERENCE
FILE deletes the path and name of the .delta file from the database header. Next time the database is switched
to the “ copy-safe” mode, the default values will be used (i.e. the same path and name as those of the database,
but with the .delta extension).

BEGIN BACKUP: Thisis the clause that switches the database to the “copy-safe” mode. ALTER DATABASE
with thisclause freezesthe main databasefile, making it possibleto back it up safely using file systemtools, even
if users are connected and performing operations with data. Until the backup state of the database is reverted to
NORMAL, all changes made to the database will be written to the .delta (difference) file.

I mportant

Despite its syntax, a statement with the BEGIN BACKUP clause does not start a backup process but just creates
the conditions for doing atask that requires the database file to be read-only temporarily.

END BACKUP: isthe clause used to switch the database from the “copy-safe” maode to the norma mode. A
statement with this clause merges the .delta file with the main database file and restores the normal operation
of the database. Once the END BACKUP process starts, the conditions no longer exist for creating safe backups
by means of file system tools.

Warning

Use of BEGIN BACKUP and END BACKUP and copying the database files with filesystem tools, is not safe
with multi-file databases! Use this method only on single-file databases.

Making a safe backup with the gbak utility remains possible at al times, although it is not recommended to
run gbak while the database isin LOCKED or MERGE state.

Examples of ALTER DATABASE Usage

1. Adding a secondary file to the database. As soon as 30000 pages are filled in the previous primary or
secondary file, the Firebird engine will start adding data to the secondary filet est 4. f db.

ALTER DATABASE
ADD FILE 'D:\test4.fdb
STARTI NG AT PACE 30001,

2. Specifying the path and name of the deltafile:

ALTER DATABASE
ADD DI FFERENCE FILE 'D:\test.diff";

3. Deleting the description of the deltafile:

72

Data Definition (DDL) Statements

ALTER DATABASE
DROP DI FFERENCE FI LE;

4. Switching the database to the “ copy-safe” mode:

ALTER DATABASE
BEG N BACKUP;

5. Switching the database back from the “copy-safe” mode to the normal operation mode:

ALTER DATABASE
END BACKUP;

See also: CREATE DATABASE, DROP DATABASE

DROP DATABASE

Used for: Deleting the database to which you are currently connected
Availablein: DSQL, ESQL
Syntax:

DROP DATABASE

The DROP DATABASE statement del etes the current database. Before deleting a database, you have to connect
toit. The statement deletes the primary file, all secondary files and all shadow files.

Only administrators have the authority to use DROP DATABASE.

Example: Deleting the database the client is connected to.
DROP DATABASE;

See also: CREATE DATABASE, ALTER DATABASE

SHADOW

A shadow is an exact, page-by-page copy of a database. Once a shadow is created, all changes made in the
database are immediately reflected in the shadow. If the primary database file becomes unavailable for some
reason, the DBM S will switch to the shadow.

73

Data Definition (DDL) Statements

This section describes how to create and del ete shadow files.

CREATE SHADOW

Used for: Creating a shadow for the current database
Availablein: DSQL, ESQL

Syntax:

CREATE SHADOW sh_num [AUTO | MANUAL] [CONDI Tl ONAL]
"filepath' [LENGTH [=] num [PAGE] S]]]
[<secondary file> ...];

<secondary file> ::=
FILE 'filepath'
[STARTI NG [AT [PAGE]] pagenuni
[LENGTH [=] num [PACGE[S]]]

Table5.3. CREATE SHADOW Statement Parameters

Parameter Description
sh_num Shadow humber—a positive number identifying the shadow set
. The name of the shadow file and the path to it, in accord with the rules of the op-
filepath .
erating system
num Maximum shadow size, in pages
secondary_file Secondary file specification
page_num The number of the page at which the secondary shadow file should start

The CREATE SHADOW statement creates a new shadow. The shadow starts duplicating the database right at the
moment it is created. It is not possible for a user to connect to a shadow.

Like a database, a shadow may be multi-file. The number and size of a shadow's files are not related to the
number and size of the files of database it is shadowing.

The page size for shadow filesis set to be equal to the database page size and cannot be changed.

If a calamity occurs involving the original database, the system converts the shadow to a copy of the database
and switchesto it. The shadow is then unavailable. What happens next depends on the MODE option.

AUTO | MANUAL Modes

When a shadow is converted to a database, it becomes unavailable. A shadow might alternatively become un-
available because someone accidentally deletes its file, or the disk space where the shadow files are stored is
exhausted or isitself damaged.

74

Data Definition (DDL) Statements

» If the AUTO mode is selected (the default value), shadowing ceases automatically, al references to it are
deleted from the database header and the database continues functioning normally.

If the CONDITIONAL option was set, the system will attempt to create a new shadow to replace the lost one.
It does not always succeed, however, and a new one may need to be created manually.

» If the MANUAL mode attribute is set when the shadow becomes unavailable, all attempts to connect to the
database and to query it will produce error messages. The database will remain inaccessible until either the
shadow again becomes available or the database administrator deletesit using the DROP SHADOW statement.
MANUAL should be selected if continuous shadowing is more important than uninterrupted operation of
the database.

Options for CREATE SHADOW

Optional LENGTH: Clause specifying the maximum size of the primary or secondary shadow file in pages.
The LENGTH value does not affect the size of the only shadow file, nor the last if it is a set. The last (or only)
filewill keep automatically increasing in size aslong asit is necessary.

STARTING AT: Clause specifying the shadow page number at which the next shadow file should start. The
system will start adding new data to the next shadow file when the previous file is filled with data up to the
specified page number.

Only administrators have the authority to use CREATE SHADOW.

Tip

Y ou can verify the sizes, names and location of the shadow files by connecting to the database using isgl and
running the command SHOW DATABASE;

Examples Using CREATE SHADOW:

1. Creating ashadow for the current database as * shadow number 1”:

CREATE SHADOW 1 'g:\data\test.shd';

2. Creating amulti-file shadow for the current database as “shadow number 2”:

CREATE SHADOW 2 'g:\data\test.shl'
LENGTH 8000 PAGES
FILE 'g:\data\test.sh2';

See also: CREATE DATABASE, DROP SHADOW

DROP SHADOW

Used for: Deleting a shadow from the current database

75

Data Definition (DDL) Statements

Availablein: DSQL, ESQL

Syntax:

DROP SHADOW sh_num

Table5.4. DROP SHADOW Statement Par ameter

Par ameter Description

sh_num Shadow number—a positive number identifying the shadow set

The DROP SHADOW statement del etes the specified shadow for the database oneis connected to. When ashadow
isdropped, al filesrelated to it are deleted and shadowing to the specified sh_numceases.

Only administrators have the authority to use DROP SHADOW.

Example of Dropping a Shadow: Deleting “shadow number 1”.
DROP SHADOW 1;

See also: CREATE SHADOW

DOMAIN

Domain isone of the abject typesin arelational database. A domainis created as a specific data type with some
attributes attached to it. Once it has been defined in the database, it can be reused repeatedly to define table
columns, PSQL arguments and PSQL local variables. Those objects inherit all of the attributes of the domain.
Some attributes can be overriden when the new object is defined, if required.

This section describesthe syntax of statements used to create, modify and delete domains. A detailed description
of domains and their usage can be found in Custom Data Types—Domains.

CREATE DOMAIN

Used for: Creating a new domain
Availablein: DSQL, ESQL

Syntax:

CREATE DOMAI N nanme [AS] <dat at ype>

76

Data Definition (DDL) Statements

[DEFAULT {literal

| NULL | <context_var>}]

[NOT NULL] [CHECK (<dom condition>)]

[COLLATE col l atio

<dat atype> ::=
{SMALLINT | 1

n_nane] ;

NTEGER | BI G NT} [<array_di np]

{FLOAT | DOUBLE PRECI SION} [<array_di nmp]

{DATE | TIME

I
I
| {DECIMAL | NUMERIC} [(precision [,
I

| TI MESTAMP} [<array_dinp]

scale])] [<array_di np]

{CHAR | CHARACTER | CHARACTER VARYI NG | VARCHAR! [(size)]

[<array_dinp]
| {NCHAR | NATI
[(size)] [<ar

[CHARACTER SET char set _nane]

ONAL CHARACTER | NATI ONAL CHAR} [VARYI NG

ray_di np]

| BLOB [SUB TYPE {subtype num | subtype nane}]

[SEGVENT Sl ZE segl en] [CHARACTER SET char set _nane]

| BLOB [(seglen

<array dine ::= |

<dom condi ti on> ::

[, subtype _nuni)]
[m]In[,[m]n ...]]

<val > <operator> <val >

<val > [NOT] BETWEEN <val > AND <val >
N (<val> [, <val> ...] | <select_list>)
<val > | S [NOT] NULL

<val > | S [NOT] DI STI NCT FROM <val >
<val > [NOT] CONTAI NI NG <val >

<val > [NOT] STARTING [WTH] <val >

<val > [NOT] |

<val > [NOT] L

| KE <val > [ESCAPE <val >]

<val > <operator> {ALL | SOVE | ANY} (<select list>)
[NOT] EXI STS (<sel ect _expr>)

[NOT] SI NGULAR (<sel ect _expr>)
(<dom_condi ti on>)

NOT <dom condi ti on>

<dom condi ti on> OR <dom condi ti on>
<dom condi ti on> AND <dom condi ti on>

<operator> ::=
<> | 1= I N=

<val > ::=
VALUE
literal
<cont ext _var>
<expr essi on>
NULL

I
I
I
I
I
I
I
| <val > [NOT] SIM LAR TO <val > [ESCAPE <val >]
I
I
I
I
I
I
I

~:|:|<|>|<: >= I < N

GEN | D(gennane, <val >)
CAST(<val > AS <dat at ype>)
(<sel ect _one>)

func([<val > [

I
I
I
I
| NEXT VALUE FOR gennane
I
I
I
I

, <val> ...1])

Table5.5. CREATE DOMAIN Statement Parameters

N>

~>

Parameter

Description

name

Domain name consisting of up to 31 characters

77

Data Definition (DDL) Statements

Parameter Description
datatype SQL datatype
literal A literal value that is compatible with dat at ype
context_var Any context variable whose type is compatible with dat at ype
dom_condition Domain condition

Name of a collation sequence that isvalid for char set _nane, if itissup-

collation_name plied with dat at ype or, otherwise, isvalid for the default character set of the
database
array_dim Array dimensions
m, n INTEGER numbers defining the index range of an array dimension
. The total number of significant digits that avalue of the dat at ype can hold
precision
(1..18)
scale The number of digits after the decimal point (O..pr eci si on)
size The maximum size of astring in characters
charset name The name of avalid character set, if the character set of the domain is to be dif-
- ferent to the default character set of the database
subtype_num BLOB subtype number
subtype name BLOB subtype mnemonic name
seglen Segment size (max. 65535)
select_one A scalar SELECT statement—sel ecting one column and returning only one row
select_list A SELECT statement selecting one column and returning zero or more rows
A SELECT statement selecting one or more columns and returning zero or more
select_expr
rows
expression An expression resolving to a value that is compatible with dat at ype
genname Sequence (generator) name
func Internal function or UDF

The CREATE DOMAIN statement creates a new domain.

Any SQL data type can be specified as the domain type.

Type-specific Details
ARRAY Types:

» If thedomainisto be an array, the base type can be any SQL data type except BLOB and ARRAY .
» Thedimensionsof thearray are specified between square brackets. (In the Syntax block, these brackets appear
in boldface to distinguish them from the square brackets that identify optional syntax elements.)

78

Data Definition (DDL) Statements

» For each array dimension, one or two integer numbers define the lower and upper boundaries of its index
range:

- By default, arrays are 1-based. The lower boundary is implicit and only the upper boundary need be
specified. A single number smaller than 1 defines the range num.1 and a number greater than 1 defines
therange 1..num

- Two numbers separated by a colon (*:") and optional whitespace, the second greater than the first, can be
used to define the range explicitly. One or both boundaries can be less than zero, as long as the upper
boundary is greater than the lower.

* When the array has multiple dimensions, the range definitions for each dimension must be separated by
commas and optional whitespace.

» Subscripts are validated only if an array actually exists. It means that no error messages regarding invalid
subscripts will be returned if selecting a specific element returns nothing or if an array field is NULL.

CHARACTER Types: You can use the CHARACTER SET clause to specify the character set for the CHAR,
VARCHAR and BLOB (SUB_TYPE TEXT) types. If the character set is not specified, the character set specified
as DEFAULT CHARACTER SET in creating the database will be used. If no character set was specified then, the
character set NONE is applied by default when you create a character domain.

Warning

With character set NONE, character data are stored and retrieved the way they were submitted. Data in any
encoding can be added to a column based on such adomain, but it isimpossible to add this datato acolumn with
a different encoding. Because no trandliteration is performed between the source and destination encodings,
errors may result.

DEFAULT Clause: The optional DEFAULT clause allows you to specify a default value for the domain. This
value will be added to the table column that inherits this domain when the INSERT statement is executed, if no
valueis specified for it in the DML statement. Local variables and arguments in PSQL modules that reference
this domain will be initialized with the default value. For the default value, use a literal of a compatible type
or acontext variable of acompatible type.

NOT NULL Constraint: Columns and variables based on a domain with the NOT NULL constraint will be
prevented from being written asNULL, i.e., avalueisrequired.

Caution

When creating a domain, take care to avoid specifying limitations that would contradict one ancther. For in-
stance, NOT NULL and DEFAULT NULL are contradictory.

CHECK Constraint[s]: The optional CHECK clause specifies constraints for the domain. A domain constraint
specifies conditions that must be satisfied by the values of table columns or variables that inherit from the
domain. A condition must be enclosed in parentheses. A conditionisalogical expression (also called apredicate)
that can return the Boolean results TRUE, FALSE and UNKNOWN. A condition is considered satisfied if the
predicate returns the value TRUE or “unknown value” (equivalent to NULL). If the predicate returns FALSE, the
condition for acceptance is not met.

VALUE Keyword: Thekeyword VALUE inadomain constraint substitutes for the table column that isbased on
thisdomain or for avariablein aPSQL module. It containsthe value assigned to the variable or the table column.
VALUE can be used anywhereinthe CHECK constraint, thoughit isusually used in theleft part of the condition.

COLLATE: Theoptional COLLATE clause allowsyou to specify the collation sequence if the domain is based
on one of the string data types, including BLOBs with text subtypes. If no collation sequence is specified, the
collation sequence will be the one that is default for the specified character set at the time the domain is created.

79

Data Definition (DDL) Statements

Any user connected to the database can create a domain.

CREATE DOMAIN Examples

1

Creating a domain that can take values greater than 1,000, with a default value of 10,000.

CREATE DOVAI N CUSTNO AS
| NTEGER DEFAULT 10000
CHECK (VALUE > 1000);

Creating a domain that can take the values 'Yes' and 'No' in the default character set specified during the
creation of the database.

CREATE DOMAI N D_BOOLEAN AS
CHAR(3) CHECK (VALUE IN (' Yes', 'No'));

Creating a domain with the UTF8 character set and the UNICODE_CI_AI collation sequence.

CREATE DOVAI N FI RSTNAVE AS
VARCHAR(30) CHARACTER SET UTF8
CCOLLATE UNI CODE_CI _Al ;

Creating adomain of the DATE typethat will not accept NULL and usesthe current date asthe default value.

CREATE DOVAI N D_DATE AS
DATE DEFAULT CURRENT_DATE
NOT NULL;

Creating adomain defined as an array of 2 elements of the NUMERIC(18, 3) type. The starting array index
isl

CREATE DOMAI N D_POI NT AS
NUMERI C(18, 3) [2]:

Note

Domains defined over an array type may be used only to define table columns. You cannot use array
domains to define local variablesin PSQL modules.

Creating a domain whose elements can be only country codes defined in the COUNTRY table.

CREATE DOMAI N D_COUNTRYCODE AS CHAR(3)
CHECK (EXI STS(SELECT * FROM COUNTRY
WHERE COUNTRYCODE = VALUE));

80

Data Definition (DDL) Statements

Note

The example is given only to show the possibility of using predicates with queries in the domain test
condition. It isnot recommended to create this style of domain in practice unlessthelookup table contains
datathat are never deleted.

See also: ALTER DOMAIN, DROP DOMAIN

ALTER DOMAIN

Used for: Altering the current attributes of adomain or renaming it
Availablein: DSQL, ESQL

Syntax:

ALTER DOVAI N domai n_name
[TO <new_name>]
[TYPE <dat at ype>]
[SET DEFAULT {literal | NULL | <context_var>} | DROP DEFAULT]
[ADD [CONSTRAI NT] CHECK (<dom condition>) | DROP CONSTRAI NT]

<datatype> ::=

{SMALLI NT | INTEGER | BI G NT}

| {FLOAT | DOUBLE PRECI SI ON}

| {DATE | TIME | TIMESTAVP}

| {DECIMAL | NUMERIC} [(precision [, scale])]

| {CHAR | CHARACTER | CHARACTER VARYI NG | VARCHAR} [(size)]
[CHARACTER SET char set _nane]

| {NCHAR | NATI ONAL CHARACTER | NATI ONAL CHAR} [VARYING [(size)]

| BLOB [SUB_TYPE {subtype_num | subtype_namne}]
[SEGVENT SI ZE segl en] [CHARACTER SET char set _nane]

| BLOB [(seglen [, subtype_nuni)]

<dom condition> ::=
<val > <operator> <val >

| <val > [NOT] BETWEEN <val > AND <val >
| <val> [NOT] IN (<val> [, <val> ...] | <select_list>)
| <val> IS [NOT] NULL
| <val> |IS [NOr] DI STINCT FROM <val >
| <val > [NOT] CONTAI NI NG <val >
| <val> [NOT] STARTING [WTH <val >
| <val > [NOT] LIKE <val > [ESCAPE <val >]
| <val> [NOT] SIMLAR TO <val > [ESCAPE <val >]
| <val > <operator> {ALL | SOVE | ANY} (<select_list>)
| [NOT] EXI STS (<sel ect _expr>)
| [NOT] SINGULAR (<sel ect _expr>)
| (<dom condition>)
| NOT <dom condition>
| <dom condition> OR <dom condition>
| <dom condition> AND <dom conditi on>

81

Data Definition (DDL) Statements

<operator> ::=
<> | =] "= ~= | =] <| >| <= >= I < N ~< 1> N> ~>

<val > ::=
VALUE

| literal

| <context_var>

| <expression>

| NULL
| NEXT VALUE FOR gennane
| CGEN_I D(genname, <val >)
| CAST(<val > AS <dat at ype>)
| (<sel ect_one>)
| func([<val> [, <val> ...]1])

Table5.6. ALTER DOMAIN Statement Parameters

Parameter Description
new_name New name for domain, consisting of up to 31 characters
datatype SQL datatype
literal A literal value that is compatible with dat at ype
context_var Any context variable whose type is compatible with dat at ype
precision '(I'lhe1 t8(;tal number of significant digits that avalue of the dat at ype can hold
scale The number of digits after the decimal point (O..pr eci si on)
size The maximum size of astring in characters
charset name The name of avalid character set, if the character set of the domain isto be
- changed
subtype _num BLOB subtype number

subtype_name

BLOB subtype mnemonic name

seglen Segment size (max. 65535)
select_one A scalar SELECT statement—sel ecting one column and returning only one row
select_list A SELECT statement selecting one column and returning zero or more rows
select_expr A SELECT statement selecting one or more columns and returning zero or more
rows

expression An expression resolving to a value that is compatible with dat at ype

genname Sequence (generator) name

func Internal function or UDF

The ALTER DOMAIN statement enables changes to the current attributes of a domain, including its name. You
can make any number of domain alterationsin one ALTER DOMAIN statement.

82

Data Definition (DDL) Statements

TO <name>: Use the TO clause to rename the domain, as long as there are no dependencies on the domain,
i.e. table columns, local variables or procedure arguments referencing it.

SET DEFAULT: With the SET DEFAULT clause you can set anew default value. If the domain already has
adefault value, there is no need to delete it first—it will be replaced by the new one.

DROP DEFAULT: Usethis clause to delete a previously specified default value and replace it with NULL.

ADD CONSTRAINT CHECK: Usethe ADD CONSTRAINT CHECK clause to add a CHECK constraint to the
domain. If the domain already hasaCHECK constraint, it will haveto be deleted first, using an ALTER DOMAIN
statement that includes a DROP CONSTRAINT clause.

TYPE: The TYPE clause is used to change the data type of the domain to a different, compatible one. The
system will forbid any change to the type that could result in dataloss. An example would be if the number of
charactersin the new type were smaller than in the existing type.

I mportant

When you alter the attributes of a domain, existing PSQL code may become invalid. For information on how
to detect it, read the piece entitled The RDB$SVALID_BLR Field in Appendix A.

Any user connected to the database can ater adomain, provided it isnot prevented by dependenciesfrom objects
to which that user does not have sufficient privileges.

What ALTER DOMAIN Cannot Alter

* If the domain was declared as an array, it is not possible to change its type or its dimensions; nor can any
other type be changed to an ARRAY type.

e |InFirebird 2.5 and lower, the NOT NULL constraint can be neither enabled nor disabled for a domain.

» Thereisnoway to changethe default collation without dropping the domain and recreating it with the desired
attributes.

ALTER DOMAIN Examples
1. Changing the data type to INTEGER and setting or changing the default value to 2,000:

ALTER DOVAI N CUSTNO
TYPE | NTEGER
SET DEFAULT 2000;

2. Renaming adomain.
ALTER DOVAI N D_BOOLEAN TO D _BOOL;

3. Deleting the default value and adding a constraint for the domain:

83

Data Definition (DDL) Statements

ALTER DOMAI N D_DATE
DROP DEFAULT
ADD CONSTRAI NT CHECK (VALUE >= date ' 01.01.2000');

4. Changing the CHECK constraint:

ALTER DOVAI N D_DATE
DROP CONSTRAI NT;

ALTER DOVAI N D_DATE
ADD CONSTRAI NT CHECK
(VALUE BETVEEEN date '01.01.1900° AND date '31.12.2100');

5. Changing the data type to increase the permitted number of characters:

ALTER DOVAI N FI RSTNAME
TYPE VARCHAR(50) CHARACTER SET UTFS;

See also: CREATE DOMAIN, DROP DOMAIN

DROP DOMAIN
Used for: Deleting an existing domain
Availablein: DSQL, ESQL

Syntax:

DROP DOVAI N donmi n_nane

The DROP DOMAIN statement deletes a domain that exists in the database. It is not possible to delete adomain
if itisreferenced by any database table columns or used in any PSQL module. In order to delete adomain that is
inuse, al columnsin all tablesthat refer to the domain will have to be dropped and all references to the domain
will have to be removed from PSQL modules.

Any user connected to the database can drop a domain.

Example

Deleting the COUNTRY NAME domain:

DROP DOVAI N COUNTRYNANME,;

See also: CREATE DOMAIN, ALTER DOMAIN

Data Definition (DDL) Statements

TABLE

Asarelationa DBMS, Firebird stores datain tables. A tableisaflat, two-dimensional structure containing any
number of rows. Table rows are often called records.

All rowsin atable have the same structure and consist of columns. Table columns are often called fields. A table
must have at least one column. Each column contains a single type of SQL data.

This section describes how to create, alter and delete tables in a database.

CREATE TABLE

Used for: creating a new table (relation)
Availablein: DSQL, ESQL

Syntax:

CREATE [GLOBAL TEMPORARY] TABLE t abl enane
[EXTERNAL [FILE] '<fil espec>']
(<col _def> [, {<col _def> | <tconstraint>} ...])
[ON COW T {DELETE | PRESERVE} ROWF];

<col _def> ::= <regul ar_col _def> | <conputed_col _def >

<regul ar _col _def> ::=
col nane {<datatype> | donmai nnane}
[DEFAULT {literal | NULL | <context_var>}]
[NOT NULL]
[<col _constrai nt >]
[COLLATE col | ati on_nane]

<conputed _col _def> ::=
col nane [<dat at ype>]
{COVPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<dat atype> ::=

{SMALLINT | INTEGER | BI G NT} [<array_di np]

| {FLOAT | DOUBLE PRECI SI ON} [<array_di np]

| {DATE | TIME | TIMESTAMP} [<array_di np]

| {DECIMAL | NUMERI C} [(precision [, scale])] [<array_dinp]

| {CHAR | CHARACTER | CHARACTER VARYI NG | VARCHAR} [(size)]
[<array_di mp] [CHARACTER SET charset _nane]

| {NCHAR | NATI ONAL CHARACTER | NATI ONAL CHAR} [VARYI NG
[(size)] [<array_dinp]

| BLOB [SUB_TYPE {subtype_num | subtype_nane}]
[SEGVENT SI ZE segl en] [CHARACTER SET char set _nane]

| BLOB [(seglen [, subtype_nuni)]

<array dinme ;= [[m]n [, [m]n ...]]

85

Data Definition (DDL) Statements

<col _constraint> ::=
[CONSTRAI NT constr_nane]
{ PRI MARY KEY [<usi ng_i ndex>]
| UNI QUE [<usi ng_i ndex>]
| REFERENCES ot her_table [(col nane)] [<using_index>]
[ON DELETE {NO ACTI ON | CASCADE | SET DEFAULT | SET NULL}]
[ON UPDATE { NO ACTI ON | CASCADE | SET DEFAULT | SET NULL}]
| CHECK (<check_condition>) }

<tconstraint> ::=
[CONSTRAI NT constr_nane]
{ PRI MARY KEY (col list) [<using_index>]
| UNI QUE (col _list) [<using_index>]
| FOREIGN KEY (col _list)
REFERENCES ot her _table [(col _list)] [<using_index>]
[ON DELETE { NO ACTI ON | CASCADE | SET DEFAULT | SET NULL}]
[ON UPDATE { NO ACTI ON | CASCADE | SET DEFAULT | SET NULL}]
| CHECK (<check condition>) }*"

<col list> ::= colnane [, colname ...]

<usi ng_i ndex> ::= USI NG
[ASCI ENDI NG | DESC ENDI NG] | NDEX i ndexnamne

<check_condition> ::=
<val > <operator> <val >

| <val > [NOT] BETWEEN <val > AND <val >
| <val> [NOT] IN (<val> [, <val> ...] | <select l|ist>)
| <val> IS [NOT] NULL
| <val> IS [NOT] DI STINCT FROWval >
| <val > [NOT] CONTAI NI NG <val >
| <val > [NOT] STARTING [WTH] <val >
| <val > [NOT] LIKE <val > [ESCAPE <val >]
| <val > [NOT] SIM LAR TO <val > [ESCAPE <val >]
| <val > <operator> {ALL | SOVE | ANY} (<select_list>)
| [NOT] EXI STS (<sel ect _expr>)
| [NOT] SINGULAR (<sel ect _expr>)
| (<check_condition>)
| NOT <check_condition>
| <check _condition> OR <check _condition>
| <check_condition> AND <check_condition>

<operator> ::=
<> | l=| A=) ~=| =] <| >| <=]| >=]| I<| *<| ~< 1> N> ~>

<val > ::=
colnane [[<array_idx> [, <array_idx> ...]]]
| literal
| <context_var>
| <expression>
| NULL
| NEXT VALUE FOR gennane
| CGEN_I D(genname, <val >)
| CAST(<val > AS <dat at ype>)
| (<sel ect_one>)
| func([<val> [, <val> ...]1])

86

Data Definition (DDL) Statements

Table5.7. CREATE TABLE Statement Parameters

Parameter Description
Name (identifier) for the table. It may consist of up to 31 characters and must be
tablename LN
unique in the database.
File specification (only for external tables). Full file name and path, enclosed in
filespec single quotes, correct for the local file system and located on a storage device
that is physically connected to Firebird's host computer.
Name (identifier) for a column in the table. May consist of up to 31 characters
colname e
and must be unique in the table.
datatype SQL datatype

col_constraint

Column constraint

tconstraint Table constraint
constr_name The name (identifier) of a constraint. May consist of up to 31 characters.
other_table The name of the table referenced by the foreign key constraint
other_col The name of the columnin ot her _t abl e that isreferenced by the foreign key
literal A literal valuethat is allowed in the given context
context_var Any context variable whose data type is allowed in the given context

check_condition

The condition applied to a CHECK constraint, that will resolve as either true,
false or NULL

collation Collation
array_dim Array dimensions
m, n INTEGER numbers defining the index range of an array dimension
precision The total number of significant digits that a value of the datatype can hold
(1..18)
scale The number of digits after the decimal point (O..pr eci si on)
size The maximum size of astring in characters
charset name The name of avalid character set, if the character set of the column is to be dif-
- ferent to the default character set of the database
subtype _num BLOB subtype number
subtype_name BLOB subtype mnemonic name
seglen Segment size (max. 65535)
select_one A scalar SELECT statement—sel ecting one column and returning only one row
select_list A SELECT statement selecting one column and returning zero or more rows
select_expr A SELECT statement selecting one or more columns and returning zero or more

rows

87

Data Definition (DDL) Statements

Parameter Description
expression An expression resolving to avaue that isis allowed in the given context
genname Sequence (generator) name
func Internal function or UDF

The CREATE TABLE statement creates a new table. Any user can create it and its name must be unique among
the names of all tables, views and stored procedures in the database.

A table must contain at least one column that is not computed and the names of columns must be unique in
the table.

A column must have either an explicit SQL data type, the name of a domain whose attributes will be copied for
the column, or be defined as COMPUTED BY an expression (a calculated field).

A table may have any number of table constraints, including none.

Making a Column Non-nullable

In Firebird, columns are nullable by default. The optional NOT NULL clause specifies that the column cannot
take NULL in place of avaue.

Character Columns

Y ou can use the CHARACTER SET clause to specify the character set for the CHAR, VARCHAR and BLOB (text
subtype) types. If the character set isnot specified, the character set specified during the creation of the database
will be used by default. If no character set was specified during the creation of the database, the NONE character
set isapplied by default. Inthis case, datais stored and retrieved the way it was submitted. Datain any encoding
can be added to such a column, but it is not possible to add this data to a column with a different encoding. No
trandliteration is performed between the source and destination encodings, which may result in errors.

The optional COLLATE clause allows you to specify the collation sequence for character data types, including

BLOB SUB_TYPE TEXT. If no collation sequence is specified, the collation sequence that is default for the
specified character set during the creation of the column is applied by default.

Setting a DEFAULT Value

The optional DEFAULT clause allows you to specify the default value for the table column. This value will be
added to the column when an INSERT statement is executed if no value was specified for it and that column
was omitted from the INSERT command.

The default value can be aliteral of a compatible type, a context variable that is type-compatible with the data
type of the column, or NULL, if the column allowsit. If no default valueisexplicitly specified, NULL isimplied.

An expression cannot be used as a default value.

88

Data Definition (DDL) Statements

Domain-based Columns

To defineacolumn, you can use apreviously defined domain. If the definition of acolumnisbased on adomain,
it may contain a new default value, additional CHECK constraints and a COLLATE clause that will override
the values specified in the domain definition. The definition of such a column may contain additional column
constraints (for instance, NOT NULL), if the domain does not haveit.

Important

It is not possible to define a domain-based column that is nullable if the domain was defined with the NOT
NULL attribute. If you want to have a domain that might be used for defining both nullable and non-nullable
columnsand variables, it isbetter practi ce to make the domain nullable and apply NOT NULL inthe downstream
column definitions and variable declarations.

Calculated Fields

Calculated fields can be defined with the COMPUTED [BY] or GENERATED ALWAYS AS clause (according
to the SQL:2003 standard). They mean the same. Describing the data type is not required (but possible) for
calculated fidlds, asthe DBMS calculates and stores the appropriate type as aresult of the expression analysis.
Appropriate operations for the data types included in an expression must be specified precisely.

If the data type is explicitly specified for a calculated field, the calculation result is converted to the specified
type. This means, for instance, that the result of a numeric expression could be rendered as a string.

In aquery that selectsa COMPUTED BY column, the expression is evaluated for each row of the selected data.

Tip

Instead of a computed column, in some cases it makes sense to use aregular column whose value is evaluated
in triggers for adding and updating data. It may reduce the performance of inserting/updating records, but it
will increase the performance of data selection.

Defining an ARRAY Column

 If the columnisto be an array, the base type can be any SQL data type except BLOB and ARRAY .

» Thedimensionsof the array are specified between square brackets. (In the Syntax block these brackets appear
in boldface to distinguish them from the square brackets that identify optional syntax elements.)

» For each array dimension, one or two integer numbers define the lower and upper boundaries of its index
range:

- By default, arrays are 1-based. The lower boundary is implicit and only the upper boundary need be
specified. A single number smaller than 1 defines the range num.1 and a number greater than 1 defines
therange 1..num

- Two numbers separated by a colon (*:") and optional whitespace, the second greater than the first, can be
used to define the range explicitly. One or both boundaries can be less than zero, as long as the upper
boundary is greater than the lower.

* When the array has multiple dimensions, the range definitions for each dimension must be separated by
commas and optional whitespace.

» Subscripts are validated only if an array actually exists. It means that no error messages regarding invalid
subscripts will be returned if selecting a specific element returns nothing or if an array field is NULL.

89

Data Definition (DDL) Statements

Constraints
Four types of constraints can be specified. They are:

* Primary key (PRIMARY KEY)
» Unique key (UNIQUE)

» Foreign key (REFERENCES)

* CHECK constraint (CHECK)

Constraints can be specified at column level (“column constraints’) or at table level (“table constraints’). Ta-
ble-level constraints are needed when keys (uniqueness constraint, Primary Key, Foreign Key) are to be formed
across multiple columns and when a CHECK constraint involves other columns in the row besides the column
being defined. Syntax for some types of constraint may differ dightly according to whether the constraint is
being defined at column or table level.

* A column-level constraint is specified during a column definition, after all column attributes except COLLA-
TION are specified, and can involve only the column specified in that definition

» Table-level constraints are specified after all of the column definitions. They are a more flexible way to set
constraints, since they can cater for constraints involving multiple columns

* You can mix column-level and table-level constraintsin the sasme CREATE TABLE statement

The system automatically creates the corresponding index for a primary key (PRIMARY KEY), a unique key
(UNIQUE) and aforeign key (REFERENCES for a column-level constraint, FOREIGN KEY REFERENCES for one
at thetable level).

Names for Constraints and Their Indexes
Column-level constraints and their indexes are named automatically:
» The constraint name has the form INTEG_n, where nrepresents one or more humerals

* Theindex name has the form RDB$PRIMARY n (for a primary key index), RDB$FOREIGNn (for aforeign key
index) or RDB$n (for a unique key index). Again, n represents one or more numerals

Automatic naming of table-level constraints and their indexes follows the same pattern, unless the names are
supplied explicitly.
Named Constraints

A constraint can be named explicitly if the CONSTRAINT clause is used for its definition. While the CON-
STRAINT clause is optional for defining column-level constraints, it is mandatory for table-level. By default,
the constraint index will have the same name as the constraint. If a different name is wanted for the constraint
index, a USING clause can be included.

The USING Clause

The USING clause alows you to specify a user-defined name for the index that is created automatically and,
optionaly, to define the direction of the index—either ascending (the default) or descending.

90

Data Definition (DDL) Statements

PRIMARY KEY

ThePRIMARY KEY constraint isbuilt on one or more key columns, each column havingthe NOT NULL constraint
specified for it. The values acrossthe key columnsin any row must be unique. A table can have only one primary

key.

» A single-column Primary Key can be defined as a column level or atable-level constraint
« A multi-column Primary Key must be specified as atable-level constraint

The UNIQUE Constraint

The UNIQUE constraint defines the requirement of content uniqueness for the values in a key throughout the
table. A table can contain any number of unique key constraints.

Aswith the Primary Key, the Unique constraint can be multi-column. If so, it must be specified as a table-level
constraint.

NULL in Unique Keys

Firebird's SQL-99-compliant rulesfor UNIQUE constraintsallow oneor more NULLsin acolumnwith aUNIQUE
constraint. That makes it possible to define a UNIQUEconstraint on a column that does not have the NOT NULL
constraint.

For UNIQUE keys that span multiple columns, the logic is alittle complicated:

» Multiple rows having null in al the columns of the key are allowed

» Multiple rows having keys with different combinations of nulls and non-null values are alowed

» Multiplerowshaving the same key columns null and therest filled with non-null values are allowed, provided
the values differ in at least one column

* Multiple rows having the same key columns null and the rest filled with non-null values that are the same
in every column will violate the constraint

The rules for uniqueness can be summarised thus:

Illustration:

RECREATE TABLE t(x int, y int, z int, unique(Xx,Yy,2z));
INSERT INTOt val ues(NULL, 1, 1);

I NSERT INTOt val ues(NULL, NULL, 1);

I NSERT I NTOt val ues(NULL, NULL, NULL);

I NSERT INTOt val ues(NULL, NULL, NULL); -- Permitted
I NSERT INTO t values(NULL, NULL, 1); -- Not permitted
FOREIGN KEY

A Foreign Key ensures that the participating column(s) can contain only values that also exist in the referenced
column(s) in the master table. These referenced columns are often called target columns. They must be the

91

Data Definition (DDL) Statements

primary key or a unique key in the target table. They need not have a NOT NULL constraint defined on them
although, if they are the primary key, they will, of course, have that constraint.

The foreign key columnsin the referencing table itself do not require aNOT NULL constraint.

A single-column Foreign Key can be defined in the column declaration, using the keyword REFERENCES:

ARTI FACT_I D | NTEGER REFERENCES COLLECTI ON (ARTI FACT_I D),

The column ARTIFACT_ID in the example references a column of the same name in the table COLLECTIONS.
Both single-column and multi-column foreign keys can be defined at thetable level. For amulti-column Foreign

Key, thetable-level declaration isisthe only option. This method al so enablesthe provision of an optional name
for the constraint:

CONSTRAI NT FK_ARTSOURCE FOREI GN KEY(DEALER_ | D, COUNTRY)
REFERENCES DEALER (DEALER_I D, COUNTRY),

Notice that the column names in the referenced (“master”) table may differ from those in the Foreign Key.

Note

If no target columns are specified, the Foreign Key automatically references the target table's Primary Key.

Foreign Key Actions

With the sub-clauses ON UPDATE and ON DELETE it is possible to specify an action to be taken on the affected
foreign key column(s) when referenced values in the master table are changed:

* NOACTION (the default) - Nothing is done

e CASCADE - The change in the master table is propagated to the corresponding row(s) in the child table. If
akey value changes, the corresponding key in the child records changes to the new value; if the master row
is deleted, the child records are deleted.

e SET DEFAULT - The Foreign Key columns in the affected rows will be set to their default values as they
were when the foreign key constraint was defined.

e SET NULL - The Foreign Key columns in the affected rows will be set to NULL.

The specified action, or the default NO ACTION, could cause a Foreign Key column to become invalid. For
example, it could get avalue that is not present in the master table, or it could become NULL while the column
has a NOT NULL constraint. Such conditions will cause the operation on the master table to fail with an error

message.

Example:

92

Data Definition (DDL) Statements

CONSTRAI NT FK_ORDERS_CUST
FOREI GN KEY (CUSTOVER) REFERENCES CUSTOMERS (I D)
ON UPDATE CASCADE ON DELETE SET NULL

CHECK Constraint

The CHECK constraint defines the condition the values inserted in this column must satisfy. A condition is
alogical expression (also caled a predicate) that can return the TRUE, FALSE and UNKNOWN values. A
condition is considered satisfied if the predicate returns TRUE or value UNKNOWN (equivalent to NULL). If
the predicate returns FAL SE, the value will not be accepted. This condition is used for inserting a new row into
thetable (the INSERT statement) and for updating the existing val ue of the table column (the UPDATE statement)
and also for statements where one of these actions may take place (UPDATE OR INSERT, MERGE).

Important

A CHECK constraint on adomain-based column does not replace an existing CHECK condition on the domain,
but becomes an addition to it. The Firebird engine has no way, during definition, to verify that the extra CHECK
does not conflict with the existing one.

CHECK conditions—whether defined at table level or column level— refer to table columns by their names.
The use of the keyword VALUE as a placeholder, as in domain CHECK constraints, is not valid in the context
of defining column constraints.

Example: with two column-level constraints and one at table-level:

CREATE TABLE PLACES (

LAT DECI MAL(9, 6) CHECK (ABS(LAT) <= 90),
LON DECI MAL(9, 6) CHECK (ABS(LON) <= 180),

CONSTRAI NT CHK_POLES CHECK (ABS(LAT) < 90 OR LON = 0)
),

Global Temporary Tables (GTT)

Global temporary tables have persistent metadata, but their contents are transaction-bound (the default) or con-
nection-bound. Every transaction or connection has its own private instance of a GTT, isolated from all the
others. Instances are only created if and when the GTT is referenced. They are destroyed when the transaction
ends or on disconnection. The metadataof aGTT can bemodified or removed using ALTER TABLE and DROP
TABLE, respectively.

Syntax:

CREATE GLOBAL TEMPORARY TABLE nare
(<columm_def> [, {<colum_def> | <table constraint>} ...])
[ON COWM T {DELETE | PRESERVE} ROWS]

93

Data Definition (DDL) Statements

Syntax notes

e ON COMMIT DELETE ROWS creates atransaction-level GTT (the default), ON COMMIT PRESERVE ROWS
aconnection-level GTT
e AnEXTERNAL [FILE] clauseis not allowed in the definition of aglobal temporary table

Restrictions on GTTs

GTTscan be “dressed up” with al the features and paraphernalia of ordinary tables (keys, references, indexes,
triggers and so on) but there are afew restrictions:

» GTTsand regular tables cannot reference one another

e A connection-bound (“PRESERVE ROWS’) GTT cannot reference a transaction-bound (“DELETE
ROWS’) GTT

» Domain constraints cannot reference any GTT

» The destruction of a GTT instance at the end of its life cycle does not cause any BEFORE/AFTER delete
triggersto fire

Tip

In an existing database, it is not always easy to distinguish aregular table from a GTT, or atransaction-level
GTT from aconnection-level GTT. Use this query to find out what type of table you are looking at:

sel ect t.rdb$type_nanme
fromrdb$relations r
join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$fiel d_name = ' RDBSRELATI ON _TYPE
and r.rdb$rel ati on_nane = ' TABLENAME

For an overview of the types of al the relations in the database:

select r.rdb$rel ati on_nane, t.rdb$type_nane
fromrdb$rel ations r

join rdb$types t on r.rdb$rel ation_type = t.rdb$type
where t.rdb$fiel d_name = ' RDBSRELATI ON_TYPE'

and coal esce (r.rdb$systemflag, 0) = 0

The RDB$TYPE_NAME field will show PERSISTENT for a regular table, VIEW
for a view, GLOBAL_TEMPORARY_PRESERVE for a connection-bound GTT and
GLOBAL_TEMPORARY _DEL ETE for atransaction_bound GTT.

External Tables

The optional EXTERNAL [FILE] clause specifies that the table is stored outside the database in an external text
file of fixed-length records. The columns of atable stored in an external file can be of any type except BLOB or
ARRAY, although for most purposes, only columns of CHAR types would be useful.

All you can do with atable stored in an externa fileisinsert new rows (INSERT) and query the data (SELECT).
Updating existing data (UPDATE) and deleting rows (DELETE) are not possible.

A file that is defined as an external table must be located on a storage device that is physically present on
the machine where the Firebird server runs and, if the parameter ExternalFileAccessin thefi r ebi r d. conf

94

Data Definition (DDL) Statements

configurationfileisRest ri ct , it must bein one of the directories listed there asthe argument for Restri ct .
If the file does not exist yet, Firebird will create it on first access.

I mportant

The ability to use external files for a table depends on the value set for the External FileAccess parameter in
firebird. conf:

e |f itisset to None (the default), any attempt to access an external file will be denied.

e TheRestri ct setting isrecommended, for restricting external file accessto directories created explicitly
for the purpose by the server administrator. For example:

- External Fil eAccess = Restrict external fil es will restrict accessto adirectory named
ext ernal fil es directly beneath the Firebird root directory

- External Fil eAccess = d:\databases\outfiles; e:\infiles will restrict accessto just
those two directories on the Windows host server. Note that any path that is a network mapping will not
work. Paths enclosed in single or double quotes will not work, either.

e |f this parameter is set to Ful | , external files may be accessed anywhere on the host file system. It creates
a security vulnerability and is not recommended.

External File Format

The*row” format of the external tableisfixed length. Thereareno field delimiters: both field and row boundaries
are determined by maximum sizes, in bytes, of the field definitions. It is important to keep this in mind, both
when defining the structure of the external table and when designing an input file for an external table that is
to import data from another application. The ubiquitous “.csv” format, for example, is of no use asan input file
and cannot be generated directly into an external file.

The most useful data type for the columns of external tables is the fixed-length CHAR type, of suitable lengths
for the data they are to carry. Date and number types are easily cast to and from strings whereas, unless the
files are to be read by another Firebird database, the native data types will appear to external applications as
unparseable “a phabetti”.

Of course, there are ways to manipulate typed data so as to generate output files from Firebird that can be read
directly asinput files to other applications, using stored procedures, with or without employing external tables.
Such techniques are beyond the scope of alanguage reference. Here, we provide some guidelines and tips for
producing and working with simple text files, since the externa table feature is often used as an easy way to
produce or read transaction-independent logs that can be studied off-linein atext editor or auditing application.

Row Delimiters

Generally, external filesare more useful if rows are separated by adelimiter, intheform of a“ newline” sequence
that is recognised by reader applications on the intended platform. For most contexts on Windows, it isthe two-
byte 'CRLF sequence, carriage return (ASCII code decimal 13) and line feed (ASCII code decimal 10). On
POSIX, LF on its own is usua; for some MacOSX applications, it may be LFCR. There are various ways to
populate this delimiter column. In our example below, it isdone by using a Before Insert trigger and the internal
function ASCII_CHAR.

External Table Example

For our example, we will define an external log table that might be used by an exception handler in a stored
procedure or trigger. The externa table is chosen because the messages from any handled exceptions will be
retained inthelog, even if the transaction that launched the processis eventually rolled back because of another,

95

Data Definition (DDL) Statements

unhandled exception. For demonstration purposes, it has just two data columns, a time stamp and a message.
The third column stores the row delimiter:

CREATE TABLE ext | og
EXTERNAL FILE 'd:\external s\log_ne.txt"' (
stanp CHAR (24),
message CHAR(100),
crif CHAR(2)); ~-- for a Wndows context

COW T,

Now, atrigger, to write the timestamp and the row delimiter each time a message is written to thefile:

SET TERM *;
CREATE TRI GCER bi _ext | og FOR ext | og
ACTI VE BEFORE | NSERT
AS
BEG N
IF (new.stanp is NULL) then
new. st anp = CAST (CURRENT_TI MESTAMP as CHAR(24));
new.crlf = ASCI | _CHAR(13) || ASC|_CHAR(10);
END A
COMT A
SET TERM ; ~

Inserting some records (which could have been done by an exception handler or afan of Shakespeare):

insert into ext_|log (nessage)

val ues(' Shall | conpare thee to a sumer''s day?');
insert into ext_|log (nessage)

val ues(' Thou art nore lovely and nore tenperate')

The output:

2015-10- 07 15:19:03.4110Shall | conpare thee to a sunmer's day?
2015-10-07 15:19:58. 7600Thou art nore lovely and nore tenperate

CREATE TABLE Examples

1

Creating the COUNTRY table with the primary key specified as a column constraint.

CREATE TABLE COUNTRY (
COUNTRY COUNTRYNAME NOT NULL PRI MARY KEY,
CURRENCY VARCHAR(10) NOT NULL);

Creating the STOCK table with the named primary key specified at the column level and the named unique
key specified at the table level.

CREATE TABLE STOCK (

96

Data Definition (DDL) Statements

MODEL SMALLI NT NOT NULL CONSTRAI NT PK_STOCK PRI MARY KEY,
MODELNAME CHAR(10) NOT NULL,

| TEM D | NTEGER NOT NULL,

CONSTRAI NT MOD_UNI QUE UNI QUE (MODELNAME, | TEM D));

3. Creating the JOB table with a primary key constraint spanning two columns, a foreign key constraint for
the COUNTRY table and atable-level CHECK constraint. The table also contains an array of 5 elements.

CREATE TABLE JOB (

JOB_CODE JOBCODE NOT NULL,

JOB_GRADE JOBGRADE NOT NULL,

JOB_COUNTRY COUNTRYNANE,

JOB_TITLE VARCHAR(25) NOT NULL,

M N_SALARY NUVERI C(18, 2) DEFAULT O NOT NULL,
MAX_SALARY NUMERI C(18, 2) NOT NULL,

JOB_REQUI REVMENT BLOB SUB_TYPE 1,

LANGUAGE_REQ VARCHAR(15) [1:5],

PRI MARY KEY (JOB_CCDE, JOB_GRADE),

FOREI GN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY)
ON UPDATE CASCADE

ON DELETE SET NULL,

CONSTRAI NT CHK_SALARY CHECK (M N_SALARY < MAX_SALARY)

)

4. Creating the PROJECT table with primary, foreign and unique key constraints with custom index hames
specified with the USING clause.

CREATE TABLE PRQJECT (
PROJ ID PRQIJNO NOT NULL,
PROJ_NAME VARCHAR(20) NOT NULL UNI QUE USI NG DESC | NDEX | DX_PROJNANE,
PROJ DESC BLOB SUB_TYPE 1,
TEAM LEADER EMPNO,
PRODUCT PRODTYPE,
CONSTRAI NT PK_PRQJECT PRI MARY KEY (PRQJ_ID) USING | NDEX | DX_PRQJ_I D,
FOREI GN KEY (TEAM LEADER) REFERENCES EMPLOYEE (EMP_NO)
USI NG | NDEX | DX_LEADER

)

5. Creating the SALARY_HISTORY table with two computed fields. The first one is declared according
to the SQL:2003 standard, while the second one is declared according to the traditional declaration of
computed fieldsin Firebird.

CREATE TABLE SALARY_HI STCRY (

EMP_NO EMPNO NOT NULL,

CHANGE_DATE TI MESTAMP DEFAULT ' NOW NOT NULL,
UPDATER | D VARCHAR(20) NOT NULL,

OLD_SALARY SALARY NOT NULL,

PERCENT_CHANGE DOUBLE PRECI S| ON DEFAULT 0 NOT NULL,
SALARY_CHANGE ~ GENERATED ALWAYS AS

(OLD_SALARY * PERCENT_CHANGE / 100),
NEW SALARY COWPUTED BY

97

Data Definition (DDL) Statements

(OLD_SALARY + OLD SALARY * PERCENT_CHANGE / 100)
),

Creating a connection-scoped global temporary table.

CREATE GLOBAL TEMPORARY TABLE MYCONNGTT (

I D I NTEGER NOT NULL PRI MARY KEY,

TXT VARCHAR(32),

TS TI MESTAMP DEFAULT CURRENT TI MESTAMP)
ON COMM T PRESERVE ROWS;

Creating a transaction-scoped global temporary table that uses a foreign key to reference a connec-
tion-scoped global temporary table. The ON COMMIT sub-clause is optional because DELETE ROWS
isthe default.

CREATE GLOBAL TEMPORARY TABLE MYTXGTT (
I D I NTEGER NOT NULL PRI MARY KEY,
PARENT | D | NTEGER NOT NULL REFERENCES MYCONNGTT(I D),
TXT VARCHAR(32),
TS TI MESTAMP DEFAULT CURRENT_TI MESTAMP)
ON COMM T DELETE ROWS;

ALTER TABLE

Used for: altering the structure of atable.
Availablein: DSQL, ESQL

Syntax:

ALTER TABLE t abl enane

<operation> [, <operation> ...]
<operation> ::= ADD <col _def >
ADD <t constrai nt >
DROP col nane

DROP CONSTRAI NT constr_name

ALTER [COLUMN] col name <col _nod>

<col _def> ::= <regular_col def> | <conputed_col def>

<regul ar_col def> ::=
col nane {<datatype> | domai nnane}
[DEFAULT {literal | NULL | <context_var>}]
[NOT NULL]
[<col _constrai nt >]
[COLLATE col | ati on_nane]

<conput ed_col _def> ::=
col nane [<dat at ype>]

98

Data Definition (DDL) Statements

{COWUTED [BY] | GENERATED ALWAYS AS} (<expression>)
<col _nod> ::= <regul ar_col _nod> | <conputed_col _nod>

<regul ar_col _nod> ::=
TO newnane
| PGSl TI ON newpos
| TYPE {<dat atype> | donmi nnane}
| SET DEFAULT {literal | NULL | <context_var>}
| DROP DEFAULT

<conputed col _nod> ::=
TO newnane
| POCsI TI ON newpos
| [TYPE <dat atype>] {COVMPUTED [BY] | GENERATED ALWAYS AS} (<expressi on>)

<dat atype> ::=

{SMALLINT | INTEGER | BI G NT} [<array_dinp]

| {FLOAT | DOUBLE PRECI SI ON} [<array_di ne]

| {DATE | TIME | TIMESTAMP} [<array_di np]

| {DECIMAL | NUMERIC}H [(precision [, scale])] [<array_dinp]

| {CHAR | CHARACTER | CHARACTER VARYI NG | VARCHAR} [(size)]
[<array_di mp] [CHARACTER SET charset _nane]

| {NCHAR | NATI ONAL CHARACTER | NATI ONAL CHAR} [VARYI NG
[(size)] [<array_dinp]

| BLOB [SUB TYPE {subtype num | subtype nane}]
[SEGVENT Sl ZE segl en] [CHARACTER SET char set _nane]

| BLOB [(seglen [, subtype nunj)]

<array dinme ;= [[nm:n [,[mM:n ...]]

<col constraint> ::=
[CONSTRAI NT constr_nane]
{ PRI MARY KEY [<usi ng_i ndex>]
| UNI QUE [<usi ng_i ndex>]
| REFERENCES ot her _table [(col nane)] [<using_index>]
[ON DELETE { NO ACTI ON | CASCADE | SET DEFAULT | SET NULL}]
[ON UPDATE { NO ACTI ON | CASCADE | SET DEFAULT | SET NULL}]
| CHECK (<check_condition>) }

<tconstraint> ::=
[CONSTRAI NT constr_nane]
{ PRI MARY KEY (col _list) [<using_index>]
| UNI QUE (col _list) [<using_ index>]
| FOREIGN KEY (col _Iist)
REFERENCES ot her _table [(col list)] [<using_index>]
[ON DELETE { NO ACTI ON | CASCADE | SET DEFAULT | SET NULL}]
[ON UPDATE { NO ACTI ON | CASCADE | SET DEFAULT | SET NULL}]
| CHECK (<check_condition>) }

<col _list> ::= colnane [, colnane ...]

<usi ng_i ndex> ::= USI NG
[ASC[ENDI NG | DESC[ENDI NG] | NDEX i ndexnane

<check condition> ::=
<val > <operator> <val >
| <val > [NOT] BETWEEN <val > AND <val >

99

Data Definition (DDL) Statements

<val >
<val >
<val >
<val >
<val >
<val >
<val >

[NOT]
I'S [NOT]
I'S [NOT]
[NOT] CONTAI NI NG <val >

[NOT] STARTING [WTH] <val >

[NOT] LI KE <val > [ESCAPE <val >]

[NOT] SIMLAR TO <val > [ESCAPE <val >]
<operator> {ALL

IN (<val > [,
NULL
DI STI NCT FROM <val >

<val > ...] | <select_list>)

SOVE | ANY} (<select |ist>)

[NOT] EXI STS (<sel ect _expr>)

[NOT] S

NGULAR (<sel ect _expr>)

(<search_condition>)
NOT <search_conditi on>

<sear ch_
<search_

I
I
I
I
I
I
I
| <val >
I
I
I
I
I
I

<operator> ::

conditi on> OR <search_condition>
condi ti on> AND <search_conditi on>

<> | =] A= =] =] <| >] <=] >=] I<| ~< ~< 1> N> ~>
<val > ::=
colnane [[<array_idx> [, <array_idx> ...]]]
| literal
| <context var>
| <expression>
| NULL
| NEXT VALUE FOR gennane
| CGEN_I D(gennane, <val >)
| CAST(<val > AS <dat at ype>)
| (<sel ect_one>)
| func([<val> [, <val> ...]1])
Table5.8. ALTER TABLE Statement Parameters
Parameter Description
tablename Name (identifier) of the table
operation One of the available operations altering the structure of the table
Name (identifier) for a column in the table, max. 31 characters. Must be unique
colname .
in thetable.
New name (identifier) for the column, max. 31 characters. Must be unique in the
newname
table.
newpos The new column position (an integer between 1 and the number of columnsin

the table)

col_constraint

Column constraint

tconstraint Table constraint
constr_name The name (identifier) of a constraint. May consist of up to 31 characters.
other_table The name of the table referenced by the foreign key constraint
literal A literal valuethat is allowed in the given context
context_var A context variable whose type is allowed in the given context

100

Data Definition (DDL) Statements

Parameter

Description

check_condition

The condition of a CHECK constraint that will be satisfied if it evaluates to
TRUE or UNKNOWN/NULL

Name of a collation sequence that isvalid for char set _nane, if itissup-
plied with dat at ype or, otherwise, isvalid for the default character set of the

collation database
array_dim Array dimensions
m, n INTEGER numbers defining the index range of an array dimension
. Thetotal number of significant digitsthat avalue of the dat at ype can hold
precision
(1..18)
scale The number of digits after the decimal point (O..pr eci si on)
size The maximum size of astring in characters
charset name The name of avalid character set, if the character set of the column is to be dif-
- ferent to the default character set of the database
subtype_num BLOB subtype number

subtype _name

BLOB subtype mnemonic hame

seglen Segment size (max. 65535)

select_one A scalar SELECT statement—sel ecting one column and returning only one row
select list A SELECT statement selecting one column and returning zero or more rows
select_expr A SELECT statement selecting one or more columns and returning zero or more

rows

expression An expression resolving to avalue that isis allowed in the given context

genname Sequence (generator) name

func Internal function or UDF

The ALTER TABLE statement changes the structure of an existing table. With one ALTER TABLE statement it
is possible to perform multiple operations, adding/dropping columns and constraints and also altering column
specifications.

Multiple operationsin an ALTER TABLE statement are separated with commas.

Version Count Increments
Some changes in the structure of a table increment the metadata change counter (“version count”) assigned to
every table. The number of metadata changesislimited to 255 for each table. Once the counter reaches the 255
limit, you will not be able to make any further changes to the structure of the table without resetting the counter.

To reset the metadata change counter: Y ou should back up and restore the database using the gbak utility.

101

Data Definition (DDL) Statements

The ADD Clause

With the ADD clause you can add a new column or a hew table constraint. The syntax for defining the column
and the syntax of defining the table constraint correspond with those described for CREATE TABLE statement.

Effect on Version Count;:

» Each time anew column is added, the metadata change counter grows by one
» Adding anew table constraint does not increase the metadata change counter

Pointsto Be Awar e of

1. Be careful about adding a new column with the NOT NULL constraint set. It may lead to breaking the
logical integrity of data, since you will have existing records containing NULL in a non-nullable column.
When adding a non-nullable column, it is recommended either to set adefault value for it or to update the
column in existing rows with a non-null value.

2. Whenanew CHECK constraint isadded, existing datais not tested for compliance. Prior testing of existing
data against the new CHECK expression is recommended.

The DROP Clause

The DROP <column name> clause deletes the specified column from the table. An attempt to drop a column
will fail if anything referencesit. Consider the following items as sources of potential dependencies:

» column or table constraints

* indexes

 stored procedures and triggers
* views

Effect on Version Count: Each time a column is dropped, the table's metadata change counter is increased
by one.

The DROP CONSTRAINT Clause
The DROP CONSTRAINT clause del etes the specified column-level or table-level constraint.

A PRIMARY KEY or UNIQUE key constraint cannot be deleted if it isreferenced by aFOREIGN KEY constraintin
another table. It will be necessary to drop that FOREIGN KEY constraint before attempting to drop the PRIMARY
KEY or UNIQUE key constraint it references.

Effect on Version Count: Deleting a column constraint or a table constraint does not increase the metadata
change counter.

The ALTER [COLUMN] Clause

Withthe ALTER [COLUMN] clause, attributes of existing columns can be modified without the need to drop and
re-add the column. Permitted modifications are:

102

Data Definition (DDL) Statements

 change the name (does not affect the metadata change counter)

» change the data type (increases the metadata change counter by one)

 change the column position in the column list of the table (does not affect the metadata change counter)
» delete the default column value (does not affect the metadata change counter)

» set adefault column value or change the existing default (does not affect the metadata change counter)

» change the type and expression for a computed column (does not affect the metadata change counter)

Renaming a Column: the TO Keyword

The TO keyword with anew identifier renames an existing column. The table must not have an existing column
that has the same identifier.

It will not be possibleto changethe name of acolumn that isincluded in any constraint: PRIMARY KEY, UNIQUE
key, FOREIGN KEY, column constraint or the CHECK constraint of the table.

Renaming a column will also be disallowed if the column isused in any trigger, stored procedure or view.

Changing the Data Type of a Column: the TYPE Keyword

The keyword TY PE changes the data type of an existing column to another, allowable type. A type change that
might result in datalosswill be disallowed. Asan example, the number of charactersin the new typefor aCHAR
or VARCHAR column cannot be smaller than the existing specification for it.

If the column was declared as an array, no change to itstype or its number of dimensions is permitted.

The datatype of acolumnthat isinvolved in aforeign key, primary key or unique constraint cannot be changed
at all.

Changing the Position of a Column: the POSITION Keyword

The POSITION keyword changes the position of an existing column in the notiona “left-to-right” layout of
the record.

Numbering of column positions starts at 1.

» If aposition lessthan 1 is specified, an error message will be returned
» If aposition number is greater than the number of columns in the table, its new position will be adjusted
silently to match the number of columns.

The DROP DEFAULT and SET DEFAULT Clauses

The optional DROP DEFAULT clause deletes the default value for the column if it was put there previously by
aCREATE TABLE or ALTER TABLE statement.

» |f the column is based on a domain with a default value, the default value will revert to the domain default

103

Data Definition (DDL) Statements

» An execution error will be raised if an attempt is made to delete the default value of a column which has no
default value or whose default value is domain-based

The optional SET DEFAULT clause sets adefault value for the column. If the column already has adefault value,
it will be replaced with the new one. The default value applied to a column always overrides one inherited from
adomain.

The COMPUTED [BY] or GENERATED ALWAYS AS Clauses

The data type and expression underlying a computed column can be modified using a COMPUTED [BY] or
GENERATED ALWAYS AS clause in the ALTER TABLE ALTER [COLUMN] statement. Converting a regular
column to a computed one and vice versa are not permitted.

Attributes that Cannot Be Altered
The following alterations are not supported:

» Enabling or disabling the NOT NULL constraint on a column
» Changing the default collation for a character type column

Only the table owner and administrators have the authority to use ALTER TABLE.

Examples Using ALTER TABLE

1. Adding the CAPITAL columnto the COUNTRY table.

ALTER TABLE COUNTRY
ADD CAPI TAL VARCHAR(25);

2. Adding the CAPITAL column with the UNIQUE constraint and deleting the CURRENCY column.

ALTER TABLE COUNTRY
ADD CAPI TAL VARCHAR(25) NOT NULL UNI QUE,
DROP CURRENCY,;

3. Adding the CHK_SALARY check constraint and a foreign key to the JOB table.

ALTER TABLE JOB
ADD CONSTRAI NT CHK_SALARY CHECK (M N_SALARY < MAX_SALARY),
ADD FOREI GN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY);

4. Setting default value for the MODEL field, changing the type of the ITEMID column and renaming the
MODELNAME column.

ALTER TABLE STOCK

104

Data Definition (DDL) Statements

ALTER COLUWN MODEL SET DEFAULT 1,
ALTER COLUWN | TEM D TYPE BI G NT,
ALTER COLUWN MODELNAME TO NAME;

5. Changing the computed columns NEW_SALARY and SALARY_ CHANGE.

ALTER TABLE SALARY_HI STORY

ALTER NEW SALARY GENERATED ALWAYS AS
(OLD_SALARY + OLD SALARY * PERCENT_CHANGE / 100),

ALTER SALARY_CHANGE COMPUTED BY
(OLD_SALARY * PERCENT_CHANGE / 100);

See also: CREATE TABLE, DROP TABLE, CREATE DOMAIN

DROP TABLE

Used for: deleting atable
Availablein: DSQL, ESQL

Syntax:

drop tabl e tabl enane;

Table5.9. DROP TABLE Statement Parameter

Parameter

Description

tablename

Name (identifier) of the table

The DROP TABLE statement deletes an existing table. If the table has dependencies, the DROP TABLE statement

will fail with an execution error.

When atable is dropped, all triggers for its events and indexes built for its fields will be deleted as well.

Only the table owner and administrators have the authority to use DROP TABLE.

Example: Deleting the COUNTRY table.

DROP TABLE COUNTRY;

Seealso: CREATE TABLE, ALTER TABLE, RECREATE TABLE

RECREATE TABLE

Used for: creating a new table (relation) or recreating an existing one

105

Data Definition (DDL) Statements

Availablein: DSQL
Syntax:
RECREATE [GLOBAL TEMPORARY] TABLE tabl enane
[EXTERNAL [FILE] '<fil espec>']

(<col _def> [, {<col _def> | <tconstraint>} ...])
[ON COWM T {DELETE | PRESERVE} RO\H]

See the CREATE TABLE section for the full syntax of CREATE TABLE and descriptions of defining tables,
columns and constraints.
RECREATE TABLE creates or recreates atable. If atable with this name aready exists, the RECREATE TABLE
statement will try to drop it and create a new one. Existing dependencies will prevent the statement from exe-
cuting.
Example: Creating or recreating the COUNTRY table.

RECREATE TABLE COUNTRY (

COUNTRY COUNTRYNAME NOT NULL PRI MARY KEY,
CURRENCY VARCHAR(10) NOT NULL);

See also: CREATE TABLE, DROP TABLE

INDEX

Anindex isadatabase object used for faster dataretrieval from atable or for speeding up the sorting of query. In-
dexesareused also to enforcetherefererential integrity constraints PRIMARY KEY, FOREIGN KEY and UNIQUE.

This section describes how to create indexes, activate and deactivate them, delete them and collect statistics
(recalculate selectivity) for them.

CREATE INDEX

Used for: Creating an index for atable
Availablein: DSQL, ESQL
Syntax:
CREATE [UNI QUE] [ASC[ENDI NG | DESC[ENDI NG]

| NDEX i ndexname ON tabl enanme
{(col [, col .]) | COWPUTED BY (<expression>)};

106

Data Definition (DDL) Statements

Table5.10. CREATE INDEX Statement Parameters

Par ameter Description
indexname Index name. It may consist of up to 31 characters
tablename The name of the table for which the index isto be built

Name of a column in the table. Columns of the types BLOB and ARRAY and

col computed fields cannot be used in an index
. The expression that will compute the values for a computed index, also known
expression

as an “expression index”

The CREATE INDEX statement creates an index for a table that can be used to speed up searching, sorting and
grouping. Indexes are created automatically in the process of defining constraints, such as primary key, foreign
key or unique constraints.

Anindex can be built on the content of columns of any data type except for BLOB and arrays. The name (iden-
tifier) of an index must be unique among all index names.

Key Indexes

When aprimary key, foreign key or unique constraint isadded to atable or column, anindex with the same name
is created automatically, without an explicit directive from the designer. For example, the PK_COUNTRY
index will be created automatically when you execute and commit the following statement:

ALTER TABLE COUNTRY ADD CONSTRAI NT PK_COUNTRY
PRI MARY KEY (1D);

Unique Indexes

Specifying the keyword UNIQUE in the index creation statement creates an index in which uniqueness will be
enforced throughout the table. The index is referred to asa“unique index”. A unique index is not a constraint.

Unique indexes cannot contain duplicate key values (or duplicate key value combinations, in the case of conm-
pound, or multi-column, or multi-segment) indexes. Duplicated NULLS are permitted, in accordance with the
SQL ;99 standard, in both single-segment and multi-segment indexes.

Index Direction

All indexes in Firebird are uni-directional. An index may be constructed from the lowest value to the highest
(ascending order) or from the highest value to the lowest (descending order). The keywords ASC[ENDING] and
DESC[ENDING] are used to specify the direction of the index. The default index order is ASC[ENDING]. It is
quite valid to define both an ascending and a descending index on the same column or key set.

Tip

A descending index can be useful on acolumn that will be subjected to searches on the high values (“ newest”,
maximum, etc.)

107

Data Definition (DDL) Statements

Computed (Expression) Indexes

In creating an index, you can use the COMPUTED BY clause to specify an expression instead of one or more
columns. Computed indexes are used in queries where the condition in a WHERE, ORDER BY or GROUP BY
clause exactly matches the expression in the index definition. The expression in acomputed index may involve
several columnsin thetable.

Note

Y ou can actually create a computed index on a computed field, but the index will never be used.

Limits on Indexes
Certain limits apply to indexes.

The maximum length of akey in an index islimited to ¥ of the page size.

Maximum Indexes per Table

The number of indexes that can be accommodated for each tableis limited. The actual maximum for a specific
table depends on the page size and the number of columnsin the indexes.

Table5.11. Maximum Indexes per Table

Number of I ndexes Depending on Column Count
Page Size
Single 2-Column 3-Column
4096 203 145 113
8192 408 291 227
16384 818 584 454

Character Index Limits

The maximum indexed string length is 9 bytes less than the maximum key length. The maximum indexable

string length depends on the page size and the character set.

Table5.12. Maximum indexable (VAR)CHAR length

Maximum I ndexable String Length by Charset Type
Page Size
1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char
4096 1015 507 338 253

108

Data Definition (DDL) Statements

Maximum | ndexable String Length by Charset Type
Page Size
1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char
8192 2039 1019 679 509
16384 4087 2043 1362 1021

Only the table owner and administrators have the authority to use CREATE INDEX.

Examples Using CREATE INDEX

1. Creating an index for the UPDATER_ID tablein the SALARY_HISTORY table

CREATE | NDEX | DX_UPDATER
ON SALARY_HI STORY (UPDATER_I D) ;

2. Creating an index with keys sorted in the descending order for the CHANGE _DATE column in the
SALARY_HISTORY table

CREATE DESCENDI NG | NDEX | DX_CHANGE
ON SALARY_Hl STORY (CHANGE_DATE) ;

3. Creating amulti-segment index for the ORDER_STATUS, PAID columnsin the SALES table

CREATE | NDEX | DX_SALESTAT
ON SALES (ORDER_STATUS, PAID);

4. Creating an index that does not permit duplicate values for the NAME column in the COUNTRY table

CREATE UNI QUE | NDEX UNQ COUNTRY_NAVE
ON COUNTRY (NAME) ;

5. Creating a computed index for the PERSONS table

CREATE | NDEX | DX_NAME_UPPER ON PERSONS
COVPUTED BY (UPPER (NAME)) ;

An index like this can be used for a case-insensitive search:

SELECT *
FROM PERSONS
VWHERE UPPER(NAME) STARTI NG W TH UPPER(' Iv');

109

Data Definition (DDL) Statements

See also: ALTER INDEX, DROP INDEX

ALTER INDEX
Used for: Activating or deactivating an index; rebuilding an index
Availablein: DSQL, ESQL

Syntax:

ALTER | NDEX i ndexname {ACTI VE | | NACTI VE};

Table5.13. ALTER INDEX Statement Parameter

Par ameter Description

indexname Index name

The ALTER INDEX statement activates or deactivates an index. Thereisno facility on this statement for altering
any attributes of the index.

» Withthe INACTIVE option, the index is switched from the active to inactive state. The effect issimilar to the
DROP INDEX statement except that the index definition remains in the database. Altering a constraint index
to the inactive state is not permitted.

An active index can be deactivated if there are no queries using that index; otherwise, an “object in use”
error is returned.

Activating an inactive index is also safe. However, if there are active transactions modifying the table, the
transaction containing the ALTER INDEX statement will fail if it hasthe NOWAIT attribute. If the transaction
isin WAIT mode, it will wait for completion of concurrent transactions.

On the other side of the coin, if our ALTER INDEX succeeds and startsto rebuild theindex at COMMIT, other
transactions modifying that table will fail or wait, according to their WAIT/NO WAIT attributes. The situation
is exactly the same for CREATE INDEX.

How isit Useful ?

It might be useful to switch an index to the inactive state whilst inserting, updating or deleting alarge batch
of records in the table that owns the index.

* Withthe ACTIVE option, if theindex isin the inactive state, it will be switched to active state and the system
rebuilds the index.

How isit Useful?

Evenif theindex isactivewhen ALTER INDEX ... ACTIVE is executed, theindex will be rebuilt. Rebuilding
indexes can be auseful piece of houskeeping to do, occasionally, on theindexes of alargetablein adatabase
that has frequent inserts, updates or deletes but isinfrequently restored.

110

Data Definition (DDL) Statements

Use of ALTER INDEX on a Constraint Index

Altering the enforcing index of a PRIMARY KEY, FOREIGN KEY or UNIQUE constraint to INACTIVE is hot
permitted. However, ALTER INDEX ... ACTIVE works just as well with constraint indexes as it does with others,
as an index rebuilding tool.

Only the table owner and administrators have the authority to use ALTER INDEX.
ALTER INDEX Examples:

1. Deactivating the IDX_UPDATER index

ALTER | NDEX | DX_UPDATER | NACTI VE;

2. Switching the IDX_UPDATER index back to the active state and rebuilding it

ALTER | NDEX | DX_UPDATER ACTI VE;

See also: CREATE INDEX, DROP INDEX, SET STATISTICS

DROP INDEX
Used for: Deleting an index
Availablein: DSQL, ESQL

Syntax:

DROP | NDEX i ndexnane;

Table5.14. DROP INDEX Statement Parameter

Parameter Description

indexname Index name

The DROP INDEX statement deletes an the named index from the database.

Note

A constraint index cannot deleted using DROP INDEX. Constraint indexes are dropped during the process of
executing the command ALTER TABLE ... DROP CONSTRAINT ...

Only the table owner and administrators have the authority to use DROP INDEX.

111

Data Definition (DDL) Statements

DROP INDEX Example: Deleting the IDX_UPDATER index

DROP | NDEX | DX_UPDATER,;

See also: CREATE INDEX, ALTER INDEX

SET STATISTICS

Used for: Recalculating the selectivity of an index
Availablein: DSQL, ESQL

Syntax:

SET STATI STI CS | NDEX i ndexnare

Table5.15. SET STATISTICS Statement Par ameter

Parameter Description

indexname Index name

The SET STATISTICS statement recal cul ates the selectivity of the specified index.

Index Selectivity

The selectivity of an index is the result of evaluating the number of rows that can be selected in a search on
every index value. A unique index has the maximum selectivity becauseit isimpossible to select more than one
row for each value of an index key if it is used. Keeping the selectivity of an index up to date is important for
the optimizer's choices in seeking the most optimal query plan.

Index statistics in Firebird are not automatically recalculated in response to large batches of inserts, updates
or deletions. It may be beneficial to recalculate the selectivity of an index after such operations because the
selectivity tends to become outdated.

Note

The statements CREATE INDEX and ALTER INDEX ACTIVE both store index statistics that completely corre-
spond to the contents of the newly-[re]built index.

The selectivity of anindex can be recalculated by the owner of the table or an administrator. It can be performed
under concurrent load without risk of corruption. However, be aware that, under concurrent load, the newly
calculated statistics could become outdated as soon as SET STATISTICS finishes.

ExampleUsing SET STATISTICS. Recaculating the selectivity of theindex IDX_UPDATER

112

Data Definition (DDL) Statements

SET STATI STI CS | NDEX | DX_UPDATER,

See also: CREATE INDEX, ALTER INDEX

VIEW

A view isavirtual tablethat isactually astored and named SELECT query for retrieving data of any complexity.
Data can be retrieved from one or more tables, from other views and also from selectabl e stored procedures.

Unlike regular tables in relational databases, a view is not an independent data set stored in the database. The
result isdynamically created as a data set when the view is selected.

The metadata of a view are available to the process that generates the binary code for stored procedures and
triggers, just as though they were concrete tables storing persistent data.

CREATE VIEW

Used for: Creating aview

Availablein: DSQL

Syntax:
CREATE VI EW vi ewnane [<full _colum_li st >]
AS <sel ect _statenent >
[WTH CHECK OPTI ON ;

<full _colum_list> ::= (colname [, colnanme ...])

Table5.16. CREATE VIEW Statement Parameters

Parameter Description

viewname View name, maximum 31 characters

select_statement SELECT statement

full_column_list Thelist of columnsin the view

colname View column name. Duplicate column names are not allowed.

The CREATE VIEW statement creates a new view. The identifier (name) of a view must be unique among the
names of all views, tables and stored procedures in the database.

The name of the new view can be followed by the list of column names that should be returned to the caller
when the view is invoked. Names in the list do not have to be related to the names of the columns in the base
tables from which they derive.

113

Data Definition (DDL) Statements

If the view column list is omitted, the system will use the column names and/or aliases from the SELECT state-
ment. If duplicate names or non-aliased expression-derived columns make thisimpossible to obtain avalid list,
creation of the view fails with an error.

The number of columnsin the view's list must exactly match the number of columnsin the selection list of the
underlying SELECT statement in the view definition.

Additional Points

« If thefull list of columnsis specified, it makes no sense to specify aliasesin the SELECT statement because
the namesin the column list will override them

e The column list is optional if al of the columnsin the SELECT are explicitly named and are unique in the
selection list

Updatable Views

A view can be updatable or read-only. If aview is updatable, the data retrieved when this view is called can be
changed by the DML statements INSERT, UPDATE, DELETE, UPDATE OR INSERT or MERGE. Changes made
in an updatable view are applied to the underlying table(s).

A read-only view can be made updateable with the use of triggers. Once triggers have been defined on aview,
changes posted to it will never be written automatically to the underlying table, even if the view was updateable
to begin with. It is the responsibility of the programmer to ensure that the triggers update (or delete from, or
insert into) the base tables as needed.

A view will be automatically updatableif al of the following conditions are met:
» the SELECT statement queries only one table or one updatable view
» the SELECT statement does not call any stored procedures

» each base table (or base view) column not present in the view definition is covered by one of the following
conditions:

- itisnullable
- it hasanon-NULL default value
- it hasatrigger that supplies a permitted value

» the SELECT statement contains no fields derived from subqueries or other expressions

» the SELECT statement does not contain fields defined through aggregate functions, such asMIN, MAX, AVG,
SUM, COUNT, LIST

* the SELECT statement contains no ORDER BY or GROUP BY clause

» the SELECT statement does not include the keyword DISTINCT or row-restrictive keywords such as ROWS,
FIRST, SKIP

WITH CHECK OPTION

The optional WITH CHECK OPTION clause requires an updatable view to check whether new or updated data
meet the condition specified in the WHERE clause of the SELECT statement. Every attempt to insert anew record

114

Data Definition (DDL) Statements

or to update an existing one is checked asto whether the new or updated record would meet the WHERE criteria.
If they fail the check, the operation is not performed and an appropriate error message is returned.

WITH CHECK OPTION can be specified only in a CREATE VIEW statement in which a WHERE clause is
present to restrict the output of the main SELECT statement. An error message is returned otherwise.

Please note:

If WITH CHECK OPTION isused, the engine checkstheinput against the WHERE clause before passing anything
to the baserelation. Therefore, if the check on the input fails, any default clauses or triggers on the base relation
that might have been designed to correct the input will never come into action.

Furthermore, view fields omitted from the INSERT statement are passed as NULLs to the base relation, regard-
less of their presence or absence in the WHERE clause. As aresult, base table defaults defined on such fields
will not be applied. Triggers, on the other hand, will fire and work as expected.

For views that do not have WITH CHECK OPTION, fields omitted from the INSERT statement are not passed
to the base relation at all, so any defaults will be applied.

Ownership of a View
The creator of aview becomes its owner.

To create aview, a non-admin user needs at least SELECT access to the underlying table(s) and/or view(s), and
the EXECUTE privilege on any selectable stored procedures involved.

To enable insertions, updates and deletions through the view, the creator/owner must also possess the corre-
sponding INSERT, UPDATE and DELETE rights on the base object(s).

Granting other users privileges on the view is only possible if the view owner himself has these privileges on
the underlying objects WITH GRANT OPTION. It will always be the case if the view owner is also the owner
of the underlying objects.

Examples of Creating Views:

1. Creating view returning the JOB_CODE and JOB _TITLE columns only for those jobs where
MAX_SALARY islessthan $15,000.

CREATE VI EW ENTRY_LEVEL_JOBS AS
SELECT JOB_CODE, JOB TI TLE
FROM JOB

VWHERE MAX_SALARY < 15000;

2. Creating a view returning the JOB_CODE and JOB_TITLE columns only for those jobs where
MAX_SALARY islessthan $15,000. Whenever anew record isinserted or an existing record is updated,
the MAX_SALARY < 15000 condition will be checked. If the condition is not true, the insert/update op-
eration will be rejected.

CREATE VI EW ENTRY_LEVEL_JOBS AS
SELECT JOB_CCODE, JOB_TITLE
FROM JOB

VWHERE MAX_SALARY < 15000

115

Data Definition (DDL) Statements

W TH CHECK OPTI ON

3. Creating aview with an explicit column list.

CREATE VI EW PRI CE_W TH_MARKUP (
CODE_PRI CE,
COST,
COST_W TH_MARKUP
) AS
SELECT
CODE_PRI CE,
COST,
COoST * 1.1
FROM PRI CE;

4. Creating aview with the help of aliasesfor fieldsin the SELECT statement (the same result asin Example
3).

CREATE VI EW PRI CE_W TH_MARKUP AS
SELECT

CODE_PRI CE,

COST,

COST * 1.1 AS COST_W TH_MARKUP
FROM PRI CE;

5. Creating aread-only view based on two tables and a stored procedure.

CREATE VI EW GOODS_PRI CE AS
SELECT
goods. nanme AS goodsnane,
price.cost AS cost,
b.quantity AS quantity
FROM
goods
JO N price ON goods. code_goods = price.code_goods
LEFT JO N sp_get bal ance(goods. code_goods) b ON 1 = 1;

Seealso: ALTER VIEW, CREATE OR ALTER VIEW, RECREATE VIEW, DROP VIEW

ALTER VIEW
Used for: Modifying an existing view
Availablein: DSQL

Syntax:

116

Data Definition (DDL) Statements

ALTER VI EW vi ewnane [<full _col um_Ilist>]
AS <sel ect _st at enent >
[WTH CHECK OPTI O\ ;

<full _colum_list> ::= (colname [, colnanme ...])

Table5.17. ALTER VIEW Statement Parameters

Parameter Description

viewname Name of an existing view

select_statement SELECT statement

full_column_list Thelist of columnsin the view

colname View column name. Duplicate column names are not allowed.

Use the ALTER VIEW statement for changing the definition of an existing view. Privileges for views remain
intact and dependencies are not affected.

The syntax of the ALTER VIEW statement corresponds completely with that of CREATE VIEW.

Caution

Be careful when you change the number of columns in aview. Existing application code and PSQL modules
that access the view may become invalid. For information on how to detect this kind of problem in stored
procedures and trigger, see The RDB$VALID_BLR Field in the Appendix.

Only the view owner and administrators have the authority to use ALTER VIEW.

Exampleusing ALTER VIEW: Altering the view PRICE_WITH_MARKUP

ALTER VI EW PRI CE_W TH_MARKUP (
CODE_PRI CE,
COST,
COST_W TH_MARKUP
) AS
SELECT
CODE_PRI CE,
COST,
COST * 1.15
FROM PRI CE;

See also: CREATE VIEW, CREATE OR ALTER VIEW, RECREATE VIEW

CREATE OR ALTER VIEW

Used for: Creating a new view or altering an existing view.

Availablein: DSQL

117

Data Definition (DDL) Statements

Syntax:

CREATE OR ALTER VI EW vi ewnane [<full _col unm_li st >]
AS <sel ect _statenent>
[WTH CHECK OPTI ON| ;

<full _columm_list> ::= (colnanme [, colnanme ...])

Table5.18. CREATE OR ALTER VIEW Statement Parameters

Par ameter Description

viewname Name of aview which may or may not exist

select_statement SELECT statement

full_column_list Thelist of columnsin the view

colname View column name. Duplicate column names are not allowed.

Use the CREATE OR ALTER VIEW statement for changing the definition of an existing view or creating it if it
does not exist. Privileges for an existing view remain intact and dependencies are not affected.

The syntax of the CREATE OR ALTER VIEW statement corresponds completely with that of CREATE VIEW.

Example: Creating the new view PRICE_WITH_MARKUP view or altering it if it already exists:

CREATE OR ALTER VI EW PRI CE_W TH_MARKUP (
CODE_PRI CE,
COST,
COST_W TH_MARKUP
) AS
SELECT
CODE_PRI CE,
COST,
COST * 1.15
FROM PRI CE;

See also: CREATE VIEW, ALTER VIEW, RECREATE VIEW

DROP VIEW

Used for: Deleting (dropping) aview
Availablein: DSQL

Syntax:

DROP VI EW vi ewnarne;

118

Data Definition (DDL) Statements

Table5.19. DROP VIEW Statement Parameter

Parameter Description

viewname View name

The DROP VIEW statement deletes an existing view. The statement will fail if the view has dependencies.
Only the view owner and administrators have the authority to use DROP VIEW.

Example: Deleting the PRICE_WITH_MARKUP view.

DROP VI EW PRI CE_W TH_MARKUP;

See also: CREATE VIEW, RECREATE VIEW, CREATE OR ALTER VIEW

RECREATE VIEW
Used for: Creating anew view or recreating an existing view
Availablein: DSQL
Syntax:
RECREATE VI EW vi ewnane [<full _columm_Ii st >]
AS <sel ect _st atenment >

[W TH CHECK OPTI ON|;

<full _colum_list> ::= (colnanme [, colnanme ...])

Table5.20. RECREATE VIEW Statement Parameters

Parameter Description

viewname View name, maximum 31 characters

select_statement SELECT statement

full_column_list Thelist of columnsin the view

colname View column name. Duplicate column names are not allowed.

Creates or recreatesaview. If thereisaview with thisname aready, the enginewill try to drop it before creating
the new instance. If the existing view cannot be dropped, because of dependencies or insufficient rights, for
example, RECREATE VIEW fails with an error.

Example: Creating the new view PRICE_WITH_MARKUP view or recreating it, if it already exists.

RECREATE VI EW PRI CE_W TH_MARKUP (

119

Data Definition (DDL) Statements

CODE_PRI CE,

COST,

COST_W TH_MARKUP
) AS
SELECT

CODE_PRI CE,

COST,

COST * 1.15
FROM PRI CE;

See also: CREATE VIEW, DROPVIEW, CREATE OR ALTER VIEW

TRIGGER

A trigger isa special type of stored procedurethat is not called directly, instead being executed when a specified
event occurs in the associated table or view. A trigger is specific to one and only one relation (table or view)
and one phase in the timing of the event (BEFORE or AFTER). It can be specified to execute for one specific
event (insert, update, delete) or for some combination of two or three of those events.

Another form of trigger—known as a “ database trigger”—can be specified to fire in association with the start
or end of a user session (connection) or a user transaction.

CREATE TRIGGER

Used for: Creating a new trigger
Availablein: DSQL, ESQL

Syntax:

CREATE TRIGGER trigname {
<relation_trigger_I| egacy> |
<relation_trigger_sqgl 2003> |
<dat abase_trigger> }

AS

[<decl ar ati ons>]
BEA N

[<PSQL_st at enrent s>]
END

<relation_trigger_|egacy> ::=
FOR {tabl enane | vi ewnane}
[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <mutation_|ist>
[POSI TI ON nunber]

<relation_trigger_sql 2003> ::=
[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <nutation_|ist>
[PCSI TI ON nunber]
ON {tabl enane | vi ewnane}

120

Data Definition (DDL) Statements

<dat abase_trigger> ::=
[ACTI VE | | NACTIVE] ON db_event [PGOSI Tl ON numnber]

<mutation_ list> ::

<nmutation> [OR <rmutation> [OR <nut ation>]]

<mutation> ::= {
<db_event> :: = {
CONNECT |
DI SCONNECT |

| NSERT | UPDATE | DELETE }

TRANSACTI ON START |
TRANSACTI ON COWM T |
TRANSACTI ON ROLLBACK

}

<decl ar ati ons> :

.= {<declare_var> | <declare_cursor>};

[{<decl are_var> | <declare_cursor>}; .]

Table5.21. CREATE TRIGGER Statement Parameters

Parameter

Description

trigname

Trigger name consisting of up to 31 characters. It must be unique among al trig-
ger names in the database.

relation_trigger legacy

Legacy style of trigger declaration for arelation trigger

relation_trigger_sql2003

Relation trigger declaration compliant with the SQL :2003 standard

database trigger Database trigger declaration
tablename Name of the table with which the relation trigger is associated
viewname Name of the view with which the relation trigger is associated
mutation_list List of relation (table | view) events
number Position of the trigger in the firing order. From 0 to 32,767
db_event Connection or transaction event
declarations Section for declaring local variables and named cursors
declare var Local variable declaration

declare_cursor

Named cursor declaration

PSQL _statements

Statements in Firebird's programming language (PSQL)

The CREATE TRIGGER statement is used for creating anew trigger. A trigger can be created either for arelation
(table | view) event (or a combination of events), or for a database event.

CREATE TRIGGER, along with its associates ALTER TRIGGER, CREATE OR ALTER TRIGGER and RECREATE
TRIGGER, is a compound statement, consisting of a header and a body. The header specifies the name of the
trigger, the name of the relation (for arelation trigger), the phase of the trigger and the event[s] it appliesto. The
body consists of optional declarations of local variables and named cursors followed by one or more statements,

121

Data Definition (DDL) Statements

or blocks of statements, all enclosed in an outer block that begins with the keyword BEGIN and ends with the
keyword END. Declarations and embedded statements are terminated with semi-colons (;).

The name of the trigger must be unique among all trigger names.

Statement Terminators

Some SQL statement editors—specifically the isgl utility that comes with Firebird and possibly some third-
party editors—employ an internal convention that requires all statements to be terminated with a semi-colon.
This creates a conflict with PSQL syntax when coding in these environments. If you are unacquainted with
this problem and its solution, please study the details in the PSQL chapter in the section entitled Switching the
Terminator inisgl.

Relation Triggers (on Tables or Views)

Relation triggers are executed at the row (record) level every timethe row image changes. A trigger can be either
ACTIVE or INACTIVE. Only active triggers are executed. Triggers are created ACTIVE by default.

Forms of Declaration
Firebird supports two forms of declaration for relation triggers:

» Theoriginal, legacy syntax
» The SQL:2003 standard-compliant form (recommended)
The SQL:2003 standard-compliant form is the recommended one.

A relation trigger specifies—among other things—a phase and one or more events.

Phase
Phase concerns the timing of the trigger with regard to the change-of-state event in the row of data:

» A BEFORE trigger isfired before the specified database operation (insert, update or delete) is carried out
* AnAFTER trigger isfired after the database operation has been completed

Row Events

A relation trigger definition specifies at least one of the DML operations INSERT, UPDATE and DELETE, to
indicate one or more events on which the trigger should fire. If multiple operations are specified, they must be
separated by the keyword OR. No operation may occur more than once.

Within the statement block, the Boolean context variables INSERTING, UPDATING and DELETING can be used
to test which operation is currently executing.

Firing Order of Triggers

Thekeyword POSITION allows an optional execution order (“firing order”) to be specified for aseries of triggers
that have the same phase and event as their target. The default position is 0. If no positions are specified, or if
several triggers have a single position number, the triggers will be executed in the alphabetical order of their
names.

122

Data Definition (DDL) Statements

Variable Declarations

Theoptional declarations section beneath the keyword ASin the header of thetrigger isfor defining variablesand
named cursorsthat are local to the trigger. For more details, see DECLARE VARIABLE and DECLARE CURSOR
in the Procedural SQL chapter.

The Trigger Body

The local declarations (if any) are the final part of atrigger's header section. The trigger body follows, where
one or more blocks of PSQL statements are enclosed in a structure that starts with the keyword BEGIN and
terminates with the keyword END.

Only the owner of the view or table and administrators have the authority to use CREATE TRIGGER.
Examples of CREATE TRIGGER for Tablesand Views:

1. Creating atrigger in the “legacy” form, firing before the event of inserting a new record into the CUS-
TOMER table occurs.

CREATE TRI GGER SET_CUST_NO FOR CUSTOMER
ACTI VE BEFORE | NSERT POSI TI ON 0
AS
BEG N
| E (NEW CUST_NO |'S NULL) THEN
NEW CUST_NO = GEN_| D(CUST_NO GEN, 1);
END

2. Creating a trigger firing before the event of inserting a new record into the CUSTOMER table in the
SQL :2003 standard-compliant form.

CREATE TRI GGER set _cust _no
ACTI VE BEFORE | NSERT POSI TI ON 0 ON cust oner
AS
BEG N
IF (NEWcust_no I'S NULL) THEN
NEW cust _no = GEN_I D(cust_no_gen, 1);
END

3. Creating atrigger that will file after either inserting, updating or deleting arecord inthe CUSTOMER table.

CREATE TRI GGER TR_CUST_LOG
ACTI VE AFTER | NSERT OR UPDATE OR DELETE POSI TI ON 10

ON CUSTOMER
AS
BEG N
| NSERT | NTO CHANGE_LOG (LOG | D,
| D_TABLE,
TABLE_NAME,
MUTATI ON)

VALUES (NEXT VALUE FOR SEQ CHANGE LOG

123

Data Definition (DDL) Statements

OLD. CUST_NO,
' CUSTOMER
CASE
WHEN | NSERTI NG THEN ' | NSERT'
WHEN UPDATI NG THEN ' UPDATE'
WHEN DELETI NG THEN ' DELETE
END) ;
END

Database Triggers

Triggers can be defined to fire upon “ database events’, which really refers to a mixture of eventsthat act across
the scope of a session (connection) and events that act across the scope of an individual transaction:

 CONNECT

* DISCONNECT

* TRANSACTION START

* TRANSACTION COMMIT

* TRANSACTION ROLLBACK

Execution of Database Triggers and Exception Handling

CONNECT and DISCONNECT triggers are executed in a transaction created specifically for this purpose. If all
goes well, the transaction is committed. Uncaught exceptions cause the transaction to roll back, and

» for aCONNECT trigger, the connection is then broken and the exception is returned to the client

» for aDISCONNECT trigger, exceptions are not reported. The connection is broken as intended

TRANSACTION triggers are executed within the transaction whose start, commit or rollback evokes them. The
action taken after an uncaught exception depends on the event:

* INnaTRANSACTION START trigger, the exception is reported to the client and the transaction is rolled back

* InaTRANSACTION COMMIT trigger, the exception is reported, the trigger's actions so far are undone and
the commit is cancelled

* InaTRANSACTION ROLLBACK trigger, the exception is not reported and the transaction is rolled back as
intended.

Traps

Obviously there is no direct way of knowing if a DISCONNECT or TRANSACTION ROLLBACK trigger caused
an exception. It also follows that the connection to the database cannot happen if a CONNECT trigger causes an
exception and atransaction cannot start if a TRANSACTION START trigger causes one, either. Both phenomena
effectively lock you out of your database until you get in there with database triggers suppressed and fix the
bad code.

Trigger Suppression

Some Firebird command-line tools have been supplied with switches that an administrator can use to suppress
the automatic firing of database triggers. So far, they are:

124

Data Definition (DDL) Statements

gbak -nodbtriggers
i sql -nodbtriggers
nbackup -T

Two-phase Commit

In atwo-phase commit scenario, TRANSACTION COMMIT triggersfire in the prepare phase, not at the commit.

Some Caveats

1

The use of the IN AUTONOMOUS TRANSACTION DO statement in the database event triggers related to
transactions (TRANSACTION START, TRANSACTION ROLLBACK, TRANSACTION COMMIT) may cause
the autonomous transaction to enter an infinite loop

The DISCONNECT and TRANSACTION ROLLBACK event triggers will not be executed when clients are
disconnected via monitoring tables (DELETE FROM MON$SATTACHMENTS)

Only the database owner and administrators have the authority to create database triggers.

Examples of CREATE TRIGGER for “Database Triggers’:

1

Creating atrigger for the event of connecting to the database that 1ogs users logging into the system. The
trigger is created asinactive.

CREATE TRI GGER tr_| og_connect
I NACTI VE ON CONNECT POSI TION 0
AS
BEGA N
| NSERT | NTO LOG_CONNECT (I D,
USERNANME,
ATI MVE)
VALUES (NEXT VALUE FOR SEQ LOG CONNECT,
CURRENT_USER,
CURRENT_TI MESTAMP) ;
END

Creating atrigger for the event of connecting to the database that does not permit any users, except for
SYSDBA, to log in during off hours.

CREATE EXCEPTI ON E_| NCORRECT _WORKTI ME ' The wor ki ng day has not started yet.';

CREATE TRI GGER TR LI M T_WORKTI ME ACTI VE
ON CONNECT PCSI TI ON 1
AS
BEG N

| F ((CURRENT_USER <> ' SYSDBA') AND

NOT (CURRENT_TI ME BETVEEN tinme '9:00° AND time '17:00')) THEN
EXCEPTI ON E_| NCORRECT WORKTI VE;

END

125

Data Definition (DDL) Statements

Seealso: ALTER TRIGGER, CREATE OR ALTER TRIGGER, RECREATE TRIGGER, DROP TRIGGER

ALTER TRIGGER

Used for: Modifying and deactivating an existing trigger
Availablein: DSQL, ESQL

Syntax:

ALTER TRI GCER tri gnane
[ACTI VE | | NACTI VE]
[{BEFORE | AFTER} <mutation_list> | ON db_event]
[POSI TI ON nunber]
[
AS

[<decl ar ati ons>]

BEG N

[<PSQL._st at errent s>]
END

]

<rmutation_list> ::=
<nutation> [OR <nutation> [OR <nutation>]]

<nutation> ::= { INSERT | UPDATE | DELETE }
<db_event> ::= {

CONNECT |

DI SCONNECT |

TRANSACTI ON START |
TRANSACTI ON COWM T |
TRANSACTI ON ROLLBACK

}

<decl arations> ::= {<declare_var> | <decl are_cursor>};
[{<decl are_var> | <declare_cursor>}; .]

Table5.22. ALTER TRIGGER Statement Parameters

Parameter Description
trigname Name of an existing trigger
mutation_list List of relation (table | view) events
number Position of the trigger in the firing order. From O to 32,767

declarations Section for declaring local variables and named cursors
declare var Local variable declaration

declare cursor Named cursor declaration

PSQL _statements Statements in Firebird's programming language (PSQL)

126

Data Definition (DDL) Statements

The ALTER TRIGGER statement allows certain changes to the header and body of atrigger.

Permitted Changes to Triggers

Status (ACTIVE | INACTIVE)

Phase (BEFORE | AFTER)

Events; but relation trigger events cannot be changed to database trigger events, nor vice versa
Position in the firing order

Modifications to code in the trigger body

If some element was not specified, it remains unchanged.

Reminders

The BEFORE keyword directs that the trigger be executed before the associated event occurs; the AFTER
keyword directs that it be executed after the event.

More than one relation event—INSERT, UPDATE, DELETE—can be covered in a single trigger. The events
should be separated with the keyword OR. No event should be mentioned more than once.

Thekeyword POSITION allows an optional execution order (“firing order”) to be specified for aseriesof triggers
that have the same phase and event as their target. The default position is 0. If no positions are specified, or if
several triggers have a single position number, the triggers will be executed in the alphabetical order of their
names.

Administrators and the following users have the authority to use ALTER TRIGGER:

For relation triggers, the owner of the table
For database triggers, the owner of the database

Examplesusing ALTER TRIGGER:

1

Deactivating the set_cust_no trigger (switching it to the inactive status).

ALTER TRI GGER set _cust_no | NACTI VE;

Changing the firing order position of the set_cust_no trigger.

ALTER TRI GGER set _cust_no POSI TI ON 14;

Switching the TR_CUST _LOG trigger to the inactive status and modifying the list of events.

ALTER TRI GGER TR CUST LOG
| NACTI VE AFTER | NSERT OR UPDATE;

127

Data Definition (DDL) Statements

4. Switching thetr_log_connect trigger to the active status, changing its position and body.

ALTER TRI GGER tr _| og_connect
ACTI VE PCSI TION 1

AS
BEG N
| NSERT | NTO LOG_CONNECT (1D,
USERNAME,
ROLENAME,
ATI MVE)

VALUES (NEXT VALUE FOR SEQ LOG CONNECT,
CURRENT _USER,
CURRENT_ROLE,
CURRENT_TI MESTAMP) ;
END

See also: CREATE TRIGGER, CREATE OR ALTER TRIGGER, RECREATE TRIGGER, DROP TRIGGER

CREATE OR ALTER TRIGGER

Used for: Creating anew trigger or altering an existing trigger
Availablein: DSQL

Syntax:

CREATE OR ALTER TRI GGER trignanme {
<relation_trigger_|egacy> |
<relation_trigger_sqgl 2003> |
<dat abase_trigger> }

AS

[<decl ar ati ons>]

BEG N

[<PSQ._st at enent s>]

END

For the full detail of the syntax, see CREATE TRIGGER.

The CREATE OR ALTER TRIGGER statement creates a new trigger if it does not exist; otherwise it alters and
recompiles it with the privileges intact and dependencies unaffected.

Example using CREATE OR ALTER TRIGGER: Creating a new trigger if it does not exist or atering it
if it does exist.

CREATE OR ALTER TRI GGER set _cust_no
ACTI VE BEFCRE | NSERT POSI TION 0 ON cust omer
AS
BEG N
I F (NEWcust _no |I'S NULL) THEN
NEW cust_no = CGEN_I D(cust_no_gen, 1);
END

128

Data Definition (DDL) Statements

See also: CREATE TRIGGER, ALTER TRIGGER, RECREATE TRIGGER

DROP TRIGGER
Used for: Deleting an existing trigger
Availablein: DSQL, ESQL

Syntax:

DROP TRI GGER tri gnane

Table5.23. DROP TRIGGER Statement Parameter

Parameter Description

trigname Trigger name

The DROP TRIGGER statement deletes an existing trigger.
Administrators and the following users have the authority to use DROP TRIGGER:

» For relation triggers, the owner of the table
» For database triggers, the owner of the database

Example using DROP TRIGGER: Deleting the set_cust_no trigger.

DROP TRI GGER set _cust _no;

See also: CREATE TRIGGER, RECREATE TRIGGER

RECREATE TRIGGER

Used for: Creating a new trigger or recreating an existing trigger
Availablein: DSQL

Syntax:

RECREATE TRI GGER tri ghanme {
<relation_trigger_| egacy> |
<relation_trigger_sqgl 2003> |
<dat abase_trigger> }

AS

[<decl arati ons>]

BEG N

129

Data Definition (DDL) Statements

[<PSQ__st at enent s>]
END

For the full detail of the syntax, see CREATE TRIGGER.

The RECREATE TRIGGER statement creates anew trigger if no trigger with the specified name exists; otherwise
the RECREATE TRIGGER statement tries to delete the existing trigger and create a new one. The operation will

fail on COMMIT if the trigger dependencies.

Warning

Be aware that dependency errors are not detected until the COMMIT phase of this operation.

Exampleusing RECREATE TRIGGER: Creating or recreating the set_cust_no trigger.

RECREATE TRI GGER set _cust_no
ACTI VE BEFORE | NSERT POSI TION 0 ON cust omer
AS
BEG N
IF (NEWcust_no IS NULL) THEN
NEW cust_no = CGEN_I D(cust_no_gen, 1);
END

See also: CREATE TRIGGER, DROP TRIGGER, CREATE OR ALTER TRIGGER

PROCEDURE

A stored procedure is a software modul e that can be called from aclient, another procedure, an executabl e block
or atrigger. Stored procedures, executabl e blocks and triggers are written in procedural SQL (PSQL). Most SQL
statements are available in PSQL as well, sometimes with limitations or extensions. Among notable exceptions

are DDL and transaction control statements.

Stored procedures can have many input and output parameters.

CREATE PROCEDURE

Used for: Creating a new stored procedure

Availablein: DSQL, ESQL

Syntax:
CREATE PROCEDURE pr ochane
[(<inparam> [, <inparanm> ...])]
[RETURNS (<outparans [, <outparant ...])]
AS

[<decl arati ons>]

130

Data Definition (DDL) Statements

BEG N

[<PSQ._st at enent s>]

END

<i nparan® ::= <paramdecl > [{= | DEFAULT} <val ue>]
<out param® ::= <param decl >

<value> ::= {literal | NULL | context_var}

<param decl > ::= paramanme <type> [NOT NULL]

[COLLATE col | ati on]

<type> ::=
<dat at ype> |
[TYPE OF] donain
TYPE OF COLUW rel.co

<dat atype> ::=

{SMALLINT | INT[EGER] | BIG NT}

| {FLOAT | DOUBLE PRECI SI ON}

| {DATE | TIME | TI MESTAMP}

| {DECIMAL | NUMERIC} [(precision [, scale])]

| {CHAR | CHARACTER | CHARACTER VARYI NG | VARCHAR} [(size)]
[CHARACTER SET charset]

| {NCHAR | NATI ONAL CHARACTER | NATI ONAL CHAR} [VARYI NG
[(size)]

| BLOB [SUB TYPE {subtype num | subtype nane}]
[SEGVENT Sl ZE segl en] [CHARACTER SET char set]

| BLOB [(seglen [, subtype nuni)]

<decl arations> ::=

{<decl are_var> | <decl are_cursor>};
[{<decl are_var> | <declare _cursor>}; .]

Table5.24. CREATE PROCEDURE Statement Parameters

Parameter Description

Stored procedure name consisting of up to 31 characters. Must be unique among

procname al table, view and procedure names in the database
inparam Input parameter description
outparam Output parameter description
declarations Section for declaring local variables and named cursors
declare var Local variable declaration
declare_cursor Named cursor declaration

PSQL _statements Procedural SQL statements

literal A literal value that is assignment-compatible with the data type of the parameter

context_var

ter

Any context variable whose type is compatible with the data type of the parame-

131

Data Definition (DDL) Statements

Parameter Description

The name of an input or output parameter of the procedure. It may consist of up
paramname to 31 characters. The name of the parameter must be unique among input and
output parameters of the procedure and its local variables

datatype SQL datatype
collation Collation sequence
domain Domain name
rel Table or view name
col Table or view column name

precision The total number of significant digits that the parameter should be able to hold

(1..18)
scale The number of digits after the decimal point (O..pr eci si on)
size The maximum size of a string type parameter or variable, in characters
charset Character set of a string type parameter or variable
subtype_num BLOB subtype number
subtype_name BLOB subtype mnemonic hame
seglen Segment size (max. 65535)

The CREATE PROCEDURE statement creates anew stored procedure. The name of the procedure must be unique
among the names of all stored procedures, tables and views in the database.

CREATE PROCEDURE is a compound statement, consisting of a header and a body. The header specifies the
name of the procedure and declares input parameters and the output parameters, if any, that are to be returned
by the procedure.

The procedure body consists of declarations for any local variables and named cursors that will be used by
the procedure, followed by one or more statements, or blocks of statements, all enclosed in an outer block that
begins with the keyword BEGIN and ends with the keyword END. Declarations and embedded statements are
terminated with semi-colons (;).

Statement Terminators

Some SQL statement editors—specifically the isgl utility that comes with Firebird and possibly some third-
party editors—employ an internal convention that requires all statements to be terminated with a semi-colon.
This creates a conflict with PSQL syntax when coding in these environments. If you are unacquainted with
this problem and its solution, please study the details in the PSQL chapter in the section entitled Switching the
Terminator inisgl.

Parameters

Each parameter hasadatatype specified for it. The NOT NULL constraint can al so be specified for any parameter,
to prevent NULL being passed or assigned to it.

132

Data Definition (DDL) Statements

A collation sequence can be specified for string-type parameters, using the COLLATE clause.
Input Parameters:

Input parameters are presented as a parenthesized list following the name of the procedure. They are
passed into the procedure as values, so anything that changes them inside the procedure has no effect
on the parameters in the calling program.

Input parameters may have default values. Those that do have values specified for them must be
located at the end of the list of parameters.

Output Parameters:

Theoptional RETURNS clauseisfor specifying aparenthesised list of output parametersfor the stored
procedure.

Use of Domains in Declarations

A domain name can be specified as the type of a parameter. The parameter will inherit all domain attributes. If
adefault value is specified for the parameter, it overrides the default value specified in the domain definition.

If the TYPE OF clause is added before the domain name, only the data type of the domain is used: any of the
other attributes of the domain— NOT NULL constraint, CHECK constraints, default value— are neither checked
nor used. However, if the domain is of atext type, its character set and collation sequence are aways used.

Use of Column Type in Declarations

Input and output parameters can also be declared using the data type of columns in existing tables and views.
The TYPE OF COLUMN clauseis used for that, specifyingr el at i onnane. col utmnarne asits argument.

When TYPE OF COLUMN is used, the parameter inherits only the data type and, for string types, the character
set and collation sequence. The constraints and default value of the column are ignored.

Bug warning for pre-Firebird 3 versions:

For input parameters, the collation that comes with the column's type is ignored in comparisons (e.g. equality
tests). For local variables, the behaviour varies.

The bug was fixed for Firebird 3.

Variable and Cursor Declarations

The optional declarations section, located last in the header section of the procedure definition, defines variables
local to the procedure and its named cursors. Local variable declarations follow the same rules as parameters
regarding specification of thedatatype. See detailsin the PSQL chapter for DECLARE VARIABLE and DECLARE
CURSOR.

The header section is followed by the procedure body, consisting of one or more PSQL statements enclosed
between the outer keywords BEGIN and END. Multiple BEGIN ... END blocks of terminated statements may be
embedded inside the procedure body.

Any user connected to the database can create a new stored procedure. The user who creates a stored procedure
becomes its owner.

133

Data Definition (DDL) Statements

Examples: Creating a stored procedure that inserts a record into the BREED table and returns the code of the
inserted record:

CREATE PROCEDURE ADD BREED (
NAVME D BREEDNAME, /* Domain attributes are inherited */
NAVE EN TYPE OF D BREEDNAME, /* Only the domain type is inherited */
SHORTNAME TYPE OF COLUWMN BREED. SHORTNAME,
/* The table colum type is inherited */
REMARK VARCHAR(120) CHARACTER SET W N1251 COLLATE PXW CYRL,
CODE_ANI MAL | NT NOT NULL DEFAULT 1
)
RETURNS (
CODE_BREED | NT
)
AS
BEG N
I NSERT | NTO BREED (
CODE_ANI MAL, NAME, NAME_EN, SHORTNAME, REMARK)
VALUES (
: CODE_ANI MAL, : NAME, :NAME_EN, : SHORTNAME, : REMARK)
RETURNI NG CODE_BREED | NTO CODE_BREED;
END

Creating a selectable stored procedure that generates data for mailing labels (from enpl oyee. f db):

CREATE PROCEDURE nmi | _| abel (cust_no | NTEGER)

RETURNS (linel CHAR(40), line2 CHAR(40), |ine3 CHAR(40),

|ine4 CHAR(40), line5 CHAR(40), |ine6 CHAR(40))

AS

DECLARE VARI ABLE cust oner VARCHAR(25);
DECLARE VARI ABLE first_name VARCHAR(15);
DECLARE VARI ABLE | ast_name VARCHAR(20);
DECLARE VARI ABLE addr1 VARCHAR(30);
DECLARE VARI ABLE addr2 VARCHAR(30);
DECLARE VARI ABLE city VARCHAR(25);
DECLARE VARI ABLE st ate VARCHAR(15);
DECLARE VARI ABLE country VARCHAR(15);
DECLARE VARI ABLE post code VARCHAR(12);
DECLARE VARI ABLE cnt | NTECER,

BEG N
l'inel
l'ine2
l'ine3
|'ined
l'ine5
l'i ne6 ;

SELECT custoner, contact first, contact | ast, address_linel,
address_line2, city, state_province, country, postal code

FROM CUSTOMER

WHERE cust_no = :cust_no

| NTO : custoner, :first_nanme, :last_name, :addrl, :addr2,
:city, :state, :country, :postcode;

| F (custoner |'S NOT NULL) THEN
linel = custoner;

134

Data Definition (DDL) Statements

IF (first_name |'S NOT NULL) THEN

line2 = first_nanme || ' ' || |ast_naneg;
ELSE

line2 = | ast_nane;

|F (addrl |'S NOT NULL) THEN

line3 = addr1;

| F (addr2 I'S NOT NULL) THEN

line4 = addr2;

|F (country = ' USA') THEN

BEG N
IF (city I'S NOT NULL) THEN
line5 =city || ', " || state || ' ' || postcode;
ELSE
line5 = state || ' ' || postcode;
END
ELSE
BEG N
IF (city 1'S NOT NULL) THEN
line5 = city || ', ' || state;
ELSE
line5 = state;
line6 = country || ' " || postcode;
END
SUSPEND; -- the statenent that sends an output row to the buffer
-- and makes the procedure "sel ectabl e"
END

See also: CREATE OR ALTER PROCEDURE, ALTER PROCEDURE, RECREATE PROCEDURE, DROP PROCE-
DURE

ALTER PROCEDURE

Used for: Modifying an existing stored procedure

Availablein: DSQL, ESQL

Syntax:

ALTER PROCEDURE pr ochane

[(<inparam> [, <inparank ...])]

[RETURNS (<out paran®> [, <outparant ...])]

AS

[<decl arati ons>]

BEG N

[<PSQL_st at errent s>]

END

<i nparanme ::= <paramdecl > [{= | DEFAULT} val ue]
<out par am® ::= <param decl >

<param decl > ::= paramanme <type> [NOT NULL]

135

Data Definition (DDL) Statements

[COLLATE col | ati on]

<type> ::=
<dat at ype> |
[TYPE OF] domain |
TYPE OF COLUMWN rel. col

<datatype> ::=

{SMALLINT | INT[EGER] | BI G NT}

| {FLOAT | DOUBLE PRECI SSI ON}

| {DATE | TIME | TI MESTAWP}

| {DECIMAL | NUMERIC} [(precision [, scale])]

| {CHAR | CHARACTER | CHARACTER VARYI NG | VARCHAR} [(size)]
[CHARACTER SET charset]

| {NCHAR | NATI ONAL CHARACTER | NATI ONAL CHAR} [VARYI NG
[(size)]

| BLOB [SUB_TYPE {subtype num | subtype_nane}]
[SEGQVENT Sl ZE segl en] [CHARACTER SET charset]

| BLOB [(seglen [, subtype_nuni)]

<decl arations> ::= {<declare_var> | <decl are_cursor>};
[{<decl are_var> | <declare_cursor>}; .]

Table5.25. ALTER PROCEDURE Statement Parameters

Parameter Description
procname Name of an existing stored procedure
inparam Input parameter description
outparam Output parameter description
declarations Section for declaring local variables and named cursors
declare var Local variable declaration

declare _cursor

Named cursor declaration

PSQL _statements

Procedural SQL statements

literal A literal value that is assignment-compatible with the data type of the parameter
context_var :[A;y context variable whose type is compatible with the data type of the parame-
The name of an input or output parameter of the procedure. It may consist of up
paramname to 31 characters. The name of the parameter must be unique among input and
output parameters of the procedure and itslocal variables
datatype SQL datatype
collation Collation sequence
domain Domain name
rel Table or view name
col Table or view column name

136

Data Definition (DDL) Statements

Parameter Description
precision The total number of significant digits that the parameter should be able to hold
(1..18)
scale The number of digits after the decimal point (O..pr eci si on)
size The maximum size of a string type parameter or variable, in characters
charset Character set of a string type parameter or variable
subtype_num BLOB subtype number
subtype_name BLOB subtype mnemonic name
seglen Segment size (max. 65535)

The ALTER PROCEDURE statement allows the following changes to a stored procedure definition:

* the set and characteristics of input and output parameters

* local variables

» codein the body of the stored procedure

After ALTER PROCEDURE executes, existing privileges remain intact and dependencies are not affected.

Caution

Take care about changing the number and type of input and output parameters in stored procedures. Existing
application code and procedures and triggers that call it could become invalid because the new description
of the parameters is incompatible with the old calling format. For information on how to troubleshoot such a
situation, see the article The RDB$VALID_BLR Field in the Appendix.

The procedure owner and Administrators have the authority to use ALTER PROCEDURE.

ALTER PROCEDURE Example: Altering the GET_EMP_PROJ stored procedure.

ALTER PROCEDURE GET_EMP_PRQJ (
EMP_NO SMALLI NT)

RETURNS (
PRQJ_| D VARCHAR(20))

AS
BEA N
FOR SELECT
PRQJ_I D
FROM
EMPLOYEE_PRQIECT
VWHERE
EMP_NO = :enp_no
I NTO :proj_id
DO
SUSPEND;
END

See also: CREATE PROCEDURE, CREATE OR ALTER PROCEDURE, RECREATE PROCEDURE, DROP PROCE-
DURE

137

Data Definition (DDL) Statements

CREATE OR ALTER PROCEDURE

Used for: Creating a new stored procedure or altering an existing one

Availablein: DSQL

Syntax:

CREATE OR ALTER PROCEDURE procnane
[(<inparam> [, <inparanm> ...])]

[RETURNS (<outparans [, <outparant ...])]
AS

[<decl ar ati ons>]

BEG N

[<PSQ._st at enent s>]

END

For the full syntax detail, sce CREATE DATABASE.

The CREATE OR ALTER PROCEDURE statement creates a new stored procedure or alters an existing one. If the
stored procedure does not exist, it will be created by invoking a CREATE PROCEDURE statement transparently.
If the procedure already exists, it will be altered and compiled without affecting its existing privileges and

dependencies.

Example: Creating or atering the GET_EMP_PROJ procedure.

CREATE OR ALTER PROCEDURE GET_EMP_PRQJ (
EMP_NO SMALLI NT)
RETURNS (
PRQJ_I| D VARCHAR(20))
AS
BEGA N
FOR SELECT
PRQJ_I D
FROM
EMPLOYEE_PRQIECT
VWHERE
EMP_NO = : enp_no
I NTO :proj_id
DO
SUSPEND;
END

See also: CREATE PROCEDURE, ALTER PROCEDURE, RECREATE PROCEDURE

DROP PROCEDURE

Used for: Deleting a stored procedure

Availablein: DSQL, ESQL

138

Data Definition (DDL) Statements

Syntax:

DROP PROCEDURE pr ocnane

Table5.26. DROP PROCEDURE Statement Parameter

Parameter Description

procname Name of an existing stored procedure

The DROP PROCEDURE statement deletes an existing stored procedure. If the stored procedure has any depen-
dencies, the attempt to delete it will fail and the appropriate error will be raised.

The procedure owner and Administrators have the authority to use DROP PROCEDURE.

Example: Deleting the GET_EMP_PROJ stored procedure.

DROP PROCEDURE GET_EMP_PRQJ;

See also: CREATE PROCEDURE, RECREATE PROCEDURE

RECREATE PROCEDURE

Used for: Creating a new stored procedure or recreating an existing one
Availablein: DSQL

Syntax:

RECREATE PROCEDURE pr ocnamne

[(<inparam> [, <inparank ...])]

[RETURNS (<out paranm> [, <outparant ...])]
AS

[<decl arati ons>]

BEA N

[<PSQ._st at errent s>]

END

For the full syntax detail, see CREATE PROCEDURE.

The RECREATE PROCEDURE statement creates a new stored procedure or recreates an existing one. If thereis
a procedure with this name already, the engine will try to delete it and create a new one. Recreating an existing
procedure will fail at the COMMIT request if the procedure has dependencies.

Warning

Be aware that dependency errors are not detected until the COMMIT phase of this operation.

139

Data Definition (DDL) Statements

After a procedure is successfully recreated, privileges to execute the stored procedure and the privileges of the
stored procedure itself are dropped.

Example: Creating the new GET_EMP_PRQJ stored procedure or recreating the existing GET_EMP_PROJ
stored procedure.

RECREATE PROCEDURE GET_EMP_PRQJ (
EMP_NO SNMALLI NT)
RETURNS (
PRQJ_I D VARCHAR(20))
AS
BEA N
FOR SELECT
PRQJ_I D
FROM
EMPLOYEE_PRQIECT
VWHERE
EMP_NO = : enp_no
I NTO : proj _id
DO
SUSPEND;
END

See also: CREATE PROCEDURE, DROP PROCEDURE, CREATE OR ALTER PROCEDURE

EXTERNAL FUNCTION

REVIEW STATUS

All sections from this point forward to the end of the chapter are awaiting technical and editorial review.

External functions, also known as*“ user-defined functions’ (UDFs) are programswritten in an external program-
ming language and stored in dynamically loaded libraries. Once declared to a database, they become available
in dynamic and procedural statements as though they were implemented in the SQL language internally.

External functions extend the possibilitiesfor processing datawith SQL considerably. To make afunction avail-
able to adatabase, it is declared using the statement DECLARE EXTERNAL FUNCTON.

The library containing a function isloaded when any function included in it is called.

Note

External functions may be contained in more than one library—or “modul€”, asit is referred to in the syntax.

DECLARE EXTERNAL FUNCTION

Used for: Declaring a user-defined function (UDF) to the database

140

Data Definition (DDL) Statements

Availablein: DSQL, ESQL

Syntax:

DECLARE EXTERNAL FUNCTI ON f uncnane
[<arg_type_decl> [, <arg_type_decl> ...]]

RETURNS {

sql type [BY {DESCRI PTOR | VALUE}] |

CSTRI N& | engt h)

PARAMETER param num }

[FREE_I T]

ENTRY_PO NT "entry_point' MODULE NAME 'library_namne';

<arg_type_decl > ::

sql type [{BY DESCRI PTOR} | NULL] |

CSTRI NG | engt h)

[NULL]

Table5.27. DECLARE EXTERNAL FUNCTION Statement Parameters

Parameter Description
Function name in the database. It may consist of up to 31 characters. It should
funcname be unique among all internal and external function names in the database and
need not be the same name as the name exported from the UDF library via
ENTRY_POINT.
entry_point The exported name of the function
library name The name of the module (MODULE_NAME from which the function is exported.
y Thiswill be the name of the file, without the “.dll” or “.so” file extension.
sgltype SQL datatype. It cannot be an array or an array element
length The maximum length of a null-terminated string, specified in bytes
The number of the input parameter, numbered from 1 in thelist of input parame-
param_num tersin the declaration, describing the data type that will be returned by the func-
tion

The DECLARE EXTERNAL FUNCTION statement makes a user-defined function available in the database. UDF
declarations must be made in each database that is going to use them. There is no need to declare UDFs that

will never be used.

The name of the external function must be unique among all function names. It may be different from the
exported name of the function, as specified in the ENTRY_POINT argument.

DECLARE EXTERNAL FUNCTION Input Parameters

The input parameters of the function follow the name of the function and are separated with commas. Each
parameter has an SQL data type specified for it. Arrays cannot be used as function parameters. As well as the
SQL types, the CSTRING type is available for specifying a null-terminated string with a maximum length of

LENGTH bytes.

141

Data Definition (DDL) Statements

By default, input parameters are passed by reference. The BY DESCRIPTOR clause may be specified instead,
if the input parameter is passed by descriptor. Passing a parameter by descriptor makes it possible to process
NULLs.

Clauses and Keywords

RETURNS clause: (Required) specifies the output parameter returned by the function. A function is scalar:
it returns one and only one parameter. The output parameter can be of any SQL type (except an array or an
array element) or a null-terminated string (CSTRING). The output parameter can be passed by reference (the
default), by descriptor or by value. If the BY DESCRIPTOR clause is specified, the output parameter is passed
by descriptor. If the BY VALUE clause is specified, the output parameter is passed by value.

PARAMETER keyword: specifies that the function returns the value from the parameter under number
param_num. It is necessary if you need to return a value of datatype BLOB.

FREE_IT keyword: meansthat the memory allocated for storing the return valuewill befreed after thefunction
is executed. It is used only if the memory was allocated dynamically in the UDF. In such a UDF, the memory
must be allocated with the help of thei b_uti | _mal | oc functionfromthei b_uti | module, arequirement
for compatibility with the functions used in Firebird code and in the code of the shipped UDF modules, for
allocating and freeing memory.

ENTRY_POINT clause: specifiesthe name of the entry point (the name of the imported function), as exported
from the module.

MODULE_NAME clause: definesthe name of the module where the exported function islocated. Thelink to
the modul e should not be the full path and extension of thefile, if that can be avoided. If the moduleislocated in
the default location (in the ../UDF subdirectory of the Firebird server root) or in alocation explicitly configured
infirebird. conf, it makes it easier to move the database between different platforms. The UDFAccess
parameter in the firebird.conf file allows access restrictions to external functions modules to be configured.

Any user connected to the database can declare an external function (UDF).
Examplesusing DECLARE EXTERNAL FUNCTION:

1. Declaring the addDate external function located in the fbudf module. The input and output parameters are
passed by reference.

DECLARE EXTERNAL FUNCTI ON addDay

TI MESTAMP, | NT

RETURNS Tl MESTAMP

ENTRY_PO NT ' addDay' MODULE_NAME ' f budf ' ;

2. Declaringtheinvl external function located in the fbudf module. Theinput and output parametersare passed
by descriptor.

DECLARE EXTERNAL FUNCTI ON i nvl

I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR

ENTRY_PO NT "idNvl' MODULE_NAME ' fbudf';

142

Data Definition (DDL) Statements

3. Declaring theisLeapY ear external function located in the fbudf module. The input parameter is passed by
reference, while the output parameter is passed by value.

DECLARE EXTERNAL FUNCTI ON i sLeapYear

TI MESTAWP

RETURNS | NT BY VALUE

ENTRY_PO NT 'isLeapYear' MODULE_NAME ' fbudf’;

4. Declaring the i64Truncate external function located in the fbudf module. The input and output parameters
are passed by descriptor. The second parameter of the function is used as the return value.

DECLARE EXTERNAL FUNCTI ON i 64Truncat e

NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2

ENTRY_PO NT 'fbtruncate' MODULE_NAME ' fbudf';

Seealso: ALTER EXTERNAL FUNCTION, DROP EXTERNAL FUNCTION

ALTER EXTERNAL FUNCTION

Used for: Changing the entry point and/or the module name for a user-defined function (UDF)
Availablein: DSQL

Syntax:

ALTER EXTERNAL FUNCTI ON funcnane
[ENTRY_PO NT 'new entry_point']
[MODULE_NAME 'new_library_nane'];

Table5.28. ALTER EXTERNAL FUNCTION Statement Parameters

Par ameter Description
funcname Function name in the database
new_entry_point The new exported name of the function

The new name of the module (MODULE_NAME from which the function is ex-
new_library_name ported. Thiswill be the name of the file, without the “.dIl” or “.so” file exten-
sion.

TheALTEREXTERNAL FUNCTION statement changesthe entry point and/or the module namefor auser-defined
function (UDF). Existing dependencies remain intact after the statement containing the change[s] is executed.

The ENTRY_POINT clause: isfor specifying the new entry point (the name of the function as exported from
the module).

143

Data Definition (DDL) Statements

The MODULE_NAME clause: Isfor specifying the new name of the module where the exported function is
located.

Any user connected to the database can change the entry point and the module name.
Examplesusing ALTER EXTERNAL FUNCTION:

1. Changing the entry point for an external function

ALTER EXTERNAL FUNCTI ON i nvl ENTRY_PO NT "intNvl';

2. Changing the module name for an external function

ALTER EXTERNAL FUNCTI ON i nvl MODULE_NAME ' f budf 2';

See also: DECLARE EXTERNAL FUNCTION, DROP EXTERNAL FUNCTION

DROP EXTERNAL FUNCTION

Used for: Removing a user-defined function (UDF) from a database
Availablein: DSQL, ESQL

Syntax:

DROP EXTERNAL FUNCTI ON funcnane

Table5.29. DROP EXTERNAL FUNCTION Statement Parameter

Parameter Description

funcname Function name in the database

TheDROPEXTERNAL FUNCTION statement del etesthe decl aration of auser-defined function from the database.
If there are any dependencies on the external function, the statement will fail and the appropriate error will be
raised.

Any user connected to the database can del ete the declaration of an internal function.

Example using DROP EXTERNAL FUNCTION: Deleting the declaration of the addDay function.

DROP EXTERNAL FUNCTI ON addbDay;

See also: DECLARE EXTERNAL FUNCTION

144

Data Definition (DDL) Statements

FILTER

A BLOB FILTER filter is a database object that is actually a specia type of external function, with the sole
purpose of taking aBLOB object in oneformat and converting it to aBLOB object in another format. The formats
of the BLOB objects are specifed with user-defined BLOB subtypes.

External functions for converting BLOB types are stored in dynamic libraries and loaded when necessary.

For more details on BLOB subtypes, see Binary Data Types.

DECLARE FILTER

Used for: Declaring a BLOB filter to the database
Availablein: DSQL, ESQL

Syntax:

DECLARE FILTER filtername
I NPUT_TYPE <sub_type> OQUTPUT_TYPE <sub_type>
ENTRY_PO NT ' function_name' MODULE_NAME 'l i brary_nane'

<sub_type> ::= nunber | <mmenonic>

<menoni c> ::= binary | text | blr | acl | ranges
sunmary | format | transaction_description

external file_description | user_defined

Table5.30. DECLARE FILTER Statement Parameters

Par ameter Description
filtername Filter name in the database. It may consist of up to 3_1 charac_ters. It need not be
the same name as the name exported from the filter library viaENTRY_POINT.
sub_type BLOB subtype
number BLOB SUB_TY PE number (must be negative)
mnemonic BLOB SUB_TY PE mnemonic hame
function_name The exported name (entry point) of the function
library_name The name of the module where thefilter is located
user_defined User-define BLOB SUB_TY PE mnemonic hame

145

Data Definition (DDL) Statements

The DECLARE FILTER statement makes a BLOB filter available to the database. The name of the BLOB filter
must be unique among the names of BLOB filters.

Specifying the Subtypes

The subtypes can be specified as the subtype number or as the subtype mnemonic name. Custom subtypes must
be represented by negative numbers (from -1 to -32,768). An attempt to declare more than one BLOB filter with
the same combination of the input and output types will fail with an error.

INPUT_TYPE: clause defining the BLOB subtype of the object to be converted

OUTPUT_TYPE: clause definimg the BLOB subtype of the object to be created.

Note

Mnemonic names can be defined for custom BLOB subtypes and inserted manually into the system table RDB
$TYPES system table:

I NSERT | NTO RDB$TYPES (RDB$FI ELD_NAME, RDB$TYPE, RDB$TYPE NAVE)
VALUES (' RDB$FI ELD_SUB TYPE', -33, 'MD");

After thetransaction is confirmed, the mnemonic names can be used in decl arationswhen you create new filters.

The value of the column RDB$FIELD NAME must aways be 'RDB$FIELD _SUB_TYPE'. If mnemonic
names in upper case, they can be used case-insensitively and without quotation marks when afilter is declared.

Warning: From Firebird 3 onward, the system tables will no longer be writable by users.

Parameters

ENTRY_POINT: clausedefiningthe name of the entry point (the name of theimported function) inthe module.

MODULE_NAME: The clause defining the name of the module where the exported function is located. By
default, modulesmust belocated in the UDF folder of theroot directory onthe server. The UDFAccess parameter
infirebird. conf alowsediting of access restrictions to filter libraries.

k k k k k k k k kkkkkkkkkkk k%

Any user connected to the database can declare a BLOB filter.

Examples:

1

Creating a BLOB filter using subtype numbers.

DECLARE FI LTER DESC FI LTER
I NPUT_TYPE 1

OUTPUT_TYPE -4

ENTRY_PO NT 'desc_filter'
MODULE_NAME ' FI LTERLI B' ;

Creating a BLOB filter using subtype mnemonic names.

146

Data Definition (DDL) Statements

DECLARE FI LTER FUNNEL
I NPUT_TYPE bl r OUTPUT_TYPE t ext
ENTRY_PO NT ' blr2asc’ MODULE NAME 'nyfilterlib';

See also: DROPFILTER

DROP FILTER

Used for: Removing aBLOB filter declaration from the database
Availablein: DSQL, ESQL

Syntax:

DROP FILTER filtername;

Table5.31. DROP FILTER Statement Par ameter

Parameter Description

filtername Filter name in the database

The DROP FILTER statement removes the declaration of a BLOB filter from the database. Removing a BLOB
filter from a database makesit unavailable for use rom that database. The dynamic library where the conversion
function is located remains intact and the removal from one database does not affect other databases in which
the same BLOB filter is till declared.

Any user connected to the database can drop a BLOB filter.

Example: Deleting aBLOB filter.
DROP FI LTER DESC FI LTER;

See also: DECLARE FILTER

SEQUENCE (GENERATOR)

A sequence or a generator is a database object used to get unique number values to fill a series. “ Sequence’
is the SQL-compliant term for the same thing which, in Firebird, has traditionally been known as “ generator”.
Both terms are implemented in Firebird, which recognises and has syntax for both terms.

147

Data Definition (DDL) Statements

Sequences (or generators) are aways stored as 64-bit integers, regardless of the SQL dialect of the database.

Caution

If aclient is connected using Dialect 1, the server sends sequence values to it as 32-bit integers. Passing a
sequence value to a 32-hit field or variable will not cause errors as long as the current value of the sequence
does not exceed the limits of a 32-bit number. However, as soon as the sequence value exceeds this limit, a
database in Dialect 3 will produce an error. A database in Dialect 1 will keep cutting the values, which will
compromise the uniqueness of the series.

This section describes how to create, set and delete sequences.

CREATE SEQUENCE

Used for: Creating a new SEQUENCE (GENERATOR)
Availablein: DSQL, ESQL

Syntax:

CREATE { SEQUENCE | GENERATOR} seq_nhane

Table5.32. CREATE SEQUENCE | CREATE GENERATOR Statement Par ameter

Parameter Description

seq_name Sequence (generator) name. It may consist of up to 31 characters

The statements CREATE SEQUENCE and CREATE GENERATOR are synonymous—both create anew sequence.
Either can be used but CREATE SEQUENCE is recommended if standards-compliant metadata management is
important.

When a sequence is created, its value is set to 0. Each time the NEXT VALUE FOR seq_name operator is used
with that sequence, its value increases by 1. The GEN_ID(seq_name, <step>) function can be called instead, to
“step” the series by a different integer number.

Any user connected to the database can create a sequence (generator).
Examples:

1. Creating the EMP_NO_GEN series using CREATE SEQUENCE.

CREATE SEQUENCE EMP_NO_GEN,

2. Creating the EMP_NO_GEN series using CREATE GENERATOR.

148

Data Definition (DDL) Statements

CREATE GENERATOR EMP_NO_GEN:

See also: ALTER SEQUENCE, SET GENERATOR, DROP SEQUENCE (GENERATOR), NEXT VALUE FOR,
GEN_ID() function

ALTER SEQUENCE

Used for: Setting the value of a sequence or generator to a specified value
Availablein: DSQL

Syntax:

ALTER SEQUENCE seq_nanme RESTART W TH new val

Table5.33. ALTER SEQUENCE Statement Parameters

Par ameter Description
seq_name Sequence (generator) name
new_val New sequence (generator) value. A 64-bit integer from -27%% to 2%%-1.

The ALTER SEQUENCE statement sets the current value of a sequence or generator to the specified value.

Warning

Incorrect use of the ALTER SEQUENCE statement (changing the current value of the sequence or generator) is
likely to break the logical integrity of data.

Any user connected to the database can set the sequence (generator) value.
Examples:

1. Setting the value of the EMP_NO_GEN sequenceto 145.

ALTER SEQUENCE EMP_NO _CGEN RESTART W TH 145;

2. Doing the same thing, using SET GENERATOR:

SET GENERATOR EMP_NO _GEN TO 145;

See also: SET GENERATOR, CREATE SEQUENCE (GENERATOR), DROP SEQUENCE (GENERATOR), NEXT
VALUE FOR, GEN_ID() function

149

Data Definition (DDL) Statements

SET GENERATOR

Used for: Setting the value of a sequence or generator to a specified value
Availablein: DSQL, ESQL

Syntax:

SET GENERATOR seq_name TO new val

Table5.34. SET GENERATOR Statement Parameters

Par ameter Description
seq_name Generator (sequence) name
new_val New sequence (generator) value. A 64-bit integer from -27%% to 2%%-1.

The SET GENERATOR statement sets the current value of a sequence or generator to the specified value.

Note

Although SET GENERATOR is considered outdated, it is retained for backward compatibility. Using the stan-
dards-compliant ALTER SEQUENCE is current and is recommended.

Any user connected to the database can set the sequence (generator) vaue.
Examples:

1. Setting the value of the EMP_NO_GEN sequenceto 145:
SET GENERATOR EMP_NO GEN TO 145;

2. Doing the same thing, using ALTER SEQUENCE:
ALTER SEQUENCE EMP_NO GEN RESTART W TH 145;

See also: ALTER SEQUENCE, CREATE SEQUENCE (GENERATOR)

DROP SEQUENCE

Used for: Deleting SEQUENCE (GENERATOR)

Availablein: DSQL, ESQL

150

Data Definition (DDL) Statements

Syntax:

DROP {SEQUENCE | GENERATOR} seq_nane

Table 5.35. DROP SEQUENCE | DROP GENERATOR Statement Par ameter

Parameter Description

seq_name Sequence (generator) name. It may consist of up to 31 characters

The statements DROP SEQUENCE and DROP GENERATOR statements are equivalent: both delete an existing
sequence (generator). Either isvalid but DROP SEQUENCE, being current, is recommended.

The statements will fail if the sequence (generator) has dependencies.
Any user connected to the database can drop a sequence (generator).

Example: Dropping the EMP_NO_GEN series:
DROP SEQUENCE EMP_NO GEN;

See also: CREATE SEQUENCE (GENERATOR, ALTER SEQUENCE, SET GENERATOR

EXCEPTION

This section describes how to create, modify and delete custom exceptions for use in error handlers in PSQL
modules.

CREATE EXCEPTION

Used for: Creating a new exception for use in PSQL modules
Availablein: DSQL, ESQL

Syntax:

CREATE EXCEPTI ON exception_nane ' nessage'

Table5.36. CREATE EXCEPTION Statement Parameters

Parameter Description

exception_name Exception name. The maximum length is 31 characters

151

Data Definition (DDL) Statements

Parameter Description

message Default error message. The maximum length is 1,021 characters

The statement CREATE EXCEPTION creates a hew exception for use in PSQL modules. If an exception of the
same name exists, the statement will fail with an appropriate error message.

The exception nameisastandard identifier. In aDialect 3 database, it can be enclosed in double quotes to make
it case-sensitive and, if required, to use characters that are not valid in regular identifiers. See Identifiers for
more information.

The default message is stored in character set NONE, i.e., in characters of any single-byte character set. Thetext
can be overridden in the PSQL code when the exception is thrown.

Any user connected to the database can create an exception.
Examples:
1. Creating an exception named E_ LARGE_VALUE:

CREATE EXCEPTI ON E_LARGE_VALUE
' The value is out of range';

2. Creating an exception named ERROR_REFIN_RATE:

CREATE EXCEPTI ON ERROR_REFI N_RATE
"Error detected in the spread of discount rates';

Tips

Grouping CREATE EXCEPTION statements together in system update scripts will simplify working with them
and documenting them. A system of prefixesfor naming and categorising groups of exceptionsis recommend-
ed.

Custom exceptions are stored in the system table RDB$EXCEPTIONS.

Seealso: ALTER EXCEPTION, CREATE OR ALTER EXCEPTION, DROP EXCEPTION, RECREATE EXCEPTION

ALTER EXCEPTION

Used for: Modifying athe message returned from a custom exception
Availablein: DSQL, ESQL

Syntax:

ALTER EXCEPTI ON excepti on_nanme 'nmessage’

152

Data Definition (DDL) Statements

Table5.37. ALTER EXCEPTION Statement Parameters

Parameter Description
exception_name Exception name
message New default error message. The maximum length is 1,021 characters

The statement ALTER EXCEPTION can be used at any time, to modify the default text of the message. Any user
connected to the database can alter an exception message.

Examples:

1. Changing the default message for the exception E_LARGE_VALUE:

ALTER EXCEPTI ON E_LARGE_VALUE
' The val ue exceeds the prescribed Iimt of 32,765 bytes';

2. Changing the default message for the exception ERROR_REFIN_RATE:

ALTER EXCEPTI ON ERROR_REFI N _RATE 'Rate is outside the allowed range';

Seealso: CREATE EXCEPTION, CREATE ORALTER EXCEPTION, DROPEXCEPTION, RECREATE EXCEPTION

CREATE OR ALTER EXCEPTION

Used for: Modifying athe message returned from acustom exception, if the exception exists; otherwise, creating
anew exception

Availablein: DSQL

Syntax:

CREATE OR ALTER EXCEPTI ON excepti on_nane 'nessage'

Table5.38. CREATE OR ALTER EXCEPTION Statement Parameters

Parameter Description
exception_name Exception name
message Error message. The maximum length islimited to 1,021 characters

The statement CREATE OR ALTER EXCEPTION is used to create the specified exception if it does not exist, or
to modify the text of the error message returned from it if it exists already. If an existing exception is altered by
this statement, any existing dependencies will remain intact.

153

Data Definition (DDL) Statements

Any user connected to the database can use this statement to create an exception or alter the text of one that
already exists.

Example: Changing the message for the exception E_LARGE_VALUE:

CREATE OR ALTER EXCEPTI ON E_LARGE_VALUE
'The value is higher than the permitted range 0 to 32, 765';

See also: CREATE EXCEPTION, ALTER EXCEPTION, RECREATE EXCEPTION

DROP EXCEPTION

Used for: Deleting a custom exception
Availablein: DSQL, ESQL

Syntax:

DROP EXCEPTI ON excepti on_nane

Table5.39. DROP EXCEPTION Statement Parameter

Parameter Description

exception_name Exception name

The statement DROP EXCEPTION is used to delete an exception. Any dependencies on the exception will cause
the statement to fail and the exception will not be deleted.

If an exception is used only in stored procedures, it can be deleted at any time. If it isused in atrigger, it cannot
be deleted.

In planning to del ete an exception, all referencestoit should first be removed from the code of stored procedures,
to avoid its absence causing errors.

Any user connected to the database can delete an exception.
Examples:

1. Ddeting exception ERROR_REFIN_RATE:

DROP EXCEPTI ON ERROR_REFI N_RATE;

2. Deleting exception E_LARGE_VALUE:

DELETE EXCEPTI ON E_LARGE VALUE;

154

Data Definition (DDL) Statements

See also: CREATE EXCEPTION, RECREATE EXCEPTION

RECREATE EXCEPTION

Used for: Creating a new custom exception or recreating an existing one
Availablein: DSQL

Syntax:

RECREATE EXCEPTI ON excepti on_name 'nmessage’

Table5.40. RECREATE EXCEPTION Statement Parameters

Parameter Description
exception_name Exception name. The maximum length is 31 characters
message Error message. The maximum length is limited to 1,021 characters

The statement RECREATE EXCEPTION creates anew exception for usein PSQL modules. If an exception of the
same name exists already, the RECREATE EXCEPTION statement will try to delete it and create a new one. If
there are any dependencies on the existing exception, the attempted deletion fails and RECREATE EXCEPTION
is not executed.

Any user connected to the database can [re]create an exception.

Example: Recreating the E LARGE _VALUE exception:

RECREATE EXCEPTI ON E_LARGE VALUE
'The val ue exceeds its |imt';

See also: CREATE EXCEPTION, DROP EXCEPTION, CREATE OR ALTER EXCEPTION

COLLATION

CREATE COLLATION

Used for: Making anew collation for a supported character set available to the database
Availablein: DSQL

155

Data Definition (DDL) Statements

Syntax:
CREATE COLLATI ON col | nane
FOR char set
[FROM basecol | | FROM EXTERNAL (' extnane')]

[NO PAD | PAD SPACE]

[CASE [| N] SENSI TI VE]

[ACCENT [| N] SENSI TI VE]

['<specific-attributes>'];

<specific-attributes> ::= <attribute> [; <attribute> ...]

<attribute> ::= attrnane=attrval ue

Table5.41. CREATE COLLATION Statement Parameters

Parameter Description
collname The nameto use for the new collation. The maximum length is 31 characters
charset A character set present in the database
basecoll A collation already present in the database
extname The collation name used in the . conf file

The CREATE COLLATION statement does not “create” anything: its purpose is to make a collation known to a
database. The collation must already be present on the system, typically in alibrary file, and must be properly
registeredina. conf fileinthei ntl subdirectory of the Firebird installation.

The collation may alternatively be based on one that is already present in the database.

How the Engine Detects the Collation

If no FROM clauseis present, Firebird will scanthe. conf fileg(s) inthei nt | subdirectory for acollation with
the name specified as the object of CREATE COLLATION. In other words, omitting the FROM basecoll clauseis
equivalent to specifying FROM EXTERNAL (‘collname).

The single-quoted ' ext nane' is case-sensitive and must correspond exactly with the collation name in the
. conf file. The col | nane, char set and basecol | parameters are case-insensitive unless enclosed in
double-quotes.

Specific Attributes

The available specific attributes are listed in the table below. Not all specific attributes apply to every collation,
even if specifying them does not cause an error.

Important

Specific attributes are case sensitive.

156

Data Definition (DDL) Statements

Inthetable, “1 bpc” indicates that an attribute isvalid for collations of character sets using 1 byte per character
(so-called narrow character sets). “UNI” stands for “UNICODE collations”.

Table 5.42. Specific Collation Attributes

Atrribute Values Valid for Comment

Disables compressions (a.k.a. contractions).

DISABLE-COM- 01 1 bpc Compressions cause certain character se-
PRESSIONS ’ guences to be sorted as atomic units, e.g.

Spanish c+h as asingle character ch

Disables expansions. Expansions cause cer-
tain characters (e.g. ligatures or umlauted
vowels) to be treated as character sequences
and sorted accordingly

DISABLE-EXPANSIONS 01 1 bpc

Specifies the ICU library version to use.
Valid values are the ones defined in the ap-
default plicable <intl_module> elementini nt |/
|CU-VERSION or M.m UNI f bi nt1. conf. Format: either the string
literal “default” or a major+minor version

number like “3.0" (both unquoted).

Specifies the collation locale. Requires com-
LOCALE xxX_YY UNI plete version of ICU libraries. Format: alo-
cale string like “du_NL” (unquoted)

MULTI-LEVEL 01 1 bpc Uses more than one ordering level

Treats contiguous groups of decimal digits
in the string as atomic units and sorts them

NUMERIC-SORT 01 UNI numerically. (Thisis also known as natural
sorting)
Orders special characters (spaces, symbols
SPECIALSFIRST 0.1 1 bpe etc.) before alphanumeric characters
Tip

If you want to add a new character set with its default collation into your database, declare and run the stored
proceduresp_regi ster _character_set (nane, nmax_bytes per_character),foundinm sc/
i ntl.sql/ underthe Firebird installation directory.

Note: in order for thisto work, the character set must be present on the system and registered ina. conf file
inthei nt | subdirectory.

Any user connected to the database can use CREATE COLLATION to add a new collation.
Examplesusing CREATE COLLATION:

1. Creating acollation using the name found inthef bi nt | . conf file (case-sensitive).

CREATE COLLATI ON |1 SO8859_1_UNI CODE FOR | S08859_1,;

157

Data Definition (DDL) Statements

2. Creating a collation using a specia (user-defined) name (the “external” name must completely match the
nameinthef bi nt1 . conf file).

CREATE COLLATI ON LAT_UNI
FOR | SO8859 1
FROM EXTERNAL (' 1S08859 1 UNI CCDE') ;

3. Creating a case-insensitive collation based on one aready existing in the database.

CREATE COLLATI ON ES_ES_NOPAD_Cl
FOR | S08859_1

FROM ES_ES

NO PAD

CASE | NSENSI TI VE;

4. Creating a case-insensitive collation based on one already existing in the database with specific attributes.

CREATE COLLATI ON ES_ES_Cl _COWPR
FOR | SO8859 1

FROM ES_ES

CASE | NSENSI TI VE

' DI SABLE- COMPRESS| ONS=0' ;

5. Creating a case-insensitive collation by the value of numbers (the so-called natural collation).

CREATE COLLATI ON nums_col | FOR UTF8
FROM UNI CODE
CASE | NSENSI Tl VE ' NUMERI C- SORT=1" ;

CREATE DOVAI N dm nuns AS var char (20)
CHARACTER SET UTF8 COLLATE nuns_coll; -- original (manufacturer) numbers

CREATE TABLE wares(id int primary key, articul dmnuns ...);

See also: DROP COLLATION

DROP COLLATION

Used for: Removing a collation from the database
Availablein: DSQL

Syntax:

158

Data Definition (DDL) Statements

DROP COLLATI ON col | nane

Table5.43. DROP COLLATION Statement Parameters

Parameter Description

collname The name of the collation

The DROP COLLATION statement removes the specified collation from the database, if is there. An error will
be raised if the specified collation is not present.

Tip

If you want to remove an entire character set with al its collations from the database, declare and execute the
stored procedure sp_unr egi st er _char act er _set (nane) fromtheni sc/intl. sql subdirectory of
the Firebird installation.

Any user connected to the database can use DROP COLLATION to remove a collation.

Example using DROP COLLATION: Deletingthe ES ES NOPAD_CI collation.
DROP COLLATI ON ES_ES _NOPAD Cl ;

See also: CREATE COLLATION

CHARACTER SET

ALTER CHARACTER SET

Used for: Setting the default collation for a character set
Availablein: DSQL

Syntax:

ALTER CHARACTER SET char set
SET DEFAULT COLLATION col |l ation;

Table5.44. ALTER CHARACTER SET Statement Parameters

Parameter Description

charset Character set identifier

159

Data Definition (DDL) Statements

Parameter Description

collation The name of the collation

The statement ALTER CHARACTER SET statement changes the default collation for the specified character set.
It will affect the future usage of the character set, except for cases where the COLLATE clause is explicitly
overridden. In that case, the collation sequence of existing domains, columns and PSQL variables will remain
intact after the change to the default collation of the underlying character set.

NOTES

If you change the default collation for the database character set (the one defined when the database was cre-
ated), it will change the default collation for the database.

If you change the default collation for the character set that was specified during the connection, string constants
will be interpreted according to the new collation value, except in those cases where the character set and/or
the collation have been overridden.

Example of use: Setting the default UNICODE_CI_Al collation for the UTF8 encoding.

ALTER CHARACTER SET UTF8
SET DEFAULT CCLLATI ON UNI CODE_CI _Al;

ROLE

A roleis adatabase object that packages a set of SQL privileges. Rolesimplement the concept of access control
at agroup level. Multiple privileges are granted to the role and then that role can be granted to or revoked from
one or many USers.

A user that is granted a role must supply that role in his login credentials in order to exercise the associated
privileges. Any other privileges granted to the user are not affected by hislogin with the role. Logging in with
multiple roles simultaneously is not supported.

In this section the tasks of creating and dropping roles are discussed.

CREATE ROLE

Used for: Creating a new ROLE object
Availablein: DSQL, ESQL

Syntax:

CREATE ROLE rol enane;

160

Data Definition (DDL) Statements

Table5.45. CREATE ROLE Statement Par ameter

Parameter

Description

rolename

Role name. The maximum length is 31 characters

The statement CREATE ROLE creates a new role object, to which one or more privileges can be granted subse-
guently. The name of arole must be unique among the names of roles in the current database.

Warning

It is advisable to make the name of a role unique among user names as well. The system will not prevent the
creation of arole whose name clashes with an existing user name but, if it happens, the user will be unable
to connect to the database.

Any user connected to the database can create arole. The user that creates arole becomesits owner.

Example: Creating arole named SELLERS:

CREATE ROLE SELLERS;

See also: DROP ROLE, GRANT, REVOKE

ALTER ROLE

ALTER ROLE has no place in the create-alter-drop paradigm for database objects since a role has no attributes
that can be modified. Itsactual effect isto alter an attribute of the database: Firebird usesit to enable and disable
the capability for Windows Adminstrators to assume administrator privileges automatically when logging in.

This procedure can affect only onerole: the system-generated role RDBSADMIN that existsin every database of
ODS 11.2 or higher. Several factors are involved in enabling this feature.

For details, see AUTO ADMIN MAPPING in the Security chapter.

DROP ROLE

Used for: Deleting arole

Availablein: DSQL, ESQL

Syntax:

DROP ROLE r ol enane;

161

Data Definition (DDL) Statements

The statement DROP ROLE deletes an existing role. It takes just a single argument, the name of the role. Once
the roleis deleted, the entire set of privilegesisrevoked from all users and objects that were granted the role.

A role can be deleted by its owner or by an administrator.

Example: Deleting therole SELLERS:
DROP ROLE SELLERS;

See also: CREATE ROLE, GRANT, REVOKE

COMMENTS

Database objects and a database itself may contain comments. It is a convenient mechanism for documenting
the development and maintenance of a database. Comments created with COMMENT ON will survive a gbak
backup and restore.

COMMENT ON

Used for: Documenting metadata
Availablein: DSQL

Syntax:

COWENT ON <object> IS {'sonmetext' | NULL}

<object> ::=
DATABASE
| <basic-type> objectnane
| COLUMWN rel ati onnane. fi el dnane
| PARAMETER prochame. par ammane

<basic-type> ::=
CHARACTER SET |
COLLATI ON |
DOVAI N |
EXCEPTI ON |
EXTERNAL FUNCTI ON |
FI LTER |
GENERATOCR |
| NDEX |
PROCEDURE |
ROLE |
SEQUENCE |
TABLE |
TRI GCGER |
VI EW

162

Data Definition (DDL) Statements

Table5.46. COMMENT ON Statement Parameters

Parameter Description
sometext Comment text
basic-type M etadata object type
objectname M etadata object name
relationname Name of table or view
procname Name of stored procedure
paramname Name of a stored procedure parameter

The COMMENT ON statement adds commentsfor database objects (metadata). Commentsare saved to text fields
of the BLOB type in the RDB$DESCRIPTION column of the corresponding system tables. Client applications
can view comments from these fields.

Note

If you add an empty comment ("), it will be saved as NULL in the database.

The table or procedure owner and Administrators have the authority to use COMMENT ON.
Examplesusing COMMENT ON:

1. Adding acomment for the current database

COMMENT ON DATABASE IS 'It is a test (''ny.fdb'') database':

2. Adding acomment for the METALStable

COMMENT ON TABLE METALS IS ' Metal directory';

3. Adding acomment for the ISALLOY fieldinthe METALS table

COWENT ON COLUWN METALS. | SALLOY IS '0 = fine netal, 1 = alloy';

4. Adding acomment for a parameter

COVMENT ON PARAMETER ADD_EMP_PRQJ. EMP_NO IS ' Enpl oyee ID ;

163

Chapter 6

Data Manipulation
(DML) Statements

REVIEW STATUS

All sections from this point forward to the end of the chapter are awaiting technical and editorial review.

DM L—data manipulation language— is the subset of SQL that is used by applications and procedural modules
to extract and change data. Extraction, for the purpose of reading data, both raw and manipulated, is achieved
with the SELECT statement. INSERT is for adding new data and DELETE is for erasing data that are no longer
required. UPDATE, MERGE and UPDATE OR INSERT all modify datain various ways.

SELECT

Used for: Retrieving data
Availablein: DSQL, ESQL, PSQL
Global syntax:

SELECT
[W TH [RECURSI VE] <cte> [, <cte> ...]]
SELECT
[FIRST nj [SKIP n]
[DI STINCT | ALL] <col ums>
FROM
source [[AS] alias]
[<j oi ns>]
[WHERE <condi tion>]
[GROUP BY <grouping-1|ist>
[HAVI NG <aggr egat e- condi ti on>]]
[PLAN <pl an- expr >]
[UNION [DI STINCT | ALL] <ot her-sel ect >]
[ORDER BY <ordering-1ist>]
[ROAMS m[TO n]]
[FOR UPDATE [OF <col ums>]]

[WTH LOCK]
[NTO <vari abl es>]

<variables> ::= [:]varnanme [, [:]varname ...]

164

Data Manipulation (DML) Statements

Description

The SELECT statement retrieves data from the database and hands them to the application or the enclosing SQL
statement. Data are returned in zero or more rows, each containing one or more columns or fields. The total of
rows returned is the result set of the statement.

The only mandatory parts of the SELECT statement are:

» The SELECT keyword, followed by a columns list. This part specifies what you want to retrieve.

» The FROM keyword, followed by a selectable object. Thistells the engine where you want to get it from.
Inits most basic form, SELECT retrieves a number of columns from a singletable or view, like this:

sel ect id, nane, address
fromcontacts

Or, to retrieve al the columns:
sel ect * from sal es

In practice, the rowsretrieved are often limited by a WHERE clause. The result set may be sorted by an ORDER
BY clause, and FIRST, SKIP or ROWS may further limit the number of output rows. The column list may contain
al kinds of expressionsinstead of just column names, and the source need not be atable or view: it may aso be
aderived table, a common table expression (CTE) or a selectable stored procedure (SP). Multiple sources may
be combined in a JOIN, and multiple result sets may be combined in a UNION.

The following sections discuss the available SELECT subclauses and their usage in detail.

FIRST, SKIP
Used for: Retrieving adlice of rows from an ordered set

Availablein: DSQL, PSQL

Syntax:
SELECT
[FIRST <mp] [SKI P <n>]
FROM . ..
<m>, <n> ::= integer-literal | query-paraneter | (integer-expression)

Table6.1. Argumentsfor the FIRST and SKIP Clauses

Argument Description
integer litera Integer literal
guery parameter Query parameter place-holder. ?in DSQL and :paramnamein PSQL
integer-expression Expression returning an integer value

165

Data Manipulation (DML) Statements

FIRST and SKIP arenon-standard syntax

FIRST and SKIP are Firebird-specific, non-SQL -compliant keywords. Y ou are advised to use the ROWS syntax
wherever possible.

Description

FIRST limits the output of a query to the first mrows. SKIP will suppress the given n rows before starting to
return output.

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmost rows of the output
set are discarded and the first mrows of the rest of the set are returned.

Characteristics of FIRST and SKIP

* Any argument to FIRST and SKIP that is not an integer literal or an SQL parameter must be enclosed in
parentheses. Thisimpliesthat a subquery expression must be enclosed in two pairs of parentheses.

» SKIPOQisallowed but totally pointless.

* FIRST Oisalso alowed and returns an empty set.

» Negative SKIP and/or FIRST valuesresult in an error.

» If aSKIPlands past the end of the dataset, an empty set is returned.

* If the number of rowsin the dataset (or the remainder left after a SKIP) islessthan the value of the margument
supplied for FIRST, that smaller number of rowsis returned. These are valid results, not error conditions.

Caution

An error occurs when you use FIRST in subqueries. This query

DELETE FROM MYTABLE
WHERE I D I N (SELECT FIRST 10 | D FROM MYTABLE)

will delete ALL records from the table. The subquery retrieves 10 rows each time, deletes them and the oper-
ation is repeated until the table is empty. Keep it in mind! Or, better, use the ROWS clause in the DELETE
Statement.

Examples
The following query will return the first 10 names from the People table:

select first 10 id, nane from Peopl e
order by nane asc

The following query will return everything but the first 10 names:

sel ect skip 10 id, name from Peopl e
order by nane asc

166

Data Manipulation (DML) Statements

And this one returns the last 10 rows. Notice the double parentheses:

sel ect skip ((select count(*) - 10 from People))
id, nane from People
order by nanme asc

This query returns rows 81 to 100 of the People table:

select first 20 skip 80 id, nanme from People
order by nane asc

See also: ROWS

The SELECT Columns List

The columns list contains one or more commarseparated value expressions. Each expression provides a value
for one output column. Alternatively, * (“select star”) can be used to stand for all the columnsin arelation (i.e.
atable, view or selectable stored procedure).

Syntax:

SELECT

[...]
[DI STINCT | ALL] <output-colum> [, <output-colum> ...]

[...]

FROM . ..
<out put - col um> ::= [qualifier.]*
| <val ue-expression> [COLLATE col lation] [[AS] alias]
<val ue-expression> ::= [qualifier.]table-colum
| [qualifier.]viewcolum
| [qualifier.]selectabl e-SP-outparm
| constant
| context-variable
| function-call
| single-val ue-subsel ect
| CASE-construct
| “any other expression returning a single
value of a Firebird data type or NULL"
qualifier = arelation nane or alias
coll ation = awvalid collation nane (only for character type col ums)

Table 6.2. Argumentsfor the SELECT ColumnsList

Argument Description
qualifier Name of relation (view, stored procedure, derived table); or an alias for it
collation Only for character-type columns: a collation name that exists and isvalid for the
character set of the data
dias Column or field alias

167

Data Manipulation (DML) Statements

Argument Description
table-column Name of atable column
view-column Name of aview column

selectable-SP-outparm | Declared name of an output parameter of a selectable stored procedure

constant A constant
context-variable Context variable
function-call Scalar or aggregate function call expression

single-value-subselect | A subquery returning one scalar value (singleton)

CA SE-construct CASE construct setting conditions for areturn value

other-single-value-expr | Any other expression returning asingle value of a Firebird data type; or NULL

Description

It is always valid to qualify a column name (or “*”) with the name or aias of the table, view or se-
lectable SPto which it belongs, followed by adot. e.g., r el ati onnane. col utmnane, r el ati onnane. *,
al i as. col umnan®, al i as. *. Qualifyingisrequired if the column name occursin more than onerelation
taking part in ajoin. Qualifying “*” is always mandatory if it is not the only item in the column list.

I mportant

Aliases obfuscate the original relation name: once atable, view or procedure has been aliased, only the dias
can be used asits qualifier throughout the query. The relation name itself becomes unavailable.

The column list may optionally be preceded by one of the keywords DISTINCT or ALL:

» DISTINCT filters out any duplicate rows. That is, if two or more rows have the same values in every corre-
sponding column, only one of them isincluded in the result set

* ALL isthe default: it returns all of the rows, including duplicates. ALL is rarely used; it is supported for
compliance with the SQL standard.

A COLLATE clause will not change the appearance of the column as such. However, if the specified collation
changes the case or accent sensitivity of the column, it may influence:

* Theordering, if an ORDER BY clause is also present and it involves that column

» Grouping, if the column is part of a GROUPBY clause
* Therowsretrieved (and hence the total number of rowsin the result set), if DISTINCT is used

Examples of SELECT queries with different types of column lists
A simple SELECT using only column names:

sel ect cust_id, cust_nane, phone
from custoners
where city = 'London'

A query featuring a concatenation expression and a function call in the columns list:

168

Data Manipulation (DML) Statements

select '"M./Ms. ' || lastname, street, zip, upper(city)
from contacts
where date_ | ast_purchase(id) = current_date

A gquery with two subselects:

sel ect p.full nane,
(select nane fromclasses ¢ where c.id
(select name fromnentors mwhere mid
frompupils p

p.class) as cl ass,
p. mentor) as nentor

The following query accomplishes the same as the previous one using joins instead of subselects:

sel ect p.full namne,
c.nanme as cl ass,
m name as ment or
frompupils p
join classes ¢ on c.id
join mentors mon mid

p.cl ass
p. ment or

This query uses a CASE construct to determine the correct title, e.g. when sending mail to a person:

sel ect case upper(sex)
when 'F' then 'Ms.'
when 'M then 'M.'
else '’
end as title,
| ast nane,
addr ess
from enpl oyees

Querying a selectable stored procedure:

select * frominteresting transactions(2010, 3, 'S")
order by anmount

Selecting from columns of a derived table. A derived table is a parenthesized SELECT statement whose result
setisused in an enclosing query asif it were aregular table or view. The derived table is shown in bold here:

sel ect fieldcount,
count (rel ation) as numtables
from (select r.rdb$relation_nanme as relation
count (*) as fieldcount
from rdb$relations r
join rdb$relation _fields rf
on rf.rdb$relati on_nane = r.rdb$rel ati on_name
group by relation)
group by fiel dcount

Asking the time through a context variable (CURRENT_TIME):
sel ect current tine fromrdb$dat abase
For those not familiar with RDBSDATABASE: thisis a system table that is present in all Firebird databases and

is guaranteed to contain exactly one row. Although it wasn't created for this purpose, it has become standard
practice among Firebird programmers to select from thistable if you want to select “from nothing”, i.e., if you

169

Data Manipulation (DML) Statements

need datathat are not bound to aany table or view, but can be derived from the expressionsin the output columns
alone. Another exampleis:

sel ect power (12, 2) as twelve_squared, power (12, 3) as twelve cubed
from rdb$dat abase

Finally, an example where you select some meaningful information from RDBSDATABASE itself:
sel ect rdb$character_set _nane from rdb$dat abase

Asyou may have guessed, thiswill give you the default character set of the database.

Seealso: Scalar Functions, Aggregate Functions, Context Variables, CASE, Subqueries

The FROM clause

The FROM clause specifies the source(s) from which the data are to be retrieved. Initssimplest form, thisisjust
asingle table or view. But the source can also be a selectable stored procedure, a derived table or a common
table expression. Multiple sources can be combined using various types of joins.

This section concentrates on single-source selects. Joins are discussed in afollowing section.

Syntax:
SELECT
FROM <sour ce>
[<j oi ns>]
[...]
<source> = {table
| view

| sel ectabl e-stored-procedure [(args)]
| <derived-table>
| <common-t abl e- expressi on>}

[[AS] alias]

(select-statenment) [[AS] alias]
[(<col um-al i ases>)]

<deri ved-t abl e>

<commmon-t abl e- expr essi on>
;= WTH [RECURSI VE] <cte-def> [, <cte-def> ...]
sel ect - st at enent
<ct e-def > ::= nane [(<colum-aliases>)] AS (select-statenent)

<columm-aliases> ::= colum-alias [, colum-alias ...]

Table6.3. Argumentsfor the FROM Clause

Argument Description

table Name of atable

170

Data Manipulation (DML) Statements

Argument Description
view Name of aview
selectable-stored- Name of a selectable stored procedure
procedure
args Selectable stored procedure arguments
derived table Derived table query expression
cte-def Common table expression (CTE) definition, including an “ad hoc” name

sel ect-statement Any SELECT statement

column-aliases Aliasfor acolumnin arelation, CTE or derived table
name The “ad hoc” namefor aCTE
dias The dlias of a data source (table, view, procedure, CTE, derived table)

Selecting FROM a table or view

When selecting from a single table or view, the FROM clause need not contain anything more than the name.
An alias may be useful or even necessary if there are subqueries that refer to the main select statement (as they
often do—subqueries like this are called correlated subqueries).

Examples

sel ect id, name, sex, age fromactors
where state = ' Chi o

select * from birds
where type = 'flightless
order by famly, genus, species

sel ect firstnane,
m ddl enane,
| ast nane,
date_of birth,
(sel ect name from schools s where p.school = s.id) school nane
frompupils p
where year_started = '2012
order by school name, date_of _birth

171

Data Manipulation (DML) Statements

Never mix column nameswith column aliases!

If you specify an aliasfor atable or aview, you must always use thisaiasin place of the table name whenever
you query the columns of the relation (and wherever else you make a reference to columns, such as ORDER
BY, GROUP BY and WHERE clauses.

Correct use:
SELECT PEARS
FROM FRU T

SELECT FRUI T. PEARS
FROM FRUI T

SELECT PEARS
FROM FRU T F

SELECT F. PEARS
FROM FRU T F

Incorrect use:

SELECT FRUI T. PEARS
FROM FRU T F

Selecting FROM a stored procedure
A selectable stored procedureis a procedure that:

» contains at least one output parameter, and
* utilizes the SUSPEND keyword so the caller can fetch the output rows one by one, just as when selecting
from atable or view.

The output parameters of a selectable stored procedure correspond to the columns of aregular table.
Selecting from a stored procedure without input parametersis just like selecting from atable or view:

select * from suspicious_transactions
wher e assi gnee = 'John'

Any required input parameters must be specified after the procedure name, enclosed in parentheses:
sel ect nane, az, alt fromvisible_stars('Brugge', current_date, '22:30")
where alt >= 20

order by az, alt

Valuesfor optional parameters (that is, parameters for which default values have been defined) may be omitted
or provided. However, if you provide them only partly, the parameters you omit must al be at the tail end.

Supposing that the procedure vi si bl e_st ar s from the previous example has two optional parameters:
m n_magn (numeric(3,1)) and spect r al _cl ass (varchar(12)), the following queries are al valid:

sel ect nane, az, alt fromvisible stars('Brugge', current_date, '22:30'")
sel ect nane, az, alt fromvisible stars('Brugge', current_date, '22:30', 4.0)

172

Data Manipulation (DML) Statements

sel ect nanme, az, alt fromvisible_stars('Brugge', current_date, '22:30', 4.0, 'G)
But this oneisn't, because there'sa“hol€’ in the parameter list:

sel ect nane, az, alt fromvisible stars('Brugge', current_date, '22:30', 'G)
An alias for a selectable stored procedure is specified after the parameter list:

sel ect nunber,
(sel ect nane fromcontestants ¢ where c. nunber = gw. nunber)
fromget _wi nners('#34517', 'AMS) gw

If you refer to an output parameter (“column™) by qualifying it with the full procedure name, the parameter list
should be omitted:

sel ect nunber,
(select name from contestants ¢ where c.nunber = get_w nners. nunber)
fromget wi nners('#34517', ' AMS')

See also: Stored Procedures, CREATE PROCEDURE

Selecting FROM a derived table

A derived tableisavalid SELECT statement enclosed in parentheses, optionally followed by atable aias and/or
column aliases. The result set of the statement acts as a virtual table which the enclosing statement can query.

Syntax:

(sel ect - query)
[[AS] derived-table-alias]
[(<derived-col um-al i ases>)]

<derived-col um-aliases> := colum-alias [, colum-alias ...]

The set returned data set by this“ SELECT FROM (SELECT FROM..)” style of statement isavirtual table that can
be queried within the enclosing statement, asif it were aregular table or view.

Sample using a derived table

The derived table in the query below returns the list of table names in the database and the number of columns
in each. A “drill-down” query on the derived table returns the counts of fields and the counts of tables having
each field count:

SELECT
FI ELDCOUNT,
COUNT(RELATI ON) AS NUM TABLES
FROM (SELECT
R RDB$RELATI ON_NAME RELATI ON,
COUNT(*) AS FI ELDCOUNT
FROM RDB$RELATI ONS R
JO N RDB$RELATI ON_FI ELDS RF

173

Data Manipulation (DML) Statements

ON RF. RDB$SRELATI ON_NAME = R RDB$RELATI ON_NAME
GROUP BY RELATI ON)

GROUP BY FI ELDCOUNT

A trivial example demonstrating how the alias of a derived table and the list of column aliases (both optional)
can be used:

SELECT

DBl NFO. DESCR, DBI NFO. DEF_CHARSET

FROM (SELECT *

FROM RDB$DATABASE) DBI NFO
(DESCR, REL_ID, SEC CLASS, DEF_CHARSET)

More about Derived Tables

Derived tables can

¢ benested

¢ beunions and can be used in unions

e contain aggregate functions, subqueries and joins

« be used in aggregate functions, subqueries and joins

* be callsto selectable stored procedures or queries to them

¢ have WHERE, ORDER BY and GROUPBY clauses, FIRST, SKIP or ROWS directives, et al.
Furthermore,

e Each column in a derived table must have a name. If it does not have a name, such as when it is a constant
or arun-time expression, it should be given an alias, either in the regular way or by including it in the list
of column aliasesin the derived table's specification.

- Thelist of column aliases is optional but, if it exists, it must contain an alias for every column in the
derived table

» Theoptimizer can process derived tables very effectively. However, if aderived tableisincludedin aninner
join and contains a subquery, the optimizer will be unable to use any join order.

A more useful example

Suppose we have a table COEFFS which contains the coefficients of a number of quadratic equations we have
to solve. It has been defined like this:

create table coeffs (

)

a doubl e precision not null,
b doubl e precision not null,
¢ doubl e precision not null,
constraint chk_a not_zero check (a <> 0)

Depending on the values of a, b and c, each equation may have zero, one or two solutions. It is possible to
find these solutions with a single-level query on table COEFFS, but the code will look rather messy and several

174

Data Manipulation (DML) Statements

values (like the discriminant) will have to be calculated multiple times per row. A derived table can help keep
things clean here:

sel ect
iif (D>=0, (-b - sqrt(D) / denom null) sol _1,
iif (D> 0, (-b + sqgrt(D)) / denom null) sol _2
from
(select b, b*b - 4*a*c, 2*a fromcoeffs) (b, D, denom

If we want to show the coefficients next to the solutions (which may not be a bad idea), we can alter the query
likethis:

sel ect
a, b, c,
iif (D>=0, (-b - sqrt(D) / denom null) sol _1,
iif (D> 0, (-b + sqgrt(D)) / denom null) sol _2
from
(select a, b, ¢, b*b - 4*a*c as D, 2*a as denom
fromcoeffs)

Notice that whereas the first query used a column aliases list for the derived table, the second adds aliases
internally where needed. Both methods work, aslong as every column is guaranteed to have a name.

Selecting FROM a CTE

A common table expression or CTE isamore complex variant of the derived table, but it is also more powerful.
A preamble, starting with the keyword WITH, defines one or more named CTE's, each with an optional column
aliases list. The main query, which follows the preamble, can then access these CTE's as if they were regular
tables or views. The CTE's go out of scope once the main query has run to completion.

For afull discussion of CTE's, please refer to the section Common Table Expressions (“WITH ... AS... SELECT").
The following is arewrite of our derived table example as a CTE:

with vars (b, D, denom as (
select b, b*b - 4*a*c, 2*a fromcoeffs
)
sel ect
iif (D>=0, (-b - sqgrt(D)) / denom null) sol 1,
iif (D> 0, (-b +sqrt(D)) / denom null) sol _2
fromvars

Except for the fact that the calculations that have to be made first are now at the beginning, this isn't a great
improvement over the derived table version. But we can now also eliminate the double calculation of sqrt(D)
for every row:

with vars (b, D, denom as (
select b, b*b - 4*a*c, 2*a from coeffs
) H
vars2 (b, D, denom sqrtD) as (
select b, D, denom iif (D >= 0, sqrt(D), null) fromvars
)
sel ect
iif (D>=0, (-b - sgrtD) / denom null) sol 1,
iif (D> 0, (-b + sqrtD) / denom null) sol_2

175

Data Manipulation (DML) Statements

from vars2

The codeisalittle more complicated now, but it might execute more efficiently (depending on what takes more
time: executing the SQRT function or passing the values of b, D and denomthrough an extraCTE). Incidentally,
we could have done the same with derived tables, but that would involve nesting.

See also: Common Table Expressions (“ WITH ... AS... SELECT").

Joins

Joins combine data from two sources into asingle set. Thisis done on arow-by-row basis and usually involves
checking ajoin condition in order to determine which rows should be merged and appear in the resulting dataset.
There are several types (INNER, OUTER) and classes (qualified, natural, etc.) of joins, each with its own syntax
and rules.

Since joins can be chained, the datasets involved in ajoin may themselves be joined sets.
Syntax:
SELECT

FROM <sour ce>

[<j oi ns>]
[...]
<source> .= {table
| view
| sel ectabl e-stored-procedure [(args)]
| derived-table
| common-tabl e- expressi on}
[[AS] alias]
<j 0i ns> 1= <join> [<join> . ..]
<j oi n> 1= [<join-type>] JO N <source> <join-condition>
| NATURAL [<join-type>] JO N <source>
| {CROSS JON | ,} <source>
<j oi n-type> ::= INNER | {LEFT | RIGHT | FULL} [CQUTER]
<join-condition> ::= ON condition | USING (colum-1list)

Table 6.4. Argumentsfor JOIN Clauses

Argument Description
table Name of atable
view name of aview
selectable-stored- Name of a selectable stored procedure
procedure
args Selectable stored procedure input parameter[s]

176

Data Manipulation (DML) Statements

Argument Description
derived-table Reference, by name, to aderived table
common-ta-

) Reference, by name, to a common table expression (CTE)
ble-expression

dias An diasfor a data source (table, view, procedure, CTE, derived table)
condition Join condition (criterion)
column-list Thelist of columns used for an equi-join

Inner vs. outer joins

A join always combines datarows from two sets (usually referred to asthe left set and the right set). By defaullt,
only rows that meet the join condition (i.e., that match at least one row in the other set when the join condition
is applied) make it into the result set. This default type of join is called an inner join. Suppose we have the
following two tables:

Table A:

ID S

87 Just some text

235 Silence
Table B:

CODE X

-23 56.7735

87 416.0

If we join these tableslike this:

sel ect *
fromA
join Bon A id = B.code

then the result set will be:

ID S CODE X

87 Just some text 87 416.0

177

Data Manipulation (DML) Statements

The first row of A has been joined with the second row of B because together they met the condition “A.id =
B.code’. The other rows from the source tables have no match in the opposite set and are therefore not included
in the join. Remember, thisis an INNER join. We can make that fact explicit by writing:

sel ect *
fromA
inner join Bon A id = B.code

However, since INNER is the default, thisis rarely done.

It isperfectly possiblethat arow in the left set matches several rowsfrom theright set or vice versa. In that case,
all those combinations are included, and we can get results like:

ID S CODE X

87 Just some text 87 416.0
87 Just some text 87 -10

-23 Don't know -23 56.7735
-23 Still don't know -23 56.7735
-23 | giveup -23 56.7735

Sometimes we want (or need) all the rows of one or both of the sourcesto appear in the joined set, regardl ess of
whether they match arecord in the other source. Thisiswhere outer joins comein. A LEFT outer join includes
all the records from the left set, but only matching records from theright set. In aRIGHT outer join it's the other
way around. FULL outer joins include al the records from both sets. In all outer joins, the “holes’ (the places
where an included source record doesn't have a match in the other set) arefilled up with NULLS.

In order to make an outer join, you must specify LEFT, RIGHT or FULL, optionally followed by the keyword
OUTER.

Below are the results of the various outer joins when applied to our original tables A and B:

sel ect *
fromA
left [outer] join B on Alid = B.code

ID S CODE X
87 Just some text 87 416.0
235 Silence <null> <null>
sel ect *
fromA

right [outer] join B on A id = B.code

178

Data Manipulation (DML) Statements

ID S CODE X
<null> <null> -23 56.7735
87 Just some text 87 416.0
sel ect *

fromA

full [outer] join B on A id = B.code
ID S CODE X
<null> <null> -23 56.7735
87 Just some text 87 416.0
235 Silence <null> <null>

Qualified joins

Qualified joins specify conditions for the combining of rows. This happens either explicitly in an ON clause or
implicitly in a USING clause.

Syntax:

<qualified-join> ::= [<join-type> JO N <source> <join-condition>

<j oi n-type> INNER | {LEFT | RIGHT | FULL} [QUTER]

<join-condition> ::= ON condition | USING (colum-1list)

Explicit-condition joins

Most qualified joins have an ON clause, with an explicit condition that can be any valid boolean expression but
usually involves some comparison between the two sources involved.

Quite often, the condition is an equality test (or anumber of ANDed equality tests) using the “=" operator. Joins
like these are called equi-joins. (The examples in the section on inner and outer joins were al equi-joins.)

Examples of joins with an explicit condition:

/* Select all Detroit customers who rmade a purchase
in 2013, along with the purchase details: */
select * fromcustonmers c
join sales s on s.cust_id =c.id
where c.city = "Detroit' and s.year = 2013

/* Same as above, but include non-buying custoners: */
select * fromcustonmers c
left join sales s on s.cust_id =c.id

179

Data Manipulation (DML) Statements

where c.city = 'Detroit' and s.year = 2013

/* For each man, select the wonen who are taller than he.
Men for whom no such wonman exists are not included. */
select mfullnanme as man, f.fullnane as wonman
frommales m
join females f on f.height > m hei ght

/* Select all pupils with their class and nentor.
Pupils without a nmentor are al so included.
Pupils without a class are not included. */

sel ect p.firstnane, p.mddl ename, p.lastnane,

C.nane, m name
frompupils p
join classes ¢ on c.id = p.class
left join mentors mon mid = p. mentor

Named columns joins

Equi-joins often compare columns that have the same name in both tables. If thisis the case, we can aso use
the second type of qualified join: the named columnsjoin.

Note

Named columns joins are not supported in Dialect 1 databases.

Named columns joins have a USING clause which states just the column names. So instead of this:
select * fromflotsamf
join jetsamj
on f.sea = j.sea
and f.ship = j.ship

we can also write:

select * fromflotsam
join jetsamusing (sea, ship)

which is considerably shorter. The result set is alittle different though—at least when using “SELECT *”:

» Theexplicit-condition join—with the ON clause—will contain each of the columns SEA and SHIP twice: once
from table FLOTSAM, and once from table JETSAM. Obviously, they will have the same values.

* The named columns join—with the USING clause—will contain these columns only once.
If you want all the columnsin the result set of the named columns join, set up your query like this:
select f.*, j.*
fromflotsamf
join jetsamj using (sea, ship)

Thiswill give you the exact same result set as the explicit-condition join.

For an OUTER named columnsjoin, there'san additional twist when using “ SELECT *” or an unqualified column
name from the USING list:

180

Data Manipulation (DML) Statements

If arow from one source set doesn't have a match in the other but must still be included because of the LEFT,
RIGHT or FULL directive, the merged column in the joined set gets the non-NULL value. That is fair enough,
but now you can't tell whether this value came from the left set, the right set, or both. This can be especialy
deceiving when the value came from the right hand set, because “*” always shows combined columns in the
left hand part—even in the case of aRIGHT join.

Whether thisisaproblem or not depends on the situation. If itis, usethe“a.*, b.* ” approach shown above, with
a and b the names or aliases of the two sources. Or better yet, avoid “* ” altogether in your serious queries and
qualify al column namesin joined sets. This has the additional benefit that it forces you to think about which
data you want to retrieve and where from.

It is your responsibility to make sure that the column names in the USING list are of compatible types between
the two sources. If the types are compatible but not equal, the engine converts them to the type with the broadest
range of values before comparing the values. This will also be the data type of the merged column that shows
up intheresult setif “SELECT *” or the unqualified column nameis used. Qualified columns on the other hand
will always retain their original datatype.

Natural joins

Taking theideaof the named columnsjoin astep further, anatural join performsan automatic equi-join on all the
columnsthat have the same namein the left and right table. The datatypes of these columns must be compatible.

Note

Natural joins are not supported in Dialect 1 databases.

Syntax:

<natural-join> ::= NATURAL [<join-type>] JO N <source>

<j oi n-type> INNER | {LEFT | RIGHT | FULL} [OUTER]

Given these two tables:

create table TA (
a bigint,
s varchar(12),
ins_date date

)

create table TB (
a bigint,
descr varchar(12),
x float,
i ns_date date

)

anatura join on TA and TB would involve the columns a and i ns_dat e, and the following two statements
would have the same effect:

select * fromTA
natural join TB

select * fromTA

181

Data Manipulation (DML) Statements

join TB using (a, ins_date)

Likeall joins, natural joins areinner joins by default, but you can turn them into outer joins by specifying LEFT,
RIGHT or FULL before the JOIN keyword.

Caution: if there are no columns with the same name in the two source relations, a CROSS JOIN is performed.
WEell get to thistype of join in a minute.

A Note on Equality

I mportant

This note about equality and inequality operators applies everywhere in Firebird's SQL language, not just in
JOIN conditions.

The “=" operator, which is explicitly used in many conditional joins and implicitly in named column joins and
natural joins, only matches values to values. According to the SQL standard, NULL is not a value and hence
two NULLSs are neither equal nor unequal to one another. If you need NULLS to match each other in ajoin, use
the ISNOT DISTINCT FROM operator. This operator returns true if the operands have the same value or if they
are both NULL.

sel ect *
fromAjoin B
on Aid is not distinct from B. code

Likewise, in the—extremely rare—cases where you want to join on inequality, use IS DISTINCT FROM, not
“<>" if you want NULL to be considered different from any value and two NULLS considered equal:

sel ect *

fromAjoin B
on Aid is distinct from B. code

Cross joins

A crossjoin produces the full set product of the two data sources. This meansthat it successfully matches every
row in the left source to every row in the right source.

Syntax:
<cross-join> ::= {CROSS JON | ,} <source>

Please notice that the comma syntax is deprecated! It is only supported to keep legacy code working and may
disappear in some future version.

Cross-joining two setsisequivalent to joining them on atautology (aconditionthat isalwaystrue). Thefollowing
two statements have the same effect:

select * fromTA
cross join TB

select * fromTA
join TBon 1 =1

182

Data Manipulation (DML) Statements

Cross joins are inner joins, because they only include matching records — it just so happens that every record
matches! An outer crossjoin, if it existed, wouldn't add anything to the result, because what outer joins add are
non-matching records, and these don't exist in crossjoins.

Cross joins are seldom useful, except if you want to list all the possible combinations of two or more variables.
Suppose you are selling a product that comes in different sizes, different colors and different materials. If these
variables are each listed in atable of their own, this query would return all the combinations:

sel ect mnane, s.size, c.nane
frommaterials m
Cross join sizes s
Cross join colors ¢

Ambiguous field names in joins

Firebird rejects unqualified field names in a query if these field names exist in more than one dataset involved
inajoin. Thisiseven true for inner equi-joins where the field name figures in the ON clause like this:

select a, b, c
from TA
join TB on TA a = TB.a

There is one exception to this rule: with named columns joins and natural joins, the unqualified field name of
a column taking part in the matching process may be used legally and refers to the merged column of the same
name. For named columns joins, these are the columns listed in the USING clause. For natura joins, they are
the columns that have the same name in both relations. But please notice again that, especially in outer joins,
plaincol nane isnt awaysthesameasl ef t .col nane orri ght .col nanme. Typesmay differ, and one of the
qualified columns may be NULL while the other isn't. In that case, the value in the merged, unqualified column
may mask the fact that one of the source values is absent.

Joins with stored procedures

If ajoinis performed with astored procedure that is not correlated with other data streams viainput parameters,
there are no oddities. If correlation isinvolved, an unpleasant quirk revealsitself. The problem is that the opti-
mizer denies itself any way to determine the interrelationships of the input parameters of the procedure from
thefieldsin the other streams:

SELECT *
FROM MY_TAB
JON MY_PROC(MY_TAB.F) ON 1 = 1

Here, the procedure will be executed before a single record has been retrieved from the table, MY _TAB. The
i sc_no_cur_rec error error (no current record for fetch operation) is raised, interrupting the execution.
The solution is to use syntax that specifies the join order explicitly:

SELECT *

FROM MY_TAB
LEFT JON MY_PROC(MY_TAB.F) ON 1 = 1

183

Data Manipulation (DML) Statements

Thisforces the table to be read before the procedure and everything works correctly.

Tip

This quirk has been recognised as a bug in the optimizer and will be fixed in the next version of Firebird.

The WHERE clause

The WHERE clause serves to limit the rows returned to the ones that the caller is interested in. The condition
following the keyword WHERE can be as simple asacheck like“AMOUNT = 3” or it can be amultilayered, con-
voluted expression contai ning subsel ects, predicates, function calls, mathematical and logical operators, context
variables and more.

The condition in the WHERE clause is often called the search condition, the search expression or simply the
search.

In DSQL and ESQL, the search expression may contain parameters. Thisis useful if aquery hasto be repeated
anumber of times with different input values. In the SQL string asit is passed to the server, question marks are
used as placeholders for the parameters. They are called positional parameters because they can only be told
apart by their position in the string. Connectivity libraries often support named parameters of the form : i d,
;anmount, : a etc. These are more user-friendly; the library takes care of translating the named parameters to
positional parameters before passing the statement to the server.

The search condition may also contain local (PSQL) or host (ESQL) variable names, preceded by a colon.
Syntax:

SELECT . ..
FROM . ..

[...]

VWHERE <search-conditi on>

[...]

<search-condition> ::= a bool ean expression returning
TRUE, FALSE or possibly UNKNOAN (NULL)

Only those rows for which the search condition evaluates to TRUE are included in the result set. Be careful with
possible NULL outcomes: if you negate a NULL expression with NOT, the result will still be NULL and the row
will not pass. Thisis demonstrated in one of the examples below.

Examples

sel ect genus, species from mammal s
where famly = 'Felidae
order by genus

select * from persons
where birthyear in (1880, 1881)
or birthyear between 1891 and 1898

sel ect name, street, borough, phone

184

Data Manipulation (DML) Statements

fromschools s
where exists (select * frompupils p where p.school = s.id)
order by borough, street

select * from enpl oyees
where salary >= 10000 and position <> 'Manager'

sel ect nane fromwestlers

where regi on = ' Europe'
and weight > all (select weight fromshot _putters
where region = 'Africa')

select id, nane from pl ayers
where teamid = (select id fromteans where nane = 'Buffal oes')

sel ect sum (popul ation) fromtowns
where name |ike '%lan
and province containing 'land

sel ect password from usertable
wher e usernane = current_user

The following example shows what can happen if the search condition evaluates to NULL.

Suppose you have atable listing some children's names and the number of marbles they possess. At a certain
moment, the table contains these data:

CHILD MARBLES
Anita 23

Bob E. 12

Chris <null>
Deirdre 1

Eve 17

Fritz 0

Gerry 21
Hadassah <null>
|saac 6

First, please notice the difference between NULL and O: Fritz is known to have no marbles at all, Chris's and

Hadassah's marble counts are unknown.

Now, if you issue this SQL statement:

select list(child) from marbl etable where marbles > 10

you will get the names Anita, Bob E., Eve and Gerry. These children al have more than 10 marbles.

185

Data Manipulation (DML) Statements

If you negate the expression:
select list(child) from marbl etable where not marbles > 10

it'sthe turn of Deirdre, Fritz and Isaac to fill the list. Chris and Hadassah are not included, because they aren't
known to have ten marbles or less. Should you change that |ast query to:

select list(child) from marbl etable where marbles <= 10

the result will still be the same, because the expression NULL <= 10 yields UNKNOWN. Thisis not the same as
TRUE, so Chrisand Hadassah are not listed. If you want them listed with the“poor” children, changethe query to:

select list(child) from marbl etable where narbles <= 10 or marbles is null

Now the search condition becomes true for Chris and Hadassah, because “mar bl es is nul | ” obviously
returns TRUE in their case. In fact, the search condition cannot be NULL for anybody now.

Lastly, two examples of SELECT queries with parameters in the search. It depends on the application how you
should define query parametersand even if it is possible at all. Notice that queries like these cannot be executed
immediately: they have to be prepared first. Once a parameterized query has been prepared, the user (or calling
code) can supply values for the parameters and have it executed many times, entering new values before every
call. How the values are entered and the execution started is up to the application. In a GUI environment, the
user typically types the parameter values in one or more text boxes and then clicks an “Execute’, “Run” or
“Refresh” button.

sel ect nane, address, phone frone stores
where city = ? and class = ?

select * from pants
where nmodel = :nobdel and size = :size and color = :co

The last query cannot be passed directly to the engine; the application must convert it to the other format first,
mapping named parameters to positional parameters.

The GROUP BY clause

GROUP BY merges output rows that have the same combination of values in its item list into a single row.
Aggregate functionsin the select list are applied to each group individually instead of to the dataset as awhole.

If the select list only contains aggregate columns or, more generally, columns whose values don't depend on
individual rows in the underlying set, GROUP BY is optional. When omitted, the final result set of will consist
of asingle row (provided that at least one aggregated column is present).

If the select list contains both aggregate columns and columns whose values may vary per row, the GROUP BY
clause becomes mandatory.

Syntax:

SELECT ... FROM...
GROUP BY <grouping-iten> [, <grouping-item ...]
[HAVI NG <gr ouped-r ow condi ti on>]

186

Data Manipulation (DML) Statements

<groupi ng-itenr .. = <non-aggr-select-itenr
| <non-aggr-expressi on>

<non-aggr-sel ect-item> .= col umm-copy

| colum-alias
| col um-position

Table 6.5. Argumentsfor the GROUP BY Clause

Argument Description

Any non-aggregating expression that is not included in the SELECT list, i.e. un-
non-aggr-expression | selected columns from the source set or expressions that do not depend on the
datain the set at all

A litera copy, from the SELECT list, of an expression that contains no aggre-

column-copy gate function

The dlias, from the SELECT list, of an expression (column) that contains no ag-

column-alias gregate function

The position number, in the SELECT list, of an expression (column) that con-

column-position tains no aggregate function

A general rule of thumb isthat every non-aggregate item in the SELECT list must also be in the GROUP BY list.
Y ou can do thisin three ways:

1. By copying the item verbatim from the select list, e.g. “cl ass” or“' D: ' | | upper (doccode) .
2. By specifying the column alias, if it exists.

3. By specifying the column position asaninteger literal between 1 and the number of columns. Integer values
resulting from expressions or parameter substitutions are simply invariables and will be used as such in the
grouping. They will have no effect though, as their value is the same for each row.

Note

If you group by a column position, the expression at that position is copied internally from the select list. If it
concerns a subquery, that subquery will be executed again in the grouping phase. That is to say, grouping by
the column position, rather than duplicating the subquery expression in the grouping clause, saves keystrokes
and bytes, but it is not away of saving processing cycles!

In addition to the required items, the grouping list may also contain:

» Columns from the source table that are not in the select list, or non-aggregate expressions based on such
columns. Adding such columns may further subdivide the groups. But since these columns are not in the
select list, you can't tell which aggregated row corresponds to which value in the column. So, in generdl, if
you are interested in this information, you also include the column or expression in the select list—which
brings you back to the rule: “every non-aggregate column in the select list must also be in the grouping list”.

» Expressions that aren't dependent on the data in the underlying set, e.g. constants, context variables, sin-
gle-value non-correlated subselects etc. This is only mentioned for completeness, as adding such items is

187

Data Manipulation (DML) Statements

utterly pointless: they don't affect the grouping at all. “Harmless but useless’ itemslike these may also figure
in the select list without being copied to the grouping list.

Examples

When the select list contains only aggregate columns, GROUP BY is not mandatory:

sel ect count(*), avg(age) from students
where sex = 'M

Thiswill return asingle row listing the number of male students and their average age. Adding expressions that
don't depend on valuesin individual rows of table STUDENTS doesn't change that:

sel ect count(*), avg(age), current _date from students
where sex = 'M
The row will now have an extra column showing the current date, but other than that, nothing fundamental has
changed. A GROUPBY clauseis still not required.

However, in both the above examplesit isallowed. Thisis perfectly valid:

sel ect count(*), avg(age) from students
where sex = 'M
group by cl ass
and will return arow for each class that has boys in it, listing the number of boys and their average age in
that particular class. (If you also leave the cur r ent _dat e field in, this value will be repeated on every row,
which is not very exciting.)

The above query hasamajor drawback though: it givesyou information about the different classes, but it doesn't
tell you which row appliesto which class. In order to get that extrabit of information, the non-aggregate column
CLASS must be added to the select list:

sel ect class, count(*), avg(age) from students
where sex = 'M

group by cl ass

Now we have a useful query. Notice that the addition of column CLASS also makes the GROUP BY clause
mandatory. We can't drop that clause anymore, unless we also remove CLASS from the column list.

The output of our last query may ook something like this:

CLASS COUNT AVG
2A 12 135
2B 9 13.9
3A 11 14.6
3B 12 14.4

The headings “COUNT” and “AVG” are not very informative. In a simple case like this, you might get away
with that, but in general you should give aggregate columns a meaningful name by aliasing them:

188

Data Manipulation (DML) Statements

sel ect cl ass,
count (*) as num boys,
avg(age) as boys_avg_age
from students
where sex = 'M
group by cl ass

Asyou may recall from the formal syntax of the columns list, the AS keyword is optional.

Adding more non-aggregate (or rather: row-dependent) columns requires adding them to the GROUPBY clause
too. For instance, you might want to see the above information for girls as well; and you may also want to
differentiate between boarding and day students:

sel ect cl ass,
sex,
boar di ng_t ype,
count (*) as nunber,
avg(age) as avg_age
from students
group by class, sex, boarding type

This may give you the following result:

CLASS SEX BOARDING_TYPHUMBER AVG_AGE
2A F BOARDING 9 133
2A F DAY 6 135
2A M BOARDING 7 13.6
2A M DAY 5 134
2B F BOARDING 11 13.7
2B F DAY 5 13.7
2B M BOARDING 6 138

Each row intheresult set correspondsto one particular combination of the variables class, sex and boarding type.
The aggregate results—number and average age—are given for each of these rather specific groupsindividually.
Inaquery likethis, you don't see atotal for boys as awhole, or day students as awhole. That's the tradeoff: the
more non-aggregate columns you add, the more you can pinpoint very specific groups, but the more you also
lose sight of the general picture. Of courseyou can still obtain the“ coarser” aggregates through separate queries.

HAVING

Just as a WHERE clause limits the rows in a dataset to those that meet the search condition, so the HAVING
subclause imposes restrictions on the aggregated rows in a grouped set. HAVING is optional, and can only be
used in conjunction with GROUP BY .

The condition(s) in the HAVING clause can refer to:

189

Data Manipulation (DML) Statements

Any aggregated column in the select list. Thisisthe most widely used alternative.

Any aggregated expression that is not in the select list, but allowed in the context of the query. This is
sometimes useful too.

Any column in the GROUP BY list. While legd, it is more efficient to filter on these non-aggregated data at
an earlier stage: in the WHERE clause.

Any expression whose value doesn't depend on the contents of the dataset (like a constant or a context vari-
able). Thisis valid but utterly pointless, because it will either suppress the entire set or leave it untouched,
based on conditions that have nothing to do with the set itself.

A HAVING clause can not contain:

» Non-aggregated column expressions that are not in the GROUP BY list.

» Column positions. Aninteger in the HAVING clause isjust an integer.

» Column aliases — not even if they appear in the GROUP BY clause!

Examples

Building on our earlier examples, this could be used to skip small groups of students:

sel ect cl ass,
count (*) as num boys,
avg(age) as boys_avg_age
from students
where sex = 'M
group by cl ass
having count(*) >= 5

To select only groups that have a minimum age spread:

sel ect cl ass,
count (*) as num boys,
avg(age) as boys_avg_age
from students
where sex = 'M
group by cl ass
havi ng nmax(age) - mn(age) > 1.2

Notice that if you're readly interested in thisinformation, you'd normally include mi n(age) and max(age) —
or the expression “max(age) - m n(age)” —intheselect list aswell!

To include only 3rd classes:

sel ect cl ass,
count (*) as num boys,
avg(age) as boys_avg age
from students
where sex = 'M
group by cl ass
having class starting with '3’

Better would be to move this condition to the WHERE clause:

190

Data Manipulation (DML) Statements

sel ect cl ass,
count (*) as num boys,
avg(age) as boys_avg_age
from students
where sex = 'M and class starting with '3’
group by cl ass

The PLAN clause

The PLAN clause enables the user to submit a data retrieval plan, thus overriding the plan that the optimizer
would have generated automatically.

Syntax:

PLAN <pl an- expr>

<pl an- expr> (<plan-itenmr [, <plan-itenr ...])
| <sorted-itenp
| <joined-itenp

| <nerged-itenp

SORT (<plan-itemnp)

<sorted-itenp

JON (<plan-itemr, <plan-itemr [, <plan-iten> ...])

<j oi ned-itenp

<mer ged-itenpr

<pl an-itenp ::= <basic-item> | <plan-expr>
<pasic-itenr ::= <relation>
{ NATURAL

| 1 NDEX (<indexlist>)
| ORDER index [INDEX (<indexlist>)]}

<rel ation> .= table
| view [table]

<i ndexli st > ;= index [, index ...]

Table 6.6. Argumentsfor the PLAN Clause

[SORT] MERGE (<sorted-itenp, <sorted-itenr [, <sorted-itenk ..

Argument Description
table Tablenameor itsalias
view View name
index Index name

Every time auser submits aquery to the Firebird engine, the optimizer computes adataretrieval strategy. Most
Firebird clients can make this retrieval plan visible to the user. In Firebird's own isgl utility, this is done with

191

1)

Data Manipulation (DML) Statements

the command SET PLAN ON. If you are studying query plans rather than running queries, SET PLANONLY ON
will show the plan without executing the query.

In most situations, you can trust that Firebird will select the optimal query plan for you. However, if you have
complicated queries that seem to be underperforming, it may very well be worth your while to examine the plan
and seeif you can improve on it.

Simple plans

The simplest plans consist of just arelation name followed by aretrieval method. E.g., for an unsorted single-ta-
ble select without a WHERE clause:

sel ect * from students
pl an (students natural)

If there'saWHERE or aHAVING clause, you can specify the index to be used for finding matches:

select * from students
where class = '3C
pl an (students index (ix_stud_class))

TheINDEX directiveisaso used for join conditions (to be discussed alittlelater). It can contain alist of indexes,
separated by commas.

ORDER specifies the index for sorting the set if an ORDER BY or GROUP BY clause s present:

sel ect * from students
pl an (students order pk_students)
order by id

ORDER and INDEX can be combined:

sel ect * from students
where class >= '3’
pl an (students order pk_students index (ix_stud class))
order by id

Itis perfectly OK if ORDER and INDEX specify the same index:
select * from students
where class >= '3
pl an (students order ix_stud _class index (ix_stud _class))

order by cl ass

For sorting sets when there's no usable index available (or if you want to suppress its use), leave out ORDER
and prepend the plan expression with SORT:

sel ect * from students
pl an sort (students natural)
order by nane

Or when an index is used for the search:

sel ect * from students

192

Data Manipulation (DML) Statements

where class >= '3
pl an sort (students index (ix_stud class))
order by nane

Noticethat SORT, unlike ORDER, is outside the parentheses. Thisreflectsthefact that the datarows areretrieved
unordered and sorted afterwards by the engine.

When selecting from aview, specify theview and thetableinvolved. For instance, if you haveaview FRESHMEN
that selectsjust the first-year students:

select * from freshnmen
plan (freshmen students natural)

Or, for instance:

select * fromfreshnen
where id > 10
pl an sort (freshnmen students index (pk_students))
order by nane desc

I mportant

If atable or view has been aliased, it isthe alias, not the original name, that must be used in the PLAN clause.

Composite plans

When ajoin is made, you can specify the index which is to be used for matching. Y ou must also use the JOIN
directive on the two streamsin the plan:

select s.id, s.nane, s.class, c.nentor
from students s
join classes ¢ on c.nanme = s.class
plan join (s natural, c index (pk_classes))

The samejoin, sorted on an indexed column:

select s.id, s.nane, s.class, c.nentor
fromstudents s
join classes ¢ on c.name = s.class
plan join (s order pk_students, c¢ index (pk_classes))
order by s.id

And on a non-indexed column:
select s.id, s.nane, s.class, c.nentor
fromstudents s
join classes ¢ on c.nanme = s.class

plan sort (join (s natural, c index (pk_classes)))
order by s.nane

With a search added:

select s.id, s.nane, s.class, c.nentor

193

Data Manipulation (DML) Statements

fromstudents s

join classes ¢ on c.name = s.class

where s.class <= '2'

plan sort (join (s index (fk_student class), c¢ index (pk_classes)))
order by s.nane

Asaleft outer join:

select s.id, s.nane, s.class, c.nentor
from cl asses ¢
left join students s on c.nane = s.class
where s.class <= "'2'
plan sort (join (c natural, s index (fk_student_class)))
order by s.nane

If thereisno index available to match the join criteria (or if you don't want to useit), the plan must first sort both
streams on their join column(s) and then merge them. This is achieved with the SORT directive (which we've
already met) and MERGE instead of JOIN:

select * from students s
join classes ¢ on c.cookie = s.cookie
pl an merge (sort (c natural), sort (s natural))

Adding an ORDER BY clause means the result of the merge must also be sorted:

select * from students s
join classes ¢ on c.cookie = s.cookie
pl an sort (merge (sort (c natural), sort (s natural)))
order by c.nanme, s.id

Finally, we add a search condition on two indexable colums of table STUDENTS:

select * fromstudents s
join classes ¢ on c.cookie = s.cookie
where s.id < 10 and s.class <= '2'
pl an sort (merge (sort (c natural),

sort (s index (pk_students, fk _student_class))))
order by c.nanme, s.id

As follows from the formal syntax definition, JOINs and MERGES in the plan may combine more than two
streams. Also, every plan expression may be used as a plan item in an encompassing plan. This meansthat plans
of certain complicated queries may have various nesting levels.

Finally, instead of MERGE you may also write SORT MERGE. As this makes absolutely no difference and may
create confusion with “real” SORT directives (the ones that do make a difference), it's probably best to stick
to plain MERGE.

Warning

Occasionally, the optimizer will accept a plan and then not follow it, even though it does not reject it asinvalid.
One such example was

MERGE (unsorted stream unsorted strean)

It is advisable to treat such as plan as “ deprecated”.

194

Data Manipulation (DML) Statements

UNION

A UNION concatenates two or more datasets, thusincreasing the number of rows but not the number of columns.
Datasetstaking part in aUNION must have the same number of columns, and columns at corresponding positions
must be of the same type. Other than that, they may be totally unrelated.

By default, a union suppresses duplicate rows. UNION ALL shows al rows, including any duplicates. The op-
tional DISTINCT keyword makes the default behaviour explicit.

Syntax:

<uni on> .= <individual -sel ect>
UNI ON [DI STI NCT | ALL]
<i ndi vi dual - sel ect >
[UNION [DI STINCT | ALL]
<i ndi vi dual - sel ect >

]

[<uni on-wi de-cl auses>]

<i ndi vi dual - sel ect > ::= SELECT
[TRANSACTI ON nane]
[FIRST <] [SKIP <n>]
[DI STINCT | ALL] <col ums>
[NTO <host-varli st >]
FROM source [[AS] alias]
[<j 0i ns>]
[WHERE <condi ti on>]
[GROUP BY <groupi ng-1li st>
[HAVI NG <aggr egat e- condi ti on>]]
[PLAN <pl an- expr >]

<uni on-wi de-cl auses> ::= |[ORDER BY <ordering-list>]
[ROAE m [TO n]]
[FOR UPDATE [OF <col ums>]]

[WTH LOCK]
[NTO <PSQ.-varli st >]

Unions take their column names from the first select query. If you want to alias union columns, do so in the
column list of the topmost SELECT. Aliases in other participating selects are allowed and may even be useful,
but will not propagate to the union level.

If aunion has an ORDER BY clause, the only allowed sort items are integer literals indicating 1-based column
positions, optionally followed by an ASC/DESC and/or a NULLS FIRST/LAST directive. This aso implies that
you cannot order a union by anything that isn't a column in the union. (Y ou can, however, wrap it in a derived
table, which gives you back all the usual sort options.)

Unions are allowed in subqueries of any kind and can themselves contain subqueries. They can aso contain
joins, and can take part in ajoin when wrapped in aderived table.

Examples

This query presents information from different music collections in one dataset using unions:

select id, title, artist, length, 'CD as nedium

195

Data Manipulation (DML) Statements

from cds

uni on

select id, title, artist, length, 'LP
fromrecords

uni on

select id, title, artist, length, 'MC
from cassettes

order by 3, 2 -- artist, title

Ifid,title,artist andl engt h aretheonly fieldsin the tablesinvolved, the query can aso be written as:

select c.*, 'CD as nedium
fromcds c

uni on

select r.*, 'LP
fromrecords r

uni on

select c.*, 'MC
fromcassettes ¢

order by 3, 2 -- artist, title

Qualifying the “stars’ is necessary here because they are not the only item in the column list. Notice how the
“c” aliasesin thefirst and third select do not conflict with each other: their scopes are not union-wide but apply
only to their respective select queries.

The next query retrieves names and phone numbers from translators and proofreaders. Translators who aso
work as proofreaders will show up only once in the result set, provided their phone number is the same in both
tables. The same result can be obtained without DISTINCT. With ALL, these people would appear twice.

sel ect nane, phone fromtranslators
uni on distinct
sel ect nane, tel ephone from proofreaders

A UNION within a subquery:

sel ect nane, phone, hourly rate from cl owns
where hourly rate < all
(select hourly rate fromjugglers
uni on
sel ect hourly rate from acrobats)
order by hourly rate

ORDER BY

When a SELECT statement is executed, the result set is not sorted in any way. It often happens that rows appear
to be sorted chronologically, simply because they are returned in the same order they were added to the table by
INSERT statements. To specify a sorting order for the set specification, an ORDER BY clause is used.

Syntax:

SELECT ... FROM ...

ORDER BY <ordering-itenm> [, <ordering-itenr .]

196

Data Manipulation (DML) Statements

<ordering-item> ::=
{col-name | col-alias | col-position | expression}
[COLLATE col I ati on- nane]
[ASC] ENDI NG | DESC] ENDI NG]
[NULLS {FI RST| LAST}]

Table 6.7. Argumentsfor the ORDER BY Clause

Argument Description
col-name Full column name
col-alias Column alias
col-position Column position in the SELECT list
expression Any expression
collation-name Collation name (sorting order for string types)
Description

The ORDER BY consists of acomma-separated list of the columns on which the result data set should be sorted.
The sort order can be specified by the name of the column—but only if the column was not previously aliased in
the SELECT columnslist. The aliasmust be used if it was used there. The ordinal position number of the column
in the, the alias given to the column in the SELECT list with the help of the AS keyword or the number of the
column in the SELECT list can be used without restriction.

The three forms of expressing the columns for the sort order can be mixed in the same ORDER BY clause. For
instance, one column in the list can be specified by its name and another column can be specified by its number.

Note

If you use the column position to specify the sort order for aquery of the SELECT * style, the server expands
the asterisk to the full column list in order to determine the columns for the sort. It is, however, considered
“sloppy practice” to design ordered sets this way.

Sorting Direction

The keyword ASCENDING, usually abbreviated to ASC, specifies a sort direction from lowest to highest. AS-
CENDING isthe default sort direction.

The keyword DESCENDING, usually abbreviated to DESC, specifies a sort direction from highest to lowest.

Specifying ascending order for one column and the descending order for another is allowed.

Collation Order

The keyword COLLATE specifies the collation order for a string column if you need a collation that is different
from the normal one for this column. The normal collation order will be either the default one for the database
character set or one that has been set explicitly in the column's definition.

197

Data Manipulation (DML) Statements

NULLs Position

The keyword NULLS defines where NULL in the associated column will fall in the sort order: NULLS FIRST
places the rows with the NULL column above rows ordered by that column's value; NULLS LAST places those
rows after the ordered rows.

NULLSFIRST isthe default.

Ordering UNION-ed Sets

The discrete queries contributing to a UNION cannot take an ORDER BY clause. The only option isto order the
entire output, using one ORDER BY clause at the end of the overall query.

The simplest—and, in some cases, the only— method for specifying the sort order is by the ordinal column
position. However, it is also valid to use the column names or aliases, from the first contributing query only.

The ASC/DESC and/or NULLS directives are available for this global set.

If discrete ordering within the contributing set is required, use of derived tables or common table expressions
for those sets may be a solution.

Examples

Sorting the result set in ascending order, ordering by the RDB$CHARACTER _SET ID, RDB
$COLLATION_ID columns of the DBSCOLLATIONS table:

SELECT
RDB$CHARACTER _SET_I D AS CHARSET_I D,
RDB$COLLATI ON_I D AS COLL_I D,
RDB$COLLATI ON_NAMVE AS NAME

FROM RDB$COLLATI ONS

ORDER BY RDB$CHARACTER SET_I D, RDB$COLLATI ON_I D

The same, but sorting by the column aliases:

SELECT
RDB$CHARACTER_SET_I D AS CHARSET_I D,
RDB$COLLATI ON_I D AS COLL_I D,
RDB$COLLATI ON_NAMVE AS NAME

FROM RDB$COLLATI ONS

CRDER BY CHARSET_I D, COLL_ID

Sorting the output data by the column position numbers:

SELECT
RDB$CHARACTER _SET_I D AS CHARSET_I D,
RDB$COLLATI ON_I D AS COLL_I D,
RDB$SCOLLATI ON_NAME AS NAME

198

Data Manipulation (DML) Statements

FROM RDB$COLLATI ONS
ORDER BY 1, 2

Sorting a SELECT * query by position numbers—possible, but nasty and not recommended:

SELECT *
FROMV RDB$COLLATI ONS
ORDER BY 3, 2

Sorting by the second column in the BOOK S table:

SELECT

BOCOKS. *,

FI LM5. DI RECTOR
FROM BOOKS, FI LMS
ORDER BY 2

Caution

Expressionswhose cal cul ation results are non-negative integerswill beinterpreted as column position numbers
and will cause an exception if they fall outside the range from 1 to the number of columns.

Example:

SELECT

X, Y, NOTE
FROM PAI RS
CRDER BY X+Y DESC

e The number returned by a function or a procedure is unpredictable, regardless of whether the sort order is
defined by the expression itself or by the column number
* Only non-negative integers are interpreted as column numbers

« An integer obtained by one-time evaluation of an expression or by parameter substitution is saved as a
constant, because this value appliesto all rows.

Examples, continued

Sorting in descending order by the values of column PROCESS_TIME, with NULLS placed at the beginning
of the set:

SELECT *
FROM M5G
ORDER BY PROCESS Tl ME DESC NULLS FI RST

Sorting the set obtained by a UNION of two queries. Results are sorted in descending order for the values in
the second column, with NULLSs at the end of the set; and in ascending order for the values of the first column
with NULLSs at the beginning.

199

Data Manipulation (DML) Statements

SELECT
DOC_NUVBER, DOC DATE
FROM PAYORDER
UNI ON ALL
SELECT
DOC_NUVBER, DOC DATE
FROM BUDGORDER
ORDER BY 2 DESC NULLS LAST, 1 ASC NULLS FI RST

ROWS
Used for: Retrieving adice of rows from an ordered set
Availablein: DSQL, PSQL
Syntax:
SELECT <col utms> FROM . ..
[WHERE . . .]

[ORDER BY ...]
ROAS <> [TO <n>]

Table 6.8. Argumentsfor the ROWS Clause

Argument Description

m, n Any integer expressions

Description: Limits the amount of rows returned by the SELECT statement to a specified number or range.

The FIRST and SKIP clauses do the same job as ROWS are not SQL-compliant. Using ROWS is thus preferable
in new code. Unlike FIRST and SKIP, the ROWS and TO clauses accept any type of integer expression as their
arguments, without parentheses. Of course, parentheses may till be needed for nested evaluations inside the
expression and a subquery must always be enclosed in parentheses.

Important

¢ Numbering of rows in the intermediate set—the overall set cached on disk before the “slice” is extracted—
starts at 1.

e Both FIRST/SKIP and ROWS can be used without the ORDER BY clause, athough it rarely makes sense to
do so—except perhaps when you want to take a quick look at the table data and don't care that rows will be
in random order. For this purpose, aquery like“SELECT * FROM TABLE1 ROWS 20” would return the
first 20 rows instead of awhole table that might be rather big.

Calling ROWS mretrieves the first mrecords from the set specified.
Characteristics of using ROWS mwithout a TO clause:

 If misgreater than the total number of records in the intermediate data set, the entire set is returned

200

Data Manipulation (DML) Statements

e If m=0, an empty set isreturned
e |f m<O, the SELECT statement call fails with an error

Cdling ROWS mTO nretrieves the rows from the set, starting at row mand ending after row n—the set is
inclusive.

Characteristics of using ROWS mwith a TO clause:

» If misgreater than the total number of rowsin the intermediate set and n >= m an empty set is returned

» If misnot greater than n and n is greater than the total number of rowsin the intermediate set, the result set
will be limited to rows starting from m up to the end of the set

* Ifm<landn <1, the SELECT statement cal failswith an error

* If n=m- 1, an empty setisreturned

* If n <m- 1, the SELECT statement call fails with an error

Using a TO clause without a ROWS clause:

While ROWS replaces the non-standard FIRST and SKIP syntax, thereis one situation where the standard syntax
does not provide the same behaviour: specifying SKIP n on its own returns the entire intermediate set, without
thefirst n rows. The ROWS...TO syntax needs alittle help to achieve this.

With the ROWS syntax, you need a ROWS clause in association with the TO clause and deliberately make the
second (n) argument greater than the size of the intermediate data set. Thisisachieved by creating an expression
for n that uses a subquery to retrieve the count of rowsin the intermediate set and adds 1 to it.

Mixing ROWS and FIRST/SKIP

ROWS syntax cannot be mixed with FIRST/SKIP syntax in the same SELECT expression. Using the different
syntaxes in different subqueriesin the same statement is allowed.

ROWS Syntax in UNION Queries

When ROWS is used in a UNION query, the ROWS directive is applied to the unioned set and must be placed
after the last SELECT statement.

If aneed arises to limit the subsets returned by one or more SELECT statements inside UNION, there are a
couple of options:

1. UseFIRST/SKIP syntax in these SELECT statements—bearing in mind that an ordering clause (ORDER BY)
cannot be applied locally to the discrete queries, but only to the combined output.

2. Convert the queries to derived tables with their own ROWS clauses.
Examples
The following examples rewrite the examples used in the section about FIRST and SKIP, earlier in this chapter.
Retrieve the first ten names from a the output of a sorted query on the PEOPLE table:
SELECT id, nane

FROM Peopl e
ORDER BY nane ASC

201

Data Manipulation (DML) Statements

ROA5 1 TO 10

or its equivalent

SELECT id, nane
FROM Peopl e

ORDER BY nane ASC
ROWS 10

Return al records from the PEOPLE table except for the first 10 names:

SELECT id, nane

FROM Peopl e

ORDER BY nane ASC

RONS 11 TO (SELECT COUNT(*) FROM Peopl e)

And this query will return the last 10 records (pay attention to the parentheses):

SELECT id, nane

FROM Peopl e

ORDER BY nane ASC

RONS (SELECT COUNT(*) - 9 FROM Peopl e)
TO (SELECT COUNT(*) FROM Peopl e)

This one will return rows 81-100 from the PEOPLE table:

SELECT id, name
FROM Peopl e

ORDER BY nane ASC
ROA5 81 TO 100

Note

ROWS can aso be used with the UPDATE and DELETE statements.

FOR UPDATE [OF]
Syntax:

SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]

FOR UPDATE does not do what it suggests. Its only effect currently isto disable the pre-fetch buffer.

202

Data Manipulation (DML) Statements

Tip

It is likely to change in future: the plan is to validate cursors marked with FOR UPDATE if they are truly
updateable and reject positioned updates and deletes for cursors evaluated as non-updateable.

The OF sub-clause does not do anything at all.

WITH LOCK
Availablein: DSQL, PSQL
Used for: Limited pessimistic locking

Description: WITHLOCK providesalimited explicit pessimistic locking capability for cautioususein conditions
where the affected row set is:

a extremely smal (ideally, asingleton), and
b. precisely controlled by the application code.

Thisisfor expertsonly!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

Itisessential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:

SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]
W TH LOCK

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

WITH LOCK can only be used with atop-level, single-table SELECT statement. It is not available:

* inasubquery specification

» forjoined sets

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation
* withaview

» with the output of a selectable stored procedure

* with an external table

* withaUNION query

Asthe engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardless of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

203

Data Manipulation (DML) Statements

Table6.9. How TPB settings affect explicit locking

TPB mode

Behaviour

isc_tpb_consistency

Explicit locks are overridden by implicit or explicit table-level locks and areig-
nored.

isc_tpb_concurrency

+isc_tpb_nowait

If arecord ismodified by any transaction that was committed since the trans-
action attempting to get explicit lock started, or an active transaction has per-
formed a modification of this record, an update conflict exception israised im-
mediately.

isc_tpb_concurrency

+isc_tpb_wait

If the record is modified by any transaction that has committed since the transac-
tion attempting to get explicit lock started, an update conflict exception is raised
immediately.

If an active transaction is holding ownership on this record (viaexplicit locking
or by anormal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This means that, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb _read committed

+isc_tpb_nowait

If thereis an active transaction holding ownership on this record (via explicit
locking or normal update), an update conflict exception is raised immediately.

isc_tpb_read committed

+isc_tpb_wait

If there is an active transaction holding ownership on this record (via explicit
locking or by a normal optimistic write-lock), the transaction attempting the ex-
plicit lock waits for the outcome of blocking transaction and when it finishes, at-
temptsto get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

Usage with a FOR UPDATE Clause

If the FOR UPDATE sub-clause precedes the WITH LOCK sub-clause, buffered fetches are suppressed. Thus, the
lock will be applied to each row, one by one, at the moment it is fetched. It becomes possible, then, that alock
which appeared to succeed when requested will neverthelessfail subsequently, when an attempt is madeto fetch
arow which has become locked by another transaction in the meantime.

Tip

As an dternative, it may be possible in your access components to set the size of the fetch buffer to 1. This
would enable you to process the currently-locked row before the next is fetched and locked, or to handle errors
without rolling back your transaction.

OF <column-names>

This optional sub-clause does nothing at all.

204

Data Manipulation (DML) Statements

See also: FOR UPDATE [OF]

How the engine deals with WITH LOCK

When an UPDATE statement triesto accessarecord that islocked by another transaction, it either raisesan update
conflict exception or waits for the locking transaction to finish, depending on TPB mode. Engine behaviour here
isthe same as if this record had already been modified by the locking transaction.

No specia gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, viajoins, subqueries, etc. It also guaranteesthat rows not meeting the search conditionswill not belocked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, paralel transactions commit their changes during the course of the locking
statement's execution.

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches’). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

Caveats using WITH LOCK

» Roalling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

» While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

» Most applications do not need explicit locks at al. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to arelational database in aclustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

» Explicitlocking isan advanced feature; do not misuseit! While solutionsfor these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking
i. Simple

SELECT * FROM DOCUMENT WHERE | D=? W TH LOCK
ii. Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT VWHERE PARENT_I| D=7

205

Data Manipulation (DML) Statements

FOR UPDATE W TH LOCK

INTO
Used for: Passing SELECT output into variables
Availablein: PSQL

In PSQL code (triggers, stored procedures and executable blocks), the results of a SELECT statement can be
loaded row-by-row into local variables. It is often the only way to do anything with the returned values at all.
The number, order and types of the variables must match the columns in the output row.

A “plain” SELECT statement can only be used in PSQL if it returns at most onerow, i.e., if itisasingleton select.
For multi-row selects, PSQL provides the FOR SELECT loop construct, discussed later in the PSQL chapter.
PSQL also supports the DECLARE CURSOR statement, which binds anamed cursor to a SELECT statement. The
cursor can then be used to walk the result set.

Syntax: In PSQL the INTO clause is placed at the very end of the SELECT statement.

SELECT [...] <colum-Iist>
FROM . ..

[...]
[NTO <vari abl e-1i st >]

<variable-list> ::=[:]psqlvar [, [:]psqglvar ...]

Note

The colon prefix before local variable namesin PSQL is optional.

Examples

Selecting some aggregated values and passing them into previously declared variablesmi n_ant , avg_ant
and max_ant :

sel ect m n(anount), avg(cast(amount as float)), nax(anmount)
from orders
where artno = 372218
into mn_ant, avg_ant, nax_ant;

Note

The CAST serves to make the average areal number; otherwise, since anount is presumably an integer field,
SQL ruleswould truncate it to the nearest lower integer.

A PSQL trigger that retrievestwo values asaBLOB field (using the LIST() function) and assignsit INTO athird
field:

select list(nane, ', ")
from persons p
where p.id in (new father, new nother)

206

Data Manipulation (DML) Statements

into new. par ent nanes;

Common Table Expressions (“WITH ... AS ... SELECT")
Availablein: DSQL, PSQL

A common table expression or CTE can be described as avirtual table or view, defined in a preambleto amain
guery, and going out of scope after the main query's execution. The main query can reference any CTES defined
in the preamble as if they were regular tables or views. CTES can be recursive, i.e. self-referencing, but they

cannot be nested.

Syntax:

<cte-construct>

<ct e-defs>
<cte>

<colum-1list>

.= <cte-defs>

<mai n- query>

;= WTH [RECURSI VE] <cte> [, <cte> ...]

::= name [(<colum-list>)] AS (<cte-stnt>)

colum-alias [, colum-alias ...]

Table 6.10. Argumentsfor Common Table Expressions

Argument Description
cte-stmt Any SELECT statement, including UNION
. The main SELECT statement, which can refer to the CTEs defined in the pream-
main-query ble
name Aliasfor atable expression
column-alias Aliasfor acolumnin atable expression
Example:

wi th dept_year budget as (
sel ect fiscal year
dept _no,
sum(proj ect ed_budget) as budget
from proj _dept budget
group by fiscal _year, dept_no
)
sel ect d. dept_no,
d. depart nent,
dyb_2008. budget as budget 08,
dyb_2009. budget as budget 09
fromdepartnment d
| eft join dept_year budget dyb_ 2008
on d.dept_no = dyb_2008. dept _no
and dyb_2008.fiscal _year = 2008
| eft join dept_year _budget dyb_2009
on d.dept _no = dyb_2009. dept _no

207

Data Manipulation (DML) Statements

and dyb_2009. fiscal _year = 2009
where exists (
select * from proj _dept_budget b
where d.dept _no = b.dept_no
)

CTE Notes

* A CTE definition can contain any legal SELECT statement, as long as it doesn't have a “WITH...” preamble

of its own (no nesting).

CTEs defined for the same main query can reference each other, but care should be taken to avoid loops.
CTEs can be referenced from anywhere in the main query.

Each CTE can be referenced multiple times in the main query, using different aliases if necessary.

When enclosed in parentheses, CTE constructs can be used as subqueries in SELECT statements, but also in
UPDATES, MERGES €tc.

In PSQL, CTEs are also supported in FOR loop headers:

for

with ny_rivers as (select * fromrivers where owner = 'ne')
sel ect nanme, length fromny_ rivers into :rname, :rlen
do
begi n
end

I mportant

If aCTE isdeclared, it must be used later: otherwise, you will get an error like this: 'CTE "AAA" is not used
in query'.

Recursive CTES

A recursive (self-referencing) CTE is a UNION which must have at least one non-recursive member, called the
anchor. The non-recursive member(s) must be placed before the recursive member(s). Recursive members are
linked to each other and to their non-recursive neighbour by UNION ALL operators. The unions between non-
recursive members may be of any type.

Recursive CTEs require the RECURSIVE keyword to be present right after WITH. Each recursive union member
may referenceitself only once, and it must do so in a FROM clause.

A great benefit of recursive CTES is that they use far less memory and CPU cycles than an equivalent recursive
stored procedure.

Execution Pattern

The execution pattern of arecursive CTE is asfollows:

» The engine begins execution from a non-recursive member.

208

Data Manipulation (DML) Statements

» For each row evaluated, it starts executing each recursive member one by one, using the current values from
the outer row as parameters.

* If the currently executing instance of arecursive member produces no rows, execution loops back one level
and gets the next row from the outer result set.

Example of recursive CTES:

W TH RECURSI VE DEPT_YEAR BUDGET AS (
SELECT
FI SCAL_YEAR
DEPT_NO,
SUM PRQJECTED BUDGET) BUDGET
FROM PROJ_DEPT_BUDGET
GROUP BY FI SCAL_YEAR, DEPT_NO
)
DEPT_TREE AS (
SELECT
DEPT_NO,
HEAD_DEPT,
DEPARTMENT,
CAST('' AS VARCHAR(255)) AS | NDENT
FROM DEPARTMVENT
WHERE HEAD DEPT 1S NULL
UNI ON ALL
SELECT
D. DEPT_NO,
D. HEAD_DEPT,
D. DEPARTMENT,
H INDENT || ' °
FROM DEPARTMVENT D
JO N DEPT_TREE H ON H. HEAD DEPT = D. DEPT_NO
)
SELECT
D. DEPT_NO,
D. | NDENT || D. DEPARTMENT DEPARTNENT,
DYB_2008. BUDGET AS BUDGET_08,
DYB_2009. BUDGET AS BUDGET 09
FROM DEPT_TREE D
LEFT JO N DEPT_YEAR BUDGET DYB_2008 ON
(D. DEPT_NO = DYB_2008. DEPT_NO) AND
(DYB_2008. FI SCAL_YEAR = 2008)
LEFT JO N DEPT_YEAR BUDGET DYB_2009 ON
(D. DEPT_NO = DYB_2009. DEPT_NO) AND
(DYB_2009. FI SCAL_YEAR = 2009)

The next example returns the pedigree of a horse. The main difference is that recursion occurs simultaneously
in two branches of the pedigree.

W TH RECURSI VE PEDI GREE (
CODE_HORSE,
CODE_FATHER,
CODE_MOTHER,

NAME,
MARK,

209

Data Manipulation (DML) Statements

DEPTH)
AS (SELECT

HORSE. CODE_HORSE,
HORSE. CODE_FATHER,
HORSE. CODE_MOTHER,
HORSE. NAME,
CAST('' AS VARCHAR(80)),
0

FROM
HORSE

WHERE
HORSE. CODE_HORSE = : CODE_HORSE

UNI ON ALL

SELECT
HORSE. CODE_HORSE,
HORSE. CODE_FATHER,
HORSE. CODE_MOTHER,

HORSE. NAME,

"F' || PEDI GREE. MARK,

PEDI GREE. DEPTH + 1
FROM

HORSE

JO N PEDI GREE
ON HORSE. CODE_HORSE = PEDI GREE. CODE_FATHER
WHERE
PEDI GREE. DEPTH < : MAX_DEPTH
UNI ON ALL
SELECT
HORSE. CODE_HORSE,
HORSE. CODE_FATHER,
HORSE. CODE_MOTHER,

HORSE. NAME,

"M || PEDI GREE. MARK,

PEDI GREE. DEPTH + 1
FROM

HORSE

JO N PEDI GREE
ON HORSE. CODE_HORSE = PEDI GREE. CODE_MOTHER
WHERE
PEDI GREE. DEPTH < : MAX_DEPTH
)
SELECT
CODE_HORSE,
NAVE,
MARK,
DEPTH
FROM
PEDI GREE

Notes on recursive CTES:

» Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX €tc) are not
alowed in recursive union members.

» A recursive reference cannot participate in an outer join.

e The maximum recursion depth is 1024.

210

Data Manipulation (DML) Statements

INSERT

Used for: Inserting rows of datainto atable
Availablein: DSQL, ESQL, PSQL
Syntax:

I NSERT | NTO t ar get

{DEFAULT VALUES | [(<colum_list>)] <val ue_source>}
[RETURNI NG <returning_list> [INTO <vari abl es>]]

<colum_list> ::= colname [, colnanme ...]

<val ue_source> ::= VALUES (<value_ list>) | <select_stnt>
<value_list> ::= value [, value ...]

<returning list> ::=ret_value [, ret_value ...]
<variables> ::=[:]varname [, [:]varname ...]

Table 6.11. Argumentsfor the INSERT Statement Parameters

Argument Description
The name of the table or view to which anew row, or batch of rows, should be
target
added
colname Column in the table or view
value An expression whose value is used for inserting into the table
ret_value The expression to be returned in the RETURNING clause
varname Name of aPSQL local variable

Description: The INSERT statement is used to add rows to atable or to one or more tables underlying a view:
* If the column values are supplied in a VALUES clause, exactly one row isinserted
» Thevaluesmay beprovidedinstead by aSELECT expression, in which case zero to many rows may beinserted

» Withthe DEFAULT VALUES clause, no values are provided at all and exactly one row is inserted.

Restrictions

* Columns returned to the NEW.col unm_nane context variables in triggers should not have a colon (*: ")
prefixed to their names
« No column may appear more than once in the column list.

211

Data Manipulation (DML) Statements

ALERT :: 'BEFORE INSERT" Triggers

Regardless of the method used for inserting rows, be mindful of any columns in the target table or view that
are populated by BEFORE INSERT triggers, such as primary keys and case-insensitive search columns. Those
columns should be excluded from both thecol unm_I i st and the VALUES list if, asthey should, the triggers
test the NEW.col um_nan®e for NULL.

INSERT ... VALUES

The VALUES list must provide avalue for every column in the column list, in the same order and of the correct
type. The column list need not specify every column in the target but, if the column list is absent, the engine
requires avaue for every column in the table or view (computed columns excluded).

Note

Introducer syntax provides a way to identify the character set of a value that is a string constant (literal).
Introducer syntax works only with literal strings: it cannot be applied to string variables, parameters, column
references or values that are expressions.

Examples:

| NSERT | NTO cars (make, nodel, year)
VALUES (' Ford', 'T', 1908);

I NSERT | NTO cars
VALUES (' Ford', 'T', 1908, 'USA', 850);

-- notice the ' ' prefix (introducer syntax)

I NSERT | NTO Peopl e
VALUES (_IS0B859_ 1 'Hans-Jorg Schafer')

INSERT ... SELECT

For this method of inserting, the output columns of the SELECT statement must provide avalue for every target
column in the column list, in the same order and of the correct type.

Literal values, context variables or expressions of compatible type can be substituted for any column in the
source row. In this case, a source column list and a corresponding VALUES list are required.

If the column list is absent—asit iswhen SELECT * isused for the source expression—thecol unm_I i st must
contain the names of every column in the target table or view (computed columns excluded).

Examples:
I NSERT | NTO cars (nake, nodel, year)

SELECT neke, nodel, year
FROM new_cars;

212

Data Manipulation (DML) Statements

I NSERT | NTO cars
SELECT * FROM new_cars;

| NSERT | NTO Menbers (nunber, nane)
SELECT nunber, nanme FROM Newienbers
WHERE Accepted = 1
UNI ON ALL
SELECT nunber, name FROM SuspendedMenbers
WHERE Vi ndicated = 1

| NSERT | NTO nunber s(num
W TH RECURSI VE r(n) as (
SELECT 1 FROM rdb$dat abase
UNI ON ALL
SELECT n+l1 FROMr WHERE n < 100

)
SELECT n FROM r

Of course, the column names in the source table need not be the same as those in the target table. Any type of
SELECT statement is permitted, aslong asits output columns exactly match the insert columnsin number, order
and type. Types need not be exactly the same, but they must be assignment-compatible.

The “Unstable Cursor” Problem

In Firebird, up to and including this version, it is necessary to be aware of an implementation fault that affects
this style of inserts when the objective is to duplicate rows in the same table. For example

I NSERT INTO T
SELECT * FROM T

known affectionately as the “infinite insertion loop”, will continuously select rows and insert them, over and
over, until the system runs out of storage space.

Thisisaquirk that affects all data-changing DML operations, with avariety of effects. It happens because, in
the execution layers, DML statements useimplicit cursorsfor performing the operations. Thus, using our simple
example, execution works as follows:

FOR SELECT <val ues> FROM T | NTO <t np_var s>
DO
I NSERT | NTO T VALUES (<tnp_vars>)

Theimplementation resultsin behaviour that does not accord with the SQL standards. Future versionsof Firebird
will comply with the standard.

INSERT ... DEFAULT VALUES

The DEFAULT VALUES clause allows insertion of arecord without providing any values at al, either directly or
from a SELECT statement. Thisisonly possibleif every NOT NULL or CHECK ed column in the table either has
avalid default declared or gets such a value from a BEFORE INSERT trigger. Furthermore, triggers providing
required field values must not depend on the presence of input values.

213

Data Manipulation (DML) Statements

Example:

I NSERT | NTO j our nal
DEFAULT VALUES
RETURNI NG entry_id

The RETURNING clause

An INSERT statement adding at most one row may optionally include a RETURNING clause in order to return
values from the inserted row. The clause, if present, need not contain all of the insert columns and may also
contain other columns or expressions. The returned values reflect any changes that may have been made in
BEFORE INSERT triggers.

ALERT :: Multiple INSERTs

In DSQL, a statement with RETURNING aways returns only one row. If the RETURNING clause is specified
and more than onerow isinserted by the INSERT statement, the statement fails and an error messageisreturned.
This behaviour may change in future Firebird versions.

Examples:

I NSERT | NTO Schol ars (
firstnane,
| ast nane,
addr ess,
phone,
emai |)
VALUES (
'"Henry',
" Hi ggi ns',
'27A Wnpole Street',
''3231212',
NULL)
RETURNI NG | ast nane, full nane, id;

I NSERT | NTO Dunbbells (firstnanme, |astnane, iq)
SELECT fnane, |nane, iq

FROM Fri ends
ORDER BY igq ROAS 1
RETURNI NG id, firstname, iq

INTO :id, :fname, :igq;

Notes:

* RETURNING isonly supported for VALUES inserts and singleton SELECT inserts.

* InDSQL, astatement with a RETURNING clause always returns exactly one row. If no record was actually
inserted, the fields in this row are al NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was inserted, nothing is returned, and the target variables keep their existing values.

214

Data Manipulation (DML) Statements

Inserting into BLOB columns
Inserting into BLOB columnsis only possible under the following circumstances:

1. Theclient application has made special provisionsfor such inserts, using the Firebird API. In this case, the
modus operandi is application-specific and outside the scope of this manual.

2. Thevalueinserted isatext string of no more than 32767 bytes.

Caution

If the valueisnot astring literal, beware of concatenations, as the output from the expression may exceed
the maximum length.

3. Youareusing the“INSERT ... SELECT” form and one or more columnsin the result set are BLOBS.

UPDATE

Used for: Modifying rows in tables and views

Availablein: DSQL, ESQL, PSQL

Syntax:

UPDATE target [[AS] alias]

SET col = newal [, col = newal ...]

[WHERE {search-conditions | CURRENT OF cursornane}]

[PLAN pl an_it ens]

[ORDER BY sort _itens]

[ROAB <nk [TO <n>]]

[RETURNI NG <returning_list> [INTO <vari abl es>]]
<returning_list> .= ret_value [, ret_value ...]
<variables> ::= :varname [, :varnanme ...]

Table 6.12. Argumentsfor the UPDATE Statement Parameters

Argument Description
target The name of the table or view where the records are updated
dias Aliasfor the table or view
col Name or dlias of acolumnin the table or view
newval rl:lue;\n/\{[value for acolumn that is to be updated in the table or view by the state-

215

Data Manipulation (DML) Statements

Argument Description
search-conditions A search condition limiting the set of the rows to be updated

cursorname The name of the cursor through which the row[s] to be updated are positioned
plan_items Clausesin the query plan

sort_items Columnslisted in an ORDER BY clause

m, n Integer expressions for limiting the number of rows to be updated
ret_value A valueto be returned in the RETURNING clause
varname Name of aPSQL local variable

Description: The UPDATE statement changes values in atable or in one or more of the tables that underlie a
view. The columns affected are specified in the SET clause. The rows affected may be limited by the WHERE
and ROWS clauses. If neither WHERE nor ROWS is present, all the records in the table will be updated.

Using an alias

If youassign an aliasto atableor aview, the alias must be used when specifying columnsand also in any column
references included in other clauses.

Examples:
Correct usage:
update Fruit set soort = 'pisang' where ...
update Fruit set Fruit.soort = 'pisang' where ...
update Fruit F set soort = 'pisang' where ...
update Fruit F set F.soort = 'pisang' where ...
Not possible:
update Fruit F set Fruit.soort = 'pisang' where ...

The SET Clause

In the SET clause, the assignment phrases, containing the columns with the values to be set, are separated by
commas. In an assignment phrase, column names are on the left and the values or expressions containing the
assignment values are on the right. A column may be included only once in the SET clause.

A column name can be used in expressions on the right. The old value of the column will always be used in
these right-side values, even if the column was already assigned a new value earlier in the SET clause.

Hereisan example: Datain the TSET table:

216

Data Manipulation (DML) Statements

The statement

UPDATE tset SET a =5, b = a

will change the values to

Notice that the old values (1 and 2) are used to update the b column even after the column was assigned a
new value (5).

Note

It was not always like that. Before version 2.5, columns got their new values immediately upon assignment. It
was hon-standard behaviour that was fixed in version 2.5.

To maintain compatibility with legacy code, the configuration filef i r ebi r d. conf includes the parameter
A dSet d auseSenmant i cs, that can be set True (1) to restore the old, bad behaviour. It is a temporary
measure—the parameter will be removed in future.

The WHERE Clause

The WHERE clause sets the conditions that limit the set of records for a searched update.

In PSQL, if anamed cursor is being used for updating a set, using the WHERE CURRENT OF clause, the action
islimited to the row where the cursor is currently positioned. Thisis a positioned update.

Note

The WHERE CURRENT OF clause is available only in PSQL, since there is no statement for creating and ma-
nipulating an explicit cursor in DSQL. Searched updates are also available in PSQL, of course.

Examples:

UPDATE Peopl e
SET firstnane = 'Bori s’
VWHERE | ast nane = ' Johnson';

UPDATE enpl oyee e
SET salary = salary * 1.05
VWHERE EXI STS(
SELECT *

217

Data Manipulation (DML) Statements

FROM enpl oyee_proj ect ep
VWHERE e. enp_no = ep.enp_no);

UPDATE addr esses
SET city = 'Saint Petersburg', citycode = "'PET
WHERE city = ' Leni ngrad'

UPDATE enpl oyees
SET salary = 2.5 * salary
WHERE title = ' CEO

For string literalswith which the parser needs help to interpret the character set of the data, the introducer syntax
may be used. The string literal is preceded by the character set name, prefixed with an underscore character:

-- notice the ' ' prefix

UPDATE Peopl e
SET nanme = _1SOB859 1 ' Hans-Jorg Schafer'’
WHERE id = 53662

The “Unstable Cursor” Problem

In Firebird, up to and including this version, it is necessary to be aware of an implementation fault that affects
updates when the WHERE conditions use the IN (sel ect - expr) and the sel ect - expr isof the form SE-
LECT FIRST n or SELECT ... ROWS. For example

UPDATE T
SET ...
VWHERE ID I N (SELECT FIRST 1 1D FROM T)

known affectionately as the “infinite update loop”, will continuously update rows, over and over, and give the
impression that the server has hung.

Quirkslikethis can affect any data-changing DML operations, most often when the selection conditionsinvolve
a subguery. Cases have been reported where sort order interferes with expectations, without involving a sub-
guery. It happens because, in the execution layers, instead of establishing a stable “target set” and then execut-
ing the data changes to each set member, DML statements use implicit cursors for performing the operations
on whatever row currently meets the conditions, without knowledge of whether that row formerly failed the
condition or was updated already. Thus, using a simple example pattern:

UPDATE T SET <fiel ds> = <val ues>
WHERE <condi ti ons>

the execution works as:

FOR SELECT <val ues> FROM T
VWHERE <condi ti ons>
I NTO <t np_var s> AS CURSOR <cursor >
DO

218

Data Manipulation (DML) Statements

UPDATE T SET <fields> = <tnp_vars>
WHERE CURRENT OF <cursor >

Firebird'simplementation does not accord with the SQL standards, which require that a stable set be established
before any data are changed. Versions of Firebird from V.3 onward will comply with the standard.

The ORDER BY and ROWS Clauses

The ORDER BY and ROWS clauses make sense only when used together. However, they can be used separately.
If ROWS has one argument, m the rows to be updated will be limited to the first mrows.
Pointsto note:

» |f m>the number of rows being processed, the entire set of rows is updated
e |If m=0, no rows are updated
* |f m<0, anerror occurs and the update fails

If two arguments are used, mand n, ROWS limits the rows being updated to rows from mto n inclusively. Both
arguments are integers and start from 1.

Pointsto note:

* If m > the number of rows being processed, no rows are updated

* If n>the number of rows, rows from m to the end of the set are updated
* Ifm<lorn<1, anerror occurs and the update fails

e If n=m- 1, norows are updated

* If n<m-1, an error occurs and the update fails

ROWS Example:

UPDATE enpl oyees

SET salary = salary + 50
ORDER BY sal ary ASC
ROWE 20

The RETURNING Clause

An UPDATE statement involving at most onerow may include RETURNING in order to return some valuesfrom
the row being updated. RETURNING may include data from any row, not necessarily the one that is currently
being updated. It can include literals not associated with columns, if thereis aneed for that.

When the RETURNING set contains data from the current row, the returned values report changes made in the
BEFORE UPDATE triggers, but not those made in AFTER UPDATE triggers.

The context variables OLD.fieldname and NEW.fieldname can be used as column names. If OLD. or NEW. is not
specified, the column values returned are the NEW. ones.

In DSQL, a statement with RETURNING always returns a single row. If the statement updates no records, the
returned values contain NULL. This behaviour may change in future Firebird versions.

219

Data Manipulation (DML) Statements

The INTO Sub-clause

In PSQL, the INTO clause can be used to passthe returning valuesto local variables. It isnot availablein DSQL.
If no records are updated, nothing is returned and variables specified in RETURNING will keep their previous
values.

Note

When a value is returned and assigned to a NEW context variable, it is not valid to use a colon prefix on it.
For example, thisisinvalid:

into :varl, :var2, :new.id

and thisisvalid:

into :varl, :var2, new.id

RETURNING Example (DSQL):

UPDATE Schol ar s

SET firstname = 'Hugh', |astnane = 'Pickering'
VWHERE firstname = 'Henry' and | astname = 'Hi ggins'
RETURNI NG i d, ol d. | astnanme, new. | astnane

Updating BLOB columns

Updating a BLOB column always replaces the entire contents. Even the BLOB D, the “handle” that is stored
directly in the column, is changed. BLOBSs can be updated if:

1

The client application has made special provisions for this operation, using the Firebird API. In this case,
the modus operandi is application-specific and outside the scope of this manual.

Thenew valueisatext string of at most 32767 bytes. Please notice: if thevalueisnot astring literal, beware
of concatenations, as these may exceed the maximum length.

The sourceisitself aBLOB column or, more generally, an expression that returns a BLOB.

Y ou use the INSERT CURSOR statement (ESQL only).

UPDATE OR INSERT

Used for: Updating an existing record in atable or, if it does not exist, inserting it

Availablein: DSQL, PSQL

220

Data Manipulation (DML) Statements

Syntax:

UPDATE OR | NSERT | NTO
{target} [(<colum_list>)]
VALUES (<val ue_list>)
[MATCHI NG (<col umm_li st >)]
[RETURNI NG <val ues> [I NTO <vari abl es>]]

<colum_list> = colnane [, colname ...]

<val ue_| i st> = value [, value o]

<ret _val ues> ::= ret_value [, ret_value A
<vari abl es> ::= :varname [, :varname ...]

Table6.13. Argumentsfor the UPDATE OR INSERT Statement Parameters

Argument Description
The name of the table or view where the record[s] isto be updated or a new
target ;
record inserted
colname Name of a column in the table or view
value An expression whose value is to be used for inserting or updating the table
ret_value An expression returned in the RETURNING clause
varname Variable name—PSQL only

Description: UPDATE OR INSERT inserts a new record or updates one or more existing records. The action
taken depends on the values provided for the columnsin the MATCHING clause (or, if the latter is absent, in the
primary key). If there are records found matching those values, they are updated. If not, anew record isinserted.

MATCHINGPKIS NOT DISTINCTNULL

Restrictions

¢ |f thetable has no PK, the MATCHING clause becomes mandatory.
¢ Inthe MATCHING list aswell asin the update/insert column list, each column name may occur only once.
e« The“INTO <vari abl es>" subclauseisonly availablein PSQL.
« When values are returned into the context variable NEW, this name must not be preceded by acolon (“:).

The RETURNING clause

The optional RETURNING clause, if present, need not contain all the columns mentioned in the statement and
may also contain other columns or expressions. The returned values reflect any changes that may have been
made in BEFORE triggers, but not those in AFTER triggers. OLD.f i el dnanme and NEW.f i el dnane may both
be used inthelist of columnsto return; for field names not preceded by either of these, the new valueisreturned.

In DSQL, a statement with a RETURNING clause always returns exactly one row. If a RETURNING clause is
present and more than one matching record is found, an error is raised. This behaviour may change in a later
version of Firebird.

Example: Modifying datain atable, using UPDATE OR INSERT inaPSQL module. Thereturn valueis passed
to alocal variable, whose colon prefix is not optional.

221

Data Manipulation (DML) Statements

UPDATE OR | NSERT | NTO Cows (Name, Nunber, Location)
VALUES (' Suzy Creantheese', 3278823, 'Green Pastures')
MATCHI NG (Nunber)

RETURNING rec_id into :id;

The“Unstable Cursor” Problem

The “ Unstable Cursor” Problemin the UPDATE section.

Because of the way the execution of data-changing DML isimplemented in Firebird, up to and including this
version, the sets targeted for updating sometimes produce unexpected results. For more information, refer to

DELETE

Used for: Deleting rows from atable or view
Availablein: DSQL, ESQL, PSQL
Syntax:

DELETE
FROM {target} [[AS] alias]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_i t ens]
[ORDER BY sort _itens]
[ROAE <nk [TO <n>]]
[RETURNI NG <returning_list> [INTO <vari abl es>]]

<m>, <n> ;.= Any expression evaluating to an integer.
<returning_list> ::= ret_value [, ret_value ...]
<variables> ::= :varnane [, :varname ...]

Table6.14. Argumentsfor the DELETE Statement Parameters

Argument Description
target The name of the table or view from which the records are to be deleted
alias Aliasfor the target table or view

search-conditions Search condition limiting the set of rows being targeted for deletion

cursorname The name of the cursor in which current record is positioned for deletion
plan_items Query plan clause
sort_items ORDER BY clause
m, n Integer expressions for limiting the number of rows being deleted
ret_value An expression to be returned in the RETURNING clause
varname Name of aPSQL variable

222

Data Manipulation (DML) Statements

Description: DELETE removes rows from a database table or from one or more of the tables that underlie a
view. WHERE and ROWS clauses can limit the number of rows deleted. If neither WHERE nor ROWS is present,
DELETE removes all the rowsin the relation.

Aliases

If an alias is specified for the target table or view, it must be used to qualify al field name references in the
DELETE statement.

Examples:
Supported usage:
delete fromCities where nane starting 'Al ex'
delete fromCities where Cties.nane starting 'Al ex'
delete fromCities C where nane starting 'Al ex'
delete fromCities C where C nane starting ' Al ex'
Not possible:

delete fromCities C where Cities.nane starting 'Al ex'

WHERE

The WHERE clause sets the conditions that limit the set of records for a searched delete.

In PSQL, if anamed cursor is being used for deleting a set, using the WHERE CURRENT OF clause, the action
islimited to the row where the cursor is currently positioned. Thisis a positioned update.

Note

The WHERE CURRENT OF clauseisavailable only in PSQL and ESQL, sincethereis no statement for creating
and manipulating an explicit cursor in DSQL. Searched deletes are also available in PSQL, of course.

Examples:

DELETE FROM Peopl e
VWHERE firstnane <> 'Boris' AND | astnane <> 'Johnson'

DELETE FROM enpl oyee e
VWHERE NOT EXI STS(
SELECT *
FROM enpl oyee_proj ect ep
WHERE e. enp_no = ep.enp_no);

223

Data Manipulation (DML) Statements

DELETE FROM Citi es
VWHERE CURRENT OF Cur_Cities; -- ESQ and PSQ only

PLAN

A PLAN clause alows the user to optimize the operation manually.
Example:
DELETE FROM Subm ssi ons

WHERE date_entered < '1-Jan-2002'
PLAN (Submi ssions | NDEX i x_subm date);

ORDER BY and ROWS

The ORDER BY clause orders the set before the actual deletion takes place. It only makes sense in combination
with ROWS, but is also valid without it.

The ROWS clause limits the number of rows being deleted. Integer literals or any integer expressions can be
used for the arguments mand n.

If ROWS has one argument, m the rows to be deleted will be limited to the first mrows.
Pointsto note:

» |If m>the number of rows being processed, the entire set of rows is deleted
e |[f m=0, norowsare deleted
e |[f m<0, an error occurs and the deletion fails

If two arguments are used, mand n, ROWS limits the rows being deleted to rows from mto n inclusively. Both
arguments are integers and start from 1.

Pointsto note:

* If m > the number of rows being processed, no rows are deleted

e If m> 0 and <= the number of rows in the set and n is outside these values, rows from m to the end of the
set are deleted

 Ifm<1lorn<1, anerror occurs and the deletion fails

e If n=m-1, norows are deleted

* If n<m-1, an error occurs and the deletion fails

Examples:

Deleting the oldest purchase:

DELETE FROM Pur chases

224

Data Manipulation (DML) Statements

ORDER BY date ROAS 1

Deleting the highest custno(s):

DELETE FROM Sal es
ORDER BY custno DESC ROA5 1 to 10

Deleting all sales, ORDER BY clause pointless:

DELETE FROM Sal es
ORDER BY custno DESC

Deleting one record starting from the end, i.e. from Z...:

DELETE FROM popgr oups
CORDER BY nane DESC ROAS 1

Deleting the five oldest groups:

DELETE FROM popgroups
ORDER BY forned ROAS 5

No sorting (ORDER BY) is specified so 8 found records, starting from the fifth one, will be deleted:

DELETE FROM popgr oups
ROA5 5 TO 12

RETURNING

A DELETE statement removing at most one row may optionally include a RETURNING clause in order to return
values from the deleted row. The clause, if present, need not contain al the relation’'s columns and may also
contain other columns or expressions.

Notes

¢ InDSQL, astatement with RETURNING always returns a singleton, never a mult-row set. If no records are
deleted, the returned columns contain NULL. This behaviour may changein future Firebird versions

e TheINTO clauseisavailable only in PSQL

- If therow is not deleted, nothing is returned and the target variables keep their values

Examples:

225

Data Manipulation (DML) Statements

DELETE FROM Schol ars
WHERE firstnane = 'Henry' and | astname = 'Higgins'
RETURNI NG | ast nane, fullnane, id

DELETE FROM Dunbbel | s
ORDER BY i g DESC
RONS 1
RETURNI NG | astnanme, iq into :lnane, :iq;

The“Unstable Cursor” Problem

Because of the way the execution of data-changing DML isimplemented in Firebird, up to and including this
version, the sets targeted for deletion sometimes produce unexpected results. For more information, refer to
The “ Unstable Cursor” Problemin the UPDATE section.

MERGE

Used for: Merging data from a source set into atarget relation
Availablein: DSQL, PSQL
Syntax:

MERGE | NTO target [[AS] target-alias]
USI NG source [[AS] source-alias]
ON j oi n-condi tion
WHEN MATCHED THEN UPDATE SET col name = value [, colnane = value ...]
VWHEN NOT MATCHED THEN | NSERT [(<col umms>)] VALUES (<val ues>)

colname [, colnane ...]
val ue [, value —

<col ums>
<val ues>

Table 6.15. Argumentsfor the MERGE Statement Parameters

Argument Description
target Name of target relation (table or updatable view)
source Data source. It can be atable, aview, a stored procedure or a derived table
target-alias Aliasfor the target relation (table or updatable view)
source-alias Aliasfor the source relation or set
join-conditions The (ON) condition[s] for matching the source records with those in the target
colname Name of acolumn in the target relation

226

Data Manipulation (DML) Statements

Argument Description

The value assigned to a column in the target table. It is an expression that may
vaue be aliteral value, a PSQL variable, a column from the source or a compatible
context variable

Description

The MERGE statement merges datainto atable or updatable view. The source may be atable, view or “anything
you can SELECT from” in general. Each source record will be used to update one or more target records, insert
anew record in the target table, or neither.

The action taken depends on the supplied join condition and the WHEN clause(s). The condition will typically
contain a comparison of fieldsin the source and target relations.

Notes

Only one of each WHEN clause can be supplied. This will change in the next major version of Firebird, when
compound matching conditions will be supported.

WHEN NOT MATCHED is evaluated from the source viewpoint, that is, the table or set specified in USING.
It has to work this way because, if the source record does not match a target record, INSERT is executed. Of
coursg, if thereis atarget record that does not match a source record, nothing is done.

Currently, the ROW_COUNT variablereturnsthevalue 1, even if more than onerecord ismodified or inserted.
For details and progress, refer to Tracker ticket CORE-4400.

ALERT :: Another irregularity!

If the WHEN MATCHED clause is present and several records match a single record in the target table, an
UPDATE will be executed on that one target record for each one of the matching source records, with each
successive update overwriting the previous one. This behaviour does not comply with the SQL :2003 standard,
which requires that this situation throw an exception (an error).

Examples:

MERGE | NTO books b
USI NG pur chases p
ON p.title = b.title and p.type = 'bk'
VWHEN MATCHED THEN
UPDATE SET b.desc = b.desc || '; ' || p.desc
VWHEN NOT MATCHED THEN
| NSERT (title, desc, bought) values (p.title, p.desc, p.bought)

MERGE | NTO custoners ¢
USI NG (SELECT * from custoners_delta WHERE id > 10) cd
ON (c.id = cd.id)
VWHEN MATCHED THEN
UPDATE SET name = cd. nane
VWHEN NOT MATCHED THEN
I NSERT (id, nanme) values (cd.id, cd.nane)

227

http://tracker.firebirdsql.org/browse/CORE-4400

Data Manipulation (DML) Statements

MERGE | NTO nunbers
USI NG (
W TH RECURSI VE r(n) AS (
SELECT 1 FROM r db$dat abase
UNI ON ALL
SELECT n+l FROMr WHERE n < 200
)
SELECT n FROM r
)t
ON nunmbers.num = t.n
WHEN NOT MATCHED THEN
| NSERT(num) VALUES(t.n);

The“Unstable Cursor” Problem

Because of the way the execution of data-changing DML isimplemented in Firebird, up to and including this
version, the sets targeted for merging sometimes produce unexpected results. For more information, refer to
The* Unstable Cursor” Problemin the UPDATE section.

EXECUTE PROCEDURE

Used for: Executing a stored procedure
Availablein: DSQL, ESQL, PSQL

Syntax:

EXECUTE PROCEDURE pr ocnarme

[<inparam> [, <inparam> ...]] | [(<inparam> [, <inparan> ...])]
[RETURNI NG VALUES <outvar> [, <outvar> ...] | (<outvar> [, <outvar> ...])]
<outvar> ::= [:]varnane

Table 6.16. Argumentsfor the EXECUTE PROCEDURE Statement Parameters

Argument Description

procname Name of the stored procedure
inparam An expression evaluating to the declared data type of an input parameter
varname A PSQL variable to receive the return value

Description: Executes an executable stored procedure, taking alist of one or more input parameters, if they are
defined for the procedure, and returning a one-row set of output values, if they are defined for the procedure.

228

Data Manipulation (DML) Statements

“Executable” Stored Procedure

The EXECUTE PROCEDURE statement is most commonly used to invoke the style of stored procedure that
is written to perform some data-modifying task at the server side—those that do not contain any SUSPEND
statementsin their code. They can be designed to return aresult set, consisting of only one row, whichisusually
passed, viaaset of RETURNING_VALUES() variables, to another stored procedure that callsit. Client interfaces
usually have an APl wrapper that can retrieve the output valuesinto asingle-row buffer when calling EXECUTE
PROCEDURE in DSQL.

Invoking the other style of stored procedure—a* selectable” one—is possible with EXECUTE PROCEDURE but
it returns only the first row of an output set which is aimost surely designed to be multi-row. Selectable stored
procedures are designed to beinvoked by a SELECT statement, producing output that behaveslike avirtual table.

Notes

¢ InPSQL and DSQL, input parameters may be any expression that resolves to the expected type.

« Although parentheses are not required after the name of the stored procedure to enclosetheinput parameters,
their use is recommended for the sake of good housekeeping.

¢ Where output parameters have been defined in a procedure, the RETURNING_VALUES clause can be used
in PSQL to retrieve them into a list of previously declared variables that conforms in sequence, data type
and number with the defined output parameters.

* Thelist of RETURNING_VALUES may be optionally enclosed in parentheses and their use is recommended.

* When DSQL applications call EXECUTE PROCEDURE using the Firebird APl or some form of wrapper for
it, abuffer is prepared to receive the output row and the RETURNING_VALUES clauseis not used.

Examples:

In PSQL, with optional colons and without optional parentheses:

EXECUTE PROCEDURE MakeFul | Nane
:FirstNane, : M ddl eNane, :LastNane
RETURNI NG VALUES : Ful | Nane;

In Firebird's command-line utility isgl, with literal parameters and optional parentheses:

EXECUTE PROCEDURE MakeFul | Nane ('J', 'Edgar', 'Hoover');

Note: Inisgl, RETURNING_VALUES s not used. Any output values are captured by the application
and displayed automatically.

A PSQL example with expression parameters and optional parentheses:

EXECUTE PROCEDURE MakeFul | Name

("M./Ms. ' || FirstName, M ddl eName, upper (Last Nane))
RETURNI NG _VALUES (Ful | Nang) ;

229

Data Manipulation (DML) Statements

EXECUTE BLOCK

Used for: Creating an “anonymous’ block of PSQL code in DSQL for immediate execution
Availablein: DSQL

Syntax:

EXECUTE BLOCK [(<i nparans>)]
[RETURNS (<out par ans>) |
AS
[<decl arati ons>]
BEG N
[<PSQL st at ement s>]
END

<i npar ans>
<out par ans>
<par am decl >
<type>

<paramdecl> = ? [, <inparans>]

<par am decl > [, <outparans>]

parammane <type> [NOT NULL] [COLLATE coll ati on]
datatype | [TYPE OF] domain | TYPE OF COLUW rel. col

datatype ::=

{SMALLI NT | INTEGER | BI G NT}

| {FLOAT | DOUBLE PRECI S| ON}

| {DATE | TIME | TI MESTAMP}

| {DECIMAL | NUMERI C} [(precision [, scale])]

| {CHAR | CHARACTER | CHARACTER VARYI NG | VARCHAR} [(size)]
[CHARACTER SET charset]

| {NCHAR | NATI ONAL CHARACTER | NATI ONAL CHAR} [VARYING [(size)]

| BLOB [SUB _TYPE {subtype num | subtype nane}]
[SEGVENT SI ZE segl en] [CHARACTER SET charset]

| BLOB [(seglen [, subtype nunj)]

<decl arati ons> ::= declare_item[declare_item...]
declare_item::= declare_var; | declare_cursor

Table6.17. Argumentsfor the EXECUTE BLOCK Statement Parameters

Argument Description

param_decl Name and description of an input or output parameter

declarations A section for declaring local variables and named cursors

declare var Local variable declaration

declare_cursor Declaration of a named cursor

The name of an input or output parameter of the procedural block, up to 31 char-

paramname acters long. The name must be unique among input and output parameters and
local variables in the block

230

Data Manipulation (DML) Statements

Argument Description
datatype SQL datatype
collation Collation sequence
domain Domain
rel Name of atable or view
col Name of a column in atable or view
precision Precision. From 1to 18
scale Scale. From 0 to 18. It must be less than or equal to pr eci si on
size The maximum size of astring, in characters
charset Character set
subtype _num BLOB subtype number
subtype_name BLOB subtype mnemonic name
seglen Segment size, it cannot be greater than 65,535

Description: Executes ablock of PSQL code asif it were a stored procedure, optionally with input and output
parametersand variable declarations. Thisallowsthe user to perform “ on-the-fly” PSQL withinaDSQL context.

Examples:

This exanple injects the nunbers 0 through 127 and their
correspondi ng ASCI| characters into the table
ASCI | TABLE:

EXECUTE BLOCK

AS
declare i INT = O;
BEA N
WHI LE (i < 128) DO
BEG N
I NSERT | NTO Ascii Tabl e VALUES (:i, ascii_char(:i));
i =i + 1;
END
END

The next example calcul ates the geometric mean of two numbers and returns it to the user:

EXECUTE BLOCK (x DOUBLE PRECISION = ?, y DOUBLE PRECI SION = ?)
RETURNS (grmean DOUBLE PRECI SI ON)

AS

BEG N

gnean = SQRT(Xx*y);

231

Data Manipulation (DML) Statements

SUSPEND
END

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all—see the notes below.

Our last exampletakestwo integer values, snal | est andl ar gest . For al thenumbersintherange
smal | est ..| ar gest , the block outputs the number itself, its square, its cube and its fourth power.

EXECUTE BLOCK (smallest INT = ?, largest INT = ?)
RETURNS (number | NT, square Bl G NT, cube BI A NT, fourth Bl G NT)
AS
BEG N
nunber = smal | est;
VWH LE (nunber <= largest) DO

BEG N
square = nunber * nunber;
cube = nunber * square;
fourth = nunber * cube;
SUSPEND;
nunber = number + 1;

END

END

Again, it depends on the client software if and how you can set the parameter values.

Input and output parameters

Executing a block without input parameters should be possible with every Firebird client that allows the user to
enter his or her own DSQL statements. If there are input parameters, things get trickier: these parameters must
get their values after the statement is prepared but before it is executed. This requires specia provisions, which
not every client application offers. (Firebird's own isgl, for one, doesn't.)

The server only accepts question marks (“?”) as placeholders for the input values, not “: a”, “: MyPar ani etc.,
or literal values. Client software may support the “: xxx” form though, and will preprocess it before sending
it to the server.

If the block has output parameters, you must use SUSPEND or nothing will be returned.

Output is adways returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there isonly one result row.

PSQL Links

For more information about parameter and variable declarations, and <PSQL st at enent s> consult
Chapter 7, Procedural SQL (PSQL) Statements.

For <decl ar at i ons> in particular, see DECLARE [VARIABLE] and DECLARE CURSOR for the exact
syntax.

232

Data Manipulation (DML) Statements

Statement Terminators

Some SQL statement editors—specifically the isgl utility that comes with Firebird and possibly some third-
party editors—employ an internal convention that requires all statements to be terminated with a semi-colon.
This creates a conflict with PSQL syntax when coding in these environments. If you are unacquainted with
this problem and its solution, please study the details in the PSQL chapter in the section entitled Switching the

Terminator inisgl.

233

Chapter 7

Procedural SQL
(PSQL) Statements

Procedural SQL (PSQL) is a procedural extension of SQL. This language subset is used for writing stored
procedures, triggers, and PSQL blocks.

PSQL providesall the basic constructs of traditional structured programming languages, and also includesDML
statements (SELECT, INSERT, UPDATE, DELETE, etc.), with slight modifications to syntax in some cases.

Elements of PSQL

A procedural extension may contain declarations of local variables and cursors, assignments, conditional state-
ments, loops, statements for raising custom exceptions, error handling and sending messages (events) to client
applications. Triggers have access to special context variables, two arrays that store, respectively, the NEW
valuesfor all columns during insert and update activity and the OLD values during update and delete work.

Statements that modify metadata (DDL) are not availablein PSQL.

DML Statements with Parameters

If DML statements (SELECT, INSERT, UPDATE, DELETE, etc.) inthe body of the module (procedure, trigger
or block) use parameters, only named parameters can be used and they must “exist” before the statements can
use them. They can be made available by being declared either as input or output parameters in the module's
header or aslocal variables, in DECLARE [VARIABLE] statements at the bottom of the header.

When a DML statement with parameters is included in PSQL code, the parameter name must be prefixed by
a colon (“:”) in most situations. The colon is optiona in statement syntax that is specific to PSQL, such as
assignments and conditionals. The colon prefix on parameters is not required when calling stored procedures
from within another PSQL module or in DSQL.

Transactions

Stored procedures are executed in the context of the transaction in which they are called. Triggers are executed
as an intrinsic part of the operation of the DML statement: thus, their execution is within the same transaction
context as the statement itself. Individual transactions are launched for database event triggers.

Statements that start and end transactions are not available in PSQL, but it is possible to run a statement or a
block of statementsin an autonomous transaction.

234

Procedural SQL (PSQL) Statements

Module Structure

PSQL code modules consist of a header and abody. The DDL statements for defining them are complex state-
ments; that is, the consist of a single statement that encloses blocks of multiple statements. These statements
begin with averb (CREATE, ALTER, DROP, RECREATE, CREATE OR ALTER) and end with the last END
statement of the body.

The Module Header

The header provides the module name and defines any parameters and variablesthat are used in the body. Stored
procedures and PSQL blocks may have input and output parameters. Triggers do not have either input or output
parameters.

The header of atrigger indicates the database event (insert, update or delete, or acombination) and the phase of
operation (BEFORE or AFTER that event) that will causeit to “fire”.

The Module Body

The body of a PSQL module is a block of statements that run in alogical sequence, like a program. A block
of statementsis contained within aBEGIN and an END statement. The main BEGIN...END block may contain
any number of other BEGIN...END blocks, both embedded and sequential. All statements except BEGIN and
END are terminated by semicolons (;). No other character isvalid for use as aterminator for PSQL statements.

235

Procedural SQL (PSQL) Statements

Switching the Terminator in isql

Here we digress a little, to explain how to switch the terminator character in the isgl utility to make it
possible to define PSQL modules in that environment without conflicting with isgl itself, which uses the
same character, semicolon (;), as its own statement terminator.

isgl Command SET TERM:

Used for: Changing the terminator character[s] to avoid conflict with the terminator character in PSQL
statements

Availablein: I1SQL only

Syntax:

SET TERM <new_t er m nat or> <ol d_t erm nat or >

Table7.1. SET TERM Parameters

Argument Description
new_terminator New terminator
old_terminator Old terminator

When you write your triggers and stored proceduresin isgl, either in the interactive interface or in scripts,
running aSET TERM statement i s needed to switch thenormal isgl statement terminator from the semicolon
to some other character or short string, to avoid conflict with the non-changeable semicolon terminator in
PSQL. The switch to an alternative terminator needs to be done before you begin defining PSQL objects
Or running your scripts.

The aternative terminator can be any string of characters except for a space, an apostrophe or the current
terminator character[s]. Any letter character[s] used will be case-sensitive.

Example: Changingthe default semicolonto ' (caret) and using it to submit astored procedure definition:
character as an alternative terminator character:

SET TERM *;

CREATE OR ALTER PROCEDURE SHI P_ORDER (
PO_NUM CHAR(8))
AS
BEG N
/* Stored procedure body */
END®

/* Other stored procedures and triggers */
SET TERM ; »

/* Oher DDL statenents */

236

Procedural SQL (PSQL) Statements

Stored Procedures

A stored procedure is aprogram stored in the database metadata for execution on the server. A stored procedure
can be called by stored procedures (including itself), triggers and client applications. A procedurethat callsitself
isknown asrecursive.

Benefits of Stored Procedures

Stored procedures have the following advantages:

1. Modularity—applications working with the database can use the same stored procedure, thereby reducing
the size of the application code and avoiding code duplication.

2. Simpler Application Support—when a stored procedure is modified, changes appear immediately to all
host applications, without the need to recompile them if the parameters were unchanged.

3. Enhanced Performance—since stored procedures are executed on a server instead of at the client, network
traffic is reduced, which improves performance.

Types of Stored Procedures

Firebird supports two types of stored procedures. executable and selectable.

Executable Procedures

Executable procedures usually modify datain a database. They can receiveinput parameters and return asingle
set of output (RETURNS) parameters. They are called using the EXECUTE PROCEDURE statement. See an
example of an executable stored procedure at the end of the CREATE PROCEDURE section of Chapter 5.

Selectable Procedures

Selectabl e stored procedures usually retrieve data from a database, returning an arbitrary number of rowsto the
caller. Thecaller receivesthe output onerow at atime from arow buffer that the database engine preparesfor it.

Selectable procedures can be useful for obtaining complex sets of datathat are often impossible or too difficult
or too slow to retrieve using regular DSQL SELECT queries. Typically, this style of procedure iterates through
alooping process of extracting data, perhaps transforming it beforefilling the output variables (parameters) with
fresh data at each iteration of theloop. A SUSPEND statement at the end of theiteration fillsthe buffer and waits
for the caller to fetch the row. Execution of the next iteration of theloop beginswhen the buffer has been cleared.

Selectable procedures may have input parameters and the output set is specified by the RETURNS clause in the
header.

237

Procedural SQL (PSQL) Statements

A selectable stored procedureis called with a SELECT statement. See an example of a selectable stored proce-
dure at the end of the CREATE PROCEDURE section of Chapter 5.

Creating a Stored Procedure

The syntax for creating executable stored procedures and selectabl e stored procedures is exactly the same. The
difference comesin the logic of the program code.

Syntax (partial):

CREATE PROCEDURE pr ocnane

[(<inparan> [, <inparank ...])]

[RETURNS (<out paranm> [, <outparant ...])]
AS

[<decl arati ons>]

BEG N

[<PSQ._st at enrent s>]

END

The header of a stored procedure must contain the procedure name, and it must be unique among the names of
stored procedures, tables, and views. It may also define some input and output parameters. Input parameters are
listed after the procedure name inside a pair of brackets. Output parameters, which are mandatory for selectable
procedures, are bracketed inside one RETURNS clause.

The final item in the header (or the first item in the body, depending on your opinion of where the border lies)
isone or more declarations of any local variables and/or named cursors that your procedure might require.

Following the declarations is the main BEGIN...END block that delineates the procedure's PSQL code. With-
in that block could be PSQL and DML statements, flow-of-control blocks, sequences of other BEGIN...END
blocks, including embedded blocks. Blocks, including the main block, may be empty and the procedure will still
compile. It is not unusual to develop a procedure in stages, from an outline.

For more information about creating stored procedures. See CREATE PROCEDURE in Chapter 5, Data
Definition (DDL) Statements.

Modifying a Stored Procedure

An existing stored procedure can be altered, to change the sets of input and output parameters and anything in
the procedure body.

Syntax (partial):

ALTER PROCEDURE pr ochane

[(<inparam> [, <inparank ...])]

[RETURNS (<out paranm> [, <outparant ...])]
AS

[<decl arati ons>]

BEG N

238

Procedural SQL (PSQL) Statements

[<PSQ__st at enent s>]
END

For more information about modifying stored procedures. See ALTER PROCEDURE, CREATE ORALTER
PROCEDURE, RECREATE PROCEDURE, in Chapter 5, Data Definition (DDL) Satements.

Deleting a Stored Procedure
The DROP PROCEDURE statement is used to del ete stored procedures.

Syntax (complete):
DROP PROCEDURE pr ocnane;

For more information about deleting stored procedures. See DROP PROCEDURE in Chapter 5, Data Defi-
nition (DDL) Satements.

Stored Functions

Stored PSQL scalar functions are not supported in this version but they are coming in Firebird 3. In Firebird
2.5 and below, you can instead write a selectable stored procedure that returns a scalar result and SELECT it
from your DML query or subquery.

Example:

SELECT
PSQ._FUNC(T.col 1, T.col?2) AS col 3,
col 3

FROM T

can be replaced with

SELECT
(SELECT out put _col um FROM PSQ._PROC(T.col 1)) AS col 3,
col 2

FROM T

or

SELECT
out put _col um AS col 3,
col 2,
FROM T
LEFT JO N PSQ._PROC(T. col 1)

239

Procedural SQL (PSQL) Statements

PSQL Blocks

A self-contained, unnamed (“anonymous’) block of PSQL code can be executed dynamically in DSQL, using
the EXECUTE BLOCK syntax. The header of an anonymous PSQL block may optionally contain input and
output parameters. The body may contain local variable and cursor declarations; and ablock of PSQL statements
follows.

An anonymous PSQL block is not defined and stored as an object, unlike stored procedures and triggers. It
executes in run-time and cannot reference itself.

Just like stored procedures, anonymous PSQL blocks can be used to process data and to retrieve data from the
database.

Syntax (incomplete):

EXECUTE BLOCK

[(<inparamr = ? [, <inparant = ? ...])]

[RETURNS (<out paranm> [, <outparant ...])]
AS

[<decl arati ons>]

BEA N

[<PSQ._st at errent s>]

END

Table 7.2. PSQL Block Parameters

Argument Description
inparam Input parameter description
outparam Output parameter description
declarations A section for declaring local variables and named cursors
PSQL statements PSQL and DML statements

Read more: See EXECUTE BLOCK for details.

Triggers

A trigger is another form of executable code that is stored in the metadata of the database for execution by
the server. A trigger cannot be called directly. It is called automatically (“fired”) when data-changing events
involving one particular table or view occur.

240

Procedural SQL (PSQL) Statements

Onetrigger appliesto exactly onetable or view and only one phase in an event (BEFORE or AFTER the event).
A single trigger might be written to fire only when one specific data-changing event occurs (INSERT/UP-
DATE/DELETE) or it might be written to apply to more than one of those.

A DML trigger is executed in the context of the transaction in which the data-changing DML statement is

running. For triggersthat respond to database events, the ruleis different: for some of them, adefault transaction
is started.

Firing Order (Order of Execution)
More than one trigger can be defined for each phase-event combination. The order in which they are executed

(known as “firing order” can be specified explicitly with the optional POSITION argument in the trigger defini-
tion. Y ou have 32,767 numbers to choose from. Triggers with the lowest position numbersfire first.

If a POSITION clause is omitted, or if several matching event-phase triggers have the same position number,
then the triggers will fire in alphabetical order.

DML Triggers

DML triggersarethosethat fire when aDML operation changesthe state of data: modifiesrowsin tables, inserts
new rows or deletes rows. They can be defined for both tables and views.

Trigger Options

Six base options are available for the event-phase combination for tables and views:

Before anew row isinserted | (BEFORE INSERT)

After anew row isinserted | (AFTER INSERT)

Beforearow is updated | (BEFORE UPDATE)

After arow isupdated | (AFTER UPDATE)

Before arow isdeleted | (BEFORE DELETE)

After arow is deleted | (AFTER DELETE)

These base forms are for creating single phase/single-event triggers. Firebird also supports forms for creating
triggers for one phase and multiple-events, BEFORE INSERT OR UPDATE OR DELETE, for example, or AFTER
UPDATE OR DELETE: the combinations are your choice.

Note

“Multi-phase” triggers, such as BEFORE OR AFTER..., are not possible.

241

Procedural SQL (PSQL) Statements

OLD and NEW Context Variables

For DML triggers, the Firebird engine provides access to sets of OLD and NEW context variables. Each is an
array of the values of the entire row: one for the values asthey are before the data-changing event (the BEFORE
phase) and onefor thevaluesasthey will be after the event (the AFTER phase). They arereferenced in statements
using the form NEW.column_name and OLD.column_name, respectively. The column_name can be any columnin
the table's definition, not just those that are being updated.

The NEW and OLD variables are subject to some rules:

In al triggers, the OLD vaueis read-only

In BEFORE UPDATE and BEFORE INSERT code, the NEW valueis read/write, unlessit isa COMPUTED
BY column

In INSERT triggers, references to the OLD variables are invalid and will throw an exception

In DELETE triggers, references to the NEW variables are invalid and will throw an exception

Inal AFTER trigger code, the NEW variables are read-only

Database Triggers

A trigger associated with a database or transaction event can be defined for the following events:

Before the trigger is executed, a default

Connecting to a database (ON CONNECT) transaction is automatically started
Disconnecting from a database (ON DISCONNECT) Sigtﬁgitiréﬁiigg?fg&atggfam
When a transaction is started ((;rloLRng\,Lﬁrc)} ;2:—3 0trr]i ggﬁ:;texecuted in the current trans-
When atransaction is committed (T?SNT(F:{'S:\\IA%AI% ;][ie;r:i 2gﬁ:ei;texecuted In the current trans-
(ON TRANSAC- Thetrigger is executed in the current trans-

When atransaction is cancelled

TION ROLLBACK) action context

Creating Triggers

Syntax:

CREATE TRI GCGER tri gnane {
<rel ation_trigger_| egacy>
| <relation_trigger_sql 2003>
| <database trigger> }

242

Procedural SQL (PSQL) Statements

AS

[<decl ar ati ons>]

BEG N

[<PSQ._st at enent s>]

END

<relation_trigger_Ilegacy> ::= FOR {tabl enane vi ewnane}

[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <nutation_list>
[POSI TI ON nunber]

<relation_trigger_sqgl 2003> ::= [ACTI VE | | NACTI VE]
{BEFORE | AFTER} <nutation_list>

[POSI TI ON nunber]

ON {tabl enane | vi ewnane}

<dat abase_trigger> ::= [ACTI VE | | NACTI VE]
ON db_event
[POSI TI ON nunber]

<mutation_list> ::= <nutation> [OR <nutation>
[OR <nutation>]]

{ INSERT | UPDATE | DELETE }

<nmutation> ::

<db_event> ::
CONNECT
| DI SCONNECT
| TRANSACTI ON START
| TRANSACTI ON COW T
| TRANSACTI ON ROLLBACK

The header must contain a name for the trigger that is unigue among trigger names. It must include the event
or events that will fire the trigger. Also, for a DML trigger it is mandatory to specify the event phase and the
name of the table or view that isto “own” the trigger.

The body of the trigger can be headed by the declarations of local variables and cursors, if any. Within the
enclosing main BEGIN...END wrapper will be one or more blocks of PSQL statements, which may be empty.

For moreinformation about creatingtriggers. See">CREATE TRIGGER in Chapter 5, Data Definition (DDL)
Satements.

Modifying Triggers

Altering the status, phase, table or view event(s), firing position and code in the body of a DML trigger are all
possible. However, you cannot modify a DML trigger to convert it to a database trigger, nor vice versa. Any
element not specified is left unchanged by ALTER TRIGGER. The aternative statements CREATE OR ALTER
TRIGGER and RECREATE TRIGGER will replace the original trigger definition entirely.

Syntax:

ALTER TRI GCER tri gnane
[ACTI VE | | NACTI VE]

243

Procedural SQL (PSQL) Statements

[{BEFORE | AFTER} <mutation_Ilist>]
[POSI TI ON number]
[

AS

[<decl ar ati ons>]

BEG N

[<PSQ__st at enent s>]

END

]

<mutation list> ::=
<nmutation> [OR <rmutation> [OR <nut ation>]]

{ INSERT | UPDATE | DELETE }

<nmutation> ::

<db_event> ::
CONNECT
| DI SCONNECT
| TRANSACTI ON START
| TRANSACTI ON COW T
| TRANSACTI ON ROLLBACK

For more information about modifying triggers. See ALTER TRIGGER, CREATE OR ALTER TRIGGER,
RECREATE TRIGGER in Chapter 5, Data Definition (DDL) Satements.

Deleting a Trigger
The DROP TRIGGER statement is used to delete triggers.

Syntax (complete):
DROP TRI GCER tri gnare;

For more information about deleting triggers. See DROP TRIGGER in Chapter 5, Data Definition (DDL)
Satements.

Writing the Body Code

This section takes a closer ook at the procedural SQL language constructs and statements that are available for
coding the body of a stored procedure, trigger or anonymous PSQL block.

Colon Marker (:)

The colon marker prefix (:) is used in PSQL to mark a reference to avariable in a DML statement. The
colon marker is not required before variable names in other code and it should never be applied to context
variables.

244

Procedural SQL (PSQL) Statements

Assignment Statements

Used for: Assigning avalueto avariable
Availablein: PSQL

Syntax:

var nanme = <val ue_expr>

Table 7.3. Assignment Statement Parameters

Argument Description

varname Name of a parameter or local variable

An expression, constant or variable whose value resolves to the same data type

value_expr
- as <varname>

PSQL uses the equivalence symbol (=) as its assignment operator. The assignment statement assigns an SQL
expression value on the right to the variable on the left of the operator. The expression can be any valid SQL
expression: it may contain literals, internal variable names, arithmetic, logical and string operations, calls to
internal functions or to external functions (UDFs).

Example using assignment statements.

CREATE PROCEDURE MYPROC (
a | NTEGER,
b | NTEGER,
nane VARCHAR (30)

)

RETURNS (
c | NTEGER,
str VARCHAR(100))
AS
BEG N
-- assigning a constant
c = 0;
str ="'";
SUSPEND;
-- assigni ng expression val ues
c = a + b;
str = nane || CAST(b AS VARCHAR(10));
SUSPEND;

-- assigni ng expression val ue
-- built by a query
c = (SELECT 1 FROM rdb$dat abase);

245

Procedural SQL (PSQL) Statements

-- assigning a value froma context variable
str = CURRENT_USER
SUSPEND;

END

See also: DECLARE VARIABLE

DECLARE CURSOR

Used for: Declaring a named cursor
Availablein: PSQL

Syntax:

DECLARE [VARI ABLE] cursornane CURSOR FOR (<sel ect>) [FOR UPDATE]

Table7.4. DECLARE CURSOR Statement Parameters

Argument Description
cursorname Cursor name
select SELECT statement

The DECLARE CURSOR ... FOR statement binds a named cursor to the result set obtained in the SELECT state-
ment specified in the FOR clause. In the body code, the cursor can be opened, used to walk row-by-row through
the result set and closed. While the cursor is open, the code can perform positioned updates and deletes using
the WHERE CURRENT OF in the UPDATE or DELETE statement.

Cursor Idiosyncrasies

» Theoptional FOR UPDATE clause can beincluded in the SELECT statement but its absence does not prevent
successful execution of a positioned update or delete

» Care should be taken to ensure that the names of declared cursors do not conflict with any names used
subsequently in statements for AS CURSOR clauses

» |f the cursor is needed only to walk the result set, it is nearly always easier and less error-prone to use a FOR
SELECT statement with the AS CURSOR clause. Declared cursors must be explicitly opened, used to fetch
data and closed. The context variable ROW_COUNT has to be checked after each fetch and, if its value is
zero, the loop has to be terminated. A FOR SELECT statement checks it automatically.

Nevertheless, declared cursorsprovide ahigh level of control over sequential eventsand allow several cursors
to be managed in parallel.

246

Procedural SQL (PSQL) Statements

e The SELECT statement may contain parameters. For instance:

SELECT NAME || :SFX FROM NAMES WHERE NUMBER = : NUM

Each parameter hasto have been declared beforehand asa PSQL variable, evenif they originate asinput and
output parameters. When the cursor is opened, the parameter is assigned the current value of the variable.

Attention!

If the value of a PSQL variable used inthe SELECT statement changes during the loop, its new value may (but
not always) be used for the remaining rows. It is better to avoid having such situations arise unintentionally.
If you really need this behaviour, you should test your code carefully to be certain that you know exactly how
changesin the variable affect the result.

Note particularly that the behaviour may depend on the query plan, specifically on the indexes being used. No
strict rules are in place for situations like this currently, but that could change in future versions of Firebird.

Examples Using Named Cursors

1. Declaring a named cursor in the trigger.

CREATE OR ALTER TRI GGER TBU_STOCK
BEFORE UPDATE ON STOCK
AS
DECLARE C_COUNTRY CURSOR FOR (
SELECT
COUNTRY,
CAPI TAL
FROM COUNTRY
)
BEG N
/* PSQ statenents */
END

2. A collection of scriptsfor creating views with a PSQL block using named cursors.

EXECUTE BLOCK
RETURNS (
SCRI PT BLOB SUB_TYPE TEXT)
AS
DECLARE VARI ABLE FI ELDS VARCHAR(8191)
DECLARE VARI ABLE FI ELD _NAVE TYPE OF RDBS$FI ELD NAMNE;
DECLARE VARI ABLE RELATI ON RDB$RELATI ON_NAMNE;
DECLARE VARI ABLE SOURCE TYPE OF COLUMN RDB$RELATI ONS. RDB$VI EW SOURCE;
DECLARE VARI ABLE CUR R CURSOR FOR (
SELECT
RDB$RELATI ON_NANE,
RDB$VI EW SOURCE
FROM
RDB$RELATI ONS
WHERE

247

Procedural SQL (PSQL) Statements

RDB$VI EW SOURCE |'S NOT NULL);
-- Declaring a naned cursor where
-- a local variable is used

DECLARE CUR_F CURSOR FCR (
SELECT
RDB$FI ELD_NAME
FROM
RDB$RELATI ON_FI ELDS
WHERE

-- It is inmportant that the variable nust be declared earlier
RDBSRELATI ON_NAME = : RELATI ON);
BEG N
OPEN CUR R
VH LE (1 = 1) DO
BEG N
FETCH CUR_R
I NTO : RELATI ON, : SOURCE;
| F (ROW.COUNT = 0) THEN
LEAVE;

FI ELDS = NULL;
-- The CUR F cursor will use the val ue
-- of the RELATION variable initiated above
OPEN CUR_F;
WHI LE (1 = 1) DO
BEG N
FETCH CUR F
I NTO : FI ELD_NAME;
| F (ROW COUNT = 0) THEN
LEAVE;
| F (FIELDS I'S NULL) THEN
FI ELDS = TRI M FI ELD_NAME) ;

ELSE
FIELDS = FIELDS || ', ' || TRI MFIELD_NAVE);
END
CLOSE CUR_F;
SCRI PT = ' CREATE VIEW' || RELATION,
IF (FIELDS |'S NOT NULL) THEN
SCRIPT = SCRIPT || ' (' || FIELDS || ')';
SCRIPT = SCRIPT || ' AS' || ASCI|_CHAR(13);
SCRIPT = SCRIPT || SOURCE;
SUSPEND;
END
CLOSE CUR R;
END

See also: OPEN, FETCH, CLOSE

DECLARE VARIABLE

Used for: Declaring alocal variable

248

Procedural SQL (PSQL) Statements

Availablein: PSQL

Syntax:

DECLARE [VARI ABLE] <var nane>
{<dat atype> | <domain> | TYPE OF {<domai n> | COLUW <rel.col >}
[NOT NULL] [CHARACTER SET <charset>] [COLLATE <col |l ation>]
[{DEFAULT | =} <initvalue>];

<datatype> ::=

{SMALLI NT | INTEGER | BI G NT}

| {FLOAT | DOUBLE PRECI SI ON}

| {DATE | TIME | TIMESTAVP}

| {DECIMAL | NUMERIC} [(precision [, scale])]

| {CHAR | CHARACTER | CHARACTER VARYI NG | VARCHAR} [(size)]
[CHARACTER SET charset]

| {NCHAR | NATI ONAL CHARACTER | NATI ONAL CHAR} [VARYI NG
[(size)]

| BLOB [SUB_TYPE {subtype num | subtype nane}]
[SEGVENT SI ZE segl en] [CHARACTER SET charset]

| BLOB [(seglen [, subtype_nunj)]

<initvalue> ::= <literal > | <context_var>

Table7.5. DECLARE VARIABLE Statement Parameters

Argument Description
varname Name of the local variable
datatype An SQL datatype
domain The name of an existing domain in this database
el col Rel aj:i on name (table or view) in this database and the name of a column in that
relation
precision Precision. From 1to 18
scale Scale. From 0 to 18, it must be less than or equal to precision
size The maximum size of astring in characters
subtype num BLOB subtype number

subtype_name

BLOB subtype mnemonic name

seglen Segment size, not greater than 65,535
initvalue Initial value for this variable
literal Literal of atype compatible with the type of the local variable
context_var Any context variable whose type is compatible with the type of the local variable
charset Character set
collation Collation sequence

249

Procedural SQL (PSQL) Statements

The statement DECLARE [VARIABLE] is used for declaring alocal variable. The keyword VARIABLE can be
omitted. One DECLARE [VARIABLE] statement is required for each local variable. Any number of DECLARE
[VARIABLE] statements can be included and in any order. The name of aloca variable must be unique among
the names of local variables and input and output parameters declared for the module.

Data Type for Variables
A local variable can be of any SQL type other than an array.

» A domain name can be specified as the type and the variable will inherit all of its attributes.

» If the TYPE OF <domain> clause is used instead, the variable will inherit only the domain's data type, and,
if applicable, its character set and collation attributes. Any default value or constraints such as NOT NULL
or CHECK constraints are not inherited.

» If the TYPE OF COLUMN <relation.column> option is used to “borrow” from a column in atable or view,
thevariablewill inherit only the column'sdatatype, and, if applicable, itscharacter set and collation attributes.
Any other attributes are ignored.

NOT NULL Constraint: The variable can be constrained NOT NULL if required. If adomain has been spec-
ified as the data type and aready carries the NOT NULL constraint, it will not be necessary. With the other
forms, including use of adomain that is nullable, the NOT NULL attribute should be included if needed.

CHARACTER SET and COLLATE clauses: Unless specified, the character set and collation sequence of a
string variable will be the database defaults. A CHARACTER SET clause can be included, if required, to handle
string data that is going to be in adifferent character set. A valid collation sequence (COLLATE clause) can also
be included, with or without the character set clause.

InitializingaVariable: Local variablesare NUL L when execution of the module begins. They can beinitiaized
so that a starting or default value is available when they are first referenced. The DEFAULT <initvalue> form
can be used, or just the assignment operator, "=": = <initvalue>. The value can be any type-compatible literal
or context variable.

I mportant

Be sure to use this clause for any variables that are constrained to be NOT NULL and do not otherwise have
adefault value available.

Examples of various waysto declarelocal variables:

CREATE OR ALTER PROCEDURE SOVE_PRCC
AS
-- Declaring a variable of the INT type
DECLARE | | NT;
-- Declaring a variable of the INT type that does not allow NULL
DECLARE VARI ABLE J | NT NOT NULL;
-- Declaring a variable of the INT type with the default value of 0O
DECLARE VARI ABLE K | NT DEFAULT O;
-- Declaring a variable of the INT type with the default value of 1
DECLARE VARI ABLE L INT = 1;
-- Declaring a variabl e based on the COUNTRYNAVE donai n
DECLARE FARM COUNTRY COUNTRYNAME;
-- Declaring a variable of the type equal to the COUNTRYNAME donmi n

250

Procedural SQL (PSQL) Statements

DECLARE FROM COUNTRY TYPE OF COUNTRYNANE
-- Declaring a variable with the type of the CAPITAL colum in the COUNTRY table
DECLARE CAPI TAL TYPE OF COLUWN COUNTRY. CAPI TAL;
BEG N
/[* PSQL statenments */
END

Seealso: Data Types and Subtypes, Custom Data Types—Domains, CREATE DOMAIN

BEGIN ... END

Used for: Delineating a block of statements
Availablein: PSQL

Syntax:

<bl ock> :: =

BEG N
<conpound_st at enrent >
[<conpound_st at enent >

]
END

<conpound_statenment> ::= {<bl ock> | <statenent>;}

TheBEGIN ... END construct isatwo-part statement that wraps a block of statementsthat are executed as one unit
of code. Each block starts with the half-statement BEGIN and ends with the other half-statement END. Blocks
can be nested to unlimited depth. They may be empty, allowing them to act as stubs, without the need to write
dummy statements.

The BEGIN and END statements have no line terminators. However, when defining or altering a PSQL module
intheisgl utility, that application requiresthat thelast END statement befollowed by itsown terminator character,
that was previously switched, using SET TERM, to some string other than a semicolon. That terminator is not
part of the PSQL syntax.

The final, or outermost, END statement in a trigger terminates the trigger. What the final END statement does
in a stored procedure depends on the type of procedure:

* In aselectable procedure, the final END statement returns control to the caller, returning SQLCODE 100,
indicating that there are no more rows to retrieve

» Inan executable procedure, the final END statement returns control to the caller, along with the current values
of any output parameters defined.

Example: A sample procedure from the enpl oyee. f db database, showing simple usage of BEGIN...END
blocks:

SET TERM *,;
CREATE OR ALTER PROCEDURE DEPT_BUDCET (

251

Procedural SQL (PSQL) Statements

DNO CHAR(3))

RETURNS (
TOT DECI MAL(12, 2))

AS
DECLARE VARI ABLE SUVMB DECI MAL(12, 2);
DECLARE VARI ABLE RDNO CHAR(3);
DECLARE VARI ABLE CNT | NTEGER;

BEQ N

TOT = 0;

SELECT
BUDGET
FROM
DEPARTNVENT
WHERE DEPT_NO = : DNO
I NTO : TOT;

SELECT
COUNT(BUDGET)
FROM
DEPARTNVENT
WHERE HEAD DEPT = : DNO
I NTO : CNT;

IF (CNT = 0) THEN
SUSPEND;

FOR
SELECT
DEPT_NO
FROM
DEPARTNVENT
WHERE HEAD DEPT = : DNO
I NTO : RDNO
DO
BEG N
EXECUTE PROCEDURE DEPT_BUDGET(: RDNO)
RETURNI NG_VALUES : SUMB;
TOT = TOT + SUVB;
END

SUSPEND,
END?
SET TERM ; #

Seealso: EXIT, LEAVE, SET TERM

IF ... THEN ... ELSE
Used for: Conditional jumps
Availablein: PSQL

Syntax:

252

Procedural SQL (PSQL) Statements

| F (<condition>)
THEN <singl e_statenment> ; | BEG N <conpound_st at ement > END
[ELSE <single_statenment> ; | BEG N <conpound_st at enent > END]

Table7.6.IF ... THEN ... EL SE Parameters

Argument Description
condition A logical condition returning TRUE, FALSE or UNKNOWN
single_statement A single statement terminated with a semicolon
compound_statement | Two or more statements wrapped in BEGIN ... END

The conditional jump statement IF ... THEN is used to branch the execution process in a PSQL module. The
condition is always enclosed in parentheses. If it returns the value TRUE, execution branches to the statement
or the block of statements after the keyword THEN. If an ELSE is present and the condition returns FALSE or
UNKNOWN, execution branches to the statement or the block of statements after it.

Multi-branch Jumps

PSQL does not provide multi-branch jumps, such as CASE or SWITCH. Nevertheless, the CASE search
statement from DSQL is available in PSQL and is able to satisfy at |east some use cases in the manner
of aswitch:

CASE <t est_expr>
VWHEN <expr> THEN resul t
[WHEN <expr> THEN result ...]
[ELSE defaul tresult]

END

CASE
VWHEN <bool expr> THEN result
[WHEN <bool _expr> THEN result ...]
[ELSE defaul tresult]

END

Examplein PSQL:

C = CASE
WHEN A=2 THEN 1
WHEN A=1 THEN 3
ELSE O
END;

253

Procedural SQL (PSQL) Statements

Example: An example using the |F statement. Assume that the FIRST, LINE2 and LAST variables were de-
clared earlier.

|F (FIRST I'S NOT NULL) THEN

LINE2 = FIRST || ' ' || LAST;
ELSE

LI NE2

LAST,;

See also: WHILE ... DO, CASE

WHILE ... DO

Used for: Looping constructs
Availablein: PSQL

Syntax:

VWHI LE <condi tion> DO
<single_statement> ; | BEGA N <conpound_st at emrent > END

Table7.7. WHILE ... DO Parameters

Argument Description
condition A logical condition returning TRUE, FALSE or UNKNOWN
single_statement A single statement terminated with a semicolon
compound_statement | Two or more statements wrapped in BEGIN ... END

A WHILE statement implements the looping construct in PSQL. The statement or the block of statements will
be executed until the condition returns TRUE. L oops can be nested to any depth.

Example: A procedure calculating the sum of numbersfrom 1 to | shows how the looping construct is used.

CREATE PROCEDURE SUM I NT (I | NTEGER)
RETURNS (S | NTEGER)
AS
BEG N

s = 0;

WH LE (i > 0) DO

BEG N

S =S +i;

254

Procedural SQL (PSQL) Statements

END
END

Executing the procedureinisql:

EXECUTE PROCEDURE SUM | NT(4);

theresultis:

Seealso: IF... THEN ... ELSE, LEAVE, EXIT, FOR SELECT, FOR EXECUTE STATEMENT

LEAVE

Used for: Terminating aloop
Availablein: PSQL

Syntax:

[l abel :]
<l oop>
BEG N

LEAVE [abel] ;

END
<l oop_stnt> ::=
FOR <sel ect_stnt> INTO <var _|ist> DO
| FOR EXECUTE STATEMENT ... |INTO <var_list> DO
| WHILE (<condition>)} DO

Table 7.8. LEAVE Statement Parameters

Argument Description
label Label
select_stmt SELECT statement
condition A logical condition returning TRUE, FALSE or UNKNOWN

255

Procedural SQL (PSQL) Statements

A LEAVE statement immediately terminates the inner loop of a WHILE or FOR looping statement. The LABEL
parameter is optional.

LEAVE can cause an exit from outer loops as well. Code continues to be executed from the first statement after
the termination of the outer loop block.

Examples:

1. Leavingaloopif anerror occurson aninsert into the NUMBERS table. The code continuesto be executed
fromthelineC =0.

W LE (B < 10) DO

BEG N
I NSERT | NTO NUVBERS(B)
VALUES (:B);
B=B+ 1;
VWHEN ANY DO
BEG N
EXECUTE PROCEDURE LOG ERROR (
CURRENT _TI MESTANMP,
"ERROR IN B LOOP'") ;
LEAVE;
END
END
C=0;

2. A example using labels in the LEAVE statement. LEAVE LOOPA terminates the outer loop and LEAVE
LOOPB terminates the inner loop. Note that the plain LEAVE statement would be enough to terminate the
inner loop.

STMI1 = ' SELECT NAME FROM FARME' ;
LOOPA:
FOR EXECUTE STATEMENT : STMI'1
| NTO : FARM DO
BEG N
STMI2 = ' SELECT NAME ' || ' FROM ANl MALS WHERE FARM = ' ' ' ;
LOOPB:
FOR EXECUTE STATEMENT :STMI2 || :FARM || """
| NTO : ANl VAL DO
BEG N
IF (ANl MAL = ' FLUFFY') THEN
LEAVE LOOPB;
ELSE | F (ANl VAL = FARM) THEN
LEAVE LOOPA;
ELSE
SUSPEND;
END
END

Seealso: EXIT

256

Procedural SQL (PSQL) Statements

EXIT

Used for: Terminating module execution
Availablein: PSQL

Syntax:
EXIT;

The EXIT statement causes execution of the procedure or trigger to jump to the final END statement from any
point in the code, thus terminating the program.

Example: Using the EXIT statement in a selectable procedure:

CREATE PROCEDURE GEN 100
RETURNS (
I | NTEGER
)
AS
BEG N
I = 1;
VWH LE (1=1) DO
BEG N
SUSPEND;
| F (1=100) THEN
EXI T;
I =1 + 1;
END
END

See also: LEAVE, SUSPEND

SUSPEND
Used for: Passing output to the buffer and suspending execution while waiting for caller to fetch it
Availablein: PSQL

Syntax:
SUSPEND;

The SUSPEND statement is used in a selectable stored procedure to pass the values of output parameters to a
buffer and suspend execution. Execution remains suspended until the calling application fetches the contents
of the buffer. Execution resumes from the statement directly after the SUSPEND statement. In practice, thisis
likely to be a new iteration of alooping process.

257

Procedural SQL (PSQL) Statements

Important Notes

1. Applications using interfaces that wrap the API perform the fetches from selectable procedures transpar-
ently.

2. When aSUSPEND statement is executed in an executable stored procedure, it isthe same as executing the
EXIT statement, resulting in immediate termination of the procedure.

3. SUSPEND “breaks’ the atomicity of the block in which it is located. If an error occurs in a selectable
procedure, statements executed after the final SUSPEND statement will be rolled back. Statements that
executed before the final SUSPEND statement will not be rolled back unlessthe transaction isrolled back.

Example: Using the SUSPEND statement in a selectable procedure:

CREATE PROCEDURE GEN_100
RETURNS (

| | NTEGER
)

AS
BEG N
I = 1;
VWH LE (1=1) DO
BEG N
SUSPEND;
| F (1=100) THEN
EXIT;
I =1 + 1;
END
END

Seealso; EXIT

EXECUTE STATEMENT

Used for: Executing dynamically created SQL statements
Availablein: PSQL
Syntax:
<execute_statenent> ::= EXECUTE STATEMENT <ar gunent >
[<option> .]
[I NTO <vari abl es>]
<argument> ::= paranl ess_stnt

| (paranm ess_stnt)
| (<stnt_with_parans>) (<paramval ues>)

<param val ues> ::= <naned_val ues> | <positional val ues>

<naned_val ues> ::
[, paramane :

par amane : = val ue_expr
val ue_expr ...]

258

Procedural SQL (PSQL) Statements

<posi tional values> ::= value_expr [, value_expr ...]

<option> ::

W TH { AUTONOMOUS | COMMON} TRANSACTI ON

W TH CALLER PRI VI LEGES

PASSWORD passwor d
ROLE rol e
ON EXTERNAL [DATA SOURCE] <connect_string>

<connect_string> :
<host spec> ::=
<t cpi p_host spec>

<NamePi pes_host spec>

<vari abl es> :

|
| AS USER user
|
|
|

:= [<hostspec>] {filepath | db_alias}

<t cpi p_host spec> | <NamedPi pes_host spec>

: = host nane:

;= \\ host nane\

[:]varname [, [:]varname ...]

Table7.9. EXECUTE STATEMENT Statement Parameters

Argument

Description

paramless_stmt

Literal string or variable containing a non-parameterized SQL query

stmt_with_params

Literal string or variable containing a parameterized SQL query

paramname SQL query parameter name
value_expr SQL expression resolving to avalue
user User name. It can be a string, CURRENT_USER or astring variable
password Password. It can be astring or astring variable
role Role. It can be astring, CURRENT_ROLE or a string variable

connection_string

Connection string. It can be a string or a string variable

filepath Path to the primary databasefile
db dias Database dlias

hostname Computer name or |P address
varname Variable

The statement EXECUTE STATEMENT takes a string parameter and executesit asif it were aDSQL statement.
If the statement returns data, it can be passed to local variables by way of an INTO clause.

Parameterized Statements

Y ou can use parameters—either named or positional— in the DSQL statement string. Each parameter must be
assigned avalue.

259

Procedural SQL (PSQL) Statements

Special Rules for Parameterized Statements

1.

2.

Named and positional parameters cannot be mixed in one query

If the statement has parameters, they must be enclosed in parentheses when EXECUTE STATEMENT is
called, regardless of whether they come directly as strings, as variable hames or as expressions

Each named parameter must be prefixed by a colon (:) in the statement string itself, but not when the
parameter is assigned avalue

Positional parameters must be assigned their values in the same order as they appear in the query text

The assignment operator for parameters is the specia operator ":=", similar to the assignment operator in
Pascal

Each named parameter can be used in the statement more than once, but itsvalue must be assigned only once

With positional parameters, the number of assigned values must match the number of parameter placehol d-
ers (question marks) in the statement exactly

Examples: With named parameters:

DECLARE | i cense_num VARCHAR(15) ;
DECLARE connect _string VARCHAR (100);
DECLARE stnt VARCHAR (100) =
' SELECT | i cense
FROM cars
WHERE driver = :driver AND location = :loc';
BEG N

SELECT connstr
FROM dat abases
WHERE cust _id = :id
I NTO connect _stri ng;

FOR

SELECT id
FROM dri vers
I NTO current _driver
DO
BEG N
FOR
SELECT | ocati on
FROM dri ver _| ocati ons
WHERE driver _id = :current_driver
I NTO current | ocation
DO
BEG N

EXECUTE STATEMENT (stnt)
(driver := current _driver,
loc := current_| ocation)
ON EXTERNAL connect _string
I NTO | i cense_num

260

Procedural SQL (PSQL) Statements

The same code with positional parameters:

DECLARE |icense_num VARCHAR (15);
DECLARE connect _string VARCHAR (100);
DECLARE stnt VARCHAR (100) =
' SELECT | i cense
FROM car s
VWHERE driver = ? AND | ocation = ?';
BEA N

SELECT connstr
FROM dat abases
WHERE cust _id = :id
into connect_string;

FOR SELECT id
FROM dri vers
I NTO current _driver

DO
BEG N
FOR
SELECT | ocati on
FROM dri ver | ocations
WHERE driver _id = :current_driver
I NTO current | ocation
DO
BEG N

EXECUTE STATEMENT (stnt)

(current _driver, current_|ocation)
ON EXTERNAL connect_string
I NTO |'i cense_num

WITH {AUTONOMOUS | COMMON} TRANSACTION

Traditionally, the executed SQL statement always ran within the current transaction, and thisis still the default.
WITH AUTONOMOUS TRANSACTION calises a separate transaction to be started, with the same parameters as
the current transaction. It will be committed if the statement runs to completion without errors and rolled back
otherwise. WITH COMMON TRANSACTION uses the current transaction if possible.

If the statement must run in a separate connection, an already started transaction within that connection is used,

if available. Otherwise, anew transaction is started with the same parameters asthe current transaction. Any new
transactions started under the “COMMON” regime are committed or rolled back with the current transaction.

WITH CALLER PRIVILEGES

By default, the SQL statement is executed with the privileges of the current user. Specifying WITH CALLER
PRIVILEGES addsto thisthe privileges of the calling procedure or trigger, just asif the statement were executed

261

Procedural SQL (PSQL) Statements

directly by the routine. WITH WITH CALLER PRIVILEGES has no effect if the ON EXTERNAL clause is also
present.

ON EXTERNAL [DATA SOURCE]

With ON EXTERNAL [DATA SOURCE], the SQL statement is executed in a separate connection to the same or
another database, possibly even on another server. If the connect string is NULL or " (empty string), the entire
ON EXTERNAL [DATA SOURCE] clause is considered absent and the statement is executed against the current
database.

Connection Pooling

» External connections made by statements WITH COMMON TRANSACTION (the default) will remain open
until the current transaction ends. They can be reused by subsequent calls to EXECUTE STATEMENT, but
only if the connect string is exactly the same, including case

» External connections made by statements WITH AUTONOMOUS TRANSACTION are closed as soon as the
statement has been executed

* Notice that statements WITH AUTONOMOUS TRANSACTION can and will re-use connections that were
opened earlier by statements WITH COMMON TRANSACTION. If this happens, the reused connection will
be left open after the statement has been executed. (It must be, because it has at least one un-committed
transaction!)

Transaction Pooling

* |f WITH COMMON TRANSACTION isin effect, transactions will be reused as much as possible. They will be
committed or rolled back together with the current transaction

e If WITHAUTONOMOUS TRANSACTION is specified, afresh transaction will always be started for the state-
ment. This transaction will be committed or rolled back immediately after the statement's execution

Exception Handling

Exception handling: When ON EXTERNAL is used, the extra connection is always made via a so-called external
provider, even if the connection isto the current database. One of the consegquencesis that exceptions cannot be
caught in the usual way. Every exception caused by the statement is wrapped in either an eds_connect i on
or an eds_st at ement error. In order to catch them in your PSQL code, you have to use WHEN GDSCODE
eds_connection, WHEN GDSCODE eds_statement or WHEN ANY .

Note

Without ON EXTERNAL, exceptions are caught in the usual way, even if an extra connection is made to the
current database.

Miscellaneous Notes

» The character set used for the external connection is the same as that for the current connection

» Two-phase commits are not supported

262

Procedural SQL (PSQL) Statements

AS USER, PASSWORD and ROLE

The optional AS USER, PASSWORD and ROLE clauses allow specificaton of which user will execute the SQL
statement and with which role. The method of user log-in and whether a separate connection is open depend on
the presence and vaues of the ON EXTERNAL [DATA SOURCE], ASUSER, PASSWORD and ROLE clauses:

» If ON EXTERNAL is present, a new connection is always opened, and:

If a least one of AS USER, PASSWORD and ROLE is present, native authentication is attempted with the
given parameter values (locally or remotely, depending on the connect string). No defaults are used for
missing parameters

If al three are absent and the connect string contains no hostname, then the new connection is established
onthelocal host with the same user and role as the current connection. Theterm 'local’ means 'on the same
machine as the server' here. Thisis not necessarily the location of the client

If all three are absent and the connect string contains a hostname, then trusted authentication is attempted
ontheremote host (again, 'remote’ from the perspective of the server). If thissucceeds, theremote operating
system will provide the user name (usually the operating system account under which the Firebird process
runs)

* If ON EXTERNAL is absent:

If at least one of ASUSER, PASSWORD and ROLE is present, a new connection to the current database is
opened with the suppled parameter values. No defaults are used for missing parameters
If all three are absent, the statement is executed within the current connection

Notice

If aparameter valueisNULL or " (empty string), the entire parameter is considered absent. Additionally, ASUS-
ER isconsidered absent if itsvalueisequal to CURRENT_USER, and ROLE if it isthe same as CURRENT_ROLE.

Caveats with EXECUTE STATEMENT

1

2.

There is no way to validate the syntax of the enclosed statement
There are no dependency checks to discover whether tables or columns have been dropped

Even though the performance in loops has been significantly improved in Firebird 2.5, execution is still
considerably slower than when the same statements are launched directly

Return values are strictly checked for data type in order to avoid unpredictable type-casting exceptions.
For example, the string '1234' would convert to an integer, 1234, but 'abc’ would give a conversion error

All inall, thisfeature is meant to be used very cautiously and you should always take the caveats into account.
If you can achieve the same result with PSQL and/or DSQL, it will ailmost always be preferable.

See also: FOR EXECUTE STATEMENT

FOR SELECT

Used for: Looping row-by-row through a selected result set

263

Procedural SQL (PSQL) Statements

Availablein: PSQL

Syntax:

FOR <sel ect _stmt > [AS CURSOR cur sor nane]
DO {<single_statenent> | BEA N <conpound_st at enent > END}

Table 7.10. FOR SELECT Statement Parameters

Argument Description
select_stmt SELECT statement

Cursor name. It must be unique among cursor names in the PSQL module
cursorname

(stored procedure, trigger or PSQL block)

A single statement, terminated with a colon, that performs all the processing for

single_statement this FOR loop

A block of statements wrapped in BEGIN...END, that performs all the process-

compound_statement ing for this FOR loop

A FOR SELECT statement

retrieves each row sequentially from the result set and executes the statement or block of statements on the
row. In each iteration of the loop, the field values of the current row are copied into pre-declared variables.

Including the AS CURSOR clause enables positioned del etes and updates to be performed—see notes bel ow
can embed other FOR SELECT statements

can carry named parameters that must be previously declared in the DECLARE VARIABLE statement or exist
asinput or output parameters of the procedure

regquires an INTO clause that is located at the end of the SELECT ... FROM ... specification. In each iteration
of the loop, thefield valuesin the current row are copied to the list of variables specified in the INTO clause.
The loop repeats until all rows are retrieved, after which it terminates

can be terminated before al rows are retrieved by using a LEAVE statement

The Undeclared Cursor

The optional AS CURSOR clause surfaces the set in the FOR SELECT structure as an undeclared, named cursor
that can be operated on using the WHERE CURRENT OF clause inside the statement or block following the DO
command, in order to delete or update the current row before execution moves to the next iteration.

Other points to take into account regarding undeclared cursors:

1

2.

the OPEN, FETCH and CLOSE statements cannot be applied to a cursor surfaced by the AS CURSOR clause

the cursor name argument associated with an AS CURSOR clause must not clash with any names created
by DECLARE VARIABLE or DECLARE CURSOR statements at the top of the body code, nor with any other
cursors surfaced by an AS CURSOR clause

264

Procedural SQL (PSQL) Statements

3. Theoptiona FOR UPDATE clause in the SELECT statement is not required for a positioned update
Examplesusing FOR SELECT:

1. A simpleloop through query results:

CREATE PROCEDURE SHOWNUNMS
RETURNS (
AA | NTEGER
BB | NTEGER,
SM | NTEGER,
DF | NTEGER)
AS
BEG N
FOR SELECT DI STINCT A, B
FROM NUVBERS
ORDER BY A, B

I NTO AA, BB
DO
BEG N
SM = AA + BB;
DF = AA - BB;
SUSPEND,
END

END

2. Nested FOR SELECT loop:

CREATE PROCEDURE RELFI ELDS
RETURNS (
RELATI ON CHAR(32),
POS | NTEGER,
FI ELD CHAR(32))
AS
BEG N
FOR SELECT RDB$RELATI ON_NAVE
FROM RDB$RELATI ONS
ORDER BY 1
| NTO : RELATI ON

DO
BEG N
FOR SELECT
RDB$FI ELD POSI TI ON + 1,
RDB$FI ELD_NANME
FROM RDB$RELATI ON_FI ELDS
WHERE
RDB$RELATI ON_NAME = : RELATI ON
ORDER BY RDB$FI ELD POSI TI ON
I NTO : PCS, : FIELD
DO
BEG N
|E (PCS = 2) THEN
RELATION = ' "'

265

Procedural SQL (PSQL) Statements

SUSPEND;
END
END
END

3. Using the AS CURSOR clause to surface a cursor for the positioned delete of arecord:

CREATE PROCEDURE DELTOWN (
TONNTCODELETE VARCHAR(24))
RETURNS (
TOMN VARCHAR(24) ,
POP | NTEGER)
AS
BEG N
FOR SELECT TOWN, POCP
FROM TOWNS
I NTO : TOMWN, :POP AS CURSOR TCUR
DO
BEG N
IF (: TOWN = : TOMWTODELETE) THEN
-- Positional delete
DELETE FROM TOMNS
WHERE CURRENT OF TCUR;
ELSE
SUSPEND;
END
END

See also: DECLARE CURSOR, LEAVE, SELECT, UPDATE, DELETE

FOR EXECUTE STATEMENT

Used for: Executing dynamically created SQL statements that return arow set

Availablein: PSQL

Syntax:

FOR <execute_statenent> DO {<single_statenent> | BEG N <conpound_st at enent > END}

Table7.11. FOR EXECUTE STATEMENT Statement Parameters

Argument Description

execute stmt An EXECUTE STATEMENT string

A single statement, terminated with a colon, that performs all the processing for

single_statement this FOR loop

A block of statements wrapped in BEGIN...END, that performs all the process-

compound_statement ing for this FOR loop

266

Procedural SQL (PSQL) Statements

The statement FOR EXECUTE STATEMENT is used, in amanner analogous to FOR SELECT, to loop through the
result set of adynamically executed query that returns multiple rows.

Example: Executing adynamically constructed SELECT query that returns a data set:

CREATE PROCEDURE Dynani cSanpl eThree (
Q_FI ELD_NAME VARCHAR(100),
Q TABLE_NAME VARCHAR(100)

) RETURNS(
LI NE VARCHAR(32000)

)

AS
DECLARE VARI ABLE P_ONE_LI NE VARCHAR(100) ;
BEG N
LINE = '";
FOR
EXECUTE STATEMENT
' SELECT T1.' || :Q_FIELD _NAME ||
FROM' || :QTABLE NAME || ' T1 '
| NTO : P_ONE_LI NE
DO
IF (:P_ONE_LINE I'S NOT NULL) THEN
LINE = :LINE || :P_ONE_LINE || ' ';
SUSPEND;
END

See also: EXECUTE STATEMENT

OPEN

Used for: Opening a declared cursor
Availablein: PSQL

Syntax:

OPEN cur sor nane;

Table 7.12. OPEN Statement Par ameter

Argument Description

Cursor name. A cursor with this name must be previously declared with a DE-

cursorname CLARE CURSOR statement

An OPEN statement opensapreviously declared cursor, executesthe SELECT statement declared for it and makes
the first record the result data set ready to fetch. OPEN can be applied only to cursors previously declared in a
DECLARE VARIABLE statement.

267

Procedural SQL (PSQL) Statements

Note

If the SELECT statement declared for the cursor has parameters, they must be declared as local variables or
exist asinput or output parameters before the cursor is declared. When the cursor is opened, the parameter is
assigned the current value of the variable.

Examples:

1. Using the OPEN statement:

SET TERM *,;

CREATE OR ALTER PROCEDURE GET_RELATI ONS_NAMES
RETURNS (
RNAMVE CHAR(31)
)
AS
DECLARE C CURSOR FOR (
SELECT RDB$RELATI ON_NAME
FROM RDBSRELATI ONS) ;
BEG N
OPEN C,
VWH LE (1 = 1) DO
BEG N
FETCH C | NTO : RNAME;
IF (ROW COUNT = 0) THEN
LEAVE;
SUSPEND;
END
CLCSE G
ENDM

SET TERM ; #

2. A collection of scriptsfor creating views using a PSQL block with named cursors:

EXECUTE BLOCK
RETURNS (
SCRI PT BLOB SUB_TYPE TEXT)
AS
DECLARE VARI ABLE FI ELDS VARCHAR(8191);
DECLARE VARI ABLE FI ELD NAME TYPE OF RDB$FI ELD NAME;
DECLARE VARI ABLE RELATI ON RDBSRELATI ON_NANMNE;
DECLARE VARI ABLE SOURCE TYPE OF COLUWN RDB$RELATI ONS. RDB$VI EW SOQURCE;
-- naned cursor
DECLARE VARI ABLE CUR R CURSOR FOR (
SELECT
RDBSRELATI ON_NANME,
RDB$VI EW SOURCE
FROM
RDBSRELATI ONS
VHERE
RDB$VI EW SOURCE |'S NOT NULL);
-- naned cursor with local variable

268

Procedural SQL (PSQL) Statements

DECLARE CUR F CURSOR FOR (
SELECT
RDB$FI ELD_NAVE
FROM
RDB$RELATI ON_FI ELDS
WHERE

-- lmportant! The variable shall be declared earlier
RDB$RELATI ON_NAME = : RELATI ON);
BEG N

OPEN CUR_R;
WH LE (1 = 1) DO
BEA N

FETCH CUR_R

| NTO : RELATI ON, : SOURCE;

| F (ROW.COUNT = 0) THEN

LEAVE;

FI ELDS = NULL;
-- The CUR_F cursor will use
-- variable value of RELATION initialized above
OPEN CUR F;
WH LE (1 = 1) DO
BEG N
FETCH CUR_F
I NTO : FI ELD_NAME;
| F (ROW COUNT = 0) THEN
LEAVE;
IF (FIELDS I'S NULL) THEN
FI ELDS = TRI M FI ELD_NAME) ;

ELSE
FIELDS = FIELDS || ', ' || TRI MFIELD_NAVE);
END
CLOSE CUR_F;
SCRI PT = ' CREATE VIEW' || RELATI ON
IF (FIELDS |'S NOT NULL) THEN
SCRIPT = SCRIPT || ' (' || FIELDS || ')';
SCRIPT = SCRIPT || ' AS' || ASCI|_CHAR(13):
SCRIPT = SCRIPT || SOURCE;
SUSPEND;
END
CLOSE CUR R;

END

See also: DECLARE CURSOR, FETCH, CLOSE

FETCH
Used for: Fetching successive records from a data set retrieved by a cursor
Availablein: PSQL

Syntax:

269

Procedural SQL (PSQL) Statements

FETCH cursornanme INTO [:]varnane [, [:]varname ...];

Table7.13. FETCH Statement Parameters

Argument Description
cursorname Cursor name. A cursor with this name must be previously declared with a DE-
CLARE CURSOR statement and opened by an OPEN statement.
varname Variable name

A FETCH statement fetchesthe first and successive rows from the result set of the cursor and assigns the column
values to PSQL variables. The FETCH statement can be used only with a cursor declared with the DECLARE
CURSOR statement.

The INTO clause gets data from the current row of the cursor and loads them into PSQL variables.

For checking whether all of the the data set rows have been fetched, the context variable ROW_COUNT returns
the number of rows fetched by the statement. It is positive until all rows have been checked. A ROW_COUNT
of 1 indicates that the next fetch will be the last.

Example: Using the FETCH statement:

SET TERM *,;

CREATE OR ALTER PROCEDURE GET_RELATI ONS_NAMES
RETURNS (
RNAMVE CHAR(31)
)
AS
DECLARE C CURSOR FOR (
SELECT RDB$RELATI ON_NAME
FROM RDBSRELATI ONS) ;
BEG N
OPEN C;
VWH LE (1 = 1) DO
BEG N
FETCH C | NTO : RNANE;
| F (ROW COUNT = 0) THEN
LEAVE;
SUSPEND;
END
CLCSE C;
ENDM

SET TERM ; #

See also: DECLARE CURSOR, OPEN, CLOSE

CLOSE

Used for: Closing adeclared cursor

270

Procedural SQL (PSQL) Statements

Availablein: PSQL

Syntax:

CLCSE cur sor nane;

Table 7.14. CLOSE Statement Parameter

Argument Description

Cursor name. A cursor with this name must be previously declared with a DE-

cursorname CLARE CURSOR statement and opened by an OPEN statement

A CLOSE statement closes an open cursor. Any cursors that are still open will be automatically closed after the
modul e code compl etes execution. Only a cursor that was declared with DECLARE CURSOR can be closed with
a CLOSE statement.

Example: Using the CLOSE statement:

SET TERM *;

CREATE OR ALTER PROCEDURE GET_RELATI ONS_NAMES
RETURNS (
RNAME CHAR(31)
)
AS
DECLARE C CURSOR FOR (
SELECT RDB$RELATI ON_NAME
FROM RDB$RELATI ONS) ;
BEG N
OPEN C;
WH LE (1 = 1) DO
BEG N
FETCH C | NTO : RNAME;
| F (RON.COUNT = 0) THEN
LEAVE;
SUSPEND;
END
CLCSE C;
END?

See also: DECLARE CURSOR, OPEN, FETCH

IN AUTONOMOUS TRANSACTION
Used for: Executing a statement or ablock of statements in an autonomous transaction
Availablein: PSQL

Syntax:

271

Procedural SQL (PSQL) Statements

I N AUTONOMOUS TRANSACTI ON DO <compound_st at enent >

Table7.15. IN AUTONOMOUS TRANSACTION Statement Parameter

Argument Description

compound_statement | A statement or ablock of statements

AnIN AUTONOMOUSTRANSACTION statement enables execution of a statement or ablock of statementsin an
autonomous transaction. Code running in an autonomous transaction will be committed right after its successful
execution, regardless of the status of its parent transaction. It might be needed when certain operations must not
be rolled back, even if an error occurs in the parent transaction.

An autonomous transaction has the same isolation level asits parent transaction. Any exception that isthrownin
the block of the autonomous transaction code will result in the autonomous transaction being rolled back and all
made changes being cancelled. If the code executes successfully, the autonomous transaction will be committed.

Example: Using an autonomous transaction in a trigger for the database ON CONNECT event, in order to log
all connection attempts, including those that failed:

CREATE TRI GGER TR_CONNECT ON CONNECT
AS
BEG N
-- Logging all attenpts to connect to the database
I N AUTONOMOUS TRANSACTI ON DO
| NSERT | NTO LOG M5G)

VALUES (' USER ' || CURRENT_USER || ' CONNECTS.'):
| F (CURRENT USER I N (SELECT
USERNANE
FROM

BLOCKED _USERS)) THEN
BEG N
-- Logging that the attenpt to connect
-- to the database failed and sending
-- a nessage about the event
I N AUTONOMOUS TRANSACTI ON DO

BEG N
| NSERT | NTO LOG(MSG)
VALUES ('USER ' || CURRENT_USER || ' REFUSED.');
POST_EVENT ' CONNECTI ON ATTEMPT' || ' BY BLOCKED USER!
END

-- now calling an exception
EXCEPTI ON EX_BADUSER;
END
END

See also: Transsaction Control

POST_EVENT

Used for: Notifying listening clients about database eventsin amodule

272

Procedural SQL (PSQL) Statements

Availablein: PSQL

Syntax:

POST_EVENT event _narne;

Table 7.16. POST_EVENT Statement Parameter

Argument Description

event_name Event name (message) limited to 127 bytes

The POST_EVENT statement natifies the event manager about the event, which savesit to an event table. When
thetransaction iscommitted, the event manager notifies applicationsthat are signalling their interest in the event.

Theevent name can be some sort of code or ashort message: the choiceisopen asitisjust astring up to 127 bytes.
The content of the string can be a string literal, avariable or any valid SQL expression that resolvesto a string.

Example: Notifying the listening applications about inserting a record into the SALES table:

SET TERM *;
CREATE TRI GGER POST_NEW CORDER FOR SALES
ACTI VE AFTER | NSERT PCSI TION O
AS
BEA N
POST_EVENT ' new_order';
END?
SET TERM ; »

Trapping and Handling Errors

Firebird has a useful lexicon of PSQL statements and resources for trapping errorsin modules and for handling
them. Internally-implemented exceptions exist for stalling execution when every sort of standard error occurs
in DDL, DSQL and the physical environment.

System Exceptions
An exception is amessage that is generated when an error occurs.

All exceptions handled by Firebird have predefined numeric values for context variables (symbols) and text
messages associated with them. Error messages are output in English by default. Localized Firebird builds are
available, where error messages are translated into other languages.

Complete listings of the system exceptions can be found in Appendix B: Exception Codes and Messages.

273

Procedural SQL (PSQL) Statements

» SQLSTATE Error Codes and Descriptions

» GDSCODE Error Codes, SQLCODEs and Descriptions

Custom Exceptions

Custom exceptions can be declared in the database as persistent objects and called in the PSQL code to signal
specific errors; for instance, to enforce certain business rules. A custom exception consists of an identifier and
adefault message of approximately 1000 bytes. For details, see CREATE EXCEPTION.

In PSQL code, exceptions are handled by means of the WHEN statement. Handling an exception in the code
involveseither fixing the problemin situ, or stepping past it; either solution allows execution to continue without
returning an exception message to the client.

An exception results in execution being terminated in the block. Instead of passing the execution to the END
statement, the procedure moves outward through levels of nested blocks, starting from the block where the
exception is caught, searching for the code of the handler that “knows” about this exception. It stops searching
when it finds the first WHEN statement that can handle this exception.

EXCEPTION

Used for: Throwing a user-defined exception or re-throwing an exception
Availablein: PSQL

Syntax:

EXCEPTI ON [excepti on_nanme [custom nessage]]

Table7.17. EXCEPTION Statement Parameters

Argument Description

exception_name Exception name

Alternative message text to be returned to the caller interface when an exception

custom_message is thrown. Maximum length of the text message is 1,021 bytes

An EXCEPTION statement throws the user-defined exception with the specified name. An aternative message
text of up to 1,021 bytes can optionally override the exception's default message text.

The exception can be handled in the statement, by just leaving it with no specific WHEN ... DO handler and
alowing the trigger or stored procedure to terminate and roll back all operations. The calling application ap-
plication gets the aternative message text, if any was specified; otherwise, it receives the message originaly
defined for that exception.

Within the exception-handling block—and only within it—the caught exception can be re-thrown by executing
the EXCEPTION statement without parameters. If located outside the block, the re-thrown EXCEPTION call has
no effect.

274

Procedural SQL (PSQL) Statements

Note

Custom exceptions are stored in the system table RDB$EXCEPTIONS.

Examples:

1

2.

Throwing an exception with dynamically generated text:

EXCEPTI ON EX_BAD_TYPE
"I ncorrect

record type with id

new. i d;

Throwing an exception upon a condition in the SHIP_ORDER stored procedure:

CREATE OR ALTER PRCCEDURE SHI P_ORDER (

PO_NUM CHAR(8))

AS
DECLARE VARI ABLE ord_stat CHAR(7);
DECLARE VARI ABLE hol d_stat CHAR(1);
DECLARE VARI ABLE cust_no | NTECER,;
DECLARE VARI ABLE any_po CHAR(8) ;
BEGA N
SELECT
s. order _st at us,
c.on_hol d,
c.cust_no
FROM
sal es s, custoner c¢
VHERE
po_nunmber = :po_num AND
S.cust_no = c.cust_no
I NTO : ord_stat,
:hol d_st at,
:cust _no;
IF (ord_stat = 'shipped') THEN

EXCEPTI ON or der _al r eady_shi pped,;
/* Other statenments */
END

3. Throwing an exception upon a condition and replacing the original message with an alternative message:

CREATE OR ALTER PROCEDURE SHI P_ORDER (
PO_NUM CHAR(8))

AS
DECLARE VARI ABLE ord_stat CHAR(7);
DECLARE VARI ABLE hol d_stat CHAR(1);
DECLARE VARI ABLE cust_no | NTEGER;
DECLARE VARI ABLE any_po CHAR(8) ;
BEG N

SELECT

275

Procedural SQL (PSQL) Statements

s. order_stat us,
c.on_hol d,
c.cust_no
FROM
sales s, custonmer c¢
VHERE
po_nunmber = :po_num AND
Ss.cust_no = c.cust_no
I NTO : ord_stat,
:hol d_stat,
: cust _no;

IF (ord_stat = 'shipped') THEN
EXCEPTI ON or der _al ready_shi pped
'Order status is "' || ord_stat || '"';
/* Other statements */
END

4, Logging an error and re-throwing it in the WHEN block:

CREATE PROCEDURE ADD_COUNTRY (
ACount r yNanme COUNTRYNANME,
ACurrency VARCHAR(10))

AS

BEG N

I NSERT | NTO country (country,
currency)
VALUES (: ACount r yNane,
: ACurrency);
VWHEN ANY DO
BEG N
-- wite an error in log
I N AUTONOMOUS TRANSACTI ON DO
I NSERT | NTO ERROR _LOG (PSQL_MODULE,

GDS_CCODE,
SQL_CODE,
SQ._STATE)
VALUES (' ADD_COUNTRY' ,
GDSCODE,
SQ.CODE,
SQ.STATE) ;
-- Re-throw exception
EXCEPTI ON;
END

END

See also: CREATE EXCEPTION, WHEN ... DO

WHEN ... DO

Used for: Catching an exception and handling the error

Availablein: PSQL

276

Procedural SQL (PSQL) Statements

Syntax:

VWHEN {<error> [, <error> .] | ANY}
DO <conpound_st at enrent >

<error> ::={
EXCEPTI ON excepti on_nane
| SQLCODE nunber
| GDSCODE errcode

}

Table7.18. WHEN ... DO Statement Parameters

Argument Description
exception_name Exception name
number SQLCODE error code
errcode Symbolic GDSCODE error name
compound_statement | A statement or ablock of statements

The WHEN ... DO statement is used to handle errors and user-defined exceptions. The statement catchesall errors
and user-defined exceptions listed after the keyword WHEN keyword. If WHEN is followed by the keyword
ANY, the statement catches any error or user-defined exception, even if they have already been handled in a
WHEN block located higher up.

TheWHEN ... DO block must belocated at the very end of ablock of statements, beforethe block'sEND statement.

The keyword DOis followed by a statement, or a block of statements inside a BEGIN ... END wrapper, that
handle the exception. The SQLCODE, GDSCODE, and SQLSTATE context variables are available in the context
of this statement or block. The EXCEPTION statement, with no parameters, can also be used in this context to
re-throw the error or exception.

Targeting GDSCODE

The argument for the WHEN GDSCODE clause is the symbolic name associated with the internally-defined
exception, such asgr ant _obj _not f ound for GDS error 335544551.

After the DO clause, another GDSCODE context variable, containing the numeric code, becomes available for
use in the statement or the block of statements that code the error handler. That numeric codeisrequired if you
want to compare a GDSCODE exception with atargeted error.

The WHEN ... DO statement or block is never executed unless one of the eventstargeted by its conditions occurs
in run-time. If the statement is executed, even if it actually does nothing, execution will continue as if no error
occurred: the error or user-defined exception neither terminates nor rolls back the operations of the trigger or
stored procedure.

However, if the WHEN ... DO statement or block does nothing to handle or resolve the error, the DML statement
(SELECT, INSERT, UPDATE, DELETE, MERGE) that caused the error will be rolled back and none of the state-
ments below it in the same block of statements are executed.

277

Procedural SQL (PSQL) Statements

Important

1. If the error is not caused by one of the DML statements (SELECT, INSERT, UPDATE, DELETE, MERGE),
the entire block of statements will be rolled back, not just the one that caused an error. Any operations
in the WHEN ... DO statement will be rolled back as well. The same limitation applies to the EXECUTE
PROCEDURE statement. Read an interesting discussion of the phenomenon in Firebird Tracker ticket
CORE-4483.

2. Insdlectablestored procedures, output rowsthat were already passed to theclient in previousiterationsof a
FOR SELECT ... DO ... SUSPEND |loop remain availableto the client if an exception isthrown subsequently
in the process of retrieving rows.

Scope of a WHEN ... DO Statement

A WHEN ... DO statement catches errors and exceptionsin the current block of statements. It also catches similar
exceptions in nested blocks, if those exceptions have not been handled in them.

All changes made before the statement that caused the error are visible to aWHEN ... DO statement. However, if
you try to log them in an autonomous transaction, those changes are unavailable, because the transaction where
the changes took place is not committed at the point when the autonomous transaction is started. Example 4,
below, demonstrates this behaviour.

Tip

When handling exceptions, it is sometimes desirable to handle the exception by writing alog message to mark
the fault and having execution continue past the faulty record. Logs can be written to regul ar tables but thereis
aproblem with that: thelog records will “disappear” if an unhandled error causes the module to stop executing
and arollback ensues. Use of external tables can be useful here, as data written to them is transaction-indepen-
dent. The linked external file will still be there, regardless of whether the overall process succeeds or not.

Examples using WHEN...DO:

1. Replacing the standard error with a custom one:

CREATE EXCEPTI ON COUNTRY_EXI ST "' ;
SET TERM *;
CREATE PROCEDURE ADD_COUNTRY (
ACount r yName COUNTRYNANE,
ACurrency VARCHAR(10))
AS
BEG N
I NSERT | NTO country (country, currency)
VALUES (: ACount ryNane, :ACurrency);

WHEN SQLCODE - 803 DO
EXCEPTI ON COUNTRY_EXI ST ' Country al ready exists!';
END®
SET TERM *;

2. Logging an error and re-throwing it in the WHEN block:

278

http://tracker.firebirdsql.org/browse/CORE-4483

Procedural SQL (PSQL) Statements

CREATE PROCEDURE ADD_COUNTRY (
ACount r yName COUNTRYNANME,
ACurrency VARCHAR(10))

AS

BEG N

I NSERT | NTO country (country,
currency)
VALUES (: ACount r yNane,
: ACur rency);
VHEN ANY DO
BEG N
-- wite an error in log
I N AUTONOMOUS TRANSACTI ON DO
| NSERT | NTO ERROR_LOG (PSQL_MODULE,
GDS_CODE,
SQ._ CODE,
SQL_STATE)
VALUES (' ADD_COUNTRY' ,
GDSCODE,
SQLCODE,
SQLSTATE) ;
-- Re-throw exception
EXCEPTI ON;
END
END

3. Handling severa errorsin one WHEN block

WHEN GDSCODE GRANT_OBJ_NOTFOUND,
GDSCODE GRANT_FLD_NOTFOUND,
GDSCODE GRANT_NOPRI V,
GDSCODE GRANT_NOPRI V_ON_BASE
DO
BEG N
EXECUTE PROCEDURE LOG GRANT ERROR(GDSCCDE) ;
EXI T;
END

Seealso: EXCEPTION, CREATE EXCEPTION, SQLCODE and GDSCODE Error Codes and M essage Texts and
SQLSTATE Codes and Message Texts

279

Chapter 8

Built-in functions
and Variables

Here, the large collection of context variables, scalar functions and aggregate functions are described.

Context variables

CURRENT_CONNECTION

Availablein: DSQL, PSQL

Description: CURRENT_CONNECTION contains the unique identifier of the current connection.
Type: INTEGER

Examples:

sel ect current _connection from rdb$dat abase

execut e procedure P_Logi n(current_connecti on)

The value of CURRENT_CONNECTION is stored on the database header page and reset to 0 upon restore. Since
version 2.1, it isincremented upon every new connection. (In previous versions, it was only incremented if the
client read it during a session.) Asaresult, CURRENT_CONNECTION now indicates the number of connections
since the creation —or most recent restoration—of the database.

CURRENT_DATE
Availablein: DSQL, PSQL, ESQL
Description: CURRENT_DATE returns the current server date.

Type: DATE

Syntax:

CURRENT_DATE
Examples:

sel ect current _date fromrdb$dat abase

280

Built-in functions and Variables

-- returns e.g. 2011-10-03

Notes:

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_DATE will remain
constant every time it is read. If multiple modules call or trigger each other, the value will remain constant
throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to measure
timeintervals), use TODAY".

CURRENT_ROLE
Availablein: DSQL, PSQL

Description: CURRENT_ROLE isacontext variable containing the role of the currently connected user. If there
isno activerole, CURRENT_ROLE is NONE.

Type: VARCHAR(31)
Example:
if (current_role <> ' MANAGER)
then exception only_nanagers_nay_del et e;

el se
del ete from Custoners where custno = :custno;

CURRENT_ROLE alwaysrepresentsavalid role or NONE. If auser connects with anon-existing role, the engine
silently resetsit to NONE without returning an error.

CURRENT _TIME
Availablein: DSQL, PSQL, ESQL

Description: CURRENT_TIME returns the current server time. In versions prior to 2.0, the fractional part used
to be dways*“. 0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward you can specify
aprecision when polling this variable. The default is still O decimals, i.e. seconds precision.

Type: TIME

Syntax:
CURRENT_TI ME [(precision)]
precision ::= 0| 1] 2] 3

The optiona pr eci si on argument is not supported in ESQL.

Table8.1. CURRENT_TIME Parameter

Parameter Description

precision Precision. The default value is 0. Not supported in ESQL

281

Built-in functions and Variables

Examples:

sel ect current _tine fromrdb$dat abase
-- returns e.g. 14:20:19.6170

select current_tinme(2) from rdb$dat abase
-- returns e.g. 14:20:23.1200

Notes:

» Unlike CURRENT_TIME, the default precision of CURRENT_TIMESTAMP has changed to 3 decimals. As a
result, CURRENT_TIMESTAMP isno longer the exact sum of CURRENT_DATE and CURRENT_TIME, unless
you explicitly specify aprecision.

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TIME will remain
constant every time it is read. If multiple modules call or trigger each other, the value will remain constant
throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to measure
timeintervals), use 'NOW'.

CURRENT _TIMESTAMP
Availablein: DSQL, PSQL, ESQL
Description: CURRENT_TIMESTAMP returns the current server date and time. In versions prior to 2.0, the
fractional part usedto beaways“. 0000", giving an effective precision of 0 decimals. From Firebird 2.0 onward
you can specify a precision when polling this variable. The default is 3 decimals, i.e. milliseconds precision.
Type: TIMESTAMP
Syntax:

CURRENT_TI MESTAMP [(precision)]

precision ::= 0| 1] 2] 3

The optional pr eci si on argument is not supported in ESQL .

Table8.2. CURRENT_TIMESTAMP Parameter

Parameter Description
precision Precision. The default value is 0. Not supported in ESQL
Examples:

sel ect current _tinestanp fromrdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

sel ect current _tinmestanp(2) from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:23.1200

282

Built-in functions and Variables

Notes:

* Thedefault precisionof CURRENT_TIME isstill 0decimals, soin Firebird 2.0 and up CURRENT_TIMESTAMP
is no longer the exact sum of CURRENT_DATE and CURRENT_TIME, unless you explicitly specify a preci-
sion.

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TIMESTAMP will
remain constant every time it is read. If multiple modules call or trigger each other, the value will remain
constant throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to
measure time intervals), use 'NOW'.

CURRENT_TRANSACTION
Availablein: DSQL, PSQL
Description: CURRENT_TRANSACTION contains the unique identifier of the current transaction.
Type: INTEGER
Examples:
sel ect current_transaction from rdb$dat abase
New. Txn_I D = current _transaction;

The value of CURRENT_TRANSACTION is stored on the database header page and reset to O upon restore. It
isincremented with every new transaction.

CURRENT_USER
Availablein: DSQL, PSQL

Description: CURRENT_USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)
Example:

create trigger bi_custonmers for customers before insert as

begi n
New. added_by = CURRENT_ USER;
New. pur chases = 0;
end
DELETING

Availablein: PSQL

283

Built-in functions and Variables

Description: Availableintriggersonly, DELETING indicatesif thetrigger fired because of a DELETE operation.
Intended for use in multi-action triggers.

Type: boolean
Example:
if (deleting) then
begi n
insert into Removed_Cars (id, nake, nodel, renoved)

val ues (old.id, old.mke, old.nodel, current_tinestanp);
end

GDSCODE

Availablein: PSQL

Description: In a “WHEN ... DO” error handling block, the GDSCODE context variable contains the numeri-
cal representation of the current Firebird error code. Prior to Firebird 2.0, GDSCODE was only set in WHEN
GDSCODE handlers. Now it may also be non-zero in WHEN ANY, WHEN SQLCODE and WHEN EXCEPTION
blocks, provided that the condition raising the error corresponds with a Firebird error code. Outside error han-
dlers, GDSCODE is aways 0. Outside PSQL it doesn't exist at all.

Type: INTEGER

Example:

when gdscode grant _obj notfound, gdscode grant_fl d_notfound,
gdscode grant_nopriv, gdscode grant_nopriv_on_base

do
begi n
execute procedure |og_grant_error(gdscode);
exit;
end
Notice
After WHEN GDSCODE, you must use symbolic nameslike grant_obj_notfound etc. But the GDSCODE context
variable is an INTEGER. If you want to compare it against a specific error, the numeric value must be used,
e.g. 335544551 for grant_obj_notfound.
INSERTING

Availablein: PSQL

Description: Availablein triggers only, INSERTING indicates if the trigger fired because of an INSERT opera-
tion. Intended for use in multi-action triggers.

Type: boolean

284

Built-in functions and Variables

Example:
if (inserting or updating) then
begi n
if (new.serial_numis null) then

new. serial _num = gen_id(gen_serials, 1);
end

NEW
Availablein: PSQL, triggers only

Description: NEW contains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it isread-only in AFTER triggers.

Type: Datarow

Note

In multi-action triggers—introduced in Firebird 1.5—NEW is always available. But if the trigger isfired by a
DELETE, there will be no new version of the record. In that situation, reading from NEW will always return
NULL; writing to it will cause aruntime exception.

'‘NOW'
Availablein: DSQL, PSQL, ESQL
Changed in: 2.0

Description: 'NOW' isnot avariable but astring literal. It is, however, specia in the sensethat when you CAST()
it to adate/time type, you will get the current date and/or time. The fractional part of the time used to be aways
“. 0000”, giving an effective seconds precision. Since Firebird 2.0 the precision is 3 decimals, i.e. milliseconds.
'NOW' is case-insensitive, and the engine ignores leading or trailing spaces when casting.

Note: Please be advised that these shorthand expressions are evaluated immediately at parse time and stay the
same as long as the statement remains prepared. Thus, even if a query is executed multiple times, the value for
e.g. “timestamp 'now™ won't change, no matter how much time passes. If you need the value to progress (i.e.
be evaluated upon every call), use afull cast.

Type: CHAR(3)
Examples:

select 'Now from rdb$database
-- returns ' Now

sel ect cast('Now as date) from rdb$dat abase
-- returns e.g. 2008-08-13

sel ect cast('now as tine) fromrdb$dat abase

285

Built-in functions and Variables

-- returns e.g. 14:20:19.6170

sel ect cast('NOW as tinestanp) fromrdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

sel ect date ' Now from rdb$dat abase
select tinme 'now from rdb$dat abase
sel ect tinestanp ' NOW from rdb$dat abase

Notes:

* 'NOW' awaysreturnsthe actual date/time, evenin PSQL modules, where CURRENT_DATE, CURRENT_TIME
and CURRENT_TIMESTAMP return the same value throughout the duration of the outermost routine. This
makes 'NOW" useful for measuring time intervalsin triggers, procedures and executable blocks.

e Except in the situation mentioned above, reading CURRENT _DATE, CURRENT_TIME and
CURRENT_TIMESTAMP is generally preferable to casting 'NOW'. Be aware though that CURRENT_TIME
defaults to seconds precision; to get milliseconds precision, use CURRENT_TIME(3).

OLD

Availablein: PSQL, triggers only

Description: OLD contains the existing version of a database record just before a deletion or update. Starting
with Firebird 2.0 it is read-only.

Type: Datarow

Note

In multi-action triggers —introduced in Firebird 1.5—OLD is always available. But if the trigger is fired by
an INSERT, there is obviously no pre-existing version of the record. In that situation, reading from OLD will
aways return NULL; writing to it will cause a runtime exception.

ROW_COUNT
Availablein: PSQL
Changed in: 2.0

Description: The ROW_COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) inthe current trigger, stored procedure or executable

block.
Type: INTEGER
Example:

update Figures set Nunber = 0 where id = :id;

286

Built-in functions and Variables

if (row_count = 0) then
insert into Figures (id, Nunber) values (:id, 0);

Behaviour with SELECT and FETCH:
» After asingleton SELECT, ROW_COUNT is 1 if adatarow was retrieved and O otherwise.
* InaFOR SELECT loop, ROW_COUNT isincremented with every iteration (starting at O before the first).

» After aFETCH from acursor, ROW_COUNT is 1 if adatarow was retrieved and O otherwise. Fetching more
records from the same cursor does not increment ROW_COUNT beyond 1.

* InFirebird 1.5.x, ROW_COUNT is 0 after any type of SELECT statement.

Note

ROW_COUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or
EXECUTE PROCEDURE command.

SQLCODE
Availablein: PSQL
Deprecated in: 2.5.1

Description: Ina“WHEN ... DO” error handling block, the SQLCODE context variable contains the current SQL
error code. Prior to Firebird 2.0, SQLCODE was only set in WHEN SQLCODE and WHEN ANY handlers. Now it
may also be non-zero in WHEN GDSCODE and WHEN EXCEPTION blocks, provided that the condition raising
the error corresponds with an SQL error code. Outside error handlers, SQLCODE is always 0. Outside PSQL
it doesn't exist at all.

Type: INTEGER
Example:

when any
do
begi n
if (sqlcode <> 0) then
Msg = "An SQ. error occurred!';
el se
Msg = ' Somet hi ng bad happened! "' ;
exception ex_custom Msg;
end

Important notice: SQLCODE is now deprecated in favour of the SQL-2003-compliant SQLSTATE status code.
Support for SQLCODE and WHEN SQL CODE will be discontinued in some future version of Firebird.

SQLSTATE

Availablein: PSQL

287

Built-in functions and Variables

Added in: 2.5.1

Description: In a “WHEN ... DO” error handler, the SQLSTATE context variable contains the 5-character,
SQL-2003-compliant status code resulting from the statement that raised the error. Outside error handlers, SQL-
STATE is aways'00000'. Outside PSQL it isnhot available at al.

Type: CHAR(5)
Example:

when any
do
begi n
Msg = case sqlstate
when ' 22003' then 'Nuneric value out of range.'
when ' 22012' then 'Division by zero.'
when ' 23000' then 'Integrity constraint violation.'

el se ' Sonet hi ng bad happened! SQLSTATE ="' || sqlstate
end;
excepti on ex_custom Msg;
end
Notes:

* SQLSTATE is destined to replace SQLCODE. The latter is now deprecated in Firebird and will disappear in
some future version.

» Firebird does not (yet) support the syntax “WHEN SQLSTATE ... DO”. Y ou have to use WHEN ANY and test
the SQLSTATE variable within the handler.

» Each SQLSTATE code is the concatenation of a 2-character class and a 3-character subclass. Classes 00
(successful completion), 01 (warning) and 02 (no data) represent completion conditions. Every status code
outside these classesis an exception. Because classes 00, 01 and 02 don't raise an error, they won't ever show
up inthe SQLSTATE variable.

» For a complete listing of SQLSTATE codes, consult the SQLSTATE Codes and Message Texts section in
Appendix B: Exception Handling, Codes and Messages.

'TODAY'

Availablein: DSQL, PSQL, ESQL

Description: 'TODAY" is not a variable but a string literal. It is, however, special in the sense that when you
CAST() it to a date/time type, you will get the current date. ' TODAY' is case-insensitive, and the engine ignores
leading or trailing spaces when casting.

Type: CHAR(5)

Examples:

sel ect ' Today' from rdb$dat abase
-- returns ' Today'

sel ect cast(' Today' as date) from rdb$dat abase

288

Built-in functions and Variables

-- returns e.g. 2011-10-03

sel ect cast(' TODAY' as tinmestanp) fromrdb$dat abase
-- returns e.g. 2011-10-03 00:00: 00. 0000

Shorthand syntax for the last two statements:

sel ect date 'Today' fromrdb$database
select tinmestanp ' TODAY' from rdb$dat abase

Notes:

» 'TODAY' always returns the actual date, even in PSQL modules, where CURRENT_DATE, CURRENT_TIME
and CURRENT_TIMESTAMP return the same value throughout the duration of the outermost routine. This
makes TODAY" useful for measuring time intervalsin triggers, procedures and executable blocks (at least if
your procedures are running for days).

» Except in the situation mentioned above, reading CURRENT_DATE, isgenerally preferable to casting 'NOW'.

'TOMORROW!

Availablein: DSQL, PSQL, ESQL

Description: 'TOMORROW:' is not a variable but a string literal. It is, however, specia in the sense that when
you CAST() it to a date/time type, you will get the date of the next day. See also TODAY".

Type: CHAR(8)
Examples:

sel ect ' Tonorrow from rdb$dat abase
-- returns ' Tonorrow

sel ect cast(' Tonorrow as date) fromrdb$dat abase
-- returns e.g. 2011-10-04

sel ect cast (' TOMORROW as tinestanp) from rdb$dat abase
-- returns e.g. 2011-10-04 00: 00: 00. 0000

Shorthand syntax for the last two statements:

sel ect date 'Tonorrow from rdb$dat abase
sel ect tinestanp ' TOMORROW from rdb$dat abase

UPDATING
Availablein: PSQL

Description: Availablein triggers only, UPDATING indicatesif the trigger fired because of an UPDATE opera-
tion. Intended for use in multi-action triggers.

289

Built-in functions and Variables

Type: boolean
Example:
if (inserting or updating) then
begi n
if (new.serial_numis null) then

new. seri al _num = gen_id(gen_serials, 1);
end

"YESTERDAY"
Availablein: DSQL, PSQL, ESQL

Description: 'YESTERDAY' is not a variable but a string literal. It is, however, specia in the sense that when
you CAST() it to a date/time type, you will get the date of the day before. See also TODAY".

Type: CHAR(9)
Examples:

sel ect ' Yesterday' from rdb$dat abase
-- returns ' Tonorrow

sel ect cast (' Yesterday as date) fromrdb$dat abase
-- returns e.g. 2011-10-02

sel ect cast (' YESTERDAY' as tinestanp) from rdb$dat abase
-- returns e.g. 2011-10-02 00: 00: 00. 0000

Shorthand syntax for the last two statements:

sel ect date 'Yesterday' from rdb$database
sel ect tinestanp ' YESTERDAY' from rdb$dat abase

USER
Availablein: DSQL, PSQL

Description: USER isacontext variable containing the name of the currently connected user. Itisfully equivalent
to CURRENT_USER

Type: VARCHAR(31)
Example:

create trigger bi_customers for custonmers before insert as

begi n
New. added_by = USER
New. pur chases = 0;
end

290

Built-in functions and Variables

Scalar Functions

Upgraders: PLEASE READ!

A large number of functions that were implemented as external functions (UDFs) in earlier versions of
Firebird have been progressively re-implemented asinternal (built-in) functions. If some external function
of the same name as a built-in one is declared in your database, it will remain there and it will override
any internal function of the same name.

To make the internal function available, you need either to DROP the UDF, or to use ALTER EXTERNAL
FUNCTION the to change the declared name of the UDF.

Functions for Working with Context Variables

RDB$GET_CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDB$SSET_CONTEXT are actually predeclared UDFs. They are listed
here asinternal functions because they are aways present—the user doesn't have to do anything to make them
available.

Availablein: DSQL, PSQL * Asadeclared UDF it should be available in ESQL

Description: Retrieves the value of a context variable from one of the namespaces SY STEM, USER_SESSION
and USER_TRANSACTION.

Syntax:
RDB$CGET_CONTEXT (' <nanespace>', '<varnanme>')

<nanespace>
<var nane>

SYSTEM | USER_SESSI ON | USER_TRANSACTI ON
A case-sensitive string of max. 80 characters

Table 8.3. RDB$GET_CONTEXT Function Parameters

Parameter Description
namespace Namespace
varname Variable name. Case-sensitive. Maximum length is 80 characters

Result type: VARCHAR(255)

291

Built-in functions and Variables

The namespaces: The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user
can create and set variablesin them with RDB$SET_CONTEXT() and retrieve them with RDBSGET_CONTEXTY().
The SYSTEM namespace is read-only. It contains a number of predefined variables, shown in the table below.

Table 8.4. Context variablesin the SYSTEM namespace

DB_NAME

Either the full path to the database or—if connecting viathe path is disallowed—
itsalias.

NETWORK_PROTOCOL

The protocol used for the connection: * TCPv4' ," WNET' , ' XNET' or NULL.

CLIENT_ADDRESS

For TCPv4, thisisthe IP address. For XNET, the local process ID. For all other
protocols this variable is NULL.

CURRENT_USER

Same as global CURRENT_USER variable.

CURRENT_ROLE

Same as global CURRENT_ROLE variable.

SESSION_ID

Same as global CURRENT_CONNECTION variable.

TRANSACTION_ID

Same as global CURRENT_TRANSACTION variable.

ISOLATION_LEVEL

The isolation level of the current transaction; 'READ COMMITTED', 'SNAPSHOT'
or 'CONSISTENCY'".

ENGINE_VERSION

The Firebird engine (server) version. Added in 2.1.

Return values and error behaviour: If the polled variable exists in the given namespace, its value will be
returned as a string of max. 255 characters. If the namespace doesn't exist or if you try to access a non-existing
variable in the SYSTEM namespace, an error is raised. If you poll a non-existing variable in one of the other
namespaces, NULL is returned. Both namespace and variable names must be given as single-quoted, case-sen-

sitive, non-NULL strings.

Examples:

sel ect rdb$get context(' SYSTEM, 'DB NAME) from rdb$dat abase

New. User Addr =

rdb$get _cont ext (' SYSTEM , ' CLI ENT_ADDRESS') ;

insert into MyTable (TestField)
val ues (rdb$get context (' USER SESSION , 'MyVar'))

See also: RDB$SET_CONTEXT()

RDB$SET_CONTEXT()

Note

available.

RDB$SET_CONTEXT and its counterpart RDB$GET_CONTEXT are actually predeclared UDFs. They are listed
here asinternal functions because they are aways present—the user doesn't have to do anything to make them

Availablein: DSQL, PSQL * Asadeclared UDF it should be available in ESQL

292

Built-in functions and Variables

Description: Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

Syntax:

RDB$SET_CONTEXT (' <namespace>', '<varnane>', <value> | NULL)

<nanespace> = USER_SESSI ON | USER_TRANSACTI ON
<var nanme> 1= A case-sensitive string of max. 80 characters
<val ue> ::= A value of any type, as long as it's castable

to a VARCHAR(255)

Table8.5. RDB$SET_CONTEXT Function Parameters

Parameter Description
namespace Namespace
varname Variable name. Case-sensitive. Maximum length is 80 characters
value Data of any type provided it can be cast to VARCHAR(255)

Result type: INTEGER

Thenamespaces. The USER_SESSION and USER_TRANSACTION namespacesareinitially empty. The user can
create and set variablesin them with RDB$SET_CONTEXT() and retrieve them with RDBSGET_CONTEXT(). The
USER_SESSION context isbound to the current connection. Variablesin USER_TRANSACTION only exist inthe

transaction in which they have been set. When the transaction ends, the context and all the variables defined
init are destroyed.

Return valuesand error behaviour: Thefunction returns 1 if the variable already existed beforethe call and 0
if it didn't. To remove avariable from a context, set it to NULL. If the given namespace doesn't exist, an error is
raised. Both namespace and variable names must be entered as single-quoted, case-sensitive, non-NULL strings.

Examples:
sel ect rdb$set _context (' USER SESSI ON , 'MyVar', 493) from rdb$dat abase
rdb$set context (' USER_SESSI ON , ' RecordsFound', RecCounter);

sel ect rdb$set _context (' USER_TRANSACTI ON', 'Savepoints', 'Yes')
from r db$dat abase

Notes:
» The maximum number of variablesin any single context is 1000.

* AIl USER_TRANSACTION variableswill surviveaROLLBACK RETAIN (see ROLLBACK Options) or ROLL-
BACK TO SAVEPOINT unaltered, no matter at which point during the transaction they were set.

* DuetoitsUDF-likenature, RDB$SET_CONTEXT can—in PSQL only—be called likeavoid function, without
assigning the result, asin the second example above. Regular internal functions don't allow this type of use.

See also: RDB$GET_CONTEXT()

293

Built-in functions and Variables

Mathematical Functions

ABS()
Availablein: DSQL, PSQL
Possible name conflict: YES—>Read details

Syntax:

ABS (nunber)

Table 8.6. ABS Function Parameter

Parameter Description

value An expression of anumeric type

Result type: Numerical

Description: Returns the absolute value of the argument.

ACOS()

Availablein: DSQL, PSQL

Possible name conflict: Y ES—>Read details
Syntax:

ACCS (nunber)

Table8.7. ACOS Function Parameter

Parameter Description

value An expression of a numeric type within the range [-1; 1]

Result type: DOUBLE PRECISION
Description: Returnsthe arc cosine of the argument.
e Theresultisan anglein the range [0, pi].

 If the argument is outside the range [-1, 1], NaN is returned.

294

Built-in functions and Variables

ASIN()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

ASI N (nunber)

Table 8.8. ASIN Function Parameter

Parameter Description

value An expression of a numeric type within the range [-1; 1]

Result type: DOUBLE PRECISION
Description: Returns the arc sine of the argument.
» Theresult isan angle in the range [-pi/2, pi/2].

 |f the argument is outside the range [-1, 1], NaN is returned.

ATAN()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

ATAN (nunber)

Table8.9. ATAN Function Parameter

Parameter Description

value An expression of anumeric type

Result type: DOUBLE PRECISION

Description: The function ATAN returns the arc tangent of the argument. The result is an angle in the range
<-pi/2, pi/2>.

ATAN2()
Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details

295

Built-in functions and Variables

Syntax:

ATAN2 (y, x)

Table 8.10. ATAN2 Function Parameters

Parameter Description
X An expression of anumeric type
y An expression of anumeric type

Result type: DOUBLE PRECISION

Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the

angles -pi/2 and pi/2.

» Theresultisan anglein the range [-pi, pi].

» |If x isnegative, theresultispi if y isO, and -pi if y is-0.

e If bothy and x are 0, the result is meaningless. Starting with Firebird 3, an error will be raised if both argu-
mentsare0. Atv.2.5.4, itisstill not fixed inlower versions. For moredetails, visit Tracker ticket CORE-3201.

Notes:

A fully equivalent description of this function is the following: ATAN2(y, x) is the angle between the pos-
itive X-axis and the line from the origin to the point (x, y). This also makes it obvious that ATAN2(O, 0)

is undefined.

* If x isgreater than 0, ATAN2(y, x) isthe same as ATAN(y/X).

 If both sine and cosine of the angle are aready known, ATAN2(si n, cos) givesthe angle.

CEIL(), CEILING()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details (Affects CEILING only)

Syntax:

CEIL[ING (numnber)

Table8.11. CEIL[ING] Function Parameters

Parameter

Description

number

An expression of anumeric type

Result type: BIGINT or DOUBLE PRECISION

296

http://tracker.firebirdsql.org/browse/CORE-3201

Built-in functions and Variables

Description: Returns the smallest whole number greater than or equal to the argument.

See also: FLOOR()

COS()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

COS (angl e)

Table 8.12. COS Function Parameter

Parameter Description

angle An anglein radians

Result type: DOUBLE PRECISION
Description: Returns an angle's cosine. The argument must be given in radians.

e Any non-NULL result is—obviousy—in the range [-1, 1].

COSH()

Availablein: DSQL, PSQL

Possible name conflict: Y ES—>Read details
Syntax:

CCSH (number)

Table 8.13. COSH Function Parameter

Parameter Description

number A number of anumeric type

Result type: DOUBLE PRECISION
Description: Returns the hyperbolic cosine of the argument.

e Any non-NULL resultisintherange[1, INF].

COT()

Availablein: DSQL, PSQL

297

Built-in functions and Variables

Possible name conflict: YES—>Read details
Syntax:

COr (angl e)

Table8.14. COT Function Parameter

Parameter

Description

angle An anglein radians

Result type: DOUBLE PRECISION

Description: Returns an angle's cotangent. The argument must be given in radians.

EXP()
Availablein: DSQL, PSQL
Syntax:

EXP (nunber)

Table 8.15. EXP Function Parameter

Parameter Description
number A number of a numeric type
Result type: DOUBLE PRECISION
Description: Returns the natural exponential, "¢’
See also: LN()
FLOOR()
Availablein: DSQL, PSQL
Possible name conflict: Y ES—>Read details
Syntax:
FLOOR (nunber)
Table 8.16. FLOOR Function Parameter
Parameter Description
number An expression of anumeric type

298

Built-in functions and Variables

Result type: BIGINT or DOUBLE PRECISION
Description: Returns the largest whole number smaller than or equal to the argument.

See also: CEIL() / CEILING()

LN()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

LN (nunber)

Table8.17. LN Function Par ameter

Parameter Description

number An expression of anumeric type

Description: Returnsthe natural logarithm of the argument.
* Anerrorisraised if the argument is negative or 0.
Result type: DOUBLE PRECISION

See also: EXP()

LOG()

Availablein: DSQL, PSQL

Possible name conflict: Y ES—>Read details
Syntax:

LOG (x,)

Table 8.18. LOG Function Parameters

Parameter Description
X Base. An expression of a numeric type
y An expression of anumeric type

Result type: DOUBLE PRECISION

Description: Returnsthe x-based logarithm of y.

299

Built-in functions and Variables

 If either argumentisO or below, an error israised. (Before 2.5, thiswould resultin NaN, 1 NF or 0, depending
on the exact values of the arguments.)

 If both arguments are 1, NaN s returned.
e Ifx=1andy <1, -l NFisreturned.

e Ifx=21andy >1, | NFisreturned.

LOG10()

Availablein: DSQL, PSQL

Changed in: 2.5

Possible name conflict: YES—>Read details
Syntax:

LOGLO (nunber)

Table 8.19. LOG10 Function Parameter

Parameter Description

number An expression of anumeric type

Result type: DOUBLE PRECISION
Description: Returns the 10-based logarithm of the argument.

* Anerrorisraised if the argument is negative or 0. (In versions prior to 2.5, such values would result in NaN
and -I NF, respectively.)

MOD()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

MOD (a, b)

Table 8.20. MOD Function Parameters

Parameter Description
a An expression of anumeric type
b An expression of anumeric type

300

Built-in functions and Variables

Result type: INTEGER or BIGINT
Description: Returns the remainder of an integer division.

* Non-integer argumentsarerounded beforethedivision takesplace. So, “ 7.5 mod 2.5” gives2 (8 mod 3), not 0.

PI1()
Availablein: DSQL, PSQL
Possible name conflict: Y ES—>Read details
Syntax:
Pl ()
Result type: DOUBLE PRECISION

Description: Returns an approximation of the value of pi .

POWER()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

PONER (x, V)

Table8.21. POWER Function Parameters

Parameter Description
X An expression of anumeric type
y An expression of anumeric type

Result type: DOUBLE PRECISION
Description: Returns x to the power of y.

» If x negative, an error israised.

RAND()
Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details

301

Built-in functions and Variables

Syntax:
RAND ()

Result type: DOUBLE PRECISION

Description: Returns arandom number between 0 and 1.

ROUND()

Availablein: DSQL, PSQL

Possible name conflict: Y ES—>Read details
Syntax:

ROUND (<nunber> [, <scal e>])

Table 8.22. ROUND Function Parameters

Parameter Description

number An expression of anumeric type

be performed, e.g.:

2 for rounding to the nearest multiple of 0.01
1 for rounding to the nearest multiple of 0.1
0 for rounding to the nearest whole number
-1 for rounding to the nearest multiple of 10
-2 for rounding to the nearest multiple of 100

scae

An integer specifying the number of decimal places toward which rounding isto

Result type: INTEGER, (scaled) BIGINT or DOUBLE PRECISION

Description: Rounds a number to the nearest integer. If the fractional part is exactly 0. 5, rounding is upward
for positive numbers and downward for negative numbers. With the optional scal e argument, the number can
be rounded to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Important

e |f you are used to the behaviour of the external function ROUND, please notice that the internal function
always rounds halves away from zero, i.e. downward for negative numbers.

Examples: If thescal e argument is present, the result usually has the same scale as the first argument:

ROUND(123. 654, 1) -- returns 123.700 (not 123.7)
ROUND(8341.7, -3) -- returns 8000.0 (not 8000)
ROUND(45. 1212, 0) -- returns 45.0000 (not 45)

Otherwise, the result scaleis O:

302

Built-in functions and Variables

ROUND(45. 1212) -- returns 45

SIGN()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

SI GN (number)

Table 8.23. SIGN Function Parameter

Parameter Description

number An expression of anumeric type

Result type: SMALLINT

Description: Returnsthe sign of the argument: -1, O or 1.

SIN()

Availablein: DSQL, PSQL

Possible name conflict: Y ES—>Read details
Syntax:

SIN (angl e)

Table 8.24. SIN Function Parameter

Parameter Description

angle Anangle, inradians

Result type: DOUBLE PRECISION
Description: Returns an angle's sine. The argument must be given in radians.

e Any non-NULL result is—obviousy—in the range [-1, 1].

SINH()

Availablein: DSQL, PSQL

303

Built-in functions and Variables

Possible name conflict: YES—>Read details

Syntax:

SI NH (nunber)

Table 8.25. SINH Function Parameter

Parameter Description

number An expression of anumeric type

Result type: DOUBLE PRECISION

Description: Returns the hyperbolic sine of the argument.

SQRT()
Availablein: DSQL, PSQL
Possible name conflict: YES—>Read details

Syntax:

SQRT (numrber)

Table 8.26. SQRT Function Parameter

Parameter Description

number An expression of anumeric type

Result type: DOUBLE PRECISION

Description: Returns the square root of the argument.

TAN()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

TAN (angl €)

Table8.27. TAN Function Parameter

Parameter Description

angle Anangle, in radians

304

Built-in functions and Variables

Result type: DOUBLE PRECISION

Description: Returns an angle's tangent. The argument must be given in radians.

TANH()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

TANH (nunber)

Table8.28. TANH Function Parameters

Parameter Description

number An expression of anumeric type

Result type: DOUBLE PRECISION
Description: Returns the hyperbolic tangent of the argument.

* Dueto rounding, any non-NULL result isin the range[-1, 1] (mathematically, it's<-1, 1>).

TRUNC()
Availablein: DSQL, PSQL
Syntax:

TRUNC (<nunber> [, <scal e>])

Table 8.29. TRUNC Function Parameters

Parameter Description

number An expression of anumeric type

An integer specifying the number of decimal places toward which truncating is
to be performed, e.g.:

2 for truncating to the nearest multiple of 0.01
1 for truncating to the nearest multiple of 0.1
0O for truncating to the nearest whole number
-1 for truncating to the nearest multiple of 10

305

Built-in functions and Variables

Parameter Description

-2 for truncating to the nearest multiple of 100

Result type: INTEGER, (scaled) BIGINT or DOUBLE PRECISION

Description: Returns the integer part of a number. With the optional scal e argument, the number can be
truncated to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Notes:
» If thescal e argument is present, the result usually has the same scale as the first argument, e.g.

- TRUNC(789.2225, 2) returns 789.2200 (not 789.22)
- TRUNC(345.4, -2) returns 300.0 (not 300)
- TRUNC(-163.41, 0) returns -163.00 (not -163)

Otherwise, the result scaleis O:

- TRUNC(-163.41) returns-163

Important

If you are used to the behaviour of the external function TRUNCATE, please notice that the internal function
TRUNC aways truncates toward zero, i.e. upward for negative numbers.

Functions for Working with Strings

ASCII_CHAR()
Availablein: DSQL, PSQL
Possible name conflict: YES—>Read details

Syntax:

ASCI | _CHAR (<code>)

Table 8.30. ASCII_CHAR Function Parameter

Parameter Description

code An integer within the range from 0 to 255

Result type: [VAR]JCHAR(1) CHARACTER SET NONE

Description: Returns the ASCII character corresponding to the number passed in the argument.

306

http://www.firebirdsql.org/file/documentation/reference_manuals/reference_material/html/langrefupd25-udf-truncate.html

Built-in functions and Variables

Important

« If you are used to the behaviour of the ASCl | _ CHAR UDF, which returns an empty string if the argument
is 0, please notice that the internal function correctly returns a character with ASCII code O here.

ASCII_VAL()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

ASCI | _VAL (ch)

Table8.31. ASCII_VAL Function Parameter

Par ameter Description

A string of the [VAR]CHAR data type or atext BLOB with the maximum size

ch of 32,767 bytes

Result type: SMALLINT

Description: Returnsthe ASCII code of the character passed in.

 If the argument is a string with more than one character, the ASCII code of the first character is returned.
 If theargument is an empty string, O is returned.

» If theargument is NULL, NULL is returned.

 If the first character of the argument string is multi-byte, an error is raised. (A bug in Firebird 2.1—2.1.3
and 2.5 causes an error to beraised if any character in the string is multi-byte. Thisisfixed in versions2.1.4
and 2.5.1)

BIT_LENGTH()
Availablein: DSQL, PSQL
Syntax:

Bl T_LENGTH (string)

Table8.32. BIT_LENGTH Function Parameter

Parameter Description

string An expression of astring type

307

Built-in functions and Variables

Result type: INTEGER

Description: Gives the length in bits of the input string. For multi-byte character sets, this may be less
than the number of characters times 8 times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” bit length, not counting the trailing spaces,
right-TRIM the argument before passing it to BIT_LENGTH.

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

select bit_length('Hello!') fromrdb$dat abase
-- returns 48

select bit_length(_is08859 1 'Gul di!') fromrdb$dat abase
-- returns 64: 0 and B take up one byte each in | S08859 1

select bit_length
(cast (_is08859 1 'GuB di!' as varchar(24) character set utf8))
from rdb$dat abase
-- returns 80: U and B take up two bytes each in UTF8

select bit_length
(cast (_iso08859_1 'GuR di!' as char(24) character set utf8))
from rdb$dat abase
-- returns 208: all 24 CHAR positions count, and two of themare 16-bit

See also: OCTET_LENGTH(), CHARACTER_LENGTH()

CHAR_LENGTH(), CHARACTER_LENGTHY()

Availablein: DSQL, PSQL

Syntax:

CHAR_LENGTH (str)
CHARACTER_LENGTH (string)

Table8.33. CHAR[ACTER]_LENGTH Function Parameter

Par ameter Description

string An expression of astring type

Result type: INTEGER

Description: Givesthe length in characters of the input string.

308

Built-in functions and Variables

Notes

< With arguments of type CHAR, this function returns the formal string length (i.e. the declared length of a
field or variable). If you want to obtain the “logical” length, not counting the trailing spaces, right-TRIM the
argument before passing it to CHAR[ACTER]_LENGTH.

e >BLOBsupport: SinceFirebird 2.1, thisfunction fully supportstext BLOBs of any length and character set.

Examples:

sel ect char_length('Hello!') from rdb$dat abase
-- returns 6

sel ect char _length(_is08859 1 "G iR di!') from rdb$dat abase
-- returns 8

sel ect char_l ength
(cast (_iso08859 1 'Gul di!' as varchar(24) character set utf8))

from rdb$dat abase
-- returns 8; the fact that 0 and B take up two bytes each is irrel evant

sel ect char_length
(cast (_iso08859 1 "G uB di!' as char(24) character set utf8))

from rdb$dat abase
-- returns 24: all 24 CHAR positions count

See also: BIT_LENGTH(), OCTET_LENGTH()

HASH()
Availablein: DSQL, PSQL
Syntax:

HASH (string)

Table 8.34. HASH Function Parameter

Parameter Description

string An expression of astring type

Description: Returns a hash value for the input string. This function fully supports text BLOBs of any length
and character set.

Result type: BIGINT

LEFT()

Availablein: DSQL, PSQL

309

Built-in functions and Variables

Syntax:

LEFT (string, |ength)

Table8.35. LEFT Function Parameters

Parameter Description
string An expression of astring type
number Integer. Defines the number of charactersto return

Result type: VARCHAR or BLOB

Description: Returns the leftmost part of the argument string. The number of charactersis given in the second
argument.

» Thisfunction fully supports text BLOBs of any length, including those with a multi-byte character set.

e If stringisaBLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n the length of
the input string.

» If thel engt h argument exceeds the string length, the input string is returned unchanged.

 If thel engt h argument isnot awholenumber, bankers rounding (round-to-even) isapplied, i.e. 0.5 becomes
0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

See also: RIGHT()

LOWER()

Availablein: DSQL, ESQL, PSQL

Possible name conflict: YES—>Read details below
Syntax:

LONER (string)

Table 8.36. LOWER Function Parameter S

Parameter Description

string An expression of astring type

Result type: (VAR)CHAR or BLOB

Description: Returns the lower-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBS of any length and character
Set.

310

Built-in functions and Variables

Name Clash

Because LOWER is a reserved word, the internal function will take precedence even if the external function
by that name has aso been declared. To call the (inferior!) external function, use double-quotes and the exact
capitalisation, asin" LONER' (st r).

Example:

sel ect Sheriff from Towns
where | ower (Name) = 'cooper''s valley'

See also: UPPER

LPAD()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

LPAD (str, endlen [, padstr])

Table 8.37. LPAD Function Parameters

Parameter Description
str An expression of astring type
endlen Output string length

The character or string to be used to pad the source string up to the specified

padstr length. Default is space (')

Result type: VARCHAR or BLOB

Description: Left-pads a string with spaces or with a user-supplied string until a given length is reached.

This function fully supports text BLOBs of any length and character set.
If str isaBLOB, theresult isaBLOB. Otherwise, theresult isaVARCHAR(endl en).
If padstr isgivenand equals' ' (empty string), no padding takes place.

If endl en isless than the current string length, the string is truncated to endl en, even if padst r isthe
empty string.

Note

In Firebird 2.1—2.1.3, al non-BL OB results were of type VARCHAR(32765), which made it advisable to cast
them to a more modest size. Thisis no longer the case.

311

Built-in functions and Variables

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

Examples:

lpad ("Hello', 12) -- returns ' Hel | o'
lpad ("Hello', 12, '-") -- returns "------- Hel | o'
lpad ("Hello', 12, ''") -- returns 'Hello

I pad (" Hello', 12, 'abc') -- returns 'abcabcaHel | o'
Ipad ("Hello', 12, 'abcdefghij') -- returns 'abcdefgHell o'
I pad ('Hello', 2) -- returns 'He'

Ipad ("Hello', 2, '-") -- returns 'He'

lpad ("Hello', 2, '") -- returns 'He'

See also: RPAD()

OCTET_LENGTH()
Availablein: DSQL, PSQL
Syntax:

OCTET_LENGTH (string)

Table8.38. OCTET_LENGTH Function Parameter

Parameter Description

string An expression of astring type

Result type: INTEGER

Description: Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may
be less than the number of characters times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” byte length, not counting the trailing spaces,
right-TRIM the argument before passing it to OCTET_LENGTH.

BLOB support: Since Firebird 2.1, this function fully supports text BLOBS of any length and character set.
Examples:

select octet_length('Hello!') fromrdb$dat abase
-- returns 6

sel ect octet length(_iso8859 1 'GuR di!') fromrdb$dat abase

312

Built-in functions and Variables

-- returns 8: U and [take up one byte each in | S08859 1

sel ect octet_length
(cast (_iso08859 1 "G uB di!' as varchar(24) character set utf8))
from rdb$dat abase
-- returns 10: U and B take up two bytes each in UTF8

sel ect octet_length
(cast (_iso08859 1 "G uB di!'" as char(24) character set utf8))
from r db$dat abase
-- returns 26: all 24 CHAR positions count, and two of themare 2-byte

See also: BIT_LENGTH(), CHARACTER_LENGTH()

OVERLAY()

Availablein: DSQL, PSQL

Syntax:

OVERLAY (string PLACI NG repl acement FROM pos [FOR | ength])

Table 8.39. OVERLAY Function Parameters

Parameter Description
string The string into which the replacement takes place
replacement Replacement string
pos The position from which replacement takes place (starting position)
length The number of characters that are to be overwritten

Result type: VARCHAR or BLOB

Description: OVERLAY () overwrites part of a string with another string. By default, the number of characters
removed from (overwritten in) the host string equals the length of the replacement string. With the optional
fourth argument, a different number of characters can be specified for removal.

This function supports BLOBs of any length.

If stringorrepl acenent isaBLOB, theresult isaBLOB. Otherwise, the result isa VARCHAR(n) with
n the sum of the lengths of st ri ng andr epl acenent .

Asusual in SQL string functions, pos is 1-based.
If pos isbeyondtheend of stri ng, repl acenment isplaced directly after st ri ng.

If the number of charactersfrom pos to theend of st ri ng issmaller than the length of r epl acenent (or
thanthel engt h argument, if present), st ri ng istruncated at pos andr epl acenent placed after it.

The effect of a“FOR 0" clauseisthat r epl acenment issimply inserted intost ri ng.

313

Built-in functions and Variables

e If any argument isNULL, theresult isNULL.

» If pos or | engt h isnot awhole number, bankers rounding (round-to-even) is applied, i.e. 0.5 becomes 0,
1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Examples:
overlay (' Goodbye' placing 'Hello' from 2) -- returns ' GHel | oe'
overlay (' Goodbye' placing 'Hello' fromb5) -- returns ' GoodHel | o'
overlay (' Goodbye' placing 'Hello'" from 8) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello" from 20) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing "Hello'" from2 for 0) -- r. 'GHell ooodbye'
overlay (' Goodbye' placing 'Hello' from2 for 3) -- r. 'GHel |l obye'
overlay (' Goodbye' placing "Hello'" from2 for 6) --r. "GHello'
overlay (' Goodbye' placing "Hello'" from2 for 9) --r. '"CHello'
overlay ('Goodbye' placing '' from 4) -- returns ' Goodbye'
overlay (' Goodbye' placing '' from4 for 3) -- returns ' Gooe'
overlay ('Goodbye' placing '' from4 for 20) -- returns 'Goo'
overlay ('' placing 'Hello'" from 4) -- returns 'Hello
overlay ('' placing 'Hello' from4 for 0) -- returns 'Hello
overlay ('' placing "Hello' from4 for 20) -- returns 'Hello

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBS are involved.

See also: REPLACE()

POSITION()
Availablein: DSQL, PSQL

Syntax:

POSI TI ON (substr I N string)
| POSI TION (substr, string [, startpos])

Table 8.40. POSITION Function Parameters

Parameter Description
substr The substring whose position isto be searched for
string The string which isto be searched

startpos The positionin st ri ng where the search isto start

314

Built-in functions and Variables

Result type: INTEGER

Description: Returns the (1-based) position of the first occurrence of a substring in a host string. With the
optional third argument, the search starts at a given offset, disregarding any matches that may occur earlier in
the string. If no match isfound, the result is 0.

Notes:
» The optional third argument is only supported in the second syntax (comma syntax).

» The empty string is considered a substring of every string. Therefore, if substr is" (empty string) and
stringisnot NULL, theresultis:

- lif start pos isnot given;
- startposifstartpos lieswithinstri ng;
- Oif startpos liesbeyondtheend of stri ng.

Notice: A bug in Firebird 2.1—2.1.3 and 2.5 causes POSITION to always return 1 if subst r is the empty
string. Thisisfixedin2.1.4 and 2.5.1.

» Thisfunction fully supports text BLOBs of any size and character set.

Examples:
position ('be'" in 'To be or not to be') -- returns 4
position ('be', 'To be or not to be') -- returns 4
position ('be', 'To be or not to be', 4) -- returns 4
position ('be', 'To be or not to be', 8) -- returns 17
position ('be', '"To be or not to be', 18) -- returns O
position ('be' in 'Alas, poor Yorick!") -- returns O
Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBSs are involved.

See also; SUBSTRING

REPLACE()
Availablein: DSQL, PSQL
Syntax:

REPLACE (str, find, repl)

Table 8.41. REPL ACE Function Parameters

Parameter Description
str The string in which the replacement is to take place
find The string to search for

315

Built-in functions and Variables

Parameter Description

repl The replacement string

Result type: VARCHAR or BLOB
Description: Replaces al occurrences of a substring in a string.
» Thisfunction fully supports text BLOBS of any length and character set.

« If any argument is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n calculated
fromthelengthsof str,fi nd andr epl insuch away that even the maximum possible number of replacements won't
overflow thefield.

e If fi ndistheempty string, st r isreturned unchanged.
* Ifrepl istheempty string, all occurrencesof f i nd are deleted fromstr .

 If any argument isNULL, the result isaways NULL, even if nothing would have been replaced.

Examples:
replace ('Billy Wlder', 'il', 'oog') -- returns ' Boogly Wogder'
replace ('Billy Wlder', "il",) -- returns 'Bly Wer'
replace ('Billy Wlder', null, 'oog') -- returns NULL
replace ('Billy Wlder', "il', null) -- returns NULL
replace ('Billy Wlder', 'xyz', null) -- returns NULL (!)
replace ('Billy Wlder', 'xyz', '"abc') -- returns '"Billy WIder'
replace ('Billy Wlder', "', "abc') -- returns 'Billy Wlder'

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

See also: OVERLAY (), SUBSTRING(), POSITION(), CHAR[ACTER]_LENGTH()

REVERSE()
Availablein: DSQL, PSQL
Syntax:

REVERSE (str)

Table 8.42. REVERSE Function Parameter

Parameter Description

string An expression of astring type

Result type: VARCHAR

316

Built-in functions and Variables

Description: Returns a string backwards.

Examples:
reverse ('spoonful') -- returns 'l uf noops’
reverse (‘'Was it a cat | saw?') -- returns '?was | tac a ti sawW
Tip

This function comes in very handy if you want to group, search or order on string endings, e.g. when dealing
with domain names or email addresses:

create index ix_people_enail on people
conput ed by (reverse(enuil));

sel ect * from peopl e
where reverse(email) starting with reverse('.br");

RIGHT()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

RI GHT (string, |ength)

Table8.43. RIGHT Function Parameters

Par ameter Description
string An expression of astring type
length Integer. Defines the number of charactersto return

Result type: VARCHAR or BLOB

Description: Returnsthe rightmost part of the argument string. The number of charactersisgiven in the second
argument.

» This function supports text BLOBs of any length, but has a bug in versions 2.1—2.1.3 and 2.5 that makes
it fail with text BLOBs larger than 1024 bytes that have a multi-byte character set. This has been fixed in
versons 2.1.4 and 2.5.1.

e |If stringisaBLOB, theresult is a BLOB. Otherwise, the result is a VARCHAR(n) with n the length of
the input string.

» If thel engt h argument exceeds the string length, the input string is returned unchanged.

 If thel engt h argument isnot awholenumber, bankers rounding (round-to-even) isapplied, i.e. 0.5 becomes
0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

317

Built-in functions and Variables

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBS are involved.

Seealso: LEFT(), SUBSTRING()

RPAD()

Availablein: DSQL, PSQL

Changed in: 2.5 (backported to 2.1.4)
Possible name conflict: Y ES—>Read details
Syntax:

RPAD (str, endlen [, padstr])

Table 8.44. RPAD Function Parameters

Parameter Description
str An expression of astring type
endlen Output string length

The character or string to be used to pad the source string up to the specified

endlen length. Default is space (" ')

Result type: VARCHAR or BLOB

Description: Right-pads a string with spaces or with a user-supplied string until a given length is reached.
» Thisfunction fully supports text BLOBs of any length and character set.

» If str isaBLOB, theresultisaBLOB. Otherwise, theresult isaVARCHAR(endl en).

» If padstr isgivenand equals' ' (empty string), no padding takes place.

» If endl en isless than the current string length, the string is truncated to endl en, even if padstr isthe
empty string.

Note

In Firebird 2.1—2.1.3, al non-BL OB results were of type VARCHAR(32765), which made it advisable to cast
them to amore modest size. Thisis no longer the case.

Examples:
rpad ('Hello', 12) -- returns "Hello
rpad ("Hello', 12, '-") -- returns "Hello------- '
rpad (‘Hello', 12, '') -- returns 'Hello'

Built-in functions and Variables

rpad ('Hello', 12, 'abc') -- returns 'Hel |l oabcabca'
rpad ('Hello', 12, 'abcdefghij') -- returns 'Hel |l oabcdefg'
rpad ('Hello', 2) -- returns 'He'
rpad (‘Hello', 2, '-") -- returns 'He'
rpad ("Hello', 2, '") -- returns 'He'

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

See also: LPAD()

SUBSTRING()
Availablein: DSQL, PSQL
Changed in: 2.5.1

Syntax:

SUBSTRI NG (str FROM startpos [FOR | ength])

Table 8.45. SUBSTRING Function Parameters

Parameter Description
str An expression of astring type
startpos Integer expression, the paosition from which to start retrieving the substring
length The number of charactersto retrieve after the <startpos>

Result types: VARCHAR(n) or BLOB

Description: Returns a string's substring starting at the given position, either to the end of the string or with
agiven length.

Thisfunction returnsthe substring starting at character position st ar t pos (thefirst position being 1). Without
the FOR argument, it returns al the remaining charactersin the string. With FOR, it returns| engt h characters
or the remainder of the string, whichever is shorter.

InFirebird 1.x, st art pos and | engt h must be integer literals. In 2.0 and above they can be any valid integer
expression.

Starting with Firebird 2.1, this function fully supports binary and text BLOBSs of any length and character set. If
str isaBLOB, theresult isalso aBLOB. For any other argument type, the resultisaVARCHAR(N). Previoudly,
the result type used to be CHAR(n) if the argument was a CHAR(n) or astring literal.

For non-BLOB arguments, thewidth of theresult field isalwaysequal to thelength of st r , regardlessof st ar t -
pos and | engt h. So, subst ri ng(' pi nhead" from 4 for 2) will return aVARCHAR(7) containing
thestring' he' .

If any argument is NULL, the result is NULL.

319

Built-in functions and Variables

Bugs

e If str isaBLOB and the | engt h argument is not present, the output is limited to 32767 characters.
Workaround: with long BLOBS, always specify char_length(st r)—or a sufficiently high integer—as the
third argument, unless you are sure that the requested substring fits within 32767 characters.

This bug has been fixed in version 2.5.1; the fix was also backported to 2.1.5.

e An older bug in Firebird 2.0, which caused the function to return “false emptystrings’ if st art pos or
| engt h was NULL, was fixed.

Example:

i nsert into AbbrNanes(Abbr Nane)
sel ect substring(LongNane from1 for 3) from LongNanes

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

See also: POSITION, LEFT, RIGHT, CHAR[ACTER]_LENGTH

TRIM()
Availablein: DSQL, PSQL

Syntax:

TRIM ([<adj ust>] str)
<adjust> ::= {[<where>] [what]} FROM

<where> ::= BOTH | LEADING | TRAILING

Table8.46. TRIM Function Parameters

Parameter Description
str An expression of astring type
where The position the substring is to be removed from—BOTH | LEADING | TRAIL-
ING. BOTH isthe default
The substring that should be removed (multiple timesif there are several match-
what es) from the beginning | the end | both sides of the input string <str>. By default

itisspace (‘)

Result type: VARCHAR(n) or BLOB

Description: Removes leading and/or trailing spaces (or optionally other strings) from the input string. Since
Firebird 2.1 this function fully supports text BLOBS of any length and character set.

320

Built-in functions and Variables

Examples:

select trim (' Wste no space ') from rdb$dat abase
-- returns 'Waste no space'

select trim(leading from' Waste no space ') from rdb$database
-- returns 'Waste no space

select trim(leading '.' from' \Wiste no space ') from rdb$database
-- returns ' Waste no space
select trim(trailing '!" from'Help!!!!"') fromrdb$dat abase

-- returns ' Hel p’

select trim('la" from'lalala | love you Ella') from rdb$database
-- returns ' | love you E'
select trim('la" from'Lalala | love you Ella') from rdb$database
-- returns 'Lalala | |ove you El'
Notes:

* If str isaBLOB, theresultisaBLOB. Otherwise, itisaVARCHAR(n) with n the formal length of str .

» The substring to be removed, if specified, may not be bigger than 32767 bytes. However, if this substring is
repeated at st r 's head or tail, the total number of bytes removed may be far greater. (The restriction on the
size of the substring will belifted in Firebird 3.)

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

UPPER()
Availablein: DSQL, ESQL, PSQL
Syntax:

UPPER (str)

Table 8.47. UPPER Function Parameter

Parameter Description

str An expression of astring type

Result type: (VAR)CHAR or BLOB

Description: Returns the upper-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
Set.

321

Built-in functions and Variables

Examples:
sel ect upper(_iso8859 1 'Débécle')

from rdb$dat abase
-- returns 'DEBACLE (before Firebird 2.0: 'DéBACLE)

sel ect upper(_iso8859 1 'Débacle' collate fr_fr)
from rdb$dat abase
-- returns ' DEBACLE' , follow ng French uppercasing rules

See also: LOWER

Date and Time Functions

DATEADD()
Availablein: DSQL, PSQL
Changed in: 2.5
Syntax:

DATEADD (<ar gs>)

<ar gs> i1 = <amount> <unit> TO <dateti ne>
| <unit>, <anount>, <datetine>

<anount > ;.= an integer expression (negative to subtract)
<unit> = YEAR | MONTH | WEEK | DAY

| HOUR | MNUTE | SECOND | M LLI SECOND
<datetime> ::= a DATE, TIME or TIMESTAMP expression

Table 8.48. DATEADD Function Parameters

Parameter Description

An integer expression of the SMALLINT, INTEGER or BIGINT type. A nega-

amount tive value is subtracted
unit Date/time unit
datetime An expression of the DATE, TIME or TIMESTAMP type

Result type: DATE, TIME or TIMESTAMP

Description: Addsthe specified number of years, months, weeks, days, hours, minutes, seconds or milliseconds
to adate/time value. (The WEEK unitisnew in 2.5.)

» Theresult typeis determined by the third argument.

» With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird 2.5, units smaller than DAY
were disallowed for DATES.)

322

Built-in functions and Variables

» With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.
Examples:

dat eadd (28 day to current_date)
dateadd (-6 hour to current_tine)

dat eadd (nmonth, 9, DateOf Conception)
dateadd (-38 week to DateO'Birth)
dateadd (minute, 90, tine 'now)
dateadd (? year to date '11-Sep-1973")

See also: DATEDIFF, Operations Using Date and Time Values

DATEDIFF()
Availablein: DSQL, PSQL
Changed in: 2.5

Syntax:

DATEDI FF (<args>)

<ar gs> ::= <unit> FROM <nmonent 1> TO <nmonent 2>
| <unit>, <nponentl> <nonent2>

<uni t > ::= YEAR | MONTH | WEEK | DAY
| HOUR | MNUTE | SECOND | M LLI SECOND
<monment N> ::= a DATE, TIME or TI MESTAMP expression

Table 8.49. DATEDIFF Function Parameters

Parameter Description
unit Date/time unit
moment1 An expression of the DATE, TIME or TIMESTAMP type
moment2 An expression of the DATE, TIME or TIMESTAMP type

Result type: BIGINT

Description: Returnsthe number of years, months, weeks, days, hours, minutes, seconds or milliseconds elapsed
between two date/time values. (The WEEK unitisnew in 2.5.)

* DATE and TIMESTAMP arguments can be combined. No other mixes are allowed.

* With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird 2.5, units smaller than DAY
were disallowed for DATES.)

» With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.

323

Built-in functions and Variables

Computation:
» DATEDIFF doesn't look at any smaller units than the one specified in the first argument. As aresult,

- “datediff (year, date '1-Jan-2009', date '31-Dec-2009')" returnsO, but
“datedi ff (year, date '31-Dec-2009', date '1-Jan-2010")" returnsl

|t does, however, look at all the bigger units. So:
“datedi ff (day, date '26-Jun-1908', date '11-Sep-1973')" returns 23818
» A negative result value indicates that monment 2 lies before monent 1.

Examples:

datedi ff (hour fromcurrent _tinestanp to tinestanp '12-Jun-2059 06:00')
datediff (mnute fromtinme '0:00" to current_tine)

datedi ff (month, current _date, date '1-1-1900')

datedi ff (day fromcurrent_date to cast(? as date))

See also: DATEADD, Operations Using Date and Time Values

EXTRACT()
Availablein: DSQL, ESQL, PSQL
Syntax:
EXTRACT (<part> FROM <dat et i ne>)
<part> 1= YEAR | MONTH | WEEK
| DAY | WVEEKDAY | YEARDAY

| HOUR | MNUTE | SECOND | M LLI SECOND
<datetime> ::= a DATE, TINME or TIMESTAMP expression

Table 8.50. EXTRACT Function Parameters

Par ameter Description
part Date/time unit
datetime An expression of the DATE, TIME or TIMESTAMP type

Result type: SMALLINT or NUMERIC

Description: Extracts and returns an element from a DATE, TIME or TIMESTAMP expression. This function
was already added in InterBase 6, but not documented in the Language Reference at the time.

Returned Data Types and Ranges

The returned data types and possible ranges are shown in the table below. If you try to extract a part that isn't
present in the date/time argument (e.g. SECOND from aDATE or YEAR from a TIME), an error occurs.

324

Built-in functions and Variables

Table 8.51. Typesand ranges of EXTRACT results

Part Type Range Comment

YEAR SMALLINT 1—9999

MONTH SMALLINT 1—12

WEEK SMALLINT 1—53

DAY SMALLINT 1—31

WEEKDAY SMALLINT 0—6 0 = Sunday
YEARDAY SMALLINT 0—365 0 = January 1
HOUR SMALLINT 0—23

MINUTE SMALLINT 0—59

SECOND NUMERIC(9,4) 0.0000—59.9999 includes millisecond as

fraction

MILLISECOND NUMERIC(9,1) 0.0—999.9 brokenin2.1,21.1
MILLISECOND

Description: Firebird 2.1 and up support extraction of the millisecond from a TIME or TIMESTAMP. The
datatype returned is NUMERIC(9,1).

Note

If you extract the millisecond from CURRENT_TIME, be aware that this variable defaults to seconds precision,
so the result will always be 0. Extract from CURRENT_TIME(3) or CURRENT_TIMESTAMP to get milliseconds
precision.

WEEK

Description: Firebird 2.1 and up support extraction of the | SO-8601 week number fromaDATE or TIMESTAMP.
ISO-8601 weeks start on a Monday and always have the full seven days. Week 1 is the first week that has a
majority (at least 4) of its daysin the new year. The first 1—3 days of the year may belong to the last week (52
or 53) of the previous year. Likewise, ayear's final 1—3 days may belong to week 1 of the following year.

Caution

Be careful when combining WEEK and YEAR results. For instance, 30 December 2008 liesin week 1 of 2009,
so“extract (week fromdate ' 30 Dec 2008') " returns 1. However, extracting Y EAR always gives
the calendar year, which is 2008. In this case, WEEK and YEAR are at odds with each other. The same happens
when thefirst days of January belong to the last week of the previous year.

Please aso notice that WEEKDAY is not 1SO-8601 compliant: it returns O for Sunday, whereas 1SO-8601
specifies 7.

325

Built-in functions and Variables

See also: Data Typesfor Dates and Times

Type Casting Functions

CAST()
Availablein: DSQL, ESQL, PSQL
Changed in: 2.5
Syntax:
CAST (expression AS <target_type>)
<target _type> ::= sql_datatype

| [TYPE OF] domain
| TYPE OF COLUW r el nane. col nane

Table 8.52. CAST Function Parameters

Parameter Description
value SQL expression
datatype SQL datatype
domain
colname Table or view column name
precision Precision. From 1 to 18
scae Scale. From 0 to 18—it must be less than or equal to precision
size The maximum size of astring in characters
charset Character set
subtype _num BLOB subtype number
subtype_name BLOB subtype mnemonic name
seglen Segment size—it cannot be greater than 65,535

Result type: User-chosen.

Description: CAST converts an expression to the desired datatype or domain. If the conversion is not possible,
an error is raised.

“Shorthand” Syntax
Alternative syntax, supported only when casting astring literal to aDATE, TIME or TIMESTAMP:

dat atype 'date/tinmestring'

326

Built-in functions and Variables

This syntax was already availablein InterBase, but was never properly documented.

Note

The short syntax is evaluated immediately at parse time, causing the value to stay the same until the statement
isunprepared. For datetime literalslike' 12- Cct - 2012 this makes no difference. For the pseudo-variables
'NOW', 'YESTERDAY', 'TODAY' and 'TOMORROW", this may not be what you want. If you need the value to
be evaluated at every call, use the full CAST() syntax.

Examples:

A full-syntax cast:
sel ect cast ('12' || '-June-' || '1959' as date) from rdb$database
A shorthand string-to-date cast:

updat e People set AgeCat = 'Ad’
where BirthDate < date '1-Jan-1943'

Notice that you can drop even the shorthand cast from the example above, as the engine will under-
stand from the context (comparison to a DATE field) how to interpret the string:

updat e People set AgeCat = 'dd
where BirthDate < '1-Jan-1943'

But thisis not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

sel ect date 'today' - 7 fromrdb$dat abase

The following table shows the type conversions possible with CAST.

Table 8.53. Possible Type-castings with CAST

From

To

Numeric types

Numeric types
[VAR]CHAR
BLOB

[VAR]CHAR
BLOB

[VAR]CHAR
BLOB
Numeric types
DATE

TIME
TIMESTAMP

DATE
TIME

[VAR]CHAR
BLOB
TIMESTAMP

TIMESTAMP

[VAR]CHAR
BLOB
DATE

327

Built-in functions and Variables

From To

TIME

Keep in mind that sometimesinformation islost, for instance when you cast aTIMESTAMPto aDATE. Also, the
fact that types are CAST-compatible isin itself no guarantee that a conversion will succeed. “ CAST (123456789
as SMALLINT)” will definitely result in an error, aswill “CAST('Judgement Day' as DATE)”.

Casting input fields: Since Firebird 2.0, you can cast statement parameters to a datatype:
cast (? as integer)

This givesyou control over the type of input field set up by the engine. Please notice that with statement param-
eters, you always need a full-syntax cast—shorthand casts are not supported.

Casting to a domain or its type: Firebird 2.1 and above support casting to a domain or its base type. When
casting to a domain, any constraints (NOT NULL and/or CHECK) declared for the domain must be satisfied or
the cast will fail. Please be aware that a CHECK passesif it evaluates to TRUE or NULL! So, given the following
statements:

create domain quint as int check (value >= 5000)

sel ect cast (2000 as quint) from rdb$dat abase -- (D
sel ect cast (8000 as quint) fromrdb$dat abase -- (2)
sel ect cast (null as quint) from rdb$dat abase -- (3)

only cast number (1) will result in an error.

When the TYPE OF modifier is used, the expression is cast to the base type of the domain, ignoring any con-
straints. With domain quint defined as above, the following two casts are equivalent and will both succeed:

sel ect cast (2000 as type of quint) fromrdb$database
sel ect cast (2000 as int) fromrdb$dat abase

If TYPE OF isused with a(VAR)CHAR type, its character set and collation are retained:

create domain i s0o20 varchar(20) character set is08859 1;
create domai n dunl 20 varchar(20) character set is08859 1 collate du_nl;
create table zinnen (zin varchar(20));
conmit;
insert into zinnen values ('Deze');
insert into zinnen values ('De');
insert into zinnen values ('die');
insert into zinnen values ('deze');

sel ect cast(zin as type of is020) from zi nnen order by 1,
-- returns Deze -> Die -> deze -> die

select cast(zin as type of dunl20) from zi nnen order by 1;
-- returns deze -> Deze -> die -> Die

Warning

If a domain's definition is changed, existing CASTs to that domain or its type may become invalid. If these
CASTs occur in PSQL modules, their invalidation may be detected. See the note The RDB$VALID BLR field,
in Appendix A.

328

Built-in functions and Variables

Castingtoacolumn'stype: InFirebird 2.5 and above, it ispossibleto cast expressionsto the type of an existing
table or view column. Only the type itself is used; in the case of string types, thisincludes the character set but
not the collation. Constraints and default values of the source column are not applied.

create table ttt (

);

s varchar (40) character set utf8 collate unicode_ci_ai

comit;

sel ect cast ('Jag har ménga vanner' as type of colum ttt.s) from rdb$dat abase;

L]

Warnings

For text types, character set and collation are preserved by the cast—just as when casting to a domain.
However, dueto abug, the collation is not always taken into consideration when comparisons (e.g. equality
tests) are made. In cases where the collation is of importance, test your code thoroughly before deploying!
Thisbug is fixed for Firebird 3.

If acolumn's definitionis altered, existing CASTsto that column's type may become invalid. If these CASTs
occur in PSQL modules, their invalidation may be detected. See the note The RDB$VALID BLR field, in
Appendix A.

Casting BLOBs: Successful casting to and from BLOBs is possible since Firebird 2.1.

Functions for Bitwise Operations

BIN_AND()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

BI N_AND (nunber, nunber [, nurmber ...])

Table 8.54. BIN_AND Function Parameters

Parameter Description

number

Any integer number (literal, smallint/integer/bigint, numeric/decimal with scale
0)

Result type: SMALLINT, INTEGER of BIGINT

Note

SMALLINT result is returned only if al the arguments are explicit SMALLINTs or NUMERIC(n, 0) with n
<= 4; otherwise small integers return an INTEGER result.

329

Built-in functions and Variables

Description: Returnsthe result of the bitwise AND operation on the argument(s).

Seealso: BIN_OR, BIN_XOR

BIN_NOT()

Availablein: DSQL, PSQL
Possible name conflict: NO
Syntax:

BI N_NOT (nunber)

Table 8.55. BIN_NOT Function Parameter

Par ameter Description

Any integer number (literal, smallint/integer/bigint, numeric/decimal with scale

number 0)

Result type: SMALLINT, INTEGER or BIGINT

Note

SMALLINT result isreturned only if al the arguments are explicit SMALLINTs or NUMERIC(n, 0) with n
<= 4; otherwise small integers return an INTEGER result.

Description: Returnsthe result of the bitwise NOT operation on the argument, i.e., ones complement.

See also: BIN_OR, BIN_XOR and othersin this set.

BIN_OR()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

BI N OR (nunber, nunmber [, nunber ...])

Table 8.56. BIN_OR Function Parameters

Parameter Description

Any integer number (literal, smallint/integer/bigint, numeric/decimal with scale

number 0)

330

Built-in functions and Variables

Result type: SMALLINT, INTEGER or BIGINT

Note

SMALLINT result is returned only if all the arguments are explicit SMALLINTs or NUMERIC(n, 0) with n
<= 4; otherwise small integers return an INTEGER result.

Description: Returns the result of the bitwise OR operation on the argument(s).

Seealso: BIN_AND, BIN_XOR

BIN_SHL()
Availablein: DSQL, PSQL
Syntax:

BI N_SHL (nunmber, shift)

Table8.57. BIN_SHL Function Parameters

Parameter Description
number A number of an integer type
shift The number of bits the number value is shifted by

Result type: BIGINT
Description: Returns the first argument bitwise |eft-shifted by the second argument, i.e. a <<b or a-2"b.

Seealso: BIN_SHR

BIN_SHR()
Availablein: DSQL, PSQL
Syntax:

BI N_SHR (nunber, shift)

Table 8.58. BIN_SHR Function Parameters

Parameter Description
number A number of an integer type
shift The number of bits the number value is shifted by

331

Built-in functions and Variables

Description: Returnsthe first argument bitwise right-shifted by the second argument, i.e. a >> b or a/2"b.

» The operation performed is an arithmetic right shift (SAR), meaning that the sign of the first operand is
always preserved.

Result type: BIGINT

Seealso: BIN_SHL

BIN_XOR()

Availablein: DSQL, PSQL

Possible name conflict: YES—>Read details
Syntax:

BI N_XOR (nunber, nunber [, nurmber ...])

Table 8.59. BIN_XOR Function Parameters

Parameter Description

Any integer number (literal, smallint/integer/bigint, numeric/decimal with scale

number 0)

Description: Returns the result of the bitwise X OR operation on the argument(s).

Result type: SMALLINT, INTEGER or BIGINT

Note

SMALLINT result isreturned only if al the arguments are explicit SMALLINTs or NUMERIC(n, 0) with n
<= 4; otherwise small integers return an INTEGER result.

Seealso: BIN_AND, BIN_OR

Functions for Working with UUID

CHAR_TO_UUID()
Availablein: DSQL, PSQL
Added in: 2.5

Syntax:

CHAR TO UUI D (ascii _uuid)

332

Built-in functions and Variables

Table 8.60. CHAR_TO_UUID Function Parameter

Parameter Description
A 36-character representation of UUID. -' (hyphen) in positions 9, 14, 19 and
ascii_uuid 24; valid hexadecimal digitsin any other positions, e.g. 'AObF4E45-3029-2a44-
D493-4998c9b439A3'

Result type: CHAR(16) CHARACTER SET OCTETS
Description: Converts a human-readable 36-char UUID string to the corresponding 16-byte UUID.
Examples:

sel ect char_to_uui d(' AObF4E45- 3029- 2a44- D493- 4998c9b439A3') from r db$dat abase
-- returns AOBF4E4530292A44D4934998C9B439A3 (16-byte string)

sel ect char _to_uui d(' AObF4E45- 3029- 2A44- X493- 4998c9b439A3') from r db$dat abase
-- error: -Human readable UU D argurment for CHAR TO UU D rnust
- - have hex digit at position 20 instead of "X (ASCI| 88)"

See also: UUID_TO_CHAR(), GEN_UUID()

GEN_UUID()
Availablein: DSQL, PSQL
Syntax:
GEN_UUI D ()
Result type: CHAR(16) CHARACTER SET OCTETS
Description: Returns auniversaly unique ID as a 16-byte character string.
Example:

sel ect gen_uuid() from rdb$dat abase
-- returns e.g. 017347BFE212B2479C00FA4323B36320 (16-byte string)

See also: UUID_TO_CHAR(), CHAR_TO_UUID()

UUID_TO_CHAR()
Availablein: DSQL, PSQL
Added in: 2.5

Syntax:

UUI D _TO CHAR (uuid)

333

Built-in functions and Variables

uuid ::= a string consisting of 16 single-byte characters

Table8.61. UUID_TO_CHAR Function Parameters

Parameter Description

uuid 16-byte UUID

Result type: CHAR(36)
Description: Converts a 16-byte UUID to its 36-character, human-readable ASCI| representation.
Examples:

sel ect uuid_to_char(x' 876C45F4569B320DBCB4735AC3509E5F') from r db$dat abase
-- returns ' 876C45F4- 569B- 320D BCB4- 735AC3509E5F

select uuid_to _char(gen_uuid()) fromrdb$dat abase
-- returns e.g. '680D946B- 45FF- DB4E- B103- BB5711529B86'

select uuid_to char('Firebird swings!') fromrdb$database
-- returns '46697265-6269- 7264- 2073- 77696E677321'

See also: CHAR_TO_UUID(), GEN_UUID()

Functions for Working with Generators (Sequences)

GEN_ID()
Availablein: DSQL, ESQL, PSQL

Description: Incrementsagenerator or sequence and returnsits new value. From Firebird 2.0 onward, the SQL -
compliant NEXT VALUE FOR syntax is preferred, except when an increment other than 1 is needed.

Result type: BIGINT

Syntax:

CGEN I D (generator-nane, <step>)

Table 8.62. GEN_ID Function Parameters

Parameter Description

Name of a generator (sequence) that exists. If it has been defined in double
generator-name guotes with a case-sensitive identifier, it must be used in the same form unless
the nameis all upper-case.

334

Built-in functions and Variables

Parameter Description

step An integer expression

Result type: BIGINT

Description: Increments a generator or sequence and returns its new value. If step equals 0, the function will
leave the value of the generator unchanged and return its current value.

» From Firebird 2.0 onward, the SQL-compliant NEXT VALUE FOR syntax is preferred, except when an incre-
ment other than 1 is needed.

Example:

new.rec_id = gen_id(gen_recnum 1);

Warning

If the value of the step parameter is less than zero, it will decrease the value of the generator. Attention! You
should be extremely cautious with such manipulationsin the database, asthey could compromise dataintegrity.

See also: NEXT VALUE FOR, CREATE SEQUENCE (GENERATOR)

Conditional Functions

COALESCE()
Availablein: DSQL, PSQL
Syntax:

COALESCE (<expl>, <exp2> [, <expN> ... 1)

Table 8.63. COALESCE Function Parameters

Parameter Description

expl, exp2 ... expN A list of expressions of any compatible types

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result is NULL.

Result type: Depends on inpuit.

Example: This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to
FirstName. If that too is NULL, “Mr./Mrs.” is used. Finally, it adds the family name. All in al, it tries to use
the available data to compose a full name that is asinformal as possible. Notice that this scheme only works if

335

Built-in functions and Variables

absent nicknames and first names are really NULL: if one of them is an empty string instead, COALESCE will
happily return that to the caller.

sel ect
coal esce (N cknane, FirstNane, '"M./Ms.') || ' ' || LastNane
as Ful | Nare
from Persons

See also: IIF, NULLIF, CASE

DECODE()
Availablein: DSQL, PSQL

Syntax:

DECODE(t est expr,
exprl, resultl
expr2, result2 .]
[, defaultresult])

The equivaent CASE construct:

CASE t est expr
WHEN exprl THEN resultl
[WHEN expr2 THEN result2 .]
[ELSE defaul tresult]

END

Table 8.64. DECODE Function Parameters

Parameter Description

An expression of any compatible type that is compared to the expressions exprl,

testexpr expr2 ... exprN

Expressions of any compatible types, to which the <testexpr> expression is com-

exprl, expr2, ... exprN pared

resultl, re-

«ult2, ... resultN Returned values of any type

defaultresult The expression to be returned if none of the conditionsis met

Result type: Varies

Description: DECODE is a shortcut for the so-called “simple CASE” construct, in which a given expression is
compared to a number of other expressions until a match is found. The result is determined by the value listed
after the matching expression. If no match is found, the default result is returned, if present. Otherwise, NULL
isreturned.

336

Built-in functions and Variables

Caution

Matching is done with the “=" operator, so if <t est expr > isNULL, it won't match any of the <expr >s, not
even those that are NULL.

Example:

sel ect nane,

age,
decode(upper(sex),
‘M, "'Mle',
"F', 'Fermale',
" Unknown'),
religion

from peopl e

See also: CASE, Simple CASE

HF()
Availablein: DSQL, PSQL

Syntax:

Il F (<condition> ResultT, ResultF)

Table 8.65. | |IF Function Parameters

Parameter Description
condition A trueffal se expression
resultT The valuereturned if the condition istrue
resultF The value returned if the condition isfalse

Result type: Depends on inpuit.

Description: |IFtakesthree arguments. If thefirst evaluatestot r ue, the second argument isreturned; otherwise
thethird is returned.

* 1IF could be likened to the ternary “? : " operator in C-like languages.
Example:

select iif(sex ="M, "Sir', '"Madam) from Custoners

Note

IIF(Cond, Resul t 1, Resul t 2) isashortcut for “CASE WHEN Cond THEN Resul t 1 ELSEResul t 2 END”.

337

Built-in functions and Variables

See also: CASE, DECODE

MAXVALUE()
Availablein: DSQL, PSQL
Syntax:

MAXVALUE (exprl [, ... ,exprN])

Table 8.66. MAXVALUE Function Parameters

Parameter Description

exprl ... exprN List of expressions of compatible types

Result type: Varies according to input—result will be of the same data type as the first expression in the list
(<exprl>).

Description: Returnsthe maximum valuefromalist of numerical, string, or date/time expressions. Thisfunction
fully supports text BLOBS of any length and character set.

» If one or more expressions resolve to NULL, MAXVALUE returns NULL. This behaviour differs from the
aggregate function MAX.

Example:

SELECT MAXVALUE(PRI CE_1, PRICE_2) AS PRI CE
FROM PRI CELI ST

See also: MINVALUE()

MINVALUE()
Availablein: DSQL, PSQL
Syntax:

M NVALUE (exprl [, ... , exprN])

Table 8.67. MINVALUE Function Parameters

Parameter Description

exprl ... exprN List of expressions of compatible types

Result type: Varies according to input—result will be of the same data type as the first expression in the list
(<exprl>).

338

Built-in functions and Variables

Description: Returnsthe minimum value from alist of numerical, string, or date/time expressions. Thisfunction
fully supports text BLOBs of any length and character set.

 |f one or more expressions resolve to NULL, MINVALUE returns NULL. This behaviour differs from the
aggregate function MIN.

Example:

SELECT M NVALUE(PRI CE_1, PRICE 2) AS PRI CE
FROM PRI CELI ST

See also: MAXVALUE()

NULLIF()
Availablein: DSQL, PSQL
Syntax:

NULLI F (<expl>, <exp2>)

Table 8.68. NULLIF Function Parameters

Parameter Description
expl An expression
exp2 Another expression of a data type compatible with <expl>

Description: NULLIF returns the value of the first argument, unlessit isequal to the second. In that case, NULL
isreturned.

Result type: Depends on inpuit.
Example:
select avg(nullif(Weight, -1)) from Fat Peopl e

This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,
since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

See also: COALESCE, DECODE, IIF, CASE

Aggregate Functions

Aggregate functions operate on groups of records, rather than on individual records or variables. They are often
used in combination with a GROUP BY clause.

339

Built-in functions and Variables

AVG()
Availablein: DSQL, ESQL, PSQL
Syntax:

AVG ([ALL | DI STINCT] <expr>)

Table 8.69. AVG Function Parameters

Parameter Description

Expression. It may contain atable column, a constant, a variable, an expression,
expr a non-aggregate function or a UDF that returns a numeric data type. Aggregate
functions are not allowed as expressions

Description: AVG returns the average argument value in the group. NULL isignored.
o Parameter ALL (the default) applies the aggregate function to all values.

e Parameter DISTINCT directsthe AV G function to consider only oneinstance of each unique value, no matter
how many times this value occurs.

 If the set of retrieved recordsis empty or contains only NULL, the result will be NULL.
Result type: A numeric datatype, the same as the data type of the argument.
Syntax:
AVG (expression)
 If thegroup is empty or contains only NULLS, the result isNULL.
Example:
SELECT
dept _no,
AV(Q sal ary)

FROM enpl oyee
GROUP BY dept _no

Seealso: SELECT

COUNT()

Availablein: DSQL, ESQL, PSQL

340

Built-in functions and Variables

Syntax:

COUNT ([ALL | DI STINCT] <expr> | *)

Table 8.70. COUNT Function Parameters

Parameter Description

Expression. It may contain atable column, a constant, a variable, an expression,
expr anon-aggregate function or a UDF that returns a numeric data type. Aggregate
functions are not allowed as expressions

Result type: Integer

Description: COUNT returns the number of non-null valuesin a group.

* ALL isthedefault: it smply counts al valuesin the set that are not NULL.

» If DISTINCT is specified, duplicates are exluded from the counted set.

» If COUNT (*) is specified instead of the expression <expr>, al rowswill be counted. COUNT (*)—
- does not accept parameters
- cannot be used with the keyword DISTINCT
- does not take an <expr> argument, since its context is column-unspecific by definition

- counts each row separately and returnsthe number of rowsin the specified table or group without omitting
duplicate rows

- counts rows containing NULL
» If theresult set is empty or contains only NULL in the specified column[s], the returned count is zero.
Example:
SELECT
dept _no,
COUNT(*) AS cnt,
COUNT(DI STI NCT nare) AS cnt_nane

FROM enpl oyee
GROUP BY dept _no

Seealso: SELECT.
LIST()

Availablein: DSQL, PSQL

Changed in: 2.5

341

Built-in functions and Variables

Syntax:

LI ST ([ALL | DI STINCT] expression [, separator])

Table8.71. LIST Function Parameters

Parameter Description

Expression. It may contain atable column, a constant, a variable, an expression,
anon-aggregate function or a UDF that returns the string data type or a BLOB.

expr Fields of numeric and date/time types are converted to strings. Aggregate func-
tions are not allowed as expressions
separator Optional aternative separator, a string expression. Commais the default separa-

tor

Result type: BLOB

Description: LIST returns a string consisting of the non-NULL argument values in the group, separated either
by a comma or by a user-supplied separator. If there are no non-NULL values (this includes the case where the
group isempty), NULL is returned.

e ALL (thedefault) resultsin all non-NULL valuesbeing listed. With DISTINCT, duplicates are removed, except
if expressi onisaBLOB.

* In Firebird 2.5 and up, the optional separ at or argument may be any string expression. This makes it
possible to specify eg. asci i _char (13) as a separator. (This improvement has also been backported to
2.1.4)

» Theexpressi on and separ at or arguments support BLOBS of any size and character set.
» Date/time and numeric arguments are implicitly converted to strings before concatenation.
» Theresult isatext BLOB, except when expr essi on isaBLOB of another subtype.

» Theordering of thelist valuesis undefined—the order in which the strings are concatenated is determined by
read order from the source set which, in tables, is not generally defined. If ordering isimportant, the source
data can be pre-sorted using a derived table or similar.

Examples:

1. Retrieving thelist, order undefined:

SELECT LI ST (display_nane, '; ') FROM GR_WORK;

2. Retrieving thelist in alphabetical order, using a derived table:

SELECT LI ST (display_nanme, '; ')
FROM (SELECT di spl ay_nane

FROM GR_WORK

ORDER BY di spl ay_nane) ;

342

Built-in functions and Variables

Seealso; SELECT

MAX()
Availablein: DSQL, ESQL, PSQL
Syntax:

MAX ([ALL | DI STINCT] <expr >)

Table 8.72. MAX Function Parameters

Parameter Description
Expression. It may contain atable column, a constant, a variable, an expression,
expr anon-aggregate function or a UDF. Aggregate functions are not allowed as ex-
pressions.

Result type: Returns aresult of the same data type the input expression.

Description: MAX returns the maximum non-NULL element in the result set.

* If thegroup isempty or contains only NULLS, theresult isNULL.

« [f theinput argument isastring, the function will return the value that will be sorted last if COLLATE is used.

» Thisfunction fully supports text BLOBS of any size and character set.

Note

The DISTINCT parameter makes no sense if used with MAX() and is implemented only for compliance with
the standard.

Example:

SELECT

dept _no,

MAX(sal ary)
FROM enpl oyee
GROUP BY dept _no

See also: MIN, SELECT

MIN()
Availablein: DSQL, ESQL, PSQL
Syntax:

M N ([ALL | DI STINCT] <expr>)

343

Built-in functions and Variables

Table 8.73. MIN Function Parameters

Parameter Description
Expression. It may contain atable column, a constant, a variable, an expression,
expr anon-aggregate function or a UDF. Aggregate functions are not allowed as ex-
pressions.

Result type: Returns aresult of the same data type the input expression.

Description: MIN returns the minimum non-NULL element in the result set.

 If the group is empty or contains only NULLS, the result isNULL.

* If theinput argument isastring, the function will return the value that will be sorted first if COLLATE isused.

» Thisfunction fully supports text BLOBS of any size and character set.

Note

The DISTINCT parameter makes no sense if used with MIN() and is implemented only for compliance with
the standard.

Example:

SELECT

dept _no,

M N(sal ary)
FROM enpl oyee
GROUP BY dept _no

See also: MAX, SELECT

SUM()
Availablein: DSQL, ESQL, PSQL
Syntax:

SUM ([ALL | DI STINCT] <expr>)

Table 8.74. SUM Function Parameters

Parameter Description

Numeric expression. It may contain atable column, a constant, a variable, an
expr expression, a non-aggregate function or a UDF. Aggregate functions are not al-
lowed as expressions.

344

Built-in functions and Variables

Result type: Returns aresult of the same numeric data type as the input expression.
Description: SUM calculates and returns the sum of non-null values in the group.
 If thegroup is empty or contains only NULLS, the result isNULL.

* ALL isthe default option—all valuesin the set that are not NULL are processed. If DISTINCT is specified,
duplicates are removed from the set and the SUM evaluation is done afterwards.

Example: SELECT dept_no, SUM (salary), FROM employee GROUP BY dept_no

Seealso: SELECT

345

Chapter 9

Transaction Control

Everything in Firebird happensin transactions. Units of work are isolated between a start point and an end point.
Changes to data remain reversible until the moment the client application instructs the server to commit them.

Transaction Statements

Firebird hasasmall lexicon of SQL statementsthat are used by client applications to start, manage, commit and
reverse (roll back) the transactions that form the boundaries of al database tasks:

SET TRANSACTION: for configuring and starting atransaction
COMMIT: tosignal the end of aunit of work and write changes permanently to the database
ROLLBACK: to reverse the changes performed in the transaction
SAVEPOINT: to mark aposition in the log of work done, in case apartial rollback is needed

RELEASE SAVEPOINT: to erase asavepoint

SET TRANSACTION

Used for: Configuring and starting a transaction
Available: DSQL, ESQL

Syntax:

SET TRANSACTI ON
[NAVE tr_nane]
[READ VRI TE | READ ONLY]
[[1 SOLATI ON LEVEL] {
SNAPSHOT [TABLE STABI LI TY]
| READ COMM TTED [[NO RECORD VERSI ON] }]
[WAILT | NO WAIT]
[LOCK TI MEQUT seconds]
[NO AUTO UNDQ
[1 GNORE LI MBQ
[RESERVI NG <t abl es> | USI NG <dbhandl es>]

<tabl es> ::= <table_spec> [, <table_spec> ...]

346

Transaction Control

<tabl e_spec> ::= tablenane [, tablenane ...]
[FOR [SHARED | PROTECTED] {READ | W\RI TE}]

<dbhandl es> :: = dbhandl e [, dbhandle ...]

Table9.1. SET TRANSACTION Statement Parameters

Parameter Description
tr_name Transaction name. Available only in ESQL
seconds The time in seconds for the statement to wait in case a conflict occurs
tables Thelist of tables to reserve
dbhandles Thelist of databases the database can access. Available only in ESQL
table spec Table reservation specification
tablename The name of the table to reserve
dbhandle The handle of the database the database can access. Available only in ESQL

The SET TRANSACTION statement configuresthe transaction and startsit. Asarule, only client applications start
transactions. The exceptions are the occasions when the server starts an autonomous transaction or transactions
for certain background system threads/processes, such as sweeping.

A client application can start any number of concurrently running transactions. A limit does exist, for the total
number of running transactionsin all client applications working with one particular database from the moment
the database was restored from its backup copy or from the moment the database was created originally. The
limit is 2511, or 2,147,483,647.

All clauses in the SET TRANSACTION statement are optional. If the statement starting a transaction has no
clauses specifiedinit, it thetransaction will be started with default values for access maode, lock resolution mode
and isolation level, which are;

SET TRANSACTI ON
READ WRI TE
VWAI T
| SOLATI ON LEVEL SNAPSHOT;

The server assigns integer numbers to transactions sequentially. Whenever aclient starts any transaction, either
explicitly defined or by default, the server sends the transaction ID to the client. This number can be retrieved
in SQL using the context variable CURRENT_TRANSACTION.

Transaction Parameters
The main parameters of atransaction are:

» data access mode (READ WRITE, READ ONLY)

347

Transaction Control

 lock resolution mode (WAIT, NO WAIT) with an optional LOCK TIMEOUT specification
* isolation level (READ COMMITTED, SNAPSHOT, TABLE STABILITY)
» amechanism for reserving or releasing tables (the RESERVING clause)

Transaction Name

The optional NAME attribute defines the name of atransaction. Use of this attribute is available only in Embed-
ded SQL. In ESQL applications, named transactions make it possible to have several transactions active simul-
taneoudly in one application. If named transactions are used, a host-language variable with the same name must
be declared and initialized for each named transaction. Thisis a limitation that prevents dynamic specification
of transaction names and thus, rules out transaction naming in DSQL .

Access Mode
The two database access modes for transactions are READ WRITE and READ ONLY.

 If theaccessmodeis READ WRITE, operationsin the context of thistransaction can be both read operations
and data update operations. Thisis the default mode.

 If the access mode is READ ONLY, only SELECT operations can be executed in the context of this trans-
action. Any attempt to change data in the context of such a transaction will result in database exceptions.
However, it does not apply to global temporary tables (GTT) that are allowed to be changed in READ ONLY
transactions.

Lock Resolution Mode

When severa client processes work with the same database, locks may occur when one process makes uncom-
mitted changesin atable row, or deletes arow, and another processtries to update or delete the same row. Such
locks are called update conflicts.

Locks may occur in other situations when multiple transaction isolation levels are used.

The two lock resolution modes are WAIT and NO WAIT.

WAIT Mode

Inthe WAIT mode (the default mode), if aconflict occurs between two parallel processes executing concurrent
data updates in the same database, a WAIT transaction will wait till the other transaction has finished—Dby
committing (COMMIT) or rolling back (ROLLBACK). The client application with the WAIT transaction will
be put on hold until the conflict is resolved.

If aLOCK TIMEOUT is specified for the WAIT transaction, waiting will continue only for the number of
seconds specified in this clause. If the lock is unresolved at the end of the specified interval, the error message
“Lock time-out on wait transaction” is returned to the client.

L ock resolution behaviour can vary alittle, depending on the transaction isolation level.

NO WAIT Mode

Inthe NO WAIT mode, atransaction will immediately throw a database exception if a conflict occurs.

348

Transaction Control

Isolation Level

Keeping the work of one database task separated from others is what isolation is about. Changes made by one
statement become visible to all remaining statements executing within the same transaction, regardless of its
isolation level. Changes that are in process within other transactions remain invisible to the current transaction
as long as they remain uncommitted. Theisolation level and, sometimes, other attributes, determine how trans-
actions will interact when another transaction wants to commit work.

The ISOLATION LEVEL attribute defines the isolation level for the transaction being started. It is the most
significant transaction parameter for determining its behavior towards other concurrently running transactions.

Thethree isolation levels supported in Firebird are:

* SNAPSHOT
» SNAPSHOT TABLE STABILITY
* READ COMMITTED with two specifications (NO RECORD_VERSION and RECORD_VERSION)

SNAPSHOT Isolation Level

SNAPSHOT isolation level—the default level—all ows the transaction to see only those changes that were com-
mitted before this one was started. Any committed changes made by concurrent transactions will not be seen
in a SNAPSHOT transaction while it is active. The changes will become visible to a new transaction once the
current transaction is either committed or rolled back completely, but not if it isjust rolled back to a savepoint.

Autonomous Transactions

Changes made by autonomous transactions are not seen in the context of the SNAPSHOT transaction that
launched it.

SNAPSHOT TABLE STABILITY Isolation Level

The SNAPSHOT TABLE STABILITY isolation level isthe most restrictive. Asin SNAPSHOT, atransaction
in SNAPSHOT TABLE STABILITY isolation sees only those changes that were committed before the current
transaction was started. After a SNAPSHOT TABLE STABILITY is started, no other transactions can make
any changesto any table in the database that has changes pending. Other transactions are able to read other data,
but any attempt at inserting, updating or deleting by a parallel process will cause conflict exceptions.

The RESERVING clause can be used to alow other transactions to change data in some tables.

If any other transaction has an uncommitted change of data pending in any database table before a transaction
with the SNAPSHOT TABLE STABILITY isolation level is started, trying to start a SNAPSHOT TABLE
STABILITY transaction will result in an exception.

READ COMMITTED Isolation Level

The READ COMMITTED isolation level allows all data changes that other transactions have committed since
it started to be seen immediately by the uncommitted current transaction. Uncommitted changes are not visible
to aREAD COMMITTED transaction.

To retrieve the updated list of rows in the table you are interested in—*refresh”—the SELECT statement just
needs to be requested again, whilst still in the uncommitted READ COMMITTED transaction.

349

Transaction Control

RECORD_VERSION

One of two modifying parameters can be specified for READ COMMITTED transactions, depending on the
kind of conflict resolution desired: RECORD_VERSION and NO RECORD_VERSION. Asthe names suggest,
they are mutually exclusive.

« NO RECORD_VERSION (the default value) is a kind of two-phase locking mechanism: it will make the
transaction unable to write to any row that has an update pending from another transaction.

- if NOWAIT isthe lock resolution strategy specified, it will throw alock conflict error immediately

- with WAIT specified, it will wait until the other transaction either commits or isrolled back. If the other
transaction isrolled back, or if it iscommitted and itstransaction ID is older than the current transaction's
ID, then the current transaction's changeisallowed. A lock conflict error isreturned if the other transaction
was committed and its ID was newer than that of the current transaction.

* With RECORD_VERSION specified, the transaction reads the latest committed version of the row, regard-
less of other pending versions of the row. The lock resolution strategy (WAIT or NO WAIT) does not affect
the behavior of the transaction at its start in any way.

NO AUTO UNDO

The NO AUTO UNDO option affects the handling of unused record versions (garbage) in the event of rollback.
With NO AUTO UNDO flagged, the ROLLBACK statement just marks the transaction as rolled back without
deleting the unused record versions created in the transaction. They are left to be mopped up later by garbage
collection.

NO AUTO UNDO might be useful when alot of separate statements are executed that change datain conditions
where the transaction is likely to be committed successfully most of the time.

The NO AUTO UNDO option isignored for transactions where no changes are made.

IGNORE LIMBO

Thisflag is used to signal that records created by limbo transactions are to be ignored. Transactions are left “in
limbo” if the second stage of atwo-phase commit fails.

Historical Note

IGNORE LIMBO surfaces the TPB parameter i sc_t pb_i gnor e_| i nbo, available in the API since Inter-
Base times and mainly used by dfix.

RESERVING

The RESERVING clause in the SET TRANSACTION statement reserves tables specified in the table list. Re-
serving a table prevents other transactions from making changes in them or even, with the inclusion of certain
parameters, from reading data from them while this transaction is running.

A RESERVING clause can aso be used to specify alist of tables that can be changed by other transactions,
even if the transaction is started with the SNAPSHOT TABLE STABILITY isolation level.

350

Transaction Control

One RESERVING clauseis used to specify as many reserved tables as required.

Options for RESERVING Clause

If one of the keywords SHARED or PROTECTED is omitted, SHARED is assumed. If thewhole FOR clauseis
omitted, FOR SHARED READ isassumed. The names and compatibility of the four access optionsfor reserving

tables are not obvious.

Table 9.2. Compatibility of Access Optionsfor RESERVING

PROTECT- PROTECT-
SHARED READ SHARED WRITE ED READ ED WRITE
SHARED READ Yes Yes Yes Yes
SHARED WRITE Yes Yes No No
PROTECT-
ED READ Yes No Yes No
PROTECT-
ED WRITE Yes No No No

The combinations of these RESERVING clause flags for concurrent access depend on the isolation levels of
the concurrent transactions:

SNAPSHOT isolation

Concurrent SNAPSHOT transactions with SHARED READ do not affect one other's access

A concurrent mix of SNAPSHOT and READ COMMITTED transactions with SHARED WRITE do not
affect one another's access but they block transactions with SNAPSHOT TABLE STABILITY isolation
from either reading from or writing to the specified table[s]

Concurrent transactions with any isolation level and PROTECTED READ can only read data from the
reserved tables. Any attempt to write to them will cause an exception

With PROTECTED WRITE, concurrent transactions with SNAPSHOT and READ COMMITTED isola-
tion cannot write to the specified tables. Transactions with SNAPSHOT TABLE STABILITY isolation
cannot read from or write to the reserved tables at all.

SNAPSHOT TABLE STABILITY isolation

All concurrent transactions with SHARED READ, regardless of their isolation levels, can read from or
write (if in READ WRITE mode) to the reserved tables

Concurrent transactions with SNAPSHOT and READ COMMITTED isolation levels and SHARED
WRITE can read data from and write (if in READ WRITE mode) to the specified tables but concurrent
access to those tables from transactions with SNAPSHOT TABLE STABILITY is blocked completely
whilst these transactions are active

Concurrent transactionswith any isolation level and PROTECTED READ can only read from thereserved
tables

With PROTECTED WRITE, concurrent SNAPSHOT and READ COMMITTED transactions can read
from but not write to the reserved tables. Access by transactions with the SNAPSHOT TABLE STABIL-
ITY isolation level is blocked completely.

READ COMMITTED isolation

351

Transaction Control

- With SHARED READ, all concurrent transactions with any isolation level can both read from and write
(if in READ WRITE mode) to the reserved tables

- SHARED WRITE allows al transactions in SNAPSHOT and READ COMMITTED isolation to read
from and write (if in READ WRITE mode) to the specified tables and blocks access completely from
transactions with SNAPSHOT TABLE STABILITY isolation

- With PROTECTED READ, concurrent transactions with any isolation level can only read from the re-
served tables

- With PROTECTED WRITE, concurrent transactionsin SNAPSHOT and READ COMMITTED isolation
can read from but not write to the specified tables. Access from transactions in SNAPSHOT TABLE
STABILITY isolation is blocked completely.

Tip

In Embedded SQL, the USING clause can be used to conserve system resources by limiting the databases
the transaction can access to an enumerated list (of databases). USING isincompatible with RESERVING. A
USING clausein SET TRANSACTION syntax is not supported in DSQL.

See also: COMMIT, ROLLBACK

COMMIT

Used for: Committing atransaction
Available: DSQL, ESQL

Syntax:

COW T [WORK] [TRANSACTI ON tr_nane]
[RELEASE] [RETAI N [SNAPSHOT]] ;

Table9.3. COMMIT Statement Par ameter

Parameter Description

tr_name Transaction name. Available only in ESQL

The COMMIT statement commitsall work carried out in the context of thistransaction (inserts, updates, del etes,
selects, execution of procedures). New record versions become available to other transactions and, unless the
RETAIN clauseis employed, all server resources allocated to its work are released.

If any conflicts or other errors occur in the database during the process of committing the transaction, the trans-
action is not committed and the reasons are passed back to the user application for handling and the opportunity
to attempt another commit or to roll the transaction back.

COMMIT Options

» The optional TRANSACTION <tr_name> clause, available only in Embedded SQL, specifies the name of the
transaction to be committed. With no TRANSACTION clause, COMMIT is applied to the default transaction.

352

Transaction Control

Note

In ESQL applications, named transactions make it possible to have several transactions active simultane-
ously in one application. If named transactions are used, a host-language variabl e with the same name must
be declared and initialized for each named transaction. Thisisalimitation that prevents dynamic specifica-
tion of transaction names and thus, rules out transaction naming in DSQL.

» The optional keyword WORK is supported just for compatibility with other relational database management
systems that require it.

» The keyword RELEASE is available only in Embedded SQL and enables disconnection from all databases
after thetransactioniscommitted. RELEASE isretained in Firebird only for compatibility with legacy versions
of InterBase. It has been superseded in ESQL by the DISCONNECT statement.

» The RETAIN [SNAPSHOT] clause is used for the “soft”, variously referred to amongst host languages and
their practitioners as COMMIT WITH RETAIN, CommitRetaining, “warm commit”, et al. The transaction is
committed but some server resources are retained and the transaction is restarted transparently with the same
Transaction ID. The state of row caches and cursorsis kept as it was before the soft commit.

For soft-committed transactions whose isolation level is SNAPSHOT or SNAPSHOT TABLE STABILITY,
theview of database stateisnot updated to reflect changes by other transactions and the user of the application
instance continues to have the same view as when the transaction started originally. Changes made during
the life of the retained transaction are visible to that transaction, of course.

Recommendation

Use of the COMMIT statement in preference to ROLLBACK is recommended for ending transactions that only
read data from the database, because COMMIT consumes fewer server resources and helps to optimize the
performance of subsequent transactions.

See also: SET TRANSACTION, ROLLBACK

ROLLBACK

Used for: Rolling back atransaction
Available: DSQL, ESQL

Syntax:

ROLLBACK [WORK] [TRANSACTI ON tr_nane]
[RETAI N [SNAPSHOT] | TO [SAVEPO NT] sp_nanme | RELEASE]

Table9.4. ROLLBACK Statement Parameters

Parameter Description

tr_name Transaction name. Available only in ESQL

353

Transaction Control

Parameter Description

Sp_name Savepoint name. Available only in DSQL

The ROLLBACK statement rolls back all work carried out in the context of this transaction (inserts, updates,
deletes, selects, execution of procedures). ROLLBACK never fails and, thus, never causes exceptions.Unless
the RETAIN clause isemployed, all server resources allocated to the work of the transaction are rel eased.

ROLLBACK Options

» The optional TRANSACTION <tr_name> clause, available only in Embedded SQL, specifies the name of the
transaction to be committed. With no TRANSACTION clause, COMMIT is applied to the default transaction.

Note

In ESQL applications, named transactions make it possible to have several transactions active simultane-
ously in one application. If named transactions are used, a host-language variable with the same name must
be declared and initialized for each named transaction. Thisis alimitation that prevents dynamic specifica-
tion of transaction names and thus, rules out transaction naming in DSQL.

» The optional keyword WORK is supported just for compatibility with other relational database management
systems that require it.

» Thekeyword RETAIN keyword specifiesthat, although all of the work of the transaction isto berolled back,
the transaction context is to be retained. Some server resources are retained and the transaction is restarted
transparently with the same Transaction ID. The state of row caches and cursors is kept as it was before the
“soft” rollback.

For transactions whose isolation level is SNAPSHOT or SNAPSHOT TABLE STABILITY, the view of
database state is not updated by the soft rollback to reflect changes by other transactions. The user of the
application instance continues to have the same view as when the transaction started originally. Changes that
were made and soft-committed during the life of the retained transaction are visible to that transaction, of
course.

See also: SET TRANSACTION, COMMIT

ROLLBACK TO SAVEPOINT

The optional TO SAVEPOINT clause in the ROLLBACK statement specifies the name of a savepoint to which
changesareto berolled back. The effect istoroll back all changes made within the transaction, from the created
savepoint forward until the point when ROLLBACK TO SAVEPOINT is requested.

ROLLBACK TO SAVEPOINT performs the following operations:

» Any database mutations performed since the savepoint was created are undone. User variables set with RDB
$SET_CONTEXT() remain unchanged.

» Any savepointsthat were created after the one named are destroyed. Savepoints earlier than the one named are
preserved, along with the named savepoint itself. Repeated rollbacks to the same savepoint are thus allowed.

354

Transaction Control

» Allimplicit and explicit record locks that were acquired since the savepoint are released. Other transactions
that have requested access to rows locked after the savepoint must continue to wait until the transaction is
committed or rolled back. Other transactions that have not already requested the rows can request and access
the unlocked rows immediately.

See also: SAVEPOINT

SAVEPOINT

Used for: Cresating a savepoint
Availables DSQL

Syntax:

SAVEPO NT sp_nane

Table 9.5. SAVEPOINT Statement Par ameter

Parameter Description

Sp_name Savepoint name. Available only in DSQL

The SAVEPOINT statement creates an SQL:99-compliant savepoint that acts as a marker in the “stack” of da-
ta activities within a transaction. Subsequently, the tasks performed in the “stack” can be undone back to this
savepoint, leaving the earlier work and older savepoints untouched. Savepoint mechanisms are sometimes char-
acterised as “ nested transactions’.

If a savepoint already exists with the same name as the name supplied for the new one, the existing savepoint
isdeleted and a new oneis created using the supplied name.

To roll changes back to the savepoint, the statement ROLLBACK TO SAVEPOINT is used.

Memory Considerations

The internal mechanism beneath savepoints can consume large amounts of memory, especialy if the same
rows receive multiple updates in one transaction. When a savepoint is no longer needed but the transaction still
has work to do, a RELEASE SAVEPOINT statement will erase it and thus free the resources.

Sample DSQL session with savepoints:

CREATE TABLE TEST (I D | NTEGER);

COW T,

I NSERT | NTO TEST VALUES (1);
COW T,

I NSERT | NTO TEST VALUES (2);
SAVEPO NT Y;

DELETE FROM TEST;

355

Transaction Control

SELECT * FROM TEST; -- returns no rows
ROLLBACK TO Y;

SELECT * FROM TEST; -- returns two rows
ROLLBACK;

SELECT * FROM TEST; -- returns one row

See also: ROLLBACK TO SAVEPOINT, RELEASE SAVEPOINT

RELEASE SAVEPOINT
Used for: Erasing a savepoint
Available DSQL

Syntax:

RELEASE SAVEPO NT sp_name [ONLY]

Table9.6. RELEASE SAVEPOINT Statement Parameter

Parameter Description

Sp_name Savepoint name. Available only in DSQL

The statement RELEASE SAVEPOINT erases a named savepoint, freeing up all the resourcesit encompasses. By
default, all the savepoints created after the named savepoint are released as well. The qualifier ONLY directs
the engine to release only the named savepoint.

See also: SAVEPOINT

Internal Savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When aROLLBACK statement isissued, all changes performed in this transaction are backed out via a transac-
tion-level savepoint and the transaction is then committed. Thislogic reduces the amount of garbage collection
caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (~50000 records
affected), the engine releases the transaction-level savepoint and uses the Transaction Inventory Page (TIP) as
amechanism to roll back the transaction if needed.

Tip

If you expect the volume of changesin your transaction to belarge, you can specify the NO AUTO UNDO option
inyour SET TRANSACTION statement to block the creation of the transaction-level savepoint. Using the API
instead, you would set the TPB flagi sc_t pb_no_aut o_undo.

356

Transaction Control

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement
that calls the procedure. However, Firebird does support the raising and handling of exceptions in PSQL, so
that actions performed in stored procedures and triggers can be sel ectively undone without the entire procedure
failing.

Internally, automatic savepoints are used to:
» undo al actionsin the BEGIN...END block where an exception occurs

» undo all actions performed by the procedure or trigger or, in for aselectable procedure, al actions performed
since the last SUSPEND, when execution terminates prematurely because of an uncaught error or exception

Each PSQL exception handling block is also bounded by automatic system savepoints.

Note

A BEGIN...END block does not itself create an automatic savepoint. A savepoint is created only in blocks that
contain the WHEN statement for handling exceptions.

357

Chapter 10

Security

Databases must be secure and so must the data stored in them. Firebird provides two levels of data security
protection: user authentication at the server level and SQL privileges within databases. This chapter tells you
how to manage security at both levels.

User Authentication

The security of the entire database depends on identifying auser on verifying its authority, a procedure known as
authentication. The information about users authorised to access a specific Firebird server is stored in a special
security database named securi t y2. f db. Eachrecordinsecuri t y2. f db isauser account for one user.

A user name, consisting of up to 31 characters, is a case-insensitive system identifier. A user must have a pass-
word, of which the first eight are significant. Whilst it isvalid to enter a password longer than eight characters,
any subsequent characters are ignored. Passwords are case-sensitive.

If the user specified during the connection is the SY SDBA, the database owner or a specialy privileged user,
that user will have unlimited access to the database.

Specially Privileged Users

In Firebird, the SY SDBA account isa*“ Superuser” that exists beyond any security restrictions. It has complete
accessto all objectsinal regular databases on the server, and full read/write accessto the accountsin the security
database securi t y2. f db. No user has access to the metadata of the security database.

The default SY SDBA password on Windows and MacOS is 'masterkey'—or 'masterke’, to be exact, because
of the 8-character length limit.

Extremely I mportant!

The default password 'masterkey’ is known across the universe. It should be changed as soon as the Firebird
server installation is complete.

Other users can acquire elevated privileges in severa ways, some of which are dependent on the operating
system platform. These are discussed in the sections that follow and are summarised in Administrators.

POSIX Hosts

OnPOSIX systems, including MacOSX, Firebird will interpret aPOSI X user account asthoughit wereaFirebird
user account in its own security database, provided the server sees the client machine as a trusted host and the
system user accounts exist on both the client and the server. To establish a“trusted” relationship with the client

358

Security

host, the corresponding entries must be included in one of the files/ et ¢/ hosts. equi v or / et ¢/ gds_
host s. equi v on Firebird's host server.

» Thefilehost s. equi v contains trusted relationships at operating system level, encompassing all services
(rlogin, rsh, rcp, and so on)

» Thefilegds_host s. equi v contains trusted relationships between Firebird hosts only.

Theformat isidentical for both files and looks like this:

host nane [user nane]

The SYSDBA User on POSIX

On POSIX hosts, other than MacOSX, the SY SDBA user does not have adefault password. If thefull installation
isdone using the standard scripts, aone-off password will be created and stored in atext filein the same directory
assecurity2. fdb,commonly/opt/firebird/.Thenameof the passwordfileis SYSDBA. passwor d.

Note

In an installation performed by a distribution-specific installer, the location of the security database and the
password file may be different from the standard one.

The root User

The root user can act directly as SYSDBA on POSIX host systems. Firebird interprets root as though it were
SYSDBA and it provides access to all databases on the server.

Windows Hosts

On Windows server-capabl e operating systems, operating system accounts can be used. Trusted Authentication
must be enabled by setting the Authentication parameter to Trusted or Mixed in the configuration file, fire-
bird. conf.

Even with trusted authentication enabled, Windows operating system Administrators are not automatically
granted SY SDBA privileges when they connect to a database. To make that happen, the internally-created role
RDB$ADMIN must be altered by SYSDBA or the database owner, to enable it. For details, refer to the later
section entitted AUTO ADMIN MAPPING.

The embedded version of Firebird server on Windows does not use server-level authentication. However, be-
cause abjects within a database are subject to SQL privileges, avalid user name and, if applicable, arole, may
be required in the connection parameters.

The Database Owner

The*“owner” of adatabaseiseither the user who was CURRENT_USER at thetime of creation or, if the parameters
USER and PASSWORD were supplied in the CREATE DATABASE statement, the user cited there.

“Owner” is not auser name. The user who isthe owner of a database has full administrator rights with respect
to that database, including the right to drop it, to restore it from a backup and to enable or disable the AUTO
ADMIN MAPPING capability.

359

Security

Note

Prior to Firebird 2.1, the owner had no automatic privileges over any database objects that were created by
other users.

RDB$ADMIN Role

The internally-created role RDB$SADMIN is present in every database. Assigning the RDB$ADMIN role to a
regular user in a database grants that user the privileges of the SYSDBA, in the current database only.

The elevated privileges take effect when the user is logged in to that regular database under the RDB$SADMIN
role and give full control over all objectsin the database.

Being granted the RDB$ADMIN role in the security database confers the authority to create, edit and delete user
accounts.

In both cases, the user with the elevated privileges can assign RDB$ADMIN roleto any other user. In other words,
specifying WITH ADMIN OPTION is unnecessary because it is built into the role.

Granting the RDB$ADMIN Role in the Security Database

Since nobody—not even SY SDBA— can connect to the security database, the GRANT and REVOKE statements
are of no use for this task. Instead, the RDB$SADMIN role is granted and revoked using the SQL statements for
user management:

CREATE USER new_user
PASSWORD ' passwor d'
GRANT ADM N RCLE

ALTER USER exi sting_user
GRANT ADM N RCLE

ALTER USER exi sting_user
REVOKE ADM N RCOLE

Note

GRANT ADMIN ROLE and REVOKE ADMIN ROLE are not statements in the GRANT and REVOKE lexicon.
They are three-word parameters to the statements CREATE USER and ALTER USER.

Table 10.1. Parametersfor RDB$ADMIN Role GRANT and REVOKE

Parameter Description
new_user Using CREATE USER, name for the new user
existing_user Using ALTER USER, Name of an existing user

360

Security

Parameter Description

Using CREATE USER, password for the new user. Its theoretical limit is 31

password bytes but only the first 8 characters are considered.

The grantor must be already logged in as an administrator.

Seealso: CREATE USER, ALTER USER

Doing the Same Task Using gsec
An aternativeisto use gsec with the - adni n parameter to storethe RDB$ADMIN attribute on the user's record:
gsec -add new_user -pw password -admn yes

gsec -mp existing_user -admn yes
gsec -np existing_user -admn no

Note

Depending on the adminstrative status of the current user, more parameters may be needed when invoking
gsec, e.g., -user and -pass, or -trusted.

Using the RDB$ADMIN Role in the Security Database

To manage user accounts through SQL, the grantee must specify the RDB$SADMIN role when connecting. No
user can connect to the security database, so the solution is that the user connects to a regular database where
he also has RDB$ADMIN rights, supplying the RDB$ADMIN role in his login parameters. From there, he can
submit any SQL user management command.

The SQL routefor the user isblocked for any databasein which he has not beenthe granted the RDB$SADMIN role.

Using gsec with RDB$ADMIN Rights

To perform user management with gsec, the user must provide the extra switch - r ol e r db$admi n.

Granting the RDB$ADMIN Role in a Regular Database
In a regular database, the RDB$ADMIN role is granted and revoked with the usual syntax for granting and

revoking roles:

GRANT [ROLE] RDB$ADM N TO user nane

REVOKE [ROLE] RDB$ADM N FROM user nane

In order to grant and revoke the RDB$SADMIN role, the grantor must be logged in as an administrator.

See also: GRANT, REVOKE

361

Security

Using the RDB$ADMIN Role in a Regular Database

To exercise his RDB$SADMIN privileges, the grantee simply includes the role in the connection attributes when
connecting to the database.

AUTO ADMIN MAPPING

In Firebird 2.1, Windows Administrators would automatically receive SYSDBA privileges if trusted authenti-
cation was configured for server connections. In Firebird 2.5, it is no longer automatic. The setting of the AU-
TO ADMIN MAPPING switch now determines whether Administrators have automatic SYSDBA rights, on a
database-by-database basis. By default, when adatabase is created, it is disabled.

If AUTO ADMIN MAPPING is enabled in the database, it will take effect whenever a Windows Administrator
connects

a. using trusted authentication, and
b. without specifying any role

After asuccessful “auto admin” connection, the current roleis set to RDB$ADMIN.

Auto Admin Mapping in Regular Databases

To enable and disable automatic mapping in aregular database:

ALTER ROLE RDB$ADM N
SET AUTO ADM N MAPPING -- enable it

ALTER ROLE RDB$ADM N
DROP AUTO ADM N MAPPI NG -- disable it

Either statement must be issued by a user with sufficient rights, that is:

« the database owner
e an administrator

In regular databases, the status of AUTO ADMIN MAPPING is checked only at connection time. If an Adminis-
trator has the RDB$SADMIN role because auto-mapping was on when he logged in, he will keep that role for the
duration of the session, even if he or someone el se turns off the mapping in the meantime.

Likewise, switching on AUTO ADMIN MAPPING will not change the current role to RDBSADMIN for Adminis-
trators who were already connected.

Auto Admin Mapping in the Security Database

No SQL statements exist to switch automatic mapping on and off in the security database. Instead, gsec must
be used:

gsec -nmappi ng set

362

Security

gsec -nmappi ng drop
More gsec switches may be needed, depending on what kind of log-in you used to connect, e.g., - user and
- pass,or-trusted.

Only SYSDBA can set the auto-mapping on if it is disabled. Any administrator can drop (disable) it.

Administrators

Asageneral description, an administrator isauser that has sufficient rightsto read, writeto, create, alter or delete
any object in adatabase to which that user's administrator status applies. The table summarises how “ Superuser”
privileges are enabled in the various Firebird security contexts.

Table 10.2. Administrator (“ Superuser”) Characteristics

trator

CURRENT_ROLE
if login succeeds

User RDB$ADMIN Comments
Role

SYSDBA Auto Exists automatically at server level. Has full privilegesto all ob-
jectsin all databases. Can create, ater and drop users but has no
direct access to the security database

root useron Auto Exactly like SYSDBA

POSIX

Superuser on Auto Exactly like SYSDBA

POSIX

Windows Adminis- Set as Exactly like SYSDBA if al of the following are true:

In firebird.conf file Authentication = mixed / trust-
ed and Firebird is restarted be-
fore proceeding

Enabled in all databasesin
which the user needs Superuser

privileges

AUTO ADMIN MAPPING

ly granted; must be
supplied at login

Login Doesnot include arole
Database owner Auto Like SYSDBA, but only in the database of which he isthe own-
er
Regular user Must be previous- Like SYSDBA, but only in the database[s} where theroleis
ly granted; must be granted
supplied at login
POSIX OS user Must be previous- Like SYSDBA, but only in the database[s} wheretheroleis

granted

Windows user

Must be previous-
ly granted; must be
supplied at login

Like SYSDBA, but only in the database[s} wheretheroleis
granted. Not available if config file parameter Authentication =
native

363

Security

SQL Statements for User Management

In Firebird 2.5 and above, user accounts are created, modified and del eted using a series of SQL statements that
can be submitted by a user with full administrator rightsin the security database.

Note

For aWindows Administrator, AUTO ADMIN MAPPING enabled only in aregular database is not sufficient
to permit management of other users. For instructions to enable it in the security database, see Auto Admin
Mapping in the Security Database.

Non-privileged users can use only the ALTER USER statement and only to edit some datain their own accounts.

CREATE USER

Used for: Creating a Firebird user account

Availablein: DSQL

Syntax:
CREATE USER user nane PASSWORD ' password'
[FI RSTNAME ' firstnane']
[M DDLENAME ' ni ddl enane' |

[LASTNAME ' | ast nange']
[GRANT ADM N ROLE] ;

Table 10.3. CREATE USER Statement Parameters

Parameter Description
User name. The maximum length is 31 characters, following the rules for Fire-
username . e . . .
bird regular identifiers. It is always case-insensitive
User password. Itstheoretical limit is 31 bytes but only the first 8 characters are
password . .
considered. Case-sensitive
firstname Optional: User's first name. Maximum length 31 characters
middlename Optional: User's middle name. Maximum length 31 characters
lastname Optional: User's last name. Maximum length 31 characters

Use a CREATE USER statement to create a new Firebird user account. The user must not already exist in the
Firebird security database, or a primary key violation error message will be returned.

The <user nane argument must follow the rulesfor Firebird regular identifiers: see Identifiersin the Sructure
chapter. User names are always case-insensitive. Supplying auser name enclosed in double quoteswill not cause

364

Security

an exception: the quotes will be ignored. If a spaceisthe only illegal character supplied, the user name will be
truncated back to the first space character. Other illegal characters will cause an exception.

The PASSWORD clause specifiesthe user's password. A password of more than eight charactersis accepted with
awarning but any surplus characters will be ignored.

The optional FIRSTNAME, MIDDLENAME and LASTNAME clauses can be used to specify additional user prop-
erties, such as the person's first name, middle name and last name, respectively. They are just smple VAR-
CHAR(31) fields and can be used to store anything you prefer.

If the GRANT ADMIN ROLE clause is specified, the new user account is created with the privileges of the RDB
$ADMIN role in the security database (securi ty2. f db). It allows the new user to manage user accounts
from any regular database he logs into, but it does not grant the user any special privileges on objects in those
databases.

To create a user account, the current user must have administrator privileges in the security database. Adminis-
trator privileges only in regular databases are not sufficient.

Note

CREATE/ALTER/DROP USER are DDL statements. Remember to COMMIT your work. Inisgl, the com-
mand SET AUTO ON will enable autocommit on DDL statements. In third-party tools and other user applica-
tions, this may not be the case.

Examples:

1. Creating a user with the username bi gshot :

CREATE USER bi gshot PASSWORD ' buckshot ' ;

2. Creating the user j ohn with additional properties (first and last names):

CREATE USER j ohn PASSWORD ' f Ye_3Ksw
FI RSTNAME ' John'
LASTNAME ' Doe' ;

3. Creating the user super user with user management privileges:

CREATE USER superuser PASSWORD ' kWh8Kj h'
GRANT ADM N RCLE;

See also: ALTER USER, DROP USER

ALTER USER
Used for: Modifying a Firebird user account

Availablein: DSQL

365

Security

Syntax:

ALTER USER user nane
{
[SET]
[PASSWORD ' password']
[FI RSTNAME ' firstname']
[M DDLENAME ' i ddl enan®e']
[LASTNAME ' | ast nane']

}
[{GRANT | REVOKE} ADM N ROLE];

Table10.4. ALTER USER Statement Parameters

Parameter Description
username User name. Cannot be changed.
User password. Itstheoretical limit is 31 bytes but only the first 8 characters are
password . -
considered. Case-sensitive
firstname Optional: User'sfirst name, or other optional text. Max. length is 31 characters
. Optional: User's middie name, or other optional text. Max. length is 31 charac-
middlename
ters
lastname Optional: User's last name, or other optional text. Max. length is 31 characters

Use an ALTER USER statement to edit the details in the named Firebird user account. To modify the account
of another user, the current user must have administrator privileges in the security database. Administrator
privileges only in regular databases are not sufficient.

Any user can alter hisor her own account, except that only an administrator may use GRANT/REVOKE ADMIN
ROLE.

All of the arguments are optional but at least one of them must be present:
* The PASSWORD parameter isfor specifying a new password for the user

* FIRSTNAME, MIDDLENAME and LASTNAME allow updating of the optional user properties, such as the
person's first name, middle name and last name respectively

 Including the clause GRANT ADMIN ROLE grants the user the privileges of the RDB$ADMIN role in the
security database (securi t y2. f db), enabling him/her to manage the accounts of other users. It does not
grant the user any special privilegesin regular databases.

* Including the clause REVOKE ADMIN ROLE removes the user's administrator in the security database which,
oncethetransaction iscommitted, will deny that user the ability to alter any user account except hisor her own

Note

Remember to commit your work if you are working in an application that does not auto-commit DDL.

Examples:

366

Security

1. Changing the password for the user bobby and granting him user management privileges:

ALTER USER bobby PASSWORD ' 67- Ui T_G8'
GRANT ADM N ROLE;

2. Editing the optional properties (thefirst and last names) of the user dan:

ALTER USER dan
FI RSTNAME ' No_Jack’
LASTNAME ' Kennedy' ;

3. Revoking user management privileges from user dunbbel | :

ALTER USER dunbbel |
DROP ADM N ROLE;

See also: CREATE USER, DROP USER

DROP USER
Used for: Deeting a Firebird user account
Availablein: DSQL

Syntax:

DROP USER user nare;

Table 10.5. DROP USER Statement Parameter

Parameter Description

username User name

Use the statement DROP USER to delete a Firebird user account. The current user requires administrator priv-
ileges.

Note

Remember to commit your work if you are working in an application that does not auto-commit DDL.

Example: Deleting the user bobby:

DROP USER bobby;

367

Security

Seealso: CREATE USER, ALTER USER

SQL Privileges

The second level of Firebird's security model is SQL privileges. Whilst a successful login—the first level—
authorises a user's access to the server and to all databases under that server, it does not imply that he has
access to any objects in any databases. When an object is created, only the user that created it (its owner) and
administrators have accessto it. The user needs privileges on each object he needsto access. Asageneral rule,
privileges must be granted explicitly to a user by the object owner or an administrator of the database.

A privilege comprisesaDML accesstype (SELECT, INSERT, UPDATE, DELETE, EXECUTE and REFERENCES),
the name of a database object (table, view, procedure, role) and the name of the user (user, procedure, trigger,
role) to which it isgranted. Various means are available to grant multiple types of access on an object to multiple
usersin asingle GRANT statement. Privileges may be withdrawn from a user with REVOKE statements.

Privileges are are stored in the database to which they apply and are not applicable to any other database.

The Object Owner

The user who creates a database object becomes its owner. Only the owner of an object and users with admin-
istrator privileges in the database, including the database owner, can alter or drop the database object.

Some Owner ship Drawbacks

Any authenticated user can access any database and create any valid database object. Up to and including this
release, the issue is not controlled.

Because not all database objects are associated with an owner—domains, external functions (UDFs), BLOB
filters, generators (sequences) and exceptions—ownerless objects must be regarded as vulnerable on a server
that is not adequately protected.

SYSDBA, the database owner or the object owner can grant privileges to and revoke them from other users,
including privileges to grant privileges to other users. The process of granting and revoking SQL privilegesis
implemented with two statements of the general form:

GRANT <privil ege> ON <OBJECT- TYPE> <obj ect - nanme>
TO { <user-nane> | ROLE <rol e-nane> }

REVCKE <privil ege> ON <OBJECT- TYPE> <obj ect - nane>
FROM { <user-nane> | ROLE <rol e-nane> }

The<OBJECT-TY PE> ishot required for every type of privilege. For sometypes of privilege, extraparameters
are available, either as options or as requirements.

Statements for Granting Privileges

A GRANT statement is used for granting privileges—including roles—to users and other database objects.

368

Security

GRANT

Used for: Granting privileges and assigning roles

Availablein: DSQL, ESQL

Syntax:

GRANT {

<privileges> ON [TABLE] {tabl enane | vi ewnane}
| EXECUTE ON PROCEDURE procnane

}

TO <grantee_|ist>
[WTH GRANT OPTION]} | [{CGRANTED BY | AS} [USER] grantor];

GRANT <rol e_grant ed>
TO <role_grantee_list> [WTH ADM N OPTI O\
AS} [USER] grantor]

[{ GRANTED BY |

<privileges>

<privilege_list>:

<privilege> ::
SELECT |
DELETE |
| NSERT |
UPDATE [(col

[

= ALL [PRIVILEGES] | <privilege_ list>

i= {<privilege> [, <privilege> [, ...]1] }

col [, .} 1)1]I

REFERENCES (col [, .])

<grantee_list> :

<grantee> ::=

.= {<grantee> [, <grantee> [, .]]}

[USER] usernanme | [ROLE] rolenane | GROUP Uni x_group
| PROCEDURE procname | TRIGGER trignane | VIEWvi ewnane | PUBLIC

<rol e_granted> :

<role _grantee_ list> ::= [USER] <role_grantee> [,[USER] <role_grantee> [,

<rol e_grant ee>

:=rolenane [, rolenane .]

::= {usernane | PUBLIC }

Table 10.6. GRANT Statement Parameters

oy

Parameter Description

tablename The name of the table the privilege appliesto

viewname The name of the view the privilege appliesto

procname The name of the stored procedure the EXECUTE privilege applies to; or the

name of the procedure to be granted the privilege[s]

369

Security

Parameter Description
col The table column the privilege isto apply to

Unix_group The name of auser group in a POSIX operating system

USername The user name to which the privileges are granted to or to which therole is as-

signed
rolename Role name
trigname Trigger name
grantor The user granting the privilege] g

A GRANT statement grantsone or more privileges on database objectsto users, roles, stored procedures, triggers
or views.

A regular, authenticated user has no privileges on any database object until they are explicitly granted, either
to that individual user or to all users bundled as the user PUBLIC. When an object is created, only the user
who has created it (the owner) and administrators have privileges for it and can grant privileges to other users,
roles or objects.

Different sets of privileges apply to different types of metadata objects. The different types of privileges will
be described separately later.

The TO Clause

The TO clause is used for listing the users, roles and database objects (procedures, triggers and views) that are
to be granted the privileges enumerated in <privileges>. The clause is mandatory.

The optional USER and ROLE keywords in the TO clause allow you to specify exactly who or what is granted
the privilege. If a USER or ROLE keyword is not specified, the server checks for arole with this name and, if
thereis none, the privileges are granted to the user without further checking.

Packaging Privileges in a ROLE Object

A roleisa“container” object that can be used to package a collection of privileges. Use of theroleisthen granted
to each user that requires those privileges. A role can also be granted to alist of users.

Therole must exist before privileges can be granted to it. See CREATE ROLE in the DDL chapter for the syntax
and rules. The roleis maintained by granting privilegesto it and, when required, revoking privileges from it. If
aroleis dropped (see DROP ROLE), all users lose the privileges acquired through the role. Any privileges that
were granted additionally to an affected user by way of adifferent grant statement are retained.

A user that is granted arole must supply that role with his login credentials in order to exercise the associated
privileges. Any other privileges granted to the user are not affected by logging in with arole.

More than one role can be granted to the same user but logging in with multiple roles ssmultaneously is not
supported.

A role can be granted only to a user.

370

Security

Please note:

« When aGRANT statement is executed, the security database is not checked for the existence of the grantee
user. Thisisnot abug: SQL permissions are concerned with controlling data access for authenticated users,
both native and trusted, and trusted operating system users are not stored in the security database.

* When granting a privilege to a database object, such as a procedure, trigger or view, you must specify the
object type between the keyword TO and the object name.

¢ Although the USER and ROL E keywords are optional, it is advisable to usethem, in order to avoid ambiguity.

The User PUBLIC

Firebird has a predefined user named PUBLIC, that represents all users. Privileges for operations on a particul ar
object that are granted to the user PUBLIC can be exercised by any user that has been authenticated at login.

I mportant

If privileges are granted to the user PUBLIC, they should be revoked from the user PUBLIC aswell.

The WITH GRANT OPTION Clause

The optional WITH GRANT OPTION clause allows the users specified in the user list to grant the privileges
specified in the privilege list to other users.

Caution

It is possible to assign this option to the user PUBLIC. Do not do it!

The GRANTED BY Clause

By default, when privileges are granted in adatabase, the current user isrecorded as the grantor. The GRANTED
BY clause enables the current user to grant those privileges as another user.

If the REVOKE statement isused, it will fail if the current user is not the user that was named in the GRANTED
BY clause.
Alternative Syntax Using AS <username>

The non-standard AS clause is supported as a synonym of the GRANTED BY clause to ssimplify migration from
other database systems.

The clauses GRANTED BY and AS can be used only by the database owner and administrators. The object owner
cannot use it unless he also has administrator privileges.
Privileges on Tables and Views

Intheory, one GRANT statement grants one privilegeto one user or abject. In practice, the syntax allowsmultiple
privileges to be granted to multiple usersin one GRANT statement.

371

Security

Syntax extract:

;b;ivileges> ::= ALL [PRIVILEGES] | <privilege_list>
<privilege_list> ::= {<privilege> [, <privilege> [, ..]1]}
<privilege> ::= {

SELECT |

DELETE |

| NSERT |

UPDATE [(col [,col [, .1D]I 1) 1 |

REFERENCES (col [, col [, .] 1)

}

Table 10.7. List of Privilegeson Tables

Privilege Description
SELECT Permits the user or object to SELECT data from the table or view
INSERT Permits the user or object to INSERT rows into the table or view
Permits the user or object to UPDATE rows in the table or view, optionally re-
UPDATE . .
stricted to specific columns
col (Optiona) name of a column to which the user's UPDATE privilege isrestricted
DELETE Permits the user or object to DELETE rows from the table or view
Permits the user or object to reference the specified column[g] of the table via
REFERENCES aforeign key. If the primary or unique key referenced by the foreign key of the
other table is composite then all columns of the key must be specified.
col (Mandatory) name of one column in the referenced foreign key
ALL Combines SELECT, INSERT, UPDATE, DELETE and REFERENCES privi-
legesin asingle package

Examples of GRANT <privilege> on Tables:

1. SELECT and INSERT privileges to the user ALEX:

GRANT SELECT, | NSERT ON TABLE SALES

TO USER ALEX

2. The SELECT privilege to the MANAGER, ENGINEER roles and to the user IVAN:

GRANT SELECT ON TABLE CUSTOVER
TO ROLE MANAGER, ROLE ENG NEER, USER | VAN

372

Security

All privileges to the ADMINISTRATOR role, together with the authority to grant the same privileges to
others:

GRANT ALL ON TABLE CUSTQOVER
TO ROLE ADM NI STRATOR
W TH GRANT OPTI ON,;

The SELECT and REFERENCES privileges on the NAME column to all users and objects:

GRANT SELECT, REFERENCES (NAME) ON TABLE COUNTRY
TO PUBLI C,

The SELECT privilege being granted to the user IVAN by the user ALEX:

GRANT SELECT ON TABLE EMPLOYEE
TO USER | VAN
GRANTED BY ALEX;

Granting the UPDATE privilege on the FIRST_NAME, LAST_NAME columns,

GRANT UPDATE (FI RST_NAME, LAST_NAME) ON TABLE EMPLOYEE
TO USER | VAN,

Granting the INSERT privilege to the stored procedure ADD_EMP_PROJ:

GRANT | NSERT ON EMPLOYEE_PROJECT
TO PROCEDURE ADD_EMP_PRQJ;

The EXECUTE Privilege

The EXECUTE privilege appliesto stored procedures. It allows the grantee to execute the stored procedure and,
if applicable, to retrieve its output. In the case of selectable stored procedures, it acts somewhat like a SELECT
privilege, insofar asthis style of stored procedure is executed in response to a SELECT statement.

Example: Granting the EXECUTE privilege on a stored procedure to arole:

GRANT EXECUTE ON PROCEDURE ADD_EMP_PRQJ
TO ROLE MANAGER,

Assigning Roles

Assigning a role is similar to granting a privilege. One or more roles can be assigned to one or more users,
including the user PUBLIC, using one GRANT statement.

373

Security

The WITH ADMIN OPTION Clause

The optional WITH ADMIN OPTION clause allowsthe users specified in the user list to grant therole] 5] specified
to other users.

Caution

It is possible to assign this option to PUBLIC. Do not do it!

Examples of Role Assignment:

1

Assigning the DIRECTOR and MANAGER rolesto the user IVAN:

GRANT DI RECTOR, MANAGER TO USER | VAN,

Assigning the ADMIN role to the user ALEX with the authority to assign thisrole to other users:

GRANT MANAGER TO USER ALEX W TH ADM N OPTI ON,

See also: REVOKE

Statements for Revoking Privileges

A REVOKE statement is used for revoking privileges—including roles—from users and other database objects.

REVOKE

Used for: Revoking privileges or role assignments

Availablein: DSQL, ESQL

Syntax:

REVOKE [GRANT OPTI ON FOR] {
<privileges> ON [TABLE] {tablenane | viewnane} |
EXECUTE ON PROCEDURE procnhane }

FROM <grantee_list>

[{ GRANTED BY | AS} [USER] grantor];

REVOKE [ADM N OPTI ON FOR] <rol e_grant ed>
FROM {PUBLI C | <role_grantee_list>}

[{ GRANTED BY | AS} [USER] grantor];
REVOKE ALL ON ALL FROM <grantee_|ist>

<privileges> ::= ALL [PRIVILEGES] | <privilege_list>

374

Security

<privilege list> ::= {<privilege> [, <privilege> [, ..1 1 }

<privilege> ::=
SELECT |
DELETE |
| NSERT |
UPDATE [(col [, col [, col [,.]J11) 1]l
REFERENCES (col [, col [, .] 1)

<grantee_list> ::= {<grantee> [, <grantee> [, .]]}
<grantee> ::=

[USER] usernanme | [ROLE] rolenane | GROUP Uni x_group
| PROCEDURE procname | TRIGGER trigname | VIEW viewnane | PUBLIC

<role_granted> ::= rolenanme [, rolenane .]
<role_grantee_list> ::= [USER] <role_grantee> [,[USER] <role_grantee> [, .]]
<role_grantee> ::= {usernane | PUBLIC }

Table 10.8. REVOKE Statement Parameters

Parameter Description
tablename The name of the table the privilege is to be revoked from
viewname The name of the view the privilege is to be revoked from
rocname The name of the stored procedure the EXECUTE privilege isto be revoked
P from; or the name of the procedure that isto have the privilege[s] revoked
trigname Trigger name
col The table column the privilege is to be revoked from
The user name from which the privileges are to be revoked from or theroleisto
username
be removed from
rolename Role name
Unix_group The name of auser group in a POSIX operating system
grantor The grantor user on whose behalf the the privilege[s] are being revoked

The REVOKE statement is used for revoking privileges from users, roles, stored procedures, triggers and views
that were granted using the GRANT statement. See GRANT for detailed descriptions of the various types of
privileges.

Only the user who granted the privilege can revokeit.

The FROM Clause

The FROM clause is used to specify the list of users, roles and database objects (procedures, triggers and views)
that will have the enumerated privileges revoked. The optional USER and ROLE keywords in the FROM clause

375

Security

allow you to specify exactly which type is to have the privilege revoked. If a USER or ROLE keyword is not
specified, the server checks for a role with this name and, if there is none, the privileges are revoked from the
user without further checking.

Tips

« Although the USER and ROLE keywords are optional, it is advisable to use them in order to avoid ambiguity.

* The GRANT statement does not check for the existence of the user from which the privileges are being
revoked.

« When revoking a privilege from a database object, you must specify its object type

Revoking Privileges from user PUBLIC

Privileges that were granted to the special user named PUBLIC must be revoked from the user PUBLIC. User
PUBLIC provides away to grant privilegesto all users at once but it is not “a group of users’.

Revoking the GRANT OPTION

The optional GRANT OPTION FOR clause revokes the user's privilege to grant privileges on the table, view,
trigger or stored procedure to other users or to roles. It does not revoke the privilege with which the grant option
is associated.

Removing the Privilege to One or More Roles

One usage of the REVOKE statement is to remove roles that were assigned to a user, or a group of users, by a
GRANT statement. In the case of multiple roles and/or multiple grantees, the REVOKE verb is followed by the
list of roles that will be removed from the list of users specified after the FROM clause.

The optional ADMIN OPTION FOR clause provides the means to revoke the grantee's “administrator” privilege,
the ability to assign the same role to other users, without revoking the grantee's privilege to the role.

Multiple roles and grantees can be processed in a single statement.

Revoking Privileges That Were GRANTED BY

A privilege that has been granted using the GRANTED BY clauseisinternally attributed explicitly to the grantor
designated by that original GRANT statement. To revoke a privilege that was obtained by thismethod, the current
user must be logged in either with full administrative privileges or as the user designated as <grantor> by that
GRANTED BY clause.

Note

The same rule applies if the syntax used in the original GRANT statement used the synonymous AS form to
introduce the clause, instead of the standard GRANTED BY form.

Revoking ALL ON ALL

If the current user islogged in with full administrator privilegesin the database, the statement

376

Security

REVOKE ALL ON ALL FROM <grantee_list>

can be used to revoke all privileges (including role memberships) on all objects from one or more users and/or
roles. All privileges for the user will be removed, regardless of who granted them. It is a quick way to “clear”
privileges when access to the database must be blocked for a particular user or role.

If the current user isnot logged in as an administrator, the only privileges revoked will be those that were granted
originally by that user.

The REVOKE ALL ON ALL statement cannot be used to revoke privileges that have been granted TO stored
procedures, triggers or views.

Note

The GRANTED BY clause is not supported.

Examples using REVOKE

1. Revoking the privileges for reading and inserting into the SALES

REVOKE SELECT, | NSERT ON TABLE SALES FROM USER ALEX;

2. Revoking the privilege for reading the CUSTOMER table from the MANAGER and ENGINEER roles
and from the user IVAN:

REVOKE SELECT ON TABLE CUSTQOVER
FROM ROLE MANAGER, ROLE ENG NEER, USER | VAN

3. Revoking fromthe ADMINISTRATOR roletheauthority to grant any privilegesonthe CUSTOMER table
to other users or roles:

REVOKE GRANT OPTI ON FOR ALL ON TABLE CUSTOMVER
FROM ROLE ADM NI STRATOR,

4. Revoking the privilege for reading the COUNTRY table and the authority to reference the NAME column
of the COUNTRY table from any user, viathe specia user PUBLIC:

REVOKE SELECT, REFERENCES (NAME) ON TABLE COUNTRY
FROM PUBLI C,

5. Revoking the privilege for reading the EMPLOY EE table from the user IVAN, that was granted by the
user ALEX:

REVOKE SELECT ON TABLE EMPLOYEE
FROM USER | VAN GRANTED BY ALEX;

377

Security

10.

11.

Revoking the privilege for updating the FIRST_NAME and LAST_NAME columns of the EMPLOY EE
table from the user IVAN:

REVOKE UPDATE (FI RST_NAME, LAST_NAME) ON TABLE EMPLOYEE
FROM USER | VAN,

Revoking the privilege for inserting records into the EMPLOYEE_PROJECT table from the
ADD_EMP_PROJ procedure:

REVOKE | NSERT ON EMPLOYEE_PRQJECT
FROM PROCEDURE ADD_EMP_PROJ;

Revoking the privilege for executing the procedure ADD_EMP_PROJ from the MANAGER role:

REVOKE EXECUTE ON PROCEDURE ADD_EMP_PRQJ
FROM ROLE MANAGER,

Revoking the DIRECTOR and MANAGER roles from the user IVAN:

REVOKE DI RECTOR, MANAGER FROM USER | VAN,

Revoke from the user ALEX the authority to assign the MANAGER role to other users:

REVOKE ADM N OPTI ON FOR MANAGER FROM USER | VAN;

Revoking all privileges (including roles) on all objects from the user IVAN:

REVOKE ALL ON ALL FROM | VAN

After this statement is executed, the user IVAN will have no privileges whatsoever.

See also; GRANT

378

Appendix A:
Supplementary Information

Inthis Appendix aretopicsthat devel opers may wish to refer to, to enhance understanding of featuresor changes.

The RDB$VALID BLR Field

Thefield RDB$VALID_BLR wasadded to the system tablesRDBSPROCEDURES and RDB$TRIGGERS i n Firebird
2.1. Itspurposeisto signal possible invalidation of a PSQL module after alteration of adomain or table column
on which the module depends.RDB$VALID_BLR is set to 0 for any procedure or trigger whose code is made
invalid by such a change.

How Invalidation Works

In triggers and procedures, dependencies arise on the definitions of table columns accessed and also on any
parameter or variable that has been defined in the module using the TY PE OF clause.

After the engine has altered any domain, including the implicit domains created internally behind column defi-
nitions and output parameters, the engine internally recompiles all of its dependencies.

Note

InV.2.x these comprise procedures and triggers but not blocks coded in DML statementsfor run-time execution
with EXECUTE BLOCK. Firebird 3 will encompass more module types (stored functions, packages).

Any module that fails to recompile because of an incompatibility arising from a domain change is marked as
invalid (“invalidated” by setting the RDB$VALID_BLR in its system record (in RDBSPROCEDURES or RDB
$TRIGGERS, as appropriate) to zero.

Revalidation (setting RDB$VALID_BLR to 1) occurs when

1. the domain is atered again and the new definition is compatible with the previoudy invalidated module
definition; OR
2. thepreviously invalidated module is altered to match the new domain definition

The following query will find the modules that depend on a specific domain and report the state of their RDB
$VALID BLR fields:

SELECT * FROM (
SELECT
" Procedure',
r db$pr ocedur e_nane,
rdb$val i d_blr

379

Supplementary Information

FROM r db$pr ocedur es
UNI ON ALL
SELECT
"Trigger',
rdb$tri gger _nane,
rdb$val i d_blr
FROM rdb$tri ggers
) (type, nane, valid)
VWHERE EXI STS
(SELECT * from rdb$dependenci es
WHERE r db$dependent _nanme = nane
AND r db$depended_on_nane = ' MYDOVAI N)

/* Replace MYDOVAIN wi th the actual donain nane.
Use all-caps if the domain was created
case-insensitively. OGherw se, use the exact
capitalisation. */

The following query will find the modules that depend on a specific table column and report the state of their
RDB$VALID BLR fields:

SELECT * FROM (
SELECT
' Procedure',
r db$pr ocedur e_nane,
rdb$val i d_blr
FROM r db$pr ocedur es
UNI ON ALL
SELECT
"Trigger',
rdb$tri gger _nane,
rdb$val i d_blr
FROM rdb$tri ggers) (type, nane, valid)
VWHERE EXI STS
(SELECT *
FROM r db$dependenci es
VWHERE r db$dependent _nanme = nane
AND r db$depended_on_nane = ' MYTABLE
AND rdb$fiel d_nanme = ' MYCOLUWN)

I mportant

All PSQL invalidations caused by domain/column changes are reflected in the RDB$VALID_BLR field. How-
ever, other kinds of changes, such as the number of input or output parameters, called routines and so on, do
not affect the validation field even though they potentially invalidate the module. A typical such scenario might
be one of the following:

1. A procedure (B) is defined, that calls another procedure (A) and reads output parameters from it. In this
case, a dependency is registered in RDB$DEPENDENCIES. Subsequently, the called procedure (A) is al-
tered to change or remove one or more of those output parameters. The ALTER PROCEDURE A statement
will fail with an error when commit is attempted.

2. A procedure (B) callsprocedure A, supplying valuesfor itsinput parameters. No dependency isregistered
in RDB$SDEPENDENCIES. Subsequent modification of theinput parametersin procedure A will beallowed.
Failure will occur at run-time, when B calls A with the mismatched input parameter set.

380

Supplementary Information

Other Notes

» For PSQL modulesinherited from earlier Firebird versions (including anumber of system triggers, even if
the database was created under Firebird 2.1 or higher), RDB$VALID_BLR is NULL. This does not imply
that their BLR isinvalid.

e Theisgl commands SHOW PROCEDURES and SHOW TRIGGERSdisplay an asterisk intheRDB$VALID _BLR
column for any module for which thevalueiszero (i.e,, invalid). However, SHOW PROCEDURE <procname>
and SHOW TRIGGER <trigname>, which display individual PSQL modules, do not signal invalid BLR at all.

A Note on Equality

Important

This note about equality and inequality operators applies everywherein Firebird's SQL language.

The“=" operator, which is explicitly used in many conditions, only matches valuesto values. According to the
SQL standard, NULL is hot avalue and hence two NULLs are neither equal nor unegual to one another. If you
need NULLs to match each other in acondition, usethe ISNOT DISTINCT FROM operator. This operator returns
true if the operands have the same value or if they are both NULL.

sel ect *
fromA join B
on Aid is not distinct from B. code

Likewise, in cases where you want to test against NULL for a condition of inequalityequality, use IS DISTINCT
FROM, not “<>". If you want NULL to be considered different from any value and two NULLs to be considered

equal:

sel ect *
fromA join B
on Aid is distinct from B. code

381

Appendix B:
Exception Codes
and Messages

This appendix includes:

» SQLSTATE Error Codes and Descriptions
» GDSCODE Error Codes, SQLCODEs and Descriptions

1

2.
3.
4

GDSCODESs 335544366 to 335544334
GDSCODES 335544454 to 336330760
GDSCODES 335544329 to 335544613
GDSCODESs 335544614 to 335544689

Custom Exceptions

Firebird DDL provides asimple syntax for creating custom exceptions for usein PSQL modules, with message
text of up to 1,021 characters. For more information, see CREATE EXCEPTION in DDL Statements and, for
usage, the statement EXCEPTION in PSQL Statements.

The Firebird SQLCODE error codes do not correlate with the standards-compliant SQLSTATE codes. SQLCODE
has been used for many years and should be considered as deprecated now. Support for SQLCODE is likely to
be dropped in afuture version.

SQLSTATE Error Codes and Descriptions

Thistable provides the error codes and message texts for the SQLSTATE context variables.

The structure of an SQLSTATE error code is five characters comprising the SQL error class (2 characters) and
the SQL subclass (3 characters).

TableB.1. SQLSTATE Codes and Message Texts

SQLSTATE Mapped M essage
SQLCLASS 00 (Success)
00000 | Success
SQLCLASS 01 (Warning)

01000 | General warning

01001 | Cursor operation conflict

01002 | Disconnect error

382

Exception Codes and Messages

SQLSTATE

Mapped Message

01003

NULL value eliminated in set function

01004

String data, right-truncated

01005

Insufficient item descriptor areas

01006

Privilege not revoked

01007

Privilege not granted

01008

Implicit zero-bit padding

01100

Statement reset to unprepared

01101

Ongoing transaction has been committed

01102

Ongoing transaction has been rolled back

SQLCLASS 02 (No Data)

02000

No data found or no rows affected

SQLCLASS 07 (Dynamic

SQL error)

07000

Dynamic SQL error

07001

Wrong number of input parameters

07002

Wrong number of output parameters

07003

Cursor specification cannot be executed

07004

USING clause required for dynamic parameters

07005

Prepared statement not a cursor-specification

07006

Restricted data type attribute violation

07007

USING clause required for result fields

07008

Invalid descriptor count

07009

Invalid descriptor index

SQLCLASS 08 (Connection Exception)

08001

Client unable to establish connection

08002

Connection namein use

08003

Connection does not exist

08004

Server rejected the connection

08006

Connection failure

08007

Transaction resolution unknown

SQLCLASS OA (Feature Not Supported)

0AQ00

Feature Not Supported

383

Exception Codes and Messages

SQLSTATE

Mapped Message

SQLCLASS 0B (Invalid Transaction Initiation)

0B000

Invalid transaction initiation

SQLCLASSOL (Invalid Grantor)

0L000

Invalid grantor

SQLCLASSOP (Invalid R

ole Specification)

0PO00

Invalid role specification

SQLCLASS QU (Attempt to Assign to Non-Updatable Column)

OuU000

Attempt to assign to non-updatable column

SQLCLASS QV (Attempt to Assign to Ordering Column)

0v000

Attempt to assign to Ordering column

SQLCLASS 20 (Case Not

Found For Case Statement)

20000

Case not found for case statement

SQLCLASS 21 (Cardinality Violation)

21000

Cardinality violation

21501

Insert value list does not match column list

21802

Degree of derived table does not match column list

SQLCLASS 22 (Data Exception)

22000

Data exception

22001

String data, right truncation

22002

Null value, no indicator parameter

22003

Numeric value out of range

22004

Null value not allowed

22005

Error in assignment

22006

Null valuein field reference

22007

Invalid datetime format

22008

Datetime field overflow

22009

Invalid time zone displacement value

2200A

Null valuein reference target

2200B

Escape character conflict

2200C

Invalid use of escape character

2200D

Invalid escape octet

384

Exception Codes and Messages

SQLSTATE

Mapped Message

2200E

Null valuein array target

2200F

Zero-length character string

2200G

Most specific type mismatch

22010

Invalid indicator parameter value

22011

Substring error

22012

Division by zero

22014

Invalid update value

22015

Interval field overflow

22018

Invalid character value for cast

22019

Invalid escape character

2201B

Invalid regular expression

2201C

Null row not permitted in table

22012

Division by zero

22020

Invalid limit value

22021

Character not in repertoire

22022

Indicator overflow

22023

Invalid parameter value

22024

Character string not properly terminated

22025

Invalid escape sequence

22026

String data, length mismatch

22027

Trim error

22028

Row already exists

2202D

Null instance used in mutator function

2202E

Array element error

2202F

Array data, right truncation

SQLCLASS 23 (Integrity Constraint Violation)

23000

Integrity constraint violation

SQLCLASS 24 (Invalid C

ursor State)

24000

Invalid cursor state

24504

The cursor identified in the UPDATE, DELETE, SET, or GET statement is not
positioned on arow

385

Exception Codes and Messages

SQLSTATE

Mapped Message

SQLCLASS 25 (Invalid Transaction State)

25000

Invalid transaction state

25301

Transaction state

25802

Transaction is still active

25503

Transaction is rolled back

SQLCLASS 26 (Invalid SQL Statement Name)

26000

Invalid SQL statement name

SQLCLASS 27 (Triggered Data Change Violation)

27000

Triggered data change violation

SQLCLASS 28 (Invalid A

uthorization Specification)

28000

Invalid authorization specification

SQLCLASS 2B (Dependent Privilege Descriptors Still Exist)

2B000

Dependent privilege descriptors still exist

SQLCLASS 2C (Invalid Character Set Name)

2C000

Invalid character set name

SQLCLASS 2D (Invalid Transaction Termination)

2D000

Invalid transaction termination

SQLCLASS 2E (Invalid Connection Name)

2E000

Invalid connection name

SQLCLASS 2F (SQL Routine Exception)

2F000

SQL routine exception

2F002

Modifying SQL-data not permitted

2F003

Prohibited SQL -statement attempted

2F004

Reading SQL-data not permitted

2F005

Function executed no return statement

SQLCLASS 33 (Invalid SQL Descriptor Name)

33000

Invalid SQL descriptor name

SQLCLASS 34 (Invalid C

ursor Name)

34000

Invalid cursor name

SQLCLASS 35 (Invalid C

ondition Number)

35000

Invalid condition number

386

Exception Codes and Messages

SQLSTATE

Mapped Message

SQLCLASS 36 (Cursor Sensitivity Exception)

36001

Request rejected

36002

Request failed

SQLCLASS 37 (Invalid Identifier)

37000

Invalid identifier

37001

Identifier too long

SQLCLASS 38 (External Routine Exception)

38000

External routine exception

SQLCLASS 39 (External Routine Invocation Exception)

39000

External routine invocation exception

SQLCLASS 3B (Invalid Save Point)

3B000

Invalid save point

SQLCLASS 3C (Ambiguous Cursor Name)

3C000

Ambiguous cursor name

SQLCLASS 3D (Invalid Catalog Name)

3D000

Invalid catalog name

3D001

Catalog name not found

SQLCLASS 3F (Invalid Schema Name)

3F000

Invalid schema name

SQLCLASS 40 (Transaction Rollback)

40000

Ongoing transaction has been rolled back

40001

Serialization failure

40002

Transaction integrity constraint violation

40003

Statement compl etion unknown

SQLCLASS 42 (Syntax Error or Access Violation)

42000

Syntax error or access violation

42702

Ambiguous column reference

42725

Ambiguous function reference

42818

The operands of an operator or function are not compatible

42501

Base table or view already exists

42302

Base table or view not found

387

Exception Codes and Messages

SQLSTATE Mapped Message
42S11 | Index aready exists
42S12 | Index not found
42521 | Column already exists
42522 | Column not found

SQLCLASS 44 (With Check Option Violation)

44000

WITH CHECK OPTION Violation

SQLCLASS 45 (Unhandled User-defined Exception)

45000

Unhandled user-defined exception

SQLCLASS 54 (Program Limit Exceeded)

54000

Program limit exceeded

54001

Statement too complex

54011

Too many columns

54023

Too many arguments

SQLCLASSHY (CLI-specific Condition)

HY 000

CLI-specific condition

HY 001

Memory allocation error

HY 003

Invalid data type in application descriptor

HY 004

Invalid data type

HY 007

Associated statement is not prepared

HY 008

Operation canceled

HY 009

Invalid use of null pointer

HYO010

Function sequence error

HYO011

Attribute cannot be set now

HYO012

Invalid transaction operation code

HYO013

Memory management error

HY014

Limit on the number of handles exceeded

HY 015

No cursor name available

HYO016

Cannot modify an implementation row descriptor

HY 017

Invalid use of an automatically allocated descriptor handle

HYO018

Server declined the cancellation request

HYO019

Non-string data cannot be sent in pieces

388

Exception Codes and Messages

SQLSTATE

Mapped Message

HY 020

Attempt to concatenate anull value

HY 021

Inconsistent descriptor information

HY 024

Invalid attribute value

HY 055

Non-string data cannot be used with string routine

HY 090

Invalid string length or buffer length

HY 091

Invalid descriptor field identifier

HY 092

Invalid attribute identifier

HY 095

Invalid Function ID specified

HY 096

Invalid information type

HY 097

Column type out of range

HY 098

Scope out of range

HY 099

Nullable type out of range

HY 100

Uniqueness option type out of range

HY 101

Accuracy option type out of range

HY 103

Invalid retrieval code

HY 104

Invalid Length/Precision value

HY 105

Invalid parameter type

HY 106

Invalid fetch orientation

HY 107

Row value out of range

HY 109

Invalid cursor position

HY110

Invalid driver completion

HY111

Invalid bookmark value

HY C00

Optional feature not implemented

HYTOO0

Timeout expired

HYTO1

Connection timeout expired

SQLCLASS XX (Internal

Error)

XX000

Internal error

XX001

Data corrupted

XX002

Index corrupted

389

Exception Codes and Messages

SQLCODE and GDSCODE

Error Codes and Descriptions

The table provides the SQL CODE groupings, the numeric and symbolic values for the GDSCODE errors and
the message texts.

TableB.2. SQLCODE and GDSCODE Error Codes and M essage Texts (1)

Note

SQL CODE has been used for many years and should be considered as deprecated now. Support for SQLCODE

islikely to be dropped in afuture version.

SQL -

CODE GDSCODE Symbol M essage T ext
101 335544366 | Segment Segment buffer length shorter than ex-
pected
100 335544338 | from_no_match No match for first value expression
100 335544354 | no_record Invalid database key
100 335544367 | segstr_eof Attempted retrieval of more segments
than exist
100 335544374 | stream eof Attempt to fetch past the last record in a
- record stream
0 335741039 | gfix_opt_SQL_dialect -sql_dialect | set database dialect n
0 335544875 bad_debug_format Bad debug info format
. Table/procedure has non-SQL security
-84 335544554 nonsgl_security_rel class defined
84 | 335544555 | nonsql_security fld fciﬁgm” has non-SQL. security class de-
-84 335544668 | dsgl_procedure use_err Procedure @1 does not return any values
85 335544747 | usmame too_long The username entered istoo long. Maxi-
mum length is 31 bytes
i The password specified istoo long. Maxi-
85 335544748 | password too long mum length is @1 bytes
-85 335544749 | usrname_required A username s required for this operation
-85 335544750 | password_required A password isrequired for this operation
-85 335544751 | bad_protocol The network protocol specified isinvalid
-85 335544752 | dup_usrname_found

390

Exception Codes and Messages

SQL -
CODE GDSCODE Symbol M essage Text
A duplicate user name was found in the
security database
85 335544753 | usmame ot found The user name specified was not found in
- = the security database
85 335544754 | error_adding_sec. record An error occurred while attempting to add
the user
-85 335544755 | error_modifying_sec record An error occurred while attempting to
modify the user record
85 335544756 | error_deleting sec record An error occurred while attempting to
delete the user record
85 335544757 | error_updating sec_db An'error occurred while updating the se-
curity database
-103 335544571 | dsgl_constant_err Data type for constant unknown
Precision 10 to 18 changed from DOU-
-104 336003075 dsgl_transitional_numeric BLE PRECISION in SQL dialect 1 to 64-
bit scaled integer in SQL dialect 3
] . Database SQL diaect @1 does not sup-
104 336003077 | sql_db dialect dtype unsupport port reference to @2 datatype
-104 336003087 | dsgl_invalid_label Label @1 @2 in the current scope
-104 336003088 | dsgl_datatypes not_comparable Datat_ypes @Iare not comparable in ex-
pression @2
-104 335544343 | invdid blir Invalid request BLR at offset @1
i BLR syntax error: expected @1 at offset
104 335544390 syntaxerr @2, encountered @3
-104 335544425 | ctxinuse Context already in use (BLR error)
-104 335544426 | ctxnotdef Context not defined (BLR error)
-104 335544429 | badparnum Bad parameter number
-104 335544440 | bad msg_vec -
104 335544456 | invalid_sdl I@n\ialld dlice description language at offset
-104 335544570 | dsgl_command_err Invalid command
-104 335544579 dsgl_internal_err Internal error
-104 335544590 | dsgl_dup_option Option specified more than once
-104 335544591 | dsgl_tran _err Unknown transaction option
-104 335544592 | dsgl_invalid_array Invalid array reference

391

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
-104 335544608 command_end_err Unexpected end of command
-104 335544612 | token err Token unknown
-104 335544634 | dsgl_token_unk_err Token unknown - line @1, column @2
-104 335544709 | dsgl_agg_ref_err Invalid aggregate reference
-104 335544714 | invdid array_id Invalid blob id
-104 335544730 | cse_not_supported CI.' ent/Server Express not supported in
thisrelease
-104 335544743 | token too_long Token size exceeds limit
-104 335544763 | invalid_string_constant A string constant i delimited by double
quotes
-104 335544764 | transitional_date DATE must be changed to TIMESTAMP
) . Client SQL dialect @1 does not support
104 335544796 | sgl_dialect_datatype unsupport reference to @2 datatype
Y ou created an indirect dependency on
-104 335544798 | depend_on_uncommitted_rel uncommitted metadata. Y ou must roll
back the current transaction
104 335544821 dsgl_column_pos err Invalid column position used in the @1
clause
i Cannot use an aggregate function in a
104 335544822 | dsql_agg where_err WHERE clause, use HAVING instead
i Cannot use an aggregate function in a
104 335544823 dsgl_agg_group_err GROUPBY clause
Invalid expression in the @1 (not con-
-104 335544824 | dsgl_agg_column_err tained in either an aggregate function or
the GROUP BY clause)
Invalid expression in the @1 (neither
-104 335544825 | dsgl_agg _having_err an aggregate function nor a part of the
GROUPBY clause)
104 | 335544826 | dsq_agg nested err I'\c') svgezd aggregate functions are not al-
-104 335544849 | maformed_string Malformed string
-104 | 335544851 | command_end_err2 Unexpected end of command- line @1,
- = column @2
-104 336397215 dsgl_max_sort_items Cannot sort on more than 255 items
-104 336397216 | dsgl_max_group_items Cannot group on more than 255 items

392

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
Cannot include the samefield (@1.@2)
-104 336397217 dsgl_conflicting_sort_field twiceinthe ORDER BY clause with con-
flicting sorting options
Column list from derived table @1 has
-104 336397218 dsgl_derived table more_columns more columns than the number of itemsin
its SELECT statement
Column list from derived table @1 has
-104 336397219 | dsgl_derived table less columns less columns than the number of itemsin
its SELECT statement
-104 | 336397220 | dsql_derived_field_unnamed No column name specified for column
e e number @1 in derived table @2
. . Column @1 was specified multiple times
-104 336397221 dsgl_derived field_dup_name for derived table @2
) . . Internal dsgl error: alias type expected by
104 336397222 | dsgl_derived alias select passl._expand_select node
) . L Internal dsgl error: aias type expected by
104 336397223 | dsgl_derived_dlias field passl. field
. Internal dsqgl error: column position out of
104 336397224 | dsgl_auto _field bad pos range in passl_union auto_cast
) Recursive CTE member (@1) can refer it-
104 336397225 | dsgl_cte wrong_reference sl only in FROM clause
-104 336397226 | dsgl_cte cycle CTE'@1' has cyclic dependencies
1104 | 336397227 | dsgl_cte_outer_join Recursive member of CTE can't be mem-
ber of an outer join
104 | 336397228 | dsq_cte mult references Recursive member of CTE can't reference
itself more than once
-104 336397229 dsgl_cte not_a union Recursive CTE (@1) must be an UNION
-104 336397230 dsgl_cte nonrecurs_after_recurs CTE'@1 d_eflned non-recursive member
after recursive
-104 336397231 dsgl_cte wrong_clause Recursive member of CTE ‘@1 has @2
clause
Recursive members of CTE (@1) must be
-104 336397232 dsgl_cte _union_all linked with another members via UNION
ALL
104 | 336397233 | dsq_cte miss nonrecursive ,'\gf,'rec“rg ve member is missing in CTE
-104 336397234 | dsgl_cte _nested with WITH clause can't be nested

393

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
. Column @1 appears more than once in

-104 336397235 | dsgl_col_more_than_once using USING clause

-104 336397237 dsgl_cte not_used CTE"@1" isnot used in query

-105 335544702 | like_escape invalid Invalid ESCAPE sequence

105 | 335544789 | extract_input_mismatch Specified EXTRACT part does not exist
in input datatype

-150 335544360 | read only rel Attempted update of read-only table

-150 335544362 | read only_view Cannot update read-only view @1

-150 335544446 | non_updatable Not updatable

-150 335544546 constaint_on_view Cannot define constraints on views

-151 335544359 | read only_field Attempted update of read - only column

155 335544658 | dsql_base table @1 is not avalid base table of the speci-
fied view

157 335544508 | specify fidld err Must specn‘y column name for view se-
lect expression

158 335544509 | num field_err II\Il Sutmber of columns does not match select

162 335544685 no,_dbkey Dpkey not available for multi - table
views

170 335544512 | premismat I((ggut parameter mismatch for procedure

170 335544619 | extern func err External functions cannot have morethan
10 parametrs

-170 335544850 | prc_out_param_mismatch Céultput parameter mismatch for procedure

-171 335544439 funmismat Function @1 could not be matched

. - . Column not array or invalid dimensions
-171 335544458 | invaid_dimension (expected @1, encountered @2)
171 335544618 | return mode err Return mode by value not allowed for this
- - datatype

-171 335544873 | array_max_dimensions g‘gnag datatype can use up to @1 dimen-

-172 335544438 funnotdef Function @1 is not defined

-203 335544708 | dyn_fld ambiguous Ambiguous column reference

394

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
-204 336003085 | dsgl_ambiguous field name A@rgblguous field name between @1 and
-204 335544463 | gennotdef Generator @1 is not defined
-204 335544502 | stream not_defined Reference to invalid stream number
-204 335544509 | charset_not_found CHARACTER SET @1 is not defined
-204 335544511 prcnotdef Procedure @1 is not defined
-204 335544515 codnotdef Status code @1 unknown
-204 335544516 xcpnotdef Exception @1 not defined
-204 335544532 ref _cnstrnt_notfound Name of Refere_nual Constraint not de-
fined in constraints table
, Could not find table/procedure for
-204 335544551 grant_obj_notfound GRANT
2204 335544568 | text_subtype Implementation of text subtype @1 not
located
-204 335544573 | dsgl_datatype _err Data type unknown
-204 335544580 | dsgl_relation_err Table unknown
-204 335544581 dsgl_procedure err Procedure unknown
. COLLATION @1 for CHARACTER
-204 335544588 collation_not_found SET @2 is not defined
. COLLATION @1 isnot valid for speci-
-204 335544589 collation_not_for_charset fied CHARACTER SET
-204 335544595 | dsgl_trigger_err Trigger unknown
204 335544620 dias conflict_err Alias @1 conflictswith an aliasin the
same statement
2204 335544621 procedure._conflict_error Alias @1 conflicts with a procedure in the
same statement
204 335544622 relation conflict err Alias @1 conflicts with atablein the
- - same statement
204 | 335544635 | dsql_no_relation alias Thereis no dliasor table named @1 a
this scope level
-204 335544636 indexname Thereisnoindex @1 for table @2
. : Invalid use of CHARACTER SET or
-204 335544640 collation_requires_text COLLATE
-204 335544662 dsgl_blob_type_unknown BLOB SUB_TYPE @1 is not defined

395

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
Can not define a not null column with
-204 335544759 | bad default value NULL as default value
-204 335544760 invalid_clause Invalid clause - '@1'
Too many Contexts of Relation/Proce-
204 | 335544800 | too_many_contexts dure/Views. Maximum allowed is 255
204 335544817 | bad_limit_param In_valld parameter to FIRST.Only integers
>= 0 are allowed
. Invalid parameter to SKIP. Only integers
-204 335544818 | bad_skip_param >= 0 are allowed
Invalid offset parameter @1 to SUB-
-204 335544837 | bad_substring_offset STRING. Only positive integers are al-
lowed
Invalid length parameter @1 to SUB-
-204 335544853 | bad_substring_length STRING. Negative integers are not al-
lowed
-204 335544854 | charset_not_installed CHARACTER SET @1 isnot installed
. . COLLATION @1 for CHARACTER
-204 335544855 | callation not_installed SET @2isnot ingtalled
-204 335544867 subtype_for_internal_use Blo_b sub_types bigger than 1 (text) are
for internal use only
-205 335544396 | fldnotdef Column @1 is not defined in table @2
-205 335544552 | grant_fld_notfound Could not find column for GRANT
2205 335544883 fldnotdef2 (éozl umn @1 is not defined in procedure
-206 335544578 dsgl_field err Column unknown
-206 335544587 | dsgl_blob_err Columnisnot aBLOB
-206 335544596 | dsgl_subselect_err Subselect illegal in this context
-206 336397208 | dsgl_line col_error Atline @1, column @2
-206 336397209 | dsgl_unknown_pos At unknown line and column
206 | 336397210 | dsgl_no_dup_name Column @1 cannot be repeated in @2
Statement
-208 335544617 order_by err Invalid ORDER BY clause
-219 335544395 rel notdef Table @1 is not defined
-219 335544872 domnotdef Domain @1 is not defined
-230 335544487 | walw_err WAL Writer error

396

Exception Codes and Messages

SQL -

CODE GDSCODE Symbol M essage Text

-231 335544488 logh_small Log file header of @1 too small

-232 335544489 logh_inv_version Invalid version of log file @1
Log file @1 not latest in the chain but

-233 335544490 | logh_open_flag open flag sill set

234 335544491 | logh open flag2 Log file @1 not close_d properly; database
recovery may be required

235 335544492 logh_diff_doname Database name in the log file @1 is dif-
ferent

236 | 335544493 | logf_unexpected_eof g‘zex'oeded end of log file @1 at offset

937 335544494 | logr_incomplete I_ncomplete log record at offset @1 inlog
file @2

238 | 335544495 | logr_header small2 L og record header too smal at offset @1
inlogfile @

2939 335544496 | logh_small L_og block too small at offset @1 in log
file @2

2239 335544601 | cache too_small Insufficient memory to alocate page
buffer cache

-239 335544693 | log_too_small Log size too small

-239 335544694 | partition_too_small Log partition size too small

-243 335544500 no_wal Database does not use Write-ahead Log

257 | 335544566 | start_cm_for_wal WAL defined; Cache Manager must be

- == started first

-260 335544690 | cache redef Cache redefined

-260 335544692 | log_redef Log redefined

261 | 335544695 | partition_not_supp Partitions not supported in series of log
file specification

261 335544696 | log_length_spec Tota] !ength of a partitioned log must be
specified

-281 335544637 | no_stream plan Table @1 is not referenced in plan

282 | 335544638 | stream_twice Table @1 Is referenced more than oncein
plan; use aliases to distinguish

282 335544643 dsql_sdif_join The table @1 isreferenced twice; use

dliases to differentiate

397

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
282 | 335544650 | duplicate base table Table @1 is referenced twice in view; use
an alias to distinguish
282 | 335544660 |view_alias View @1 has more than one base table;
- use aliases to distinguish
-282 335544710 complex_view Naw ga].:l onal stream @1 referencesa
view with more than one base table
283 335544639 | stream not_found Table @1_|s referenced in the plan but not
the from list
284 335544642 index_unused Ipr|12nex @1 cannot be used in the specified
: Column used in aPRIMARY constraint
-291 335544531 | primary_key notnull must be NOT NULL
Cannot update constraints (RDB
-292 335544534 ref_cnstrnt_update $REF_CONSTRAINTS)
Cannot update constraints (RDB
-293 335544535 check_cnstrnt_update $CHECK_CONSTRAINTS)
Cannot delete CHECK constraint entry
-294 335544536 | check cnstrnt_del (RDBSCHECK_CONSTRAINTS)
Cannot update constraints (RDB
-295 335544545 rel_cnstrnt_update $RELATION_CONSTRAINTS)
. Internal gds software consistency check
-296 335544547 | invld_cnstrnt_type (invalid RDBSCONSTRAINT TY PE)
207 | 335544558 | check_constraint Operation violates check constraint @1
- on view or table @2
. UPDATE OR INSERT field list does not
-313 336003099 | upd_ins doesnt_match pk match primary key of table @1
. . UPDATE OR INSERT field list does not
-313 336003100 upd_ins doesnt_ match _matching match MATCHING clause
313 335544669 | dsql_count_mismatch Count of column list and variable list do
not match
314 | 335544565 | trangliteration failed Cannot trandiiterate character between
character sets
Cannot change datatype for column
-315 336068815 | dyn_dtype invalid @1.Changing datatype is not supported
for BLOB or ARRAY columns
383 336068814 dyn_dependency_exists Column @1 from table @2 is referenced

in @3

398

Exception Codes and Messages

SQL -
CODE GDSCODE Symbol M essage Text
401 335544647 invalid_operator ;rtll\:)e:l] id comparison operator for find oper-
-402 335544368 | segstr_no_op Attempted invalid operation on a BLOB
i BLOB and array datatypes are not sup-
402 335544414 | blobnotsup ported for @1 operation
-402 335544427 | datnotsup Data operation not supported
-406 335544457 | out_of bounds Subscript out of bounds
-407 335544435 | nullsegkey Null segment of UNIQUE KEY
-413 335544334 | convert_error Conversion error from string " @1"

Table B.3. SQLCODE and GDSCODE Error Codes and Message Texts (2)

SQL-
CODE GDSCODE Symbol M essage Text

413 335544454 nofilter Filter not found to convert type @1 to
type @2

i Unsupported conversion to target type

413 335544860 blob_convert_error BLOB (subtype @1)

i Unsupported conversion to target type

413 335544861 array_convert_error ARRAY

-501 335544577 dsgl_cursor_close_err Attempt to reclose a closed cursor

502 | 336003090 | dsg_cursor redefined Statement already has a cursor @1 as-
signed

502 336003091 dsql_cursor_not_found Cursor @1 isnot found in the current
context

502 336003092 dsql_cursor_exists Cursor @1 aready existsin the current

- - context

-502 336003093 dsgl_cursor_rel_ambiguous Relation @1 is ambiguous in cursor @2

-502 336003094 | dsgl_cursor_rel_not_found Relation @1 is not found in cursor @2

-502 336003095 | dsgl_cursor_not_open Cursor isnot open

-502 335544574 | dsgl_decl_err Invalid cursor declaration

-502 335544576 dsgl_cursor_open_err Attempt to reopen an open cursor

-504 336003089 dsgl_cursor_invalid Empty cursor nameis not allowed

-504 335544572 | dsgl_cursor_err Invalid cursor reference

-508 335544348 | no_cur_rec No current record for fetch operation

399

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
-510 335544575 dsgl_cursor_update err Cursor @1 is not updatable
-518 335544582 | dsgl_request_err Request unknown
i The prepare statement identifies a prepare
519 335544688 | dsgl_open_cursor_request statement with an open cursor
. Violation of FOREIGN KEY constraint
-530 335544466 foreign_key "@1" on table " @2"
530 | 335544838 | foreign_key target doesnt exist i':s‘t’re'g” key reference target does not ex-
-530 335544839 | foreign_key references present lr:g:rgn key references are present for the
Cannot prepare a CREATE DATABASE/
-531 335544597 dsgl_crdb_prepare_err SCHEMA statement
-532 335544469 | trans invalid Transaction marked invalid by 1/0 error
-551 335544352 no_priv No permission for @1 accessto @2 @3
Service @1 requires SY SDBA permis-
-551 335544790 | insufficient_svc_privileges sions. Reattach to the Service Manager
using the SY SDBA account
552 | 335544550 | not_rel_owner Only the owner of a table may reassign
- - ownership
557 335544553 | grant_nopriv User d_oes not have GRANT privileges for
operation
: User does not have GRANT privileges on
-552 335544707 grant_nopriv_on_base base table/view for operation
-553 335544529 | existing_priv_mod Cannot modify an existing user privilege
-595 335544645 | stream crack The current position is on a crack
506 335544644 | stream bof Illegal operation when at beginning of
- stream
) . Preceding file did not specify length, so
597 335544632 | dsgl_file length_err @1 must include starting page number
-598 335544633 | dsgl_shadow_number_err Szradow number must be a positive inte-
-599 335544607 | node err Gen.c: node not supported
.599 335544625 node_name_ err A node name is not permitted inasec-
ondary, shadow, cache or log file name
-600 335544680 | crrp_data err Sort error: corruption in data structure

400

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
-601 335544646 db _or file exists Database or file exists
-604 335544593 dsgl_max_arr_dim_exceeded Array declared with too many dimensions
-604 335544594 | dsgl_arr_range_error Illegal array dimension range
-605 335544682 | dsgl_field ref Inappropriate self-reference of column
Cannot SELECT RDB$DB_KEY from a
-607 336003074 | dsgl_dbkey from_non_table stored procedure
External function should have return posi-
-607 336003086 | dsgl_udf return_pos err tion between 1 and @1
Datatype @1 is not supported for EX-
-607 336003096 | dsgl_type not_supp_ext_tab TERNAL TABLES. Relation'@2, field
l@3l
-607 335544351 no_meta update Unsuccessful metadata update
-607 335544549 | systrig_update Cannot modify or erase a system trigger
Array/BLOB/DATE data types not al-
-607 335544657 | dsgl_no_blob_array lowed in arithmetic
"REFERENCES table" without "(col-
-607 335544746 | reftable_requires_pk umn)" requires PRIMARY KEY on refer-
enced table
-607 335544815 generator_name GENERATOR @1
-607 335544816 | udf_name UDF @1
. Can't have relation with only computed
-607 335544858 must_have phys field fields or constraints
-607 336397206 | dsgl_table not found Table @1 does not exist
-607 336397207 dsgl_view_not_found View @1 does not exist
i Array and BLOB data types not allowed
607 336397212 | dsgl_no_array_computed in computed field
-607 336397214 dsgl_only_can_subscript_array Scalar operator used onfield @1 whichis
not an array
. , Cannot rename domain @1 to @2. A do-
-612 336068812 dyn_domain_name_exists main with that name already exists
Cannot rename column @1 to @2.A col-
-612 336068813 dyn_field_name_exists umn with that name already existsin table
@3
615 335544475 | relation lock Lock on table @1 conflicts with existing

lock

401

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
615 335544476 record lock _quuested record lock conflicts with ex-
- isting lock
-615 335544507 | range_in_use Refresh range number @1 already in use
. Cannot delete PRIMARY KEY being
616 | 335544530 | primary_key_ref used in FOREIGN KEY definition
616 | 335544539 | integ_index_del Cannot delete index used by an Integrity
Constraint
616 335544540 | integ_index_mod Cannot _modﬁy index used by an Integrity
Constraint
616 335544541 | check_trig_de Cannot plel ete trigger used by a CHECK
Constraint
616 335544543 | cnstrnt fld del Can_not delete (_:olumn being used in an In-
- = tegrity Constraint
-616 335544630 dependency There are @1 dependencies
-616 335544674 | del_last_field Last column in atable cannot be deleted
616 | 335544728 | integ_index_deactivate Cannot deactivate index used by an in-
tegrity constraint
. . . Cannot deactivate index used by a PRI-
-616 335544729 integ_deactivate primary MARY/UNIQUE constraint
617 | 335544542 | check trig update Cannot update trigger used by a CHECK
Constraint
-617 335544544 | cnstrnt_fld_rename Cannqt rename CQI umn being used in an
Integrity Constraint
) . : Cannot delete index segment used by an
618 335544537 integ_index_seg_del Integrity Constraint
) . . Cannot update index segment used by an
618 335544538 integ_index_seg_mod Integrity Constraint
625 335544347 not_valid V(gl) |2 Elatlon error for column @1, value
625 | 335544879 | not_valid for var Yg'z‘?.'at'on error for variable @1, value
-625 335544880 not_valid for Validation error for @1, value " @2"
637 335544664 | dsql_duplicate spec Duplicate specification of @1- not sup-
ported
637 | 336397213 | dsgl_implicit_domain name Implicit domain name @1 not allowed in

user created domain

402

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
-660 336003098 primary_key required Primary key required on table @1
. Non-existent PRIMARY or UNIQUE
-660 335544533 | foreign_key notfound KEY specified for FOREIGN KEY
-660 335544628 | idx_create er Cannot create index @1
-663 335544624 idx_seg_err Segment count of O defined for index @1
-663 335544631 | idx_key err Too many keys defined for index @1
663 335544672 key fidd err 'I_'oo few key columns found for index @1
(incorrect column name?)
. Key size exceeds implementation restric-
-664 335544434 keytoobig tion for index "@1"
-677 335544445 ext_err @1 extension error
-685 335544465 | bad_segstr_type Invalid BLOB type for operation
685 335544670 | blob_ idx_err é@ttlempt to index BLOB column in index
685 335544671 | array idx_err A@\t;empt to index array column in index
i Page @1 is of wrong type (expected @2,
689 335544403 | badpagtyp found @3)
-689 335544650 page type err Wrong page type
-690 335544679 | no_segments err %eglgments not allowed in expression index
-691 335544681 | rec_size er New record size of @1 bytesistoo big
602 335544477 | max_idx g/ldaxmum indexes per table (@1) exceed-
693 335544663 | req max_clones exceeded Too many concurrent executions of the
same request
-694 335544684 no_field access Cannot access column @1 in view @2
-802 335544321 arith_except Arlth_metlc exceptlon, numeric overflow,
or string truncation
Concatenation overflow. Resulting string
-802 335544836 concat_overflow cannot exceed 32K in length
Attempt to store duplicate value (visible
-803 335544349 | no_dup to active transactions) in unique index

Il@lll

403

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
. N Violation of PRIMARY or UNIQUE
-803 335544665 unique_key violation KEY constraint "@1" on table " @2"
i Feature not supported on ODS version
804 336003097 dsgl_feature not_supported ods older than @1.@2
-804 335544380 | wronumarg Wrong number of arguments on call
i SQLDA missing or incorrect version, or
804 335544583 | dsql_sqlda err incorrect number/type of variables
-804 335544584 | dsql_var_count_ert Count of read - write columns does not
equal count of values
-804 335544586 dsgl_function_err Function unknown
-804 335544713 | dsgl_sglda value err Incorrect values within SQLDA structure
804 | 336397205 | dsql_too_old ods ODS versions before ODS@1 are not
supported
Only simple column names permitted for
-806 335544600 | col_name_err VIEW WITH CHECK OPTION
No WHERE clause for VIEW WITH
-807 335544601 | where_err CHECK OPTION
. Only one table allowed for VIEW WITH
-808 335544602 | table view_err CHECK OPTION
DISTINCT, GROUP or HAVING not
-809 335544603 | distinct_err permitted for VIEW WITH CHECK OP-
TION
No subgueries permitted for VIEW WITH
-810 335544605 | subquery_err CHECK OPTION
-811 335544652 | sing_select_err Multiple rows in singleton select
816 335544651 | ext_readonly_err Ca_nnot insert because th_e fileisreadonly
or ison aread only medium
) : Operation not supported for EXTERNAL
816 335544715 | extfile_uns op FILE table @1
817 | 336003079 | isc_sq_dialect conflict_num DB dialect @1 and client dialect @2 con-
flict with respect to numeric precision @3
UPDATE OR INSERT without MATCH-
-817 336003101 upd_ins_with_complex_view ING could not be used with views based
on more than one table
-817 336003102 | dsgl_incompatible trigger_type Incompatible trigger type
-817 336003103 dsgl_db_trigger_type cant_change Database trigger type can't be changed

404

Exception Codes and Messages

SQL -
CODE GDSCODE Symbol M essage Text
817 | 335544361 | read_only trans Attempted update during read - only
transaction
-817 335544371 | segstr_no_write Attempted write to read-only BLOB
-817 335544444 | read only Operation not supported
-817 335544765 | read only_database Attempted update on read - only database
817 | 335544766 | must_be dialect 2 and up SQL diglect @1 is not supported in this
database
, M etadata update statement is not allowed
-817 335544793 ddl_not_allowed by db sgl_dia by the current database SOL didlect @1
-820 335544356 | obsolete metadata Metadata is obsolete
i Unsupported on - disk structure for file
820 335544379 wrong_ods @1: found @2.@3, support @4.@5
-820 335544437 | wrodynver Wrong DY N version
-820 335544467 high_minor Minor version too high found @1 expect-
ed @2
-820 335544881 | need difference plfference file name shoul d_ be set explic-
itly for database on raw device
-823 335544473 | invalid_bookmark Invalid bookmark handle
-824 335544474 bad lock level Invalid lock level @1
-825 335544519 bad lock handle Invalid lock handle
-826 335544585 | dsgl_stmt_handle Invalid statement handle
-827 335544655 | invalid_direction Invalid direction for find operation
-827 335544718 | invalid key Invalid key for find operation
-828 335544678 | inva_key posn Invalid key position
New size specified for column @1 must
-829 336068816 dyn_char_fld_too_small be at least @2 characters
Cannot change datatype for @1.Conver-
-829 336068817 dyn_invalid_dtype conversion sion from base type @2 to @3 is not sup-
ported
Cannot change datatype for column @1
-829 336068818 | dyn_dtype _conv_invalid from a character type to a non-character
type
Maximum number of collations per char-
-829 336068829 max_coll_per_charset acter set exceeded
-829 336068830 | invalid_coll_attr Invalid collation attributes

405

Exception Codes and Messages

ng[")l'z GDSCODE Symbol M essage Text
820 | 336068852 | dyn scale_too big New scele S@gg‘jﬁ ed for column @1 must
829 | 336068853 | dyn_precision_too_small r'\r'ﬁg’[Eree;itsliga’;%egﬁed for column @1
-829 335544616 | field ref_err Invalid column reference
-830 335544615 | field_aggregate err Column used with aggregate
831 | 335544548 | primary_key_exisis AlompLto define a second PRIMARY
-832 335544604 | key_field_count_err rica)tl?:ﬁ ISR,\III\/}T E ;f ?(ILéT(n count does not
-833 335544606 | expression_eval_err Expression evaluation not supported
-833 335544810 date range exceeded Value exceeds the range for valid dates
-834 335544508 range_not_found Refresh range number @1 not found
-835 335544649 | bad checksum Bad checksum
-836 | 335544517 | except Exception @1
-836 335544848 | except2 Exception @1
-837 335544518 cache restart Restart shared cache manager
-838 335544560 shutwarn Database @1 shutdown in @2 seconds
-841 335544677 | version_err Too many versions
-842 335544697 | precision_err Precision must be from 1 to 18
-842 335544698 | scale nogt Scale must be between zero and precision
-842 335544699 | expec_short Short integer expected
-842 335544700 | expec_long Long integer expected
-842 335544701 expec_ushort Unsigned short integer expected
-842 335544712 | expec_positive Positive value expected
-901 335740929 | dfix_db_name Database file name (@1) already given
-901 336330753 gbak_unknown_switch Found unknown switch
-901 336920577 | gstat_unknown_switch Found unknown switch
-901 336986113 | fbsvemgr_bad _am Wrong value for access mode
-901 | 335740930 | dfix_invalid_sw Invalid switch @1
-901 335544322 | bad dbkey Invalid database key
-901 336986114 | fbsvemgr_bad wm Wrong value for write mode

406

Exception Codes and Messages

SQL -
CODE GDSCODE Symbol M essage Text
-901 336330754 | ghak page size missing Page size parameter missing
-901 336920578 | gstat_retry Please retry, giving a database name
-901 336986115 | fbsvemgr_bad rs Wrong value for reserve space
) Wrong ODS version, expected @1, en-
901 336920579 | gstat_wrong_ods countered @2
) . . Page size specified (@1) greater than lim-
901 336330755 | ghak page size toobig it (16384 bytes)
-901 335740932 | gfix_incmp_sw Incompatible switch combination
-901 336920580 | gstat_unexpected eof Unexpected end of database file
001 | 336330756 | gbak_redir_ouput_missing E;‘g”e"t location for output is not speci-
-901 | 336986116 | fhsvemgr info_err Unknown tag (@1) in info_svr_db_info
block after isc_svc_query()
-901 335740933 | dfix_replay req Replay log pathname required
-901 336330757 | gbak_switches conflict Conflicting switches for backup/restore
-901 | 336986117 | fbsvemgr_query err ;rl‘tksno""” teg (@1) inisc_sve_query() re-
-901 335544326 bad_dpb_form Unrecognized database parameter block
-901 335740934 | gfix_pgbuf req Ngmber of page buffersfor cache re-
quired
-901 336986118 | fbsvemgr_switch_unknown Unknown switch "@1"
-901 336330758 | ghak_unknown_device Device type @1 not known
-901 335544327 | bad req handle Invalid request handle
-901 335740935 | gfix_val_req Numeric value required
-901 336330759 | gbak no_protection Protection is not there yet
-901 335544328 bad_segstr_handle Invalid BLOB handle
-901 335740936 | gfix_pval_req Positive numeric value required
901 | 336330760 | gbak_page size not_allowed Page sizeis allowed only on restore or

create

Table B.4. SQLCODE and GDSCODE Error Codes and M essage Texts (3)

SQL -
CODE GDSCODE Symbol M essage Text
-901 335544329 | bad_segstr_id Invalid BLOB ID

407

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text

001 | 335740037 | gfix_tm,_req Number of transactions per sweep re-
quired

-901 336330761 gbak_multi_source dest Multiple sources or destinations specified

-901 335544330 | bad_tpb_content Invalid parameter in transaction parame-
ter block

-901 336330762 | ghak_filename _missing Requires both input and output filenames

-901 335544331 | bad_tpb_form IbTZSI kld format for transaction parameter

. Input and output have the same name.

-901 336330763 | gbak dup_inout_names Disallowed

-901 335740940 | gfix_full_req "full" or "reserve" required

001 | 335544332 | bad_trans handle Invalid transaction handle (expecting ex-
plicit transaction start)

-901 336330764 | ghak_inv_page size Expected page size, encountered " @1"

-901 335740941 | dfix_usrname _req User name required

-901 336330765 gbak_db_specified REPLACE specified, but the first file @1
is a database

-901 335740942 | dfix_pass req Password required

) . Database @1 already exists. To replaceit,

901 336330766 | ghak db_exists use the -REP switch

-901 335740943 | dfix_subs _name Subsystem name

-901 336723983 | gsec_cant_open _db Unable to open database

-901 336330767 | gbak_unk_device Device type not specified

-901 336723984 | gsec_switches error Error in switch specifications

-901 335740945 | gfix_sec_req Number of seconds required

901 | 335544337 | excess trans fltempt to start more than @1 transac

-901 336723985 gsSec_no_op_spec No operation specified

-901 335740046 | gfix_nval_req Nurr_1er|c val_ue between 0 and 32767 in-
clusive required

-901 336723986 | gsec_no_usr_name No user name specified

-901 335740947 | ofix_type_shut Must specify type of shutdown

-901 335544339 | infinap Information type inappropriate for object

specified

408

Exception Codes and Messages

SQL -

CODE GDSCODE Symbol M essage Text
-901 335544340 infona Eg;]{(;gﬂoeg of thistype available for
-901 336723987 gsec_er_add Add record error
-901 336723988 | gsec_err_modify Modify record error
-901 336330772 | gbak_blob_info_failed Gds _$blob _info failed
-901 335740948 | dfix_retry Please retry, specifying an option
-901 335544341 | infunk Unknown information item
-901 336723989 | gsec_err_find_mod Find / modify record error
-901 336330773 gbak_unk_blob_item Do not understand BLOB INFO item @1
001 | 335544342 | integ fail gﬂggg&”ﬁ;ﬂ tt;/y trigger (@1) to pre-
-901 336330774 | gbak get seg_failed Gds $get segment failed
-901 336723990 gsec_err_rec_not_found Record not found for user: @1
-901 336723991 | gsec_err_delete Delete record error
-901 336330775 | gbak close blob failed Gds_$close blob failed
-901 335740951 | dfix_retry_db Please retry, giving a database name
-901 336330776 | gbak_open_blob failed Gds_$open_blob failed
-901 336723992 gsec_err_find_del Find / delete record error
-901 335544345 | lock_conflict Lock conflict on no wait transaction
-901 336330777 gbak_put_blr_gen_id_failed Failed in put_blr_gen_id
-901 336330778 | gbak _unk_type Data type @1 not understood
-901 336330779 gbak_comp _req failed Gds_$compile_request failed
-901 336330780 | gbak_start req failed Gds_S$start_request failed
-901 336723996 | gsec_err_find_disp Find / display record error
-901 336330781 | gbak_rec failed gds_$receivefailed
-901 336920605 | gstat_open_err Can't open database file @1
-901 336723997 gsec_inv_param Invalid parameter, no switch defined
-901 335544350 | no_ finish IF;rg%zr;b Zt;[eempted to exit without finish-
-901 336920606 | gstat_read_err Can't read a database page
-901 336330782 gbak_re_req failed Gds _$release request failed

409

Exception Codes and Messages

SQL -

CODE GDSCODE Symbol M essage Text
-901 336723998 gsec_op_specified Operation already specified
-901 336920607 | gstat_sysmemex System memory exhausted
-901 336330783 | ghak db_info failed gds_$database _info failed
-901 336723999 | gsec_pw_specified Password already specified
-901 336724000 | gsec_uid_specified Uid aready specified
-901 336330784 | gbak_no_db_desc Expected database description record
-901 335544353 no_recon Transaction is not in limbo
-901 336724001 gsec_gid specified Gid aready specified
-901 336330785 gbak_db_create failed Failed to create database @1
-901 336724002 | gsec_proj_ specified Project already specified
-901 336330786 gbak_decomp_len_error RESTORE: decompression length error
-901 335544355 | no_segstr_close BLOB was not closed
-901 336330787 gbak_tbl missing Cannot find table @1
-901 336724003 | gsec_org_specified Organization aready specified
-901 336330788 | ghak blob_col missing Cannot find column for BLOB
-901 336724004 | gsec_fname_specified First name already specified
901 | 335544357 | open_trans t?:ﬂ;‘gtﬂ?so(gﬁcﬁae?ase with open
-901 336330789 gbak_create blob_failed Gds_$create blob failed
-901 336724005 | gsec_mname_specified Middle name already specified
-901 335544358 port_len (l;/lxzzsczigeg | (anzg;th error (encountered @1,
-901 336330790 | gbak_put_seg_failed Gds_$put_segment failed
-901 336724006 | gsec_Iname specified Last name already specified
-901 336330791 ghak_rec_len_exp Expected record length
-901 336724008 | gsec_inv_switch Invalid switch specified
901 | 336330792 | gbak_inv_rec len XZL‘:}TZ;”%@ record, expected @1 en-
-901 336330793 | ghak_exp_data type Expected data attribute
-901 336724009 | gsec_amb_switch Ambiguous switch specified
-901 336330794 | gbak_gen id failed Failed in store_bir_gen_id

410

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text

-901 336724010 gsec_no_op_specified No operation specified for parameters

-901 335544363 | req_ho_trans No transaction for request

-901 336330795 | ghak unk rec type Do not recognize record type @1

-901 336724011 | gsec_params_not_allowed No parameters allowed for this operation

-901 335544364 | req_sync Request synchronization error

-901 336724012 | gsec_incompat_switch Incompatible switches specified

-901 336330796 | gbak_inv_bkup ver Expected backup version 1..8. Found @1
Request referenced an unavailable

-901 335544365 | req wrong_db database

-901 336330797 | gbak_missing_bkup_desc Expected backup description record

-901 336330798 | gbak_string_trunc String truncated

-901 336330799 gbak_cant_rest_record warning -- record could not be restored

-901 336330800 | gbak_send failed Gds_$send failed

-901 335544369 segstr_no_read Attempted read of anew, open BLOB

-901 336330801 gbak_no_tbl_name No table name for data

-901 335544370 | segsir_no_trans fi\(t)tnempted action on blob outside transac-

-901 336330802 | gbak_unexp_eof Unexpected end of file on backup file

901 | 336330803 | gbak_db_format_too_old Detabase format @1 1stoo old o restore
Attempted reference to BLOB in unavail-

-901 335544372 | segstr_wrong_db able database

901 | 336330804 | gbak_inv_array_dim e dimension for column @1 isin-

-901 336330807 gbak_xdr_len_expected Expected XDR record length

-901 335544376 Unres rel 'I_'able @1 was _omltted from the transac-

- tion reserving list

901 | 335544377 | uns ext Request includes a DSR extension not
supported in this implementation

-901 335544378 | wish_list Feature is not supported

-901 335544382 random @1

-901 335544383 | fatal_conflict Unrecoverable conflict with limbo trans-

action @1

411

Exception Codes and Messages

ng[")l'z GDSCODE Symbol M essage Text
-901 335740991 gfix_exceed max Internal block exceeds maximum size
-901 335740992 | ¢fix_corrupt_pool Corrupt pool
-901 335740993 | ¢gfix_mem_exhausted Virtual memory exhausted
-901 336330817 | ghak_open_bkup_error Cannot open backup file @1
-901 335740994 | ¢fix_bad_pool Bad pooal id.
-901 336330818 | gbak_open_error C@:alnnot open status and error output file
-901 335740995 | dfix_trn_not_valid Transaction state @1 not in valid range
-901 335544392 | bdbincon Internal error
-901 | 336724044 | gsec_inv_username :2\‘/\’2{;‘; user name (maximum 31 bytes al-
001 | 336724045 | gsec inv_pw length X}’i&gérgﬂ’;@“m 8 significant bytes
-901 336724046 | gsec_db_specified Database already specified
901 | 336724047 | gsec_db_admin_specified SDpZIC"’}'?f; administrator name alreacly
001 | 336724048 | gsec db admin pw_specified Epaetg??z administrator password already
-901 336724049 | gsec_sql_role specified SQL role name aready specified
-901 335741012 | gfix_unexp_eoi Unexpected end of input
-901 335544407 | dbbnotzer Database handle not zero
-901 335544408 | tranotzer Transaction handle not zero
-901 335741018 ofix_recon_fail gg;%da;g gclonnect to atransaction in
-901 335544418 | trainlim Transaction in limbo
-901 335544419 | notinlim Transaction not in l[imbo
-901 335544420 | traoutsta Transaction outstanding
-901 335544428 | badmsgnum Undefined message number
-901 335741036 gfix_trn_unknown Transaction description item unknown
-901 335741038 | ¢gfix_mode req "read_only" or "read write" required
-901 335544431 blocking_signal Blocking signal has been received
-901 335741042 | dfix_pzva_req Positive or zero numeric value required

412

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
-901 335544449 noargace, read (D@altabase system cannot read argument
-901 335544443 | noargacc, write ?@altabase system cannot write argument
-901 335544450 | misc_interpreted @1
-901 335544468 tra_state Transaction @1 is @2
-901 335544485 | bad stmt_handle Invalid statement handle
-901 336330934 | gbak_missing_block_fac Blocking factor parameter missing
901 | 336330035 | gbak_inv_block fac %ple..ded blockdng factor, encourntered
) . A blocking factor may not be used in con-
901 336330936 | ghak block fac specified junction with device CT
-901 336068796 dyn_role_does not_exist SQL role @1 does not exist
-901 336330940 | gbak missing username User name parameter missing
-901 336330941 | gbak_missing_password Password parameter missing
) : User @1 has no grant admin option on
901 336068797 | dyn_no_grant_admin_opt SOL role @2
-901 335544510 lock_timeout Lock time-out on wait transaction
-901 336068798 | dyn_user_not_role_member User @1 is not amember of SQL role @2
-901 336068799 | dyn_delete role failed @1 is not the owner of SQL role @2
-901 336068800 dyn_grant_role to_user @1 isaSQL role and not a user
001 | 336068801 | dyn inv_sgl_role name h’)ls:r name @1 could not be used for SQL
-901 336068802 | dyn_dup_sql_role SQL role @1 aready exists
001 | 336068803 | dyn kywd spec for role Keyword @1 can not be used asa SQL
role name
SQL roles are not supported in on older
-901 336068804 | dyn roles not_supported versions of the database. A backup and
restore of the database is required
] . , missing parameter for the number of
901 336330952 | ghak missing skipped bytes bytes to be skipped
) . . Expected number of bytes to be skipped,
901 336330953 | ghak_inv_skipped_bytes encountered " @1"
-901 336068820 | dyn_zero len_id Zero length identifiers are not alowed

413

Exception Codes and Messages

SQL -

CODE GDSCODE Symbol M essage Text

-901 336330965 gbak_err_restore charset Character set

-901 336330967 gbak_err_restore _collation Collation

-901 336330072 | ghak_read error Unexpec_ted 1/O error while reading from
backup file

001 | 336330973 | gbak_write error Unexpected 1/0 error while writing to
backup file

-901 336068840 | dyn_wrong_gtt scope @1 cannot reference @2

001 | 336330085 | gbak_db in_use Could not arop database @1 (database
might bein use)

-901 336330990 | ghak sysmemex System memory exhausted

-901 335544559 bad_svc _handle Invalid service handle

-901 335544561 | wrospbver Wrong version of service parameter block

-901 335544562 | bad spb form Unrecognized service parameter block

-901 335544563 | svcnotdef Service @1 is not defined

001 | 336068856 | dyn ods not supp. feature Feature'@1" is not supported in ODS
@2.@3

-901 336331002 gbak_restore role failed SQL role

-901 336331005 | gbak role_op_missing SQL role parameter missing

-901 336331010 | ghak page buffers missing Page buffers parameter missing

-901 336331011 | ghak page buffers wrong_param Expected page buffers, encountered " @1"

901 | 336331012 | gbak_page buffers restore Eff;:“”ers 's allowed only on restore or

-901 336331014 | gbak_inv_size Size spe(_:lflcatlon either missing or incor-
rect for file @1

-901 336331015 | gbak file outof sequence File @1 out of sequence

-901 336331016 gbak_join file missing Can'tjoin - one of thefiles missing

001 | 336331017 | gbak_stdin_not_supptd standard input i not supported when us-
ing join operation

001 | 336331018 | gbak_stdout_not_supptd Standard output is not supported when us-
ing split operation

-901 336331019 | ghak_bkup_corrupt Backup file @1 might be corrupt

-901 336331020 | gbak unk_db file spec Database file specification missing

-901 336331021 gbak_hdr_write failed Can't write a header record to file @1

414

Exception Codes and Messages

ng[")l'z GDSCODE Symbol M essage Text
-901 336331022 gbak_disk space ex Free disk space exhausted
001 | 336331023 | gbak_size It_min ;i||§ vj' 20 (‘g;” (@1) isless than minimum
-901 336331025 | ghak svc name missing Service name parameter missing
Cannot restore over current database,
-901 336331026 gbak_not_ownr must be SY SDBA or owner of the exist-
ing database
-901 336331031 | gbak _mode req "read only" or "read write" required
-901 336331033 | ghak_just_data Just dataignore al constraints etc.
901 | 336381034 | ghek e only (e, not | & other consrane
-901 335544609 index_name INDEX @1
-901 335544610 | exception_name EXCEPTION @1
-901 335544611 field_name COLUMN @1
-901 335544613 | union_err Union not supported

Table B.5. SQLCODE and GDSCODE Error Codes and M essage Texts (4)

SQL -

CODE GDSCODE Symbol M essage Text

-901 335544614 | dsgl_construct_err Unsupported DSQL construct

-901 335544623 | dsgl_domain_err Illegal use of keyword VALUE

-901 335544626 table_name TABLE @1

-901 335544627 | proc_name PROCEDURE @1

-901 | 335544641 | dsgl_domain_not found Specified domain or source column @1
does not exist

-901 335544656 dsgl_var_conflict Variable @1 conflicts with parameter in
same procedure

. Server version too old to support all CRE-

-901 335544666 | srvr_version too old ATE DATABASE options

-901 335544673 | no_delete Cannot delete

-901 335544675 sort_err Sort error

-901 335544703 Svenoexe Service @1 does not have an associated
executable

-901 335544704 | net_lookup_err Failed to locate host machine

415

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
-901 335544705 service_unknown Undefined service @1/ @2
The specified name was not found in the
"901 | 335544706 | host_unknown hosts file or Domain Name Services
i Attempt to execute an unprepared dynam-
901 335544711 | unprepared_stmt ic SOL statement
-901 335544716 | svc_in_use Serviceis currently busy: @1
-901 335544731 | tra_must_sweep [no associated message]
. A fatal exception occurred during the exe-
“901 | 335544740 | udf_exception cution of a user defined function
-901 335544741 | lost_db_connection Connection lost to database
. . User cannot write to RDB
-901 335544742 no_write_user_priv $USER_PRIVILEGES
001 | 335544767 | blob_ filter_exception A fatal exception occurred during the exe-
cution of ablob filter
Access violation.The code attempted to
-901 335544768 | exception access violation access avirtual address without privilege
todo so
Datatype misalignment.The attempted to
-901 335544769 | exception_datatype missalignment read or write a value that was not stored
on amemory boundary
Array bounds exceeded. The code at-
-901 335544770 | exception_array bounds_exceeded tempted to access an array element that is
out of bounds.
Float denormal operand.One of the float-
-901 335544771 exception_float_denormal _ operand ing-point operands istoo small to repre-
sent a standard float value.
Floating-point divide by zero.The code at-
-901 335544772 | exception_float_divide by zero tempted to divide afloating-point value
by zero.
Floating-point inexact result.The result of
-901 335544773 | exception float_inexact_result afloating-point operation cannot be repre-
sented as a decimal fraction
Floating-point invalid operand.An inde-
-901 335544774 | exception _float_invalid_operand terminant error occurred during a float-
ing-point operation
Floating-point overflow.The exponent of
-901 335544775 | exception_float_overflow afloating-point operation is greater than

the magnitude allowed

416

Exception Codes and Messages

SQL -
CODE GDSCODE Symbol M essage Text
Floating-point stack check.The stack
-901 335544776 exception_float_stack_check overflowed or underflowed as the result
of afloating-point operation
Floating-point underflow.The exponent of
-901 335544777 | exception_float_underflow afloating-point operation is less than the
magnitude allowed
Integer divide by zero.The code attempt-
-901 335544778 | exception_integer_divide by zero ed to divide an integer value by an integer
divisor of zero
Integer overflow.The result of an integer
-901 335544779 | exception_integer_overflow operation caused the most significant bit
of theresult to carry
. An exception occurred that does not have
-901 335544780 exception_unknown a description. Exception number @1
Stack overflow.The resource require-
-901 335544781 exception_stack_overflow ments of the runtime stack have exceeded
the memory availableto it
) . . Segmentation Fault. The code attempted
901 335544782 | exception_sigseg to access memory without privileges
-901 335544783 exception sigill Illegal | nstrgctlon. The Qode attempted to
perfrom an illegal operation
-901 335544784 | exception_sigbus Zl:cs)rError. The Code caused a system bus
Floating Point Error. The Code caused an
-901 335544785 | exception_sigfpe Arithmetic Exception or afloating point
exception
-901 335544786 ext_file delete Cannot delete rows from external files
-901 335544787 | ext_file_modify Cannot update rows in external files
. Unable to perform operation.Y ou must be
"901| 335544788 | aom task_denied either SYSDBA or owner of the database
-901 335544794 | cancelled Operation was cancelled
-901 335544797 svcnouser Usm_ar name ‘?”d password ae required
while attaching to the services manager
-901 335544801 | datype_notsup Data type not supported for arithmetic
-901 335544803 | dialect_not_changed Database dialect not changed
-901 335544804 | database create failed Unable to create database @1
-901 335544805 | inv_dialect specified Database dialect @1 is not avalid dialect

417

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text

-901 335544806 | valid db diaects Valid database dialects are @1

001 | 335544811 | inv_client dialect specified al' ""ssedect client dialect @1 isnot avalid di-

-901 335544812 | valid client_dialects Valid client dialects are @1

-901 335544814 | service not_supported Serwcesfu_nctlonallty will be supported in
alater version of the product

901 | 335544820 | invalid_savepoint Unableto find savepoint with name @1
in transaction context
Target shutdown modeisinvalid for

-901 335544835 bad_shutdown_mode database " @1"

-901 335544840 | no_update Cannot update

-901 335544842 | stack_trace @1

-901 335544843 ctx var not found Context variable @1 is not found in

- == namespace @2

001 | 335544844 | ctx_namespace invalid Icg\éal Id namespace name @1 passed to

-901 335544845 ctx_too_big Too many context variables

-901 335544846 | ctx_bad_argument Invalid argument passed to @1

-901 335544847 identifier_too_long II?)I;];Q syntax error. |dentifier @1... istoo

-901 | 335544859 | invalid_time precision glr;e precision exceeds allowed range (0-

-901 335544866 | met_wrong_gtt scope @1 cannot depend on @2

. Procedure @1 is not selectable (it does

“901 | 335544868 | illegal_pre_type not contain a SUSPEND statement)

001 | 335544869 | invalid sort_datatype Datatype @1 i ot supported for sorting
operation

-901 335544870 | collation_name COLLATION @1

-901 335544871 | domain_name DOMAIN @1
A multi database transaction cannot span

-901 335544874 max_db_per_trans_allowed more than @1 databases

-901 335544876 bad proc BLR Error while parsing procedure @1' sBLR

-901 335544877 | key_too big Index key too big

901 | 336397211 | dsgl_too_many values Too many values (more than @1) in

member list to match against

418

Exception Codes and Messages

ng[")l'z GDSCODE Symbol M essage Text
-901 336397236 dsgl_unsupp_feature dialect Feature is not supported in dialect @1
-902 335544333 | bug_check I(r(gelr)nal gds software consistency check
-902 335544335 | db_corrupt Database file appears corrupt (@1)
-902 335544344 io_error I/O error for file"@2"
-902 335544346 | metadata corrupt Corrupt system table
-902 335544373 | sys request Operating system directive @1 failed
-902 335544384 | badblk Internal error
-902 335544385 invpoolc Internal error
-902 335544387 | relbadblk Internal error
902 | 335544388 | blktoobig Block size exceeds implementation e
-902 335544394 | badodsver Incompatible version of on-disk structure
-902 335544397 | dirtypage Internal error
-902 335544398 | waifortra Internal error
-902 335544399 | doubleloc Internal error
-902 335544400 | nodnotfnd Internal error
-902 335544401 | dupnodfnd Internal error
-902 335544402 | locnotmar Internal error
-902 335544404 | corrupt Database corrupted
-902 335544405 | badpage Checksum error on database page @1
-902 335544406 | badindex Index is broken
002 | 335544409 | traregmis I.f;ﬁ“e??or r)eq“w mismatch (synchro-
-902 335544410 | badhndent Bad handle count
-902 335544411 | wrotpbver \é\lléglrgg version of transaction parameter
902 | 335544412 | wroblrver ;’n”cs‘o*up,ﬁgt;d cglz_)R version (expected @1,
-902 335544413 | wrodpbver \é\ll(;;r:g version of database parameter
-902 335544415 | badrelation Database corrupted

419

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
-902 335544416 nodetach Internal error
-902 335544417 notremote Internal error
-902 335544422 | dbfile Internal error
-902 335544423 | orphan Internal error
-902 335544432 | lockmanerr Lock manager error
-902 335544436 sglerr SQL error code = @1
-902 335544448 | bad_sec info [no associated message]
-902 335544449 invalid_sec info [no associated message]
-902 335544470 | buf_invalid Cache buffer for page @1 invalid
-902 335544471 indexnotdefined Thereisno index in table @1 with id @2
Y our user name and password are not de-
-902 335544472 | login fined. Ask your database administrator to
set up aFirebird login
-902 335544506 | shutinprog Database @1 shutdown in progress
-902 335544528 | shutdown Database @1 shutdown
-902 335544557 | shutfall Database shutdown unsuccessful
-902 335544569 | dsgl_error Dynamic SQL Error
-902 335544653 | psw_attach Cannot attach to password database
2902 335544654 | psw_start_trans Cannot start transaction for password
database
-902 335544717 ot stack limit Stack size insufficent to execute current
- - request
-902 335544721 | network error Unal?lle to" complete network request to
- host " @1
-902 335544722 net_connect_err Failed to establish a connection
: Error while listening for an incoming con-
-902 335544723 | net_connect_listen_err .
- - - nection
-902 335544724 net_event_connect_err Failed to establ 'Sh asecondary connection
for event processing
_902 335544775 | net event listen err Error while I|§ten|ng for an incoming
- - - event connection request
-902 335544726 | net_read err Error reading data from the connection
-902 335544727 net_write err Error writing data to the connection

420

Exception Codes and Messages

SQL -
CODE GDSCODE Symbol M essage Text

902 | 335544732 | unsupported_network_drive Access to databases on file serversis not
supported

-902 335544733 | io_create err Error while trying to createfile

-902 335544734 | io_open err Error while trying to open file

-902 335544735 |io_close err Error while trying to close file

-902 335544736 | io_read_err Error while trying to read from file

-902 335544737 | io_write_er Error while trying to write to file

-902 335544738 | io_delete err Error while trying to deletefile

-902 335544739 10_access err Error while trying to accessfile
Your login @1 is same as one of the SQL

-902 335544745 login_same_as role_name role name. Ask your database administra-
tor to set up avalid Firebird login.

-902 335544791 | file in use Thefile@1lis c_urrently in use by another
process.Try again later
Unexpected item in service parameter

902 335544795 | unexp_spb_form block, expected @1
902 | 335544809 | extern_func_dir_error Function @1 isin @2, whichisnotina
- == permitted directory for external functions

File exceeded maximum size of 2GB.

-902 335544819 i0_32hit_exceeded err Add another database file or use a 64 bit
I/O version of Firebird

902 | 335544831 | conf_access denied Accessto @1"@2" i denied by server

- - administrator

-902 335544834 cursor_not_open Cursor isnot open

-902 335544841 | cursor_aready open Cursor is already open

-902 335544856 | att_shutdown Connection shutdown

) . Login name too long (@1 characters,

902 335544882 | long_login maximum allowed @2)

-904 335544324 | bad_db handle Invqlld database handle (no active con-
nection)

-904 335544375 unavailable Unavailable database

-904 335544381 | imp_exc Implementation limit exceeded

-904 335544386 | nopoolids Too many regquests

-904 335544389 | bufexh Buffer exhausted

421

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text
-904 335544391 bufinuse Buffer in use
-904 335544393 | reginuse Request in use
-904 335544424 | no_lock_mgr No lock manager available
-904 335544430 | virmemexh _Unable to allocate memory from operat-
Ing system
-904 335544451 | update_conflict Update conflicts with concurrent update
-904 335544453 obj_in_use Object @1 isinuse
-904 335544455 | shadow_accessed Cannot attach active shadow file
-904 335544460 shadow_missing lef:ele in manual shadow @1 is unavail-
-904 335544661 | index_root_page full Cannot add index, index root pageisfull
-904 335544676 sort_mem_err Sort error: not enough memory
904 | 335544683 | req depth_exceeded rF;fiqoLf,f)t depth exceeded. (Recursive defi-
904 | 335544758 | sort_rec_size err Sort record size of @1 bytesis too
— == big 777?
-904 335544761 | too_many_ handles Too many open handles to database
-904 335544792 service att_err Cannot attach to services manager
-904 335544799 | svc_name missing The service name was not specified
) I Unsupported field type specified in BE-
904 335544813 | optimizer_between_err TWEEN predicate
. . Invalid argument in EXECUTE STATE-
-904 335544827 | exec_sql_invalid_arg MENT-cannot convert to string
) . . Wrong request type in EXECUTE
904 335544828 | exec_sgl_invalid_req STATEMENT ‘@1
Variable type (position @1) in EXE-
-904 335544829 | exec_sgl_invalid_var CUTE STATEMENT '@2' INTO does
not match returned column type
Too many recursion levels of EXECUTE
-904 335544830 | exec_sgl_max_call_exceeded STATEMENT
Cannot change difference file name while
-904 335544832 | wrong_backup_state database isin backup mode
L Partner index segment no @1 has incom-
-904 335544852 | partner_idx_incompat_type patible datatype
-904 335544857 | blobtoobig Maximum BLOB size exceeded

422

Exception Codes and Messages

SQL-
CODE GDSCODE Symbol M essage Text

-904 335544862 record lock_not_supp Stream does not support record locking

004 | 335544863 | partner_idx_not_found Cannot create foreign key constraint @1,
Partner index does not exist or isinactive
Transactions count exceeded. Perform

-904 335544864 | tra_num_exc backup and restore to make database op-
erable again

-904 335544865 | field disappeared Column has been unexpectedly deleted

-904 335544878 concurrent_transaction Concurrent transaction number is @1
Maximum user count exceeded.Contact

-906 335544744 | max_att_exceeded your database administrator

-909 335544667 | drdb_completed with_errs Drop database completed with errors

911 335544459 rec. in_limbo Record from transaction @1 is stuck in
limbo

-913 335544336 | deadlock Deadlock

-922 335544323 | bad db format File @1 isnot avalid database

-923 335544421 | connect_reject Connection rejected by remote interface

-923 335544461 | cant validate Secondary server attachments cannot vali-

- date databases

-923 335544464 | cant_start_logging Secqndary server attachments cannot start
logging

024 | 335544325 | bad_dpb_content Bad parameters on attach or create
database

-924 335544441 | bad_detach Database detach completed with errors

-924 335544648 | conn_lost Connection lost to pipe server

-926 335544447 | no_rollback No rollback performed

-999 335544689 ib_error Firebird error

423

you have a compelling reason.

Appendix C:
Reserved Words
and Keywords

Reserved words are part of the Firebird SQL language. They cannot be used as identifiers (e.g. as table or
procedure names), except when enclosed in double quotes in Dialect 3. However, you should avoid this unless

Keywords are also part of the language. They have a special meaning when used in the proper context, but they
are not reserved for Firebird's own and exclusive use. You can use them as identifiers without double-gquoting.

Reserved words

Full list of reserved wordsin Firebird 2.5:

ADD

ALTER

AS

BEGIN
BIT_LENGTH

BY

CHAR
CHARACTER_LENGTH
COLLATE
CONNECT
CREATE
CURRENT_CONNECTION
CURRENT_TIME
CURRENT_USER
DAY

DECLARE
DELETING
DOUBLE

END

EXISTS

FETCH

FOR

FULL

GLOBAL
HAVING

INDEX

INSERT
INTEGER

ADMIN

AND

AT

BETWEEN
BLOB

CASE
CHAR_LENGTH
CHECK
COLUMN
CONSTRAINT
CROSS
CURRENT_DATE
CURRENT_TIMESTAMP
CURSOR

DEC

DEFAULT
DISCONNECT
DROP

ESCAPE
EXTERNAL
FILTER
FOREIGN
FUNCTION
GRANT

HOUR

INNER
INSERTING
INTO

ALL

ANY

AVG

BIGINT
BOTH

CAST
CHARACTER
CLOSE
COMMIT
COUNT
CURRENT
CURRENT_ROLE
CURRENT_TRANSACTION
DATE
DECIMAL
DELETE
DISTINCT
ELSE
EXECUTE
EXTRACT
FLOAT

FROM
GDSCODE
GROUP

IN
INSENSITIVE
INT

IS

424

Reserved Words and Keywords

JOIN LEADING LEFT
LIKE LONG LOWER
MAX MAXIMUM_SEGMENT MERGE
MIN MINUTE MONTH
NATIONAL NATURAL NCHAR
NO NOT NULL
NUMERIC OCTET_LENGTH OF
ON ONLY OPEN
OR ORDER OUTER
PARAMETER PLAN POSITION
POST_EVENT PRECISION PRIMARY
PROCEDURE RDB$DB_KEY REAL
RECORD_VERSION RECREATE RECURSIVE
REFERENCES RELEASE RETURNING_VALUES
RETURNS REVOKE RIGHT
ROLLBACK ROW_COUNT ROWS
SAVEPOINT SECOND SELECT
SENSITIVE SET SIMILAR
SMALLINT SOME SQLCODE
SQLSTATE (2.5.1) START SUM
TABLE THEN TIME
TIMESTAMP TO TRAILING
TRIGGER TRIM UNION
UNIQUE UPDATE UPDATING
UPPER USER USING
VALUE VALUES VARCHAR
VARIABLE VARYING VIEW
WHEN WHERE WHILE
WITH YEAR

Keywords

The following terms have a special meaning in Firebird 2.5 DSQL. Some of them are also reserved words,
others are not.

I < N A=

LPS , =

| = 1> (

) < <=

<> = >

>= | ~<

~= ~> ABS
ACCENT ACOS ACTION
ACTIVE ADD ADMIN
AFTER ALL ALTER
ALWAYS AND ANY
AS ASC ASCENDING
ASCII_CHAR ASCII_VAL ASIN
AT ATAN ATAN2
AUTO AUTONOMOUS AVG

425

Reserved Words and Keywords

BACKUP
BETWEEN
BIN_NOT
BIN_SHR
BLOB

BREAK
CASCADE
CEIL
CHAR_LENGTH
CHARACTER_LENGTH
COALESCE
COLUMN
COMMITTED
CONDITIONAL
CONTAINING
coT

CROSS
CURRENT_CONNECTION
CURRENT_TIME
CURRENT_USER
DATABASE
DATEDIFF
DECIMAL
DEFAULT
DESC
DIFFERENCE
DO

DROP
ENTRY_POINT
EXECUTE

EXP

FETCH

FIRST

FLOOR
FREE_IT
FUNCTION
GEN_UUID
GLOBAL
GROUP

HOUR

IF

INDEX
INSENSITIVE
INT

IS

KEY

LEADING
LENGTH
LIMBO

LOCK

LONG
MANUAL

BEFORE
BIGINT
BIN_OR
BIN_XOR
BLOCK

BY

CASE
CEILING
CHAR_TO_UUID
CHECK
COLLATE
COMMENT
COMMON
CONNECT
Cos

COUNT
CSTRING
CURRENT_DATE
CURRENT_TIMESTAMP
CURSOR
DATE

DAY
DECLARE
DELETE
DESCENDING
DISCONNECT
DOMAIN
ELSE
ESCAPE
EXISTS
EXTERNAL
FILE
FIRSTNAME
FOR

FROM
GDSCODE
GENERATED
GRANT
HASH

IF

IN

INNER
INSERT
INTEGER
ISOLATION
LAST
LEAVE
LEVEL

LIST

LOG

LOWER
MAPPING

BEGIN
BIN_AND
BIN_SHL
BIT_LENGTH
BOTH
CALLER
CAST

CHAR
CHARACTER
CLOSE
COLLATION
COMMIT
COMPUTED
CONSTRAINT
COSH
CREATE
CURRENT

CURRENT_ROLE
CURRENT_TRANSACTION

DATA
DATEADD
DEC
DECODE
DELETING
DESCRIPTOR
DISTINCT
DOUBLE
END
EXCEPTION
EXIT
EXTRACT
FILTER
FLOAT
FOREIGN
FULL
GEN_ID
GENERATOR
GRANTED
HAVING
IGNORE
INACTIVE
INPUT_TYPE
INSERTING
INTO

JOIN
LASTNAME
LEFT

LIKE

LN

LOG10
LPAD
MATCHED

426

Reserved Words and Keywords

MATCHING
MAXVALUE
MILLISECOND
MINVALUE
MONTH
NATURAL

NO

NULLIF
OCTET_LENGTH
ONLY

OR

OUTER
OVERFLOW
PAGE
PARAMETER
PLACING
POST_EVENT
PRESERVE
PROCEDURE
RDB$DB_KEY
RECORD_VERSION
REFERENCES
REQUESTS
RESTART
RETURNING
REVERSE
ROLE
ROW_COUNT
RPAD
SCHEMA
SELECT

SET

SIGN
SINGULAR
SKIP

SOME

SPACE

SQRT
STARTING
STATISTICS
SUM

TAN

THEN
TIMESTAMP
TRANSACTION
TRUNC
UNCOMMITTED
UNIQUE
UPPER
UUID_TO_CHAR
VARCHAR
VIEW

MAX
MERGE
MIN

MOD
NAMES
NCHAR
NOT
NULLS

OF

OPEN
ORDER
OUTPUT_TYPE
OVERLAY
PAGE_SIZE
PASSWORD
PLAN
POWER
PRIMARY
PROTECTED
READ
RECREATE
RELEASE
RESERV
RESTRICT
RETURNING_VALUES
REVOKE
ROLLBACK
ROW_NUMBER
SAVEPOINT
SECOND
SENSITIVE
SHADOW
SIMILAR
SINH
SMALLINT
SORT
SQLCODE
STABILITY
STARTS
SUB_TYPE
SUSPEND
TANH
TIME

TO
TRIGGER
TWO_PHASE
UNDO
UPDATE
USER
VALUE
VARIABLE
WAIT

MAXIMUM_SEGMENT
MIDDLENAME
MINUTE
MODULE_NAME
NATIONAL
NEXT

NULL
NUMERIC
ON

OPTION

0S NAME
OVER

PAD

PAGES

PI

POSITION
PRECISION
PRIVILEGES
RAND

REAL
RECURSIVE
REPLACE
RESERVING
RETAIN
RETURNS
RIGHT
ROUND
ROWS
SCALAR_ARRAY
SEGMENT
SEQUENCE
SHARED
SIN

SIZE
SNAPSHOT
SOURCE
SQLSTATE (2.5.1)
START
STATEMENT
SUBSTRING
TABLE
TEMPORARY
TIMEOUT
TRAILING
TRIM

TYPE
UNION
UPDATING
USING
VALUES
VARYING
WEEK

427

Reserved Words and Keywords

WEEKDAY WHEN WHERE
WHILE WITH WORK
WRITE YEAR YEARDAY

428

Appendix D:
System Tables

When you create a database, the Firebird engine creates alot of system tables. M etadata—the descriptions and
attributes of all database objects—are stored in these system tables.

System table identifiers al begin with the prefix RDB$.

TableD.1. List of System Tables

System Table

Contents

RDB$BACKUP_HISTORY

History of backups performed using nBackup

RDB$CHARACTER_SETS

Names and describes the character sets available in the database

RDB$CHECK_CONSTRAINTS

Cross references between the names of constraints (NOT NULL
constraints, CHECK constraints and ON UPDATE and ON
DELETE clausesin foreign key constraints) and their associated
system-generated triggers

RDB$COLLATIONS

Collation sequences for al character sets

RDB$DATABASE

Basic information about the database

RDB$DEPENDENCIES

Information about dependencies between database objects

RDB$EXCEPTIONS

Custom database exceptions

RDBS$FIELDS

Column and domain definitions, both system and custom

RDBS$FIELD_DIMENSIONS

Dimensions of array columns

RDBS$FILES

Information about secondary files and shadow files

RDBS$FILTERS

Information about BLOB filters

RDB$FORMATS

Information about changes in the formats of tables

RDB$FUNCTIONS

Information about external functions

RDB$FUNCTION_ARGUMENTS

Attributes of the parameters of external functions

RDB$GENERATORS

Information about generators (sequences)

RDB$INDEX_SEGMENTS

Segments and index positions

RDBS$INDICES

Definitions of all indexes in the database (system- or user-de-
fined)

RDB$LOG_FILES

Not used in the current version

RDB$PAGES

Information about database pages

429

System Tables

System Table

Contents

RDB$PROCEDURE_PARAMETERS

Parameters of stored procedures

RDB$PROCEDURES

Definitions of stored procedures

RDB$REF_CONSTRAINTS

Definitions of referential constraints (foreign keys)

RDB$RELATION_CONSTRAINTS

Definitions of all table-level constraints

RDB$RELATION_FIELDS

Top-level definitions of table columns

RDB$RELATIONS

Headers of tables and views

RDB$ROLES

Role definitions

RDB$SECURITY_CLASSES

Access control lists

RDB$TRANSACTIONS

State of multi-database transactions

RDB$TRIGGER_MESSAGES

Trigger messages

RDB$TRIGGERS

Trigger definitions

RDB$TY PES

Definitions of enumerated data types

RDB$USER_PRIVILEGES

SQL privileges granted to system users

RDB$VIEW_RELATIONS

each tablein aview

RDB$BACKUP_HISTORY

RDB$BACKUP_HISTORY stores the history of backups performed using the nBackup utility.

Column Name Data Type Description
RDB$BACKUP_ID INTEGER The identifier assigned by the engine
RDB$TIMESTAMP TIMESTAMP Backup date and time
RDB$BACKUP_LEVEL INTEGER Backup level
RDB$GUID CHAR(38) Unique identifier
RDB$SCN INTEGER System (scan) humber
RDBS$FILE_NAME VARCHAR(255) Full path and file name of backup file

RDB$CHARACTER_SETS

RDB$CHARACTER_SETS names and describes the character sets available in the database.

430

Tables that are referred to in view definitions; one record for

System Tables

Column Name Data Type Description

RDB$CHARACTER_SET_NAME CHAR(31) Character set name

RDB$FORM_OF USE CHAR(31) Not used

RDB INTEGER The number of charactersin the set. Not

$NUMBER_OF CHARACTERS used for existing character sets

RDB CHAR(L) The name of the default collation sequence

$DEFAULT_COLLATE NAME for the character set

RDB$CHARACTER_SET ID SMALLINT Unique character set identifier
System flag: valueis 1 if the character setis
defined in the system when the database is

RDBSSYSTEM_FLAG SMALLINT created; value is O for a user-defined char-
acter set

RDBSDESCRIPTION BLOB TEXT ;:e(t)uld store text description of the character
For a user-defined character set that is ac-

RDB$FUNCTION_NAME CHAR(31) cessed via an external function, the name of
the external function

RDB$BYTES PER CHARACTER SMALLINT _The maximum number of bytes represent-
ing one character

RDB$CHECK CONSTRAINTS

RDB$CHECK_CONSTRAINTS providesthe cross references between the names of system-generated triggers
for constraints and the names of the associated constraints (NOT NULL constraints, CHECK constraints and
the ON UPDATE and ON DELETE clausesin foreign key constraints).

Column Name Data Type Description

Constraint name, defined by the user or au-

RDB$CONSTRAINT_NAME CHAR(31) tomatically generated by the system

For aCHECK constraint, it is the name of
the trigger that enforces this constraint. For
aNOT NULL constraint, it is the name of
RDB$TRIGGER_NAME CHAR(31) the table the constraint is applied to. For a
foreign key constraint, it is the name of the
trigger that enforcesthe ON UPDATE, ON
DELETE clauses

431

System Tables

RDB$COLLATIONS

RDB$COLLATIONS stores collation sequences for all character sets.

Column Name

Data Type

Description

RDB$COLLATION_NAME

CHAR(31)

Collation sequence name

RDB$COLLATION_ID

SMALLINT

Collation sequence identifier. Together with
the character set identifier, it isaunique
collation sequence identifier

RDB$CHARACTER_SET_ID

SMALLINT

Character set identifier. Together with the
collection sequence identifier, it isaunique
identifier

RDB$COLLATION_ATTRIBUTES

SMALLINT

Collation attributes. It is abit mask where
the first bit shows whether trailing spaces
should be taken into account in collations
(0- NO PAD; 1 - PAD SPACE); the sec-
ond bit shows whether the collation is
case-sensitive (0 - CASE SENSITIVE, 1 -
CASE INSENSITIVE); the third bit shows
whether the collation is accent-sensitive
(O- ACCENT SENSITIVE, 1 - ACCENT
SENSITIVE). Thus, the value of 5 means
that the collation does not take into account
trailing spaces and is accent-insensitive

RDB$SYSTEM_FLAG

SMALLINT

Flag: the value of 0 meansiit is user-de-
fined; the value of 1 meansit is system-de-
fined

RDB$DESCRIPTION

BLOB TEXT

Could store text description of the collation
sequence

RDB$FUNCTION_NAME

CHAR(31)

Not currently used

RDB$BASE_COLLATION_NAME

CHAR(31)

The name of the base collation sequence for
this collation sequence

RDBS$SPECIFIC_ATTRIBUTES

BLOB TEXT

Describes specific attributes

RDB$DATABASE

RDB$DATABASE stores basic information about the database. It contains only one record.

432

System Tables

Column Name Data Type Description
RDB$DESCRIPTION BLOB TEXT Database comment text
RDB$RELATION_ID SMALLINT %gﬁ?jgﬁ?ﬁijgf&gﬁ;ﬁg mea
The security class defined in RDB
rossEoUT s sy | SECUTY CLaSSin o oanh
database
The name of the default character set for the
RDB$CHARACTER_SET_NAME CHAR(3)) database set in the DEFAULT CHARAC-

TER SET clause when the database is creat-
ed. NULL for character set NONE.

RDB$DEPENDENCIES

RDB$DEPENDENCIES stores the dependencies between database objects.

Column Name

Data Type

Description

RDB$DEPENDENT_NAME

CHAR(31)

The name of the view, procedure, trigger,
CHECK constraint or computed column the
dependency is defined for, i.e., the depen-
dent object

RDB$DEPENDED_ON_NAME

CHAR(31)

The name of the object that the defined ob-
ject—the table, view, procedure, trigger,
CHECK constraint or computed column—
depends on

RDB$FIELD_NAME

CHAR(3)

The column name in the depended-on ob-
ject that isreferred to by the dependent
view, procedure, trigger, CHECK constraint
or computed column

RDB$DEPENDENT_TY PE

SMALLINT

I dentifies the type of the dependent object:

0- table

1-view

2 - trigger

3 - computed column
4 - CHECK congtraint
5 - procedure

6 - index expression

7 - exception

8 - user

433

System Tables

Column Name Data Type Description

9 - column
10 - index

I dentifies the type of the object depended
on:

0 - table (or acolumnin it)
1-view

2 - trigger

3 - computed column

4 - CHECK congtraint
RDB$DEPENDED_ON_TYPE SMALLINT 5 - procedure (or its parameter[s])
6 - index expression

7 - exception

8 - user

9 - column

10 - index

14 - generator (sequence)
15- UDF

17 - collation

RDB$EXCEPTIONS

RDB$EXCEPTIONS stores custom database exceptions.

Column Name Data Type Description
RDB$EXCEPTION_NAME CHAR(31) Custom exception name
RDB$EXCEPTION_NUMBER INTEGER The unique number of the exception as-

signed by the system
RDB$MESSAGE VARCHAR(1021) Exception message text
RDB$DESCRIPTION BLOB TEXT tCi:grL]JId store text description of the excep-
Flag:
RDB$SYSTEM_FLAG SMALLINT user-defined = 0

system-defined = 1 or higher

RDBS$FIELDS

RDBS$FIELDS stores definitions of columns and domains, both system and custom. This is where the detailed
data attributes are stored for all columns.

434

System Tables

Note

The column RDBS$FIELDS.RDB$FIELD_NAME
$FIELD_SOURCE, not to RDB$RELATION_FIELDS.RDB$FIELD_NAME.

links to RDB$RELATION_FIELDS.RDB

Column Name

Data Type

Description

RDB$FIELD_NAME

CHAR(3)

The unique name of the domain created

by the user or of the domain automatical-

ly built for the table column by the system.
System-created domain names start with the
'‘RDB$' prefix

RDB$QUERY_NAME

CHAR(31)

Not used

RDB$VALIDATION_BLR

BLOB BLR

The binary language representation (BLR)
of the SQL expression specifying the check
of the CHECK vaue in the domain

RDB$VALIDATION_SOURCE

BLOB TEXT

The original sourcetext in the SQL lan-
guage specifying the check of the CHECK
value

RDB$COMPUTED_BLR

BLOB BLR

The binary language representation (BLR)
of the SQL expression the database server
uses for evaluation when accessing a COM-
PUTED BY column

RDB$COMPUTED_SOURCE

BLOB TEXT

The original source text of the expression
that definesa COMPUTED BY column

RDB$DEFAULT_VALUE

BLOB BLR

The default value, if any, for the field or
domain, in binary language representation
(BLR)

RDB$DEFAULT_SOURCE

BLOB TEXT

The default value in the source code, as an
SQL constant or expression

RDBS$FIELD_LENGTH

SMALLINT

Column sizein bytes. FLOAT, DATE,
TIME, INTEGER occupy 4 bytes. DOU-
BLE PRECISION, BIGINT, TIMESTAMP
and BLOB identifier occupy 8 bytes. For
the CHAR and VARCHAR datatypes, the
column stores the maximum number of
bytes specified when a string domain (col-
umn) is defined

RDBS$FIELD_SCALE

SMALLINT

The negative number that specifiesthe scale
for DECIMAL and NUMERIC columns—
the number of digits after the decimal point

RDBS$FIELD_TYPE

SMALLINT

Data type code for the column:

7=SMALLINT
8 =INTEGER
10=FLOAT

435

System Tables

Column Name

Data Type

Description

12 =DATE

13=TIME

14 = CHAR

16 =BIGINT

27 = DOUBLE PRECISION
35=TIMESTAMP

37 =VARCHAR

261 =BLOB

Codesfor DECIMAL and NUMERIC are
the same as for the integer types used to
store them

RDBS$FIELD_SUB_TYPE

SMALLINT

Specifies the subtype for the BLOB data
type:

0 - untyped

1-text

2-BLR

3 - access control list

4 - reserved for future use

5 - encoded table metadata description

6 - for storing the details of a cross-database
transaction that ends abnormally

Specifies for the CHAR data type:

0 - untyped data
1 - fixed binary data

Specifies the particular datatype for thein-
teger datatypes (SMALLINT, INTEGER,
BIGINT) and for fixed-point numbers (NU-
MERIC, DECIMAL):

0 or NULL - the data type matches the val-
uein the RDB$FIELD_TYPE field

1- NUMERIC

2 - DECIMAL

RDB$MISSING_VALUE

BLOB BLR

Not used

RDB$MISSING_SOURCE

BLOB TEXT

Not used

RDB$DESCRIPTION

BLOB TEXT

Any domain (table column) comment text

RDB$SYSTEM_FLAG

SMALLINT

Flag: the value of 1 means the domain is
automatically created by the system, the
value of 0 meansthat the domain is defined
by the user

RDB$QUERY_HEADER

BLOB TEXT

Not used

436

System Tables

Column Name

Data Type

Description

RDB$SEGMENT_LENGTH

SMALLINT

Specifies the length of the BLOB buffer in
bytes for BLOB columns. Stores NULL for
al other datatypes

RDBS$EDIT_STRING

VARCHAR(127)

Not used

RDB$EXTERNAL_LENGTH

SMALLINT

The length of the column in bytesif it be-
longsto an external table. Always NULL
for regular tables

RDB$EXTERNAL_SCALE

SMALLINT

The scale factor of an integer-typefieldin
an external table; represents the power of
10 by which the integer is multiplied

RDB$EXTERNAL_TYPE

SMALLINT

The datatype of thefield asit is represent-
ed in an external table:

7=SMALLINT

8 = INTEGER
10 = FLOAT

12 =DATE
13=TIME

14 = CHAR

16 = BIGINT

27 = DOUBLE PRECISION
35=TIMESTAMP
37 =VARCHAR
261 =BLOB

RDB$DIMENSIONS

SMALLINT

Defines the number of dimensionsin an ar-
ray if the column is defined as an array. Al-
ways NULL for columnsthat are not arrays

RDB$NULL_FLAG

SMALLINT

Specifies whether the column can take an
empty value (the field will contain NULL)
or not (the field will contain the value of 1)

RDB$CHARACTER_LENGTH

SMALLINT

The length of CHAR or VARCHAR
columns in characters (not in bytes)

RDB$COLLATION_ID

SMALLINT

The identifier of the collation sequence for
acharacter column or domain. If it isnot
defined, the value of the field will be 0

RDB$CHARACTER_SET_ID

SMALLINT

The identifier of the character set for a char-
acter column, BLOB TEXT column or do-
main

RDBS$FIELD_PRECISION

SMALLINT

Specifies the total number of digits for the
fixed-point numeric datatype (DECIMAL
and NUMERIC). Thevalueis O for thein-
teger datatypes, NULL isfor other data

types

437

System Tables

RDB$FIELD DIMENSIONS

RDBS$FIELD_DIMENSIONS stores the dimensions of array columns.

Column Name Data Type Description
The name of the array column. It must be
RDBS$FIELD_NAME CHAR(31) present in the RDBSFIELD _NAME field of
the RDB$FIELDS table
I dentifies one dimension in the array col-
RDB$DIMENSION SMALLINT umn. The numbering of dimensions starts
with 0
RDB$LOWER_BOUND INTEGER The lower bound of this dimension
RDB$UPPER_BOUND INTEGER The upper bound of this dimension

RDBS$FILES

RDBS$FILES stores information about secondary files and shadow files.

Column Name Data Type Description
Thefull path to the file and the name of ei-
ther
RDBS$FILE_ NAME VARCHAR(255) the database secondary filein amul-
ti-file database, or
* the shadow file
The sequential number of the secondary
RDB$FILE_SEQUENCE SMALLINT filein a sequence or of the shadow filein a
shadow file set
RDBSFILE_START INTEGER T_he initial page_number in the secondary
file or shadow file
RDBS$FILE_LENGTH INTEGER File length in database pages
RDBS$FILE_FLAGS SMALLINT For internal use
Shadow set number. If the row describes
RDB$SHADOW_NUMBER SMALLINT a database secondary file, the field will be

NULL or itsvaluewill be 0

438

System Tables

RDBS$FILTERS

RDB$FILTERS stores information about BLOB filters.

Column Name Data Type Description
RDB$FUNCTION_NAME CHAR(31) The unique identifier of the BLOB filter
Documentation about the BLOB filter and
RDB$DESCRIPTION BLOB TEXT the two subtypesit is used with, written by
the user

The name of the dynamic library or shared
RDB$MODULE_NAME VARCHAR(255) object where the code of the BLOB filter is
located

The exported name of the BLOB filter in
thefilter library. Note, thisis often not the

RDB$ENTRY POINT CHAR(31) same as RDB$SFUNCTION_NAME, which
isthe identifier with which the BLOB filter
is declared to the database

RDB$INPUT SUB_TYPE SMALLINT The BLOB subtype of the data to be con-

verted by the function

RDB$OUTPUT_SUB_TYPE SMALLINT The BLOB subtype of the converted data

Flag indicating whether the filter is user-de-
fined or internally defined:

RDB$SYSTEM_FLAG SMALLINT
* 0= user-defined
» 1 orgreater = internally defined
RDB$FORMATS

RDB$FORMATS stores information about changesin tables. Each time any metadata change to atable is com-
mitted, it gets a new format number. When the format number of any table reaches 255, the entire database
becomes inoperable. To return to normal, the database must be backed up with the gbak utility and restored
from that backup copy.

Column Name Data Type Description

RDB$RELATION_ID SMALLINT Table or view identifier

439

System Tables

Column Name Data Type Description

Table format identifier—maximum 255.
RDB$FORMAT SMALLINT The critical time comes when this number
approaches 255 for any table or view

Stores column names and data attributes as
RDB$DESCRIPTOR BLOB FORMAT BLOB, asthey were at the time the format
record was created

RDB$FUNCTIONS

RDB$FUNCTIONS stores the information needed by the engine about external functions (user-defined func-
tions, UDFs).

Note

In future major releases (Firebird 3.0 +) RDB$SFUNCTIONS will also store the information about stored func-
tions: user-defined functions written in PSQL.

Column Name Data Type Description

RDBSFUNCTION_NAME CHAR(31) The unique (declared) name of the external
function

RDB$FUNCTION_TYPE SMALLINT Not currently used

RDB$QUERY_NAME CHAR(31) Not currently used

RDBSDESCRIPTION BLOB TEXT Any text W|_th comments related to the ex-
ternal function
The name of the dynamic library or shared

RDB$MODULE_NAME VARCHAR(255) object where the code of the externa func-

tion is located

The exported name of the external function
in the function library. Note, thisis often
RDB$ENTRY POINT CHAR(31) not the same as RDB$FUNCTION_NAME,
which isthe identifier with which the exter-
nal function is declared to the database

The position number of the returned argu-
RDB$RETURN_ARGUMENT SMALLINT ment in the list of parameters corresponding
to input arguments

Flag indicating whether the filter is user-de-

RDB$SYSTEM_FLAG SMALLINT fined o internally defined:

440

System Tables

Column Name

Data Type

Description

* 0= user-defined
* 1=internaly defined

RDB$FUNCTION_ARGUMENTS

RDB$FUNCTION_ARGUMENTS stores the parameters of external functions and their attributes.

Column Name

Data Type

Description

RDB$FUNCTION_NAME

CHAR(31)

The unique name (declared identifier) of the
external function

RDB$ARGUMENT_POSITION

SMALLINT

The position of the argument in the list of
arguments

RDB$MECHANISM

SMALLINT

Flag: how this argument is passed:

e O=byvaue

* 1=Dby reference

» 2 =Dby descriptor

» 3=hy BLOB descriptor

RDBS$FIELD_TYPE

SMALLINT

Data type code defined for the column:

7=SMALLINT

8 = INTEGER

12 =DATE

13=TIME

14 =CHAR

16 = BIGINT

27 = DOUBLE PRECISION
35=TIMESTAMP
37=VARCHAR

261 =BLOB

40 = CSTRING (null-terminated text)
45=BLOB_ID

261 =BLOB

RDBS$FIELD_SCALE

SMALLINT

The scale of an integer or afixed-point ar-
gument. It is an exponent of 10

RDBS$FIELD_LENGTH

SMALLINT

Argument length in bytes:

SMALLINT =2
INTEGER =4
DATE=4

441

System Tables

Column Name Data Type Description

TIME=4

BIGINT =8

DOUBLE PRECISION =8
TIMESTAMP =8
BLOB_ID =8

Stores the BLOB subtype for an argument

RDBS$FIELD_SUB _TYPE SMALLINT of aBLOB datatype

RDBSCHARACTER SET ID SMALLINT The identifier of the character set for a char-
acter argument

RDBS$FIELD._PRECISION SMALLINT The number of digits of precision available
for the data type of the argument

RDB$CHARACTER_LENGTH SMALLINT The length of aCHAR or VARCHAR argu-

ment in characters (not in bytes)

RDB$GENERATORS

RDB$GENERATORS stores generators (sequences) and keeps them up-to-date.

Column Name Data Type Description
RDB$SGENERATOR_NAME CHAR(31) The unique name of the generator
RDB$GENERATOR 1D SMALLINT The unique identifier assigned to the gener-

- ator by the system
Flag:
RDB$SYSTEM_FLAG SMALLINT 0 = user-defined
1 or greater = system-defined
RDBSDESCRIPTION BLOB TEXT Could store comments related to the genera-

tor

RDBS$INDICES

RDB$INDICES stores definitions of both system- and user-defined indexes. The attributes of each column
belonging to an index are stored in one row of the table RDBSINDEX _SEGMENTS.

442

System Tables

Column Name

Data Type

Description

RDB$INDEX_NAME

CHAR(31)

The unique name of the index specified by
the user or automatically generated by the
system

RDB$RELATION_NAME

CHAR(31)

The name of the table to which the index

belongs. It corresponds to an identifier in

RDB$RELATION_NAME.RDB$RELA-
TIONS

RDB$INDEX_ID

SMALLINT

Theinternal (system) identifier of the index

RDB$UNIQUE_FLAG

SMALLINT

Specifies whether the index is unique:

1 - unique
0 - not unique

RDB$DESCRIPTION

BLOB TEXT

Could store comments concerning the index

RDB$SEGMENT_COUNT

SMALLINT

The number of segments (columns) in the
index

RDB$INDEX_INACTIVE

SMALLINT

Indicates whether the index is currently ac-
tive:

1-inactive
0 - active

RDB$INDEX_TYPE

SMALLINT

Distinguishes between an expression index
(1) and aregular index (0 or null). Not used
in databases created before Firebird 2.0;
hence, regular indexes in upgraded databas-
es are more more likely to store null in this
column

RDB$FOREIGN_KEY

CHAR(3)

The name of the associated Foreign Key
congtraint, if any

RDB$SYSTEM_FLAG

SMALLINT

Indicates whether the index is system-de-
fined or user-defined:

1 or greater - system-defined
0 - user-defined

RDB$EXPRESSION_BLR

BLOB BLR

Expression for an expression index, writ-
ten in the binary language representation

(BLR), used for calculating the values for
theindex at runtime.

RDB$EXPRESSION_SOURCE

BLOB TEXT

The source code of the expression for an
expression index

RDB$STATISTICS

DOUBLE PRECISION

Stores the last known selectivity of the en-
tire index, calculated by execution of a SET
STATISTICS statement over theindex. It is

System Tables

Column Name Data Type Description

also recalculated whenever the database is
first opened by the server. The selectivity of
each separate segment of the index is stored
in RDB$SINDEX_SEGMENTS.

RDBS$INDEX SEGMENTS

RDB$INDEX_SEGMENTS stores the segments (table columns) of indexes and their positions in the key. A
separate row is stored for each column in an index.

Column Name Data Type Description

The name of the index this segment is
RDB$INDEX_NAME CHAR(31) related to. The master record is RDB
$INDICES.RDB$INDEX_NAME.

The name of a column belonging to
the index, corresponding to an iden-
RDBS$FIELD_NAME CHAR(31) tifier for the table and that column in
RDB$RELATION_FIELDS.RDB
$FIELD_NAME

The column position in the index. Positions

RDBSHIELD_POSITION SMALLINT are numbered left-to-right, starting at zero

The last known (calculated) selectivity of
RDB$STATISTICS DOUBLE PRECISION | this column in the index. The higher the
number, the lower the selectivity.

RDB$LOG_FILES

RDB$LOG_FILES s not currently used.

RDB$PAGES

RDB$PAGES stores and maintains information about database pages and their usage.

444

System Tables

Column Name Data Type Description

RDBSPAGE NUMBER INTEGER The unique number of a physically created
database page

RDBSRELATION 1D SMALLINT _The identifier of the table to which the page
is allocated
The number of the page in the sequence of

RDB$PAGE_SEQUENCE INTEGER all pages allocated to this table

RDBSPAGE TYPE SMALLINT Indicates the page type (data, index, BLOB,
etc.). For system use

RDB$PROCEDURES

RDB$PROCEDURES stores the definitions of stored procedures, including their PSQL source code and the
binary language representation (BLR) of it. The next table, RDB$PROCEDURE_PARAMETERS, stores the

definitions of input and output parameters.

Column Name Data Type Description
RDB$PROCEDURE_NAME CHAR(31) Stored procedure name (identifier)
RDB$PROCEDURE_|D SMALLINT The procedure's unique, system-generated

identifier
RDB$PROCEDURE_INPUTS SMALLINT Indicates the number of input parameters.

- NULL if there are none

RDB$PROCEDURE_OUTPUTS SMALLINT Indicates the number of output parameters.

NULL if there are none
RDB$DESCRIPTION BLOB TEXT Any text comments related to the procedure
RDB$PROCEDURE_SOURCE BLOB TEXT The PSQL source code of the procedure
RDB$PROCEDURE_BLR BLOB BLR The binary language representation (BLR)

of the procedure code

May point to the security class de-

fined in the system table RDB
RDBSSECURITY_CLASS CHARED $SECURITY_CLASSES in order to apply

access control limits

The user name of the procedure's Owner—

the user who was CURRENT_USER when
RDBSOWNER NAME CHAR(L) the procedure wasfirst created. It may or

may not be the user name of the author

A metadata description of the procedure,
RDBSRUNTIME BLOB used internally for optimization

445

System Tables

Column Name Data Type Description

Indicates whether the procedure is defined
RDB$SYSTEM_FLAG SMALLINT by auser (value 0) or by the system (avalue
of 1 or greater)

Procedure type:

1 - selectable stored procedure (contains a
SUSPEND statement)

2 - executable stored procedure

NULL - not known *

RDB$PROCEDURE_TY PE SMALLINT

* for procedures created before Firebird 1.5

Indicates whether the source PSQL of the
RDB$VALID_BLR SMALLINT stored procedure remains valid after the lat-
est ALTER PROCEDURE modification

Contains debugging information about vari-

RDBSDEBUG_INFO BLOB ables used in the stored procedure

RDB$PROCEDURE_PARAMETERS

RDB$PROCEDURE_PARAMETERS stores the parameters of stored procedures and their attributes. It holds
one row for each parameter.

Column Name Data Type Description
RDB$PARAMETER_NAME CHAR(31) Parameter name
The name of the procedure where the pa-
RDB$PROCEDURE_NAME CHAR(31) rameter is defined
RDB$PARAMETER_NUMBER SMALLINT The sequential number of the parameter
Indicates whether the parameter is for input
RDB$PARAMETER_TYPE SMALLINT (value 0) or output (value 1)
The name of the user-created domain, when
adomainisreferenced instead of ada-
tatype. If the name starts with the prefix
RDBSFIELD_SOURCE CHAR(31) 'RDBY, it is the name of the domain auto-
matically generated by the system for the
parameter.
RDBSDESCRIPTION BLOB TEXT ;gjld store comments related to the param-
Indicates whether the parameter was de-
RDB$SYSTEM_FLAG SMALLINT fined by the system (value or greater) or by
auser (value0)

446

System Tables

Column Name Data Type Description
RDBSDEFAULT VALUE BLOB BLR T_he default value for the parameter, inthe
- binary language representation (BLR)
RDB$DEFAULT_SOURCE BLOB TEXT The default value for the parameter, in
PSQL code
The identifier of the collation sequence
RDB$COLLATION_ID SMALLINT used for a character parameter
RDBSNULL_FLAG SMALLINT ';’Seeflagmdlcatlng whether NULL isalow-
Flag: indicates how this parameter is
passed:
RDB$PARAMETER_MECHANISM SMALLINT * O=byvaue

e 1=by reference
e 2 =Dby descriptor
e 3 =by BLOB descriptor

The name of the column the parameter ref-
erences, if it was declared using TY PE
RDBS$FIELD_NAME CHAR(31) OF COLUMN instead of aregular da-
tatype. Used in conjunction with RDB
$RELATION_NAME (see next).

The name of the table the parameter refer-
RDB$RELATION_NAME CHAR(31) ences, if it was declared using TY PE OF
COLUMN instead of aregular datatype

RDB$REF _CONSTRAINTS

RDB$REF_CONSTRAINTS stores the attributes of the referential constraints—Foreign Key relationships and
referential actions.

Column Name Data Type Description
Foreign key constraint name, defined by the
RDB$CONSTRAINT_NAME CHAR(31) user or automatically generated by the sys-
tem

The name of the primary or unique key con-
RDB$CONST_NAME_UQ CHAR(31) straint linked by the REFERENCES clause
in the constraint definition

Not used. The current valueis FULL in all

RDB$MATCH_OPTION CHAR(?)

447

System Tables

Column Name

Data Type

Description

RDB$UPDATE_RULE

CHAR(11)

Referential integrity actions applied to the
foreign key record[s] when the primary
(unique) key of the parent table is updat-
ed: RESTRICT, NO ACTION, CASCADE,
SET NULL, SET DEFAULT

RDB$DELETE_RULE

CHAR(11)

Referential integrity actions applied to th
foreign key record[s] when the primary
(unique) key of the parent table is deleted:
RESTRICT, NO ACTION, CASCADE,
SET NULL, SET DEFAULT

RDB$RELATIONS

RDB$RELATIONS stores the top-level definitions and attributes of all tables and views in the system.

Column Name

Data Type

Description

RDB$VIEW_BLR

BLOB BLR

Stores the query specification for aview, in
the binary language representation (BLR).
Thefield storesNULL for atable

RDB$VIEW_SOURCE

BLOB TEXT

Contains the original source text of the
guery for aview, in SQL language. User
comments are included. The field stores
NULL for atable

RDB$DESCRIPTION

BLOB TEXT

Could store comments related to the table
or view

RDB$RELATION_ID

SMALLINT

Internal identifier of the table or view

RDB$SYSTEM_FLAG

SMALLINT

indicates whether the table or view is us-
er-defined (value 0) or system-defined (val-
ue 1 or greater)

RDB$DBKEY_LENGTH

SMALLINT

Thetotal length of the database key. For a
table: 8 bytes. For aview, thelengthis 8
multiplied by the number of tables refer-
enced by the view

RDB$FORMAT

SMALLINT

Internal use, points to the relation's record
in RDB$FORMATS—do not modify

RDBS$FIELD_ID

SMALLINT

Thefield ID for the next column to be
added. The number is not decremented
when a column is dropped.

448

System Tables

Column Name Data Type Description

RDB$RELATION_NAME CHAR(31) Table or view name

May reference a security class defined in
the table RDB$SECURITY_CLASSES, in
order to apply access control limitsto all
users of thistable or view

RDB$SECURITY_CLASS CHAR(31)

The full path to the external datafileif the
RDB$EXTERNAL_FILE VARCHAR(255) tableis defined with the EXTERNAL FILE
clause

Table metadata description, used internally

RDB$RUNTIME BLOB for optimization

Could store comments related to the exter-

RDB$EXTERNAL_DESCRIPTION BLOB nal file of an external table

The user name of the user who created the

RDB$OWNER_NAME CHAR(31) table or view originally

Default security class, used when anew

RDB$DEFAULT_CLASS CHAR(31) column is added to the table

RDB$FLAGS SMALLINT Internal flags

The type of the relation object being de-
scribed:

0 - system or user-defined table
1-view

RDB$RELATION_TYPE SMALLINT 2 - external table

3 - monitoring table

4 - connection-level GTT (PRESERVE
ROWS)

5 - transaction-level GTT (DELETE
ROWS)

RDBSRELATION_CONSTRAINTS

RDBS$RELATION_CONSTRAINTS stores the definitions of all table-level constraints: primary, unique, for-
eign key, CHECK, NOT NULL constraints.

Column Name Data Type Description
The name of the table-level constraint de-
RDB$CONSTRAINT_NAME CHAR(31) fined by the user, or otherwise automatical-
ly generated by the system

449

System Tables

Column Name Data Type Description
The name of the constraint type: PRIMA-
RDB$CONSTRAINT_TYPE CHAR(11) RY KEY, UNIQUE, FOREIGN KEY,
CHECK or NOT NULL
RDBSRELATION NAME CHAR(31) ;I;he name of the table this constraint applies
Currently NO in all cases: Firebird does not
RDBSDEFERRABLE CHARG) yet support deferrable constraints
RDBS$INITIALLY_DEFERRED CHAR(3) Currently NO in al cases
The name of the index that supports this
RDB$INDEX_NAME CHAR(31) constraint. For a CHECK or aNOT NULL

constraint, it isNULL.

RDB$RELATION_FIELDS

RDB$RELATION_FIELDS stores the definitions of table and view columns.

Column Name Data Type Description
RDBS$FIELD_NAME CHAR(31) Column name
RDBSRELATION NAME CHAR(31) The name of the table or view that the col-
umn belongs to
Domain name on which the columnis
based, either a user-defined one specified
in the table definition or one created auto-
RDBS$FIELD _SOURCE CHAR(31) matically by the system using the set of at-
tributes defined. The attributes are in the
table RDB$FIELDS: this column matches
RDBS$FIELDS.RDB$FIELD NAME.
RDB$QUERY_NAME CHAR(31) Not currently used
Only populated for aview, it is the name of
RDB$BASE_FIELD CHARGL) the column from the base table
RDBS$EDIT_STRING VARCHAR(127) Not used
The zero-based ordinal position of the col-
RDB$FIELD_POSITION SMALLINT umn in the table or view, numbering from
left to right
RDB$QUERY_HEADER BLOB TEXT Not used
RDBSUPDATE FLAG SMALLINT Indicates whether the column is aregular

one (value 1) or a computed one (value 0)

450

System Tables

Column Name Data Type Description
An 1D assigned from RDB
SRELATIONS.RDBS$FIELD ID at thetime
RDBSFELD_ID SMALLINT the column was added to the table or view.
It should always be treated as transient
For aview column, the interna identifier of
RDBSVIEW_CONTEXT SMALLINT the base table from which thisfield derives
RDBSDESCRIPTION BLOB TEXT Er(r)]r:ments related to the table or view col-
The value stored for the DEFAULT clause
RDB$DEFAULT VALUE BLOB BLR for this column, if thereis one, written in
binary language representation (BLR)
Indicates whether the column is user-de-
RDB$SYSTEM_FLAG SMALLINT fined (value 0) or system-defined (value 1
or greater)
May reference a security classdefined in
RDBSSECURITY CLASS CHAR(3L) RDB$SECURITY_C!_ASSES, in order to
apply access control limitsto all users of
this column
RDB$COMPLEX_NAME CHAR(31) Not used
Indicates whether the column is nullable
RDB$NULL_FLAG SMALLINT (NULL) non-nullable (value 1)
RDBSDEFAULT SOURCE BLOB TEXT ;r:; source text of the DEFAULT clause, if
The identifier of the collation sequence in
RDB$COLLATION_ID SMALLINT the character set for the column, if it is not

the default collation

RDB$ROLES

RDB$ROLES stores the roles that have been defined in this database.

Column Name Data Type Description
RDB$ROLE_NAME CHAR(31) Role name
RDB$OWNER_NAME CHAR(31) The user name of the role owner
RDB$DESCRIPTION BLOB TEXT Could store comments related to therole
RDB$SYSTEM_FLAG SMALLINT System flag

451

System Tables

RDB$SECURITY_CLASSES

RDB$SECURITY _CLASSES stores the access control lists

Column Name Data Type Description
RDB$SECURITY_CLASS CHAR(31) Security class name
The access control list related to the securi-
RDB$ACL BLOB ACL ty class. It enumerates users and their privi-
leges
RDBSDESCRIPTION BLOB TEXT t():/o(ljllz;iséstore comments related to the securi-

RDB$TRANSACTIONS

RDB$TRANSACTIONS stores the states of distributed transactions and other transactions that were prepared
for two-phase commit with an explicit prepare message

Column Name Data Type Description

The unique identifier of the transaction be-

RDB$TRANSACTION_ID INTEGER ing tracked

Transaction state:

RDB$TRANSACTION_STATE SMALLINT 0-inlimbo
1 - committed
2 - rolled back

RDB$TIMESTAMP TIMESTAMP Not used

Describes the prepared transaction and
could be a custom message supplied to
RDB BLOB i sc_prepare_transaction2, evenif
$TRANSACTION_DESCRIPTION it is not a distributed transaction. It may be
used when alost connection cannot be re-

stored

452

System Tables

RDB$TRIGGERS

RDB$TRIGGERS stores the trigger definitions for all tables and views.

Column Name Data Type Description

RDB$TRIGGER_NAME CHAR(31) Trigger name

The name of the table or view the trigger
RDBS$RELATION_NAME CHAR(31) appliesto. NULL if thetrigger is applicable
to adatabase event (“database trigger”)

Position of thistrigger in the sequence. Ze-
RDB$TRIGGER_SEQUENCE SMALLINT ro usually means that no sequence position
is specified

The event the trigger fires on:

1 - before insert

2 - after insert

3 - before update

4 - after update

5 - before delete

6 - after delete

17 - before insert or update

18 - after insert or update
RDB$TRIGGER_TYPE SMALLINT 25 - before insert or delete

26 - after insert or delete

27 - before update or delete

28 - after update or delete

113 - before insert or update or delete
114 - after insert or update or delete
8192 - on connect

8193 - on disconnect

8194 - on transaction start

8195 - on transaction commit

8196 - on transaction rollback

Identification of the exact RDB
$TRIGGER TYPE code is a lit-
tle more complicated, since it is
a bitmap, calculated according to
which phase and eventsare covered
and the order in which they are de-
fined. For the curious, the calcu-
lation is explained in this blog by
Mark Rotteves!.

Stores the source code of thetrigger in

RDB$TRIGGER_SOURCE BLOB TEXT PSOL

453

http://tinyurl.com/fb-triggertype
http://tinyurl.com/fb-triggertype

System Tables

Column Name Data Type Description
Stores the trigger in the binary language
RDB$TRIGGER_BLR BLOB BLR representation (BLR)
RDB$DESCRIPTION BLOB TEXT Trigger comment text
RDBS$TRIGGER_INACTIVE SMALLINT Ind_| cates wheth_er the trigger is currently in-
active (1) or active (0)
Flag: indicates whether the trigger is us-
RDB$SYSTEM_FLAG SMALLINT er-defined (value 0) or system-defined (val-
ue 1 or greater)
RDB$FLAGS SMALLINT Internal use
Indicates whether the text of the trigger re-
RDB$VALID_BLR SMALLINT mains valid after the latest modification by
thethe ALTER TRIGGER statement
RDBSDEBUG INFO BLOB Contains debugging information about vari-

ables used in the trigger

RDB$TRIGGER_MESSAGES

RDB$TRIGGER_MESSAGES stores the trigger messages.

Column Name Data Type Description
RDB$TRIGGER_NAME CHAR(31) The name of thetrigger the message s as-
sociated with
The number of the message within thistrig-
RDB$MESSAGE_NUMBER SMALLINT ger (from 1 to 32,767)
RDB$MESSAGE VARCHAR(1023) Text of the trigger message

RDBS$TY PES stores the defining sets of enumerated types used throughout the system.

Column Name

Data Type

Description

RDB$FIELD_NAME

CHAR(31)

Enumerated type name. Each type name
masters its own set of types, e.g., object

454

System Tables

Column Name

Data Type

Description

types, datatypes, character sets, trigger
types, blob subtypes, etc.

RDBS$TY PE

SMALLINT

The object type identifier. A unique series
of numbersis used within each separate
enumerated type. For example, in this se-
lection from the set mastered under RDB
$OBJIECT TYPE in RDB$FIELD NAME,
some object types are enumerated:

0- TABLE

1-VIEW

2 - TRIGGER

3- COMPUTED_FIELD
4-VALIDATION

5 - PROCEDURE

RDBS$TYPE_NAME

CHAR(31)

The name of a member of an enumerat-
ed type, eg., TABLE, VIEW, TRIGGER,
etc. in the example above. In the RDB
$CHARACTER_SET enumerated type,
RDBS$TYPE_NAME stores the names of
the character sets.

RDB$DESCRIPTION

BLOB TEXT

Any text comments related to the enumerat-
ed type

RDB$SYSTEM_FLAG

SMALLINT

Flag: indicates whether the type-member
is user-defined (value 0) or system-defined
(value 1 or greater)

RDBSUSER_PRIVILEGES

RDB$USER_PRIVILEGES stores the SQL access privileges for Firebird users and privileged objects.

Column Name Data Type Description
RDBSUSER CHAR(31) l'I'egzuser or object that is granted this privi-
RDB$GRANTOR CHAR(31) The user who grants the privilege
The privilege granted hereby:
RDB$PRIVILEGE CHAR(6) A - dl (al privileges)
S - select (selecting data)
| - insert (inserting rows)

455

System Tables

Column Name Data Type Description

D - delete (deleting rows)
R - references (foreign key)
U - update (updating data)
E - executing (procedure)

Whether the WITH GRANT OPTION au-
thority isincluded with the privilege:

RDB$GRANT_OPTION SMALLINT
1-included
0 - not included
RDBSRELATION NAME CHAR(L) The name of the object (table, view, proce-

dure or role) the privilegeis granted ON

The name of the column the privilegeis ap-
RDBS$FIELD_NAME CHAR(31) plicableto, for a column-level privilege (an
UPDATE or REFERENCES privilege)

Identifies the type of user the privilegeis
RDBSUSER TYPE SMALLINT granted TO (a user, aprocedure, aview,
etc.)

I dentifies the type of the object the privi-

RDB$OBJECT_TYPE SMALLINT legeis granted ON

RDB$VIEW_RELATIONS

RDB$VIEW_RELATIONS storesthetablesthat arereferred to in view definitions. Thereisonerecord for each
tablein aview.

Column Name Data Type Description
RDB$VIEW_NAME CHAR(31) View name
RDB$RELATION_NAME CHAR(31) The name of the table the view references
RDBSVIEW CONTEXT SMALLINT The dlias used to reference the view column

in the BLR code of the query definition

The text associated with the alias reported

RDBSCONTEXT_NAME CHAR(255) in the RDB$VIEW_CONTEXT column

456

Appendix E:
Monitoring Tables

The Firebird engine can monitor activities in a database and make them available for user queries viathe mon-
itoring tables. The definitions of these tables are always present in the database, al named with the prefix MON
$. The tables are virtua: they are populated with data only at the moment when the user queries them. That is
aso one good reason why it is no use trying to create triggers for them!

Thekey notion in understanding the monitoring feature is an activity snapshot. The activity snapshot represents
the current state of the database at the start of the transaction in which the monitoring table query runs. It delivers
alot of information about the database itself, active connections, users, transactions prepared, running queries
and more.

The snapshot is created when any monitoring tableis queried for thefirst time. It is preserved until the end of the
current transaction to maintain astable, consistent view for queries across multipletables, such asamaster-detail
guery. In other words, monitoring tables always behave as though they werein SNAPSHOT TABLE STABILITY
(“consistency”) isolation, even if the current transaction is started with alower isolation level.

To refresh the snapshot, the current transaction must be completed and the monitoring tables must be re-queried
in a new transaction context.

Access Security

» SYSDBA and the database owner have full accessto all information available from the monitoring tables
* Regular users can see information about their own connections; other connections are not visible to them

Warning

In ahighly loaded environment, collecting information viathe monitoring tables could have a negative impact
on system performance.

TableE.1. List of Monitoring Tables

System Table Contents

MONSATTACHMENTS Information about active attachments to the database

MONSCALL STACK Callsto the stack by active queries of stored procedures and

triggers
MONS$CONTEXT_VARIABLES Information about custom context variables
e A
MONS$IO_STATS Input/output statistics
MONSMEMORY _USAGE Memory usage statistics
MONS$RECORD_STATS Record-level statistics

457

Monitoring Tables

System Table

Contents

MONS$STATEMENTS

Statements prepared for execution

MONS$TRANSACTIONS

Started transactions

MONSATTACHMENTS

MONSATTACHMENTS displays information about active attachments to the database.

Column Name Data Type Description
MONSATTACHMENT ID INTEGER Connection identifier
MONS$SERVER_PID INTEGER Server process identifier
Connection state:
MONS$STATE SMALLINT 0-idle
1- active
Connection string—the file name and full
MONSATTACHMENT _NAME VARCHAR(255) path to the primary database file
MONSUSER CHAR(L) The_name of the user who is using this con-
nection
The role name specified when the connec-
tion was established. If no role was speci-
MONSROLE CHARED fied when the connection was established,
the field contains the text NONE
MONS$REMOTE_PROTOCOL VARCHAR(10) Remote protocol name
MONS$REMOTE_ADDRESS VARCHAR(255) Remote address (address and server name)
MONS$REMOTE_PID INTEGER Remote client process identifier
Connection character set identifier (see
MONS$CHARACTER_SET ID SMALLINT RDB$CHARACTER_SET in system table
RDB$TY PES)
MONSTIMESTAMP TIMESTAMP ;r;:atgdate and time when the connection was
Garbage collection flag (as specified in the
MON$GARBAGE_COLLECTION SMALLINT attachment's DPB): 1=allowed, O=not al-
lowed
MONSREMOTE_PROCESS VARCHAR(255) The full file name and path to the exe-

cutable file that established this connection

458

Monitoring Tables

Column Name Data Type Description

MONS$STAT_ID INTEGER Statistics identifier

Using MONSATTACHMENTS to Kill a Connection

Monitoring tables are read-only. However, the server has a built-in mechanism for deleting (and only deleting)
records in the MONSATTACHMENTS table, which makes it possible to close a connection to the database.

Notes

e All the current activity in the connection being deleted is immediately stopped and all active transactions
arerolled back

* The closed connection will return an error withthei sc_at t _shut down code to the application

o Later attemptsto use this connection (i.e., useits handlein API calls) will return errors

Example: Closing al connections except for your own (current):

DELETE FROM MONSATTACHVENTS
VWHERE MONSATTACHMENT | D <> CURRENT_CONNECTI ON

MONS$CALL_STACK

MONSCALL_STACK displays calsto the stack from queries executing in stored procedures and triggers.

Column Name Data Type Description

MONSCALL_ID INTEGER Call identifier

The identifier of the top-level SQL state-
ment, the one that initiated the chain of
MONS$STATEMENT_ID INTEGER calls. Use thisidentifier to find the records
about the active statement in the MON
$STATEMENTS table

The identifier of the calling trigger or stored

MONS$CALLER_ID INTEGER
procedure

MONS$OBJECT_NAME CHAR(31) PSQL object (module) name

PSQL object type (trigger or stored proce-

MONS$OBJECT_TYPE SMALLINT dure):

2 - trigger

459

Monitoring Tables

Column Name Data Type Description

5 - stored procedure

MONSTIMESTAMP TIMESTAMP The date and time when the call was started
The number of the source line in the SQL
MONS$SOURCE_LINE INTEGER statement being executed at the moment of
the snapshot
The number of the source column in the
MONS$SOURCE_COLUMN INTEGER SQL statement being executed at the mo-
ment of the snapshot
MONSSTAT _ID INTEGER Statistics identifier

EXECUTE STATEMENT Calls: Information about calls during the execution of the EXECUTE STATEMENT
statement does not get into the call stack.

Exampleusing MONS$CALL_STACK: Getting the call stack for all connections except own:

W TH RECURSI VE
HEAD AS (
SELECT
CALL. NON$STATEMENT | D, CALL. MONSCALL_I D,
CALL. MON$OBJECT NAME, CALL. MON$OBJECT TYPE
FROM MON$CALL_STACK CALL
WHERE CALL. MON$CALLER I D I'S NULL
UNI ON ALL
SELECT
CALL. NON$STATEMENT | D, CALL. MONSCALL_I D,
CALL. MON$OBJECT NAME, CALL. MON$OBJECT TYPE
FROM MON$CALL_STACK CALL
JO N HEAD ON CALL. MON$CALLER | D = HEAD. MON$CALL_| D
)
SELECT MONSATTACHVENT | D, MONSOBJECT NAME, MON$OBJECT TYPE
FROM HEAD
JO N MONSSTATEMENTS STMI ON STMT. MON$STATEMENT | D = HEAD. MONSSTATEMENT | D
WHERE STMT. MONSATTACHVENT | D <> CURRENT _CONNECTI ON

MONS$CONTEXT_VARIABLES

MONS$CONTEXT_VARIABLES displays information about custom context variables.

Column Name Data Type Description

Connection identifier. It contains avalid
value only for a connection-level context
variable. For transaction-level variablesitis
NULL.

MONS$ATTACHMENT_ID INTEGER

460

Monitoring Tables

Column Name Data Type Description
Transaction identifier. It containsavalid
oNSTRANSACTION 1o N A st
iSNULL.
MONS$VARIABLE NAME VARCHAR(80) Context variable name
MONS$VARIABLE_VALUE VARCHAR(255) Context variable value

MONS$DATABASE

MONS$DATABASE displays the header information from the database the current user is connected to.

Column Name Data Type Description
The file name and full path of the primary
MONS$DATABASE NAME VARCHAR(255) database file, or the database alias
MONSPAGE_SIZE SMALLINT Database page size in bytes
MON$ODS MAJOR SMALLINT Major ODSversion, e.g., 11
MONS$ODS MINOR SMALLINT Minor ODSversion, eg., 2
MONSOLDEST TRANSACTION INTEGER Th_e number of the oldest [interesting] trans-
action (OIT)
MONSOLDEST ACTIVE INTEGER The number of the oldest active transaction
- (OAT)
The number of the transaction that was
MONSOLDEST_SNAPSHOT INTEGER active at the moment when the OAT was
started - oldest snapshot transaction (OST)
The number of the next transaction, as it
MONSNEXT_TRANSACTION INTEGER stood when the monitoring snapshot was
taken
MONSPAGE_BUFFERS INTEGER The number of pages allocated in RAM for
the database page cache
MONS$SQL_DIALECT SMALLINT Database SQL Dialect: 1 or 3
The current shutdown state of the database:
0 - the database is online
MON$SHUTDOWN_MODE SMALLINT 1 - multi-user shutdown
2 - single-user shutdown
3 - full shutdown

461

Monitoring Tables

Column Name Data Type Description

MONSSWEEP_INTERVAL INTEGER Sweep interval

Flag indicating whether the database is
MONSREAD_ONLY SMALLINT read-only (value 1) or read-write (value Q)

Indicates whether the write mode of the

database is set for synchronous write
MONS$FORCED_WRITES SMALLINT (forced writes ON, valueis 1) or asyn-

chronous write (forced writes OFF, value is

0)

The flag indicating reserve_space (value
MONS$RESERVE_SPACE SMALLINT 1) or use_all_space (value 0) for filling

database pages

The date and time when the database was
MONS$CREATION_DATE TIMESTAMP crested or was |ast restored

The number of pages allocated for the
MONSPAGES BIGINT database on an external device
MONS$STAT_ID INTEGER Statistics identifier

Current physical backup (nBackup) state:
MONS$BACKUP_STATE SMALLINT 0 - normal

1-stalled

2 - merge

MONS$IO STATS

MONS$IO_STATS displays input/output statistics. The counters are cumulative, by group, for each group of
statistics.

Column Name Data Type Description
MONS$STAT_ID INTEGER Statistics identifier
Statistics group:
0 - database
MONS$STAT_GROUP SMALLINT 1 - connection
2 - transaction
3 - statement
4 - call
MONS$PAGE_READS BIGINT Count of database pages read
MONS$PAGE_WRITES BIGINT Count of database pages written to

462

Monitoring Tables

Column Name Data Type Description
MONS$PAGE_FETCHES BIGINT Count of database pages fetched
MONS$PAGE_MARKS BIGINT Count of database pages marked

MONSMEMORY_USAGE

MONSMEMORY _USAGE displays memory usage statistics.

Column Name

Data Type

Description

MONS$STAT_ID

INTEGER

Statistics identifier

MONS$STAT_GROUP

SMALLINT

Statistics group:

0O - database

1 - connection
2 - transaction
3 - operator

4 - cdl

MON$MEMORY_USED

BIGINT

The amount of memory in use, in bytes.
This datais about the high-level memory
allocation performed by the server. It can be
useful to track down memory leaks and ex-
Cessive memory usage in connections, pro-
cedures, etc.

MONS$SMEMORY_ALLOCATED

BIGINT

The amount of memory allocated by the op-
erating system, in bytes. This datais about
the low-level memory allocation performed
by the Firebird memory manager—the
amount of memory allocated by the operat-
ing system—which can allow you to control
the physical memory usage.

MON$MAX_MEMORY_USED

BIGINT

The maximum number of bytes used by this
object

MON
$MAX_MEMORY_ALLOCATED

BIGINT

The maximum number of bytes allocated
for this object by the operating system

Note

pool instead.

Not all recordsin thistable have non-zero values. MON$DATABA SE and objectsrelated to memory allocation
have non-zero values. Minor memory allocations are not accrued here but are added to the database memory

463

Monitoring Tables

MON$RECORD_STATS

MONSRECORD_STATSdisplaysrecord-level statistics. The countersare cumulative, by group, for each group
of statistics.

Column Name Data Type Description

MONS$STAT_ID INTEGER Statisticsidentifier

Statistics group:

0 - database
MONSSTAT_GROUP SMALLINT 1 - connection

2 - transaction

3 - statement

4 - call
MON$RECORD_SEQ _READS BIGINT Count of records read sequentially
MONS$RECORD_IDX_READS BIGINT Count of records read via an index
MONS$RECORD_INSERTS BIGINT Count of inserted records
MON$RECORD_UPDATES BIGINT Count of updated records
MONS$RECORD_DELETES BIGINT Count of deleted records
MONSRECORD_BACKOUTS BIGINT Count of records backed out
MONS$RECORD_PURGES BIGINT Count of records purged
MONSRECORD_EXPUNGES BIGINT Count of records expunged

MONS$STATEMENTS

MONSSTATEMENTS displays statements prepared for execution.

Column Name Data Type Description
MONS$STATEMENT_ID INTEGER Statement identifier
MONS$ATTACHMENT_ID INTEGER Connection identifier
MONSTRANSACTION_ID INTEGER Transaction identifier
MONS$STATE SMALLINT Statement state:

464

Monitoring Tables

Column Name Data Type Description

O-idle
1- active
2 - stalled

The date and time when the statement was

MONS$TIMESTAMP TIMESTAMP

prepared
MONS$SQL_TEXT BLOB TEXT Statement text in SQL
MONS$STAT_ID INTEGER Statistics identifier

The STALLED stateindicatesthat, at the time of the snapshot, the statement had an open cursor and was waiting
for the client to resume fetching rows.

Using MONS$STATEMENTS to Cancel a Query

Monitoring tables are read-only. However, the server has a built-in mechanism for deleting (and only deleting)
records in the MONSSTATEMENTS table, which makes it possible to cancel arunning query.

Notes
« |f nostatementsare currently being executedin the connection, any attempt to cancel querieswill not proceed

e After a query is cancelled, caling execute/fetch API functions will return an error with the
i sc_cancel | ed code

¢ Subsequent queries from this connection will proceed as normal

Example: Cancelling all active queries for the specified connection:

DELETE FROM MON$STATEMENTS
WHERE MONSATTACHVENT_I D = 32

MONS$TRANSACTIONS

MONS$TRANSACTIONS reports started transactions.

Column Name Data Type Description
MONSTRANSACTION_ID INTEGER Transaction identifier (number)
MONS$ATTACHMENT_ID INTEGER Connection identifier
MONS$STATE SMALLINT Transaction state:

465

Monitoring Tables

Column Name

Data Type

Description

O-idle
1- active

MONS$TIMESTAMP

TIMESTAMP

The date and time when the transaction was
started

MONS$TOP_TRANSACTION

INTEGER

Top-level transaction identifier (number)

MONS$OLDEST_TRANSACTION

INTEGER

Transaction ID of the oldest [interesting]
transaction (OIT)

MONS$OLDEST_ACTIVE

INTEGER

Transaction |D of the oldest active transac-
tion (OAT)

MON$ISOLATION_MODE

SMALLINT

Isolation mode (level):

0 - consistency (snapshot table stability)
1 - concurrency (snapshot)

2 - read committed record version

3 - read committed no record version

MONS$LOCK_TIMEOUT

SMALLINT

Lock timeout:

-1 - wait forever
0 - no waiting
1 or greater - lock timeout in seconds

MONS$READ_ONLY

SMALLINT

Flag indicating whether the transaction is
read-only (value 1) or read-write (value Q)

MONS$AUTO_COMMIT

SMALLINT

Flag indicating whether automatic commit
is used for the transaction (value 1) or not
(value 0)

MONS$AUTO_UNDO

SMALLINT

Flag indicating whether the logging mech-
anism automatic undo is used for the trans-
action (value 1) or not (value 0)

MONS$STAT_ID

INTEGER

Statistics identifier

466

Appendix F:
Character Sets and
Collation Sequences

TableF.1. Character Setsand Collation Sequences

Bytes
Character Set ID per Coallation Language
Char
ASCII 2 1 ASCII English
BIG 5 56 2 BIG 5 Chinese, Vietnamese, Korean
CP943C 68 2 CP943C Japanese
" " " | CP943C_UNICODE Japanese
CYRL 50 1 CYRL Russian
" " " DB_RUS Russian dBase
" " " PDOX_CYRL Russian Paradox
DOS437 10 1 DOS437 U.S. English
" " " DB_DEU437 German dBase
" " " | DB_ESP437 Spanish dBase
" " " DB_FIN437 Finnish dBase
" " " DB_FRA437 French dBase
" " " DB_ITA437 Italian dBase
" " " DB_NLD437 Dutch dBase
" " " DB_SVE437 Swedish dBase
" " " DB_UK437 English (Great Britain) dBase
" " " DB_Us437 U.S. English dBase
" " " PDOX_ASCII Code page Paradox—ASCI|
" " " | PDOX_SWEDFIN Swedish / Finnish Paradox
" " " PDOX_INTL International English Paradox
DOS737 9 1 DOS737 Greek
DOS775 15 1 DOS775 Baltic

467

Character Sets and Collation Sequences

Bytes
Character Set ID per Coallation Language
Char

DOS850 11 1 DOS850 Latin | (no Euro symbal)

" " " DB_DEUS850 German

" " " | DB_ESP850 Spanish

" " " DB_FRAS850 French

" " " DB_FRC850 French—Canada

" " " DB_ITA850 Italian

" " " DB_NLD850 Dutch

" " " DB_PTB850 Portuguese—Brazil

" " " DB_SVES850 Swedish

" " " DB_UK850 English—Great Britain

" : " DB_US850 U.S. English
DOS852 45 1 DOS852 Latinll

" " " DB_CSY Czech dBase

" " " DB_PLK Polish dBase

" " " DB_SLO Slovak dBase

" " " PDOX_CSsY Czech Paradox

" " " PDOX_HUN Hungarian Paradox

" " " PDOX_PLK Polish Paradox

" " " PDOX_SLO Slovak Paradox
DOS857 46 1 DOS857 Turkish

" " " | DB_TRK Turkish dBase
DOS858 16 1 DOS858 Latin | (with Euro symbol)
DOS860 13 1 DOS860 Portuguese

" " " DB_PTG860 Portuguese dBase
DOS861 47 1 DOS861 Icelandic

" " " PDOX_ISL Icelandic Paradox
DOS862 17 1 DOS862 Hebrew
DOS863 14 1 DOS863 French—Canada

" " " DB_FRC863 French dBase—Canada

468

Character Sets and Collation Sequences

Bytes
Character Set ID per Coallation Language
Char
DOS864 18 1 DOS864 Arabic
DOS865 12 1 DOS865 Scandinavian
" " " DB_DAN865 Danish dBase
" " " DB_NORS865 Norwegian dBase
" " " PDOX_NORDAN4 Paradox Norway and Denmark
DOS866 48 1 DOS866 Russian
DOS869 49 1 DOS869 Modern Greek
EUCJ 0208 6 2 EUCJ 0208 Japanese EUC
GB_2312 57 2 GB_2312 Simplified Chinese (Hong Kong, Korea)
GB18030 69 4 GB18030 Chinese
" : " GB18030_UNICODE Chinese
GBK 67 2 GBK Chinese
" " " GBK_UNICODE Chinese
1S08859_1 21 1 1SO8859 1 Latin|
" " " | DA_DA Danish
" " " DE_DE German
" " " | DU_NL Dutch
" " " EN_UK English—Great Britain
" " " |EN_US U.S. English
" " " |ESES Spanish
" " " ES ES CI_Al fsnin::;e_n;ﬁé nsensitive and + ac-
" " FI_FI Finnish
" " " FR CA French—Canada
" " " FR_FR French
" " " FR_FR_CI_Al E\r/?:ch—case insensitive + accent insensi-
" " " IS 1S Icelandic
" " " TAT Italian
" " " NO_NO Norwegian

469

Character Sets and Collation Sequences

Bytes
Character Set ID per Coallation Language
Char

1S08859 1 " " PT_PT Portuguese

" " " PT_BR Portuguese—Brazil

" " " |sv_sv Swedish

Latin 2—Central Europe (Croatian,
1S08859 2 22 1 1SO8859 2 Czech, Hungarian, Polish, Romanian, Ser-
bian, Slovak, Slovenian)

" " " |cscz Czech

" " " 1SO_HUN : tt:\r)gari an—case insensitive, accent sen-

" " " |1SO_PLK Polish
1S08859_3 23 1 | 1s08859 3 :::;ti)_somhem Europe (Malta, Es-
1S08859_4 34 1 | 1S08859 4 tizt:: myg;:;agfﬁgiéiﬂﬁngf
1S08859 5 35 1 1S08859 5 Cyrillic (Russian)
1S0O8859_6 36 1 1SO8859_6 Arabic
1508859 7 37 1 1SO8859 7 Greek
1SO8859 8 38 1 1SO8859_8 Hebrew
1S08859 9 39 1 1SO8859 9 Latin5
1SO8859_13 40 1 1SO8859 13 Latin 7—Baltic

" " " LT LT Lithuanian
KOI8R 63 1 KOI8R Russian—dictionary ordering

" " " | KOI8R_RU Russian
KOI8U 64 1 KOol8uU Ukrainian—dictionary ordering

" " " KOI8U_UA Ukrainian
KSC 5601 44 2 KSC 5601 Korean

" " " KSC_DICTIONARY Korean—dictionary sort order
NEXT 19 1 NEXT Coding NeXTSTEP

" " " NXT_DEU German

" " " NXT_ESP Spanish

" " " NXT_FRA French

470

Character Sets and Collation Sequences

Bytes
Character Set ID per Coallation Language
Char
" " " NXT_ITA Italian
NEXT 19 1 NXT_US U.S. English
Neutral code page. Trand ation to upper
caseis performed only for code ASCI|I
NONE 0 ! NONE 97-122. Recommendation: avoid this
character set
OCTETS 1 1 OCTETS Binary character encoding
SJIS 0208 5 2 SJIS 0208 Japanese
TIS620 66 1 TIS620 Thai
" " " T1S620_UNICODE Thai
UNICODE_FSS 3 3 UNICODE_FSS All English
UTF8 4 4 UTF8 Any language that is supported in Uni-
code 4.0
" " " USC_BASIC Any language that is supported in Uni-
code 4.0
" " " UNICODE Any language that is supported in Uni-
code 4.0
" " " Any language that is supported in Uni-
UNICODE Ci code 4.0—Caseinsensitive
Any language that is supported in Uni-
" " " UNICODE_CI_Al code 4.0—Case insensitive and accent in-
sensitive
WIN1250 51 1 WIN1250 ANSI—Central Europe
" " " BS BA Bosnian
" " " PXW_CSY Czech
" " " PXW HUN I—_|L_Jngar|an—case insensitive, accent sen-
- sitive
" " " PXW_HUNDC Hungarian—dictionary ordering
" " " PXW_HUNDC Polish
" " " PXW_PLK Slovak
" " " PXW_SLOV Slovenian
" " " WIN_CZ Czech
" " " WIN_CZ _CI Czech—Case insensitive

471

Character Sets and Collation Sequences

Bytes
Character Set ID per Coallation Language
Char

" " " WIN_CZ_CI_Al SCezrzi:tri\;Case insensitive and accent in-
WIN1251 52 1 WIN1251 ANSI Cyrillic

" " " WIN1251 _UA Ukrainian

" " " PXW_CYRL Paradox Cyrillic (Russian)
WIN1252 53 1 WIN1252 ANSI—Latin |

" " " PXW_INTL English International

" " " PXW_INTL850 Paradox multilingual Latin |

" " " PXW_NORDANA4 Norwegian and Danish

" " " | PXW_SPAN Paradox Spanish

" " " PXW_SWEDFIN Swedish and Finnish

" " " WIN_PTBR Portuguese—Brazil
WIN1253 54 1 WIN1253 ANSI Greek

" " " PXW_GREEK Paradox Greek
WIN1254 55 1 WIN1254 ANSI Turkish

" " " PXW_TURK Paradox Turkish
WIN1255 58 1 WIN1255 ANSI Hebrew
WIN1256 59 1 WIN1256 ANSI Arabic
WIN1257 60 1 WIN1257 ANSI Baltic

" " " WIN1257_EE Estonian—Dictionary ordering

" " " WIN1257 LT Lithuanian—Dictionary ordering

" " " WIN1257 LV Latvian—Dictionary ordering
WIN1258 65 1 WIN1258 Viethamese

472

Appendix G:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this License. Copies of the Li-
cense are available at http://www.firebirdsgl.org/pdf manual/pdl.pdf (PDF) and http://www.firebirdsgl.org/man-
ual/pdl.html (HTML).

The Original Documentation istitled Firebird 2.5 Language Reference.

The Initial Writers of the Original Documentation are: Paul Vinkenoog, Dmitry Y emanov and Thomas Woinke.
Writers of text originally in Russian are Denis Simonov, Dmitry Filippov, Alexander Karpeykin, Alexey
Kovyazin and Dmitry Kuzmenko.

Copyright (C) 2008-2015. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL-licensed material are: J. Beesley, Helen Borrie, Arno Brinkman, Frank In-
germann, Vlad Khorsun, Alex Peshkov, Nickolay Samofatov, Adriano dos Santos Fernandes, Dmitry Y emanov.

Included portions are Copyright (C) 2001-2015 by their respective authors. All Rights Reserved.

473

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

Appendix H:

Document History

The exact file history is recorded in our git repository; see https.//github.com/FirebirdSQL /firebird-documen-

tation

Revision History
22 January 2018H.E.M.B. Updated the file history link at the top of this chapter to reflect the mi-

1.001

1.000

0.906

0.900

11 August 2017 H.E.M .B.

11 August 2016 H.E.M .B.

1 September
2015

H.E.M.B.

gration of the Doc source tree to Github.
Typos fixed/updates by M. Rotteveel Dec. 2017/Jan. 2018

* 14.12.2017 psgl.xml line 544 replaced 'stored procedures with 'trig-
gers

» 14.12.2017 psgl.xml line 1070 removed extraneous >' symbol

e 21.01.2018 functions-vars.xml line 1222 replaced
'CURRENT_TIME' with'CURRENT_TIMESTAMP

e 21.01.2018 dml.xml line 19 switched 'INSERT OR UPDATE' to
'UPDATE OR INSERT

e 21.01.2018 dml.xml line 3344 removed extraneous 'the’

e 21.01.2018 ddl.xml line 3359 inserted missing keyword 'INDEX" for
SET STATISTICS syntax

e 21.01.2018 commons.xml line 1330 switch keywords 'horizontal'
and 'vertical'

e 21.01.2018 structurexml lines 276 to 278 change date literal format
to 'yyyy-mm-dd' and include hex representation in example

There have been no further changes to the content during the final
review period. The chapters DML, PSQL, Functions and Variables,
Transactions and Security were not reviewed in this phase.

Several revisions were published during the year, asaBeta 1, with re-
views of various sections by Paul Vinkenoog, Aage Johansen and Mark
Rotteveel. Thisrevision (0.906) awaits final revision of some later sec-
tions, marked as “Editor's Note” in red italics.

Original was in Russian, translated by Dmitry Borodin (MegaTransla-
tions). Raw tranglation edited and converted to DocBook, as this revi-
son (0.900), by Helen Borrie.

Thisrevision distributed as a PDF build only, for review by Dmitry Ye-
manov, et al.

Reviewers, please pay attention to the comments like this: Editor's
note :: The sky is falling, take cover!

474

https://github.com/FirebirdSQL/firebird-documentation
https://github.com/FirebirdSQL/firebird-documentation

	Firebird 2.5 Language Reference
	Table of Contents
	About the Firebird SQL Language Reference
	Subject Matter
	Authorship
	Language Reference Updates
	Gestation of the Big Book
	Translation . . .
	. . . and More Translation

	Contributors

	Acknowledgments

	SQL Language Structure
	Background to Firebird's SQL Language
	SQL Flavours
	SQL Dialects
	Error Conditions

	Basic Elements: Statements, Clauses, Keywords
	Identifiers
	Literals
	Operators and Special Characters
	Comments

	Data Types and Subtypes
	Integer Data Types
	SMALLINT
	INTEGER
	BIGINT
	Hexadecimal Format for Integer Numbers

	Floating-Point Data Types
	FLOAT
	DOUBLE PRECISION

	Fixed-Point Data Types
	NUMERIC
	DECIMAL

	Data Types for Dates and Times
	DATE
	TIME
	TIMESTAMP
	Operations Using Date and Time Values

	Character Data Types
	Unicode
	Client Character Set
	Special Character Sets
	Collation Sequence
	Case-Insensitive Searching
	UTF8 Collation Sequences

	Character Indexes
	Character Types in Detail
	CHAR
	VARCHAR
	NCHAR

	Binary Data Types
	BLOB Subtypes
	BLOB Specifics
	ARRAY Type
	Specifying Explicit Boundaries for Dimensions
	Adding More Dimensions

	Special Data Types
	SQL_NULL Data Type

	Conversion of Data Types
	Explicit Data Type Conversion
	Casting to a Domain
	Casting to TYPE OF COLUMN
	Conversions Possible for the CAST Function
	Literal Formats
	Shorthand Casts for Date and Time Data Types

	Implicit Data Type Conversion
	Implicit Conversion During String Concatenation

	Custom Data Types—Domains
	Domain Attributes
	Domain Override
	Creating and Administering Domains
	Altering a Domain
	Deleting (Dropping) a Domain

	Common Language Elements
	Expressions
	Constants
	String Constants (Literals)
	String Constants in Hexadecimal Notation
	Introducer Syntax for String Literals

	Number Constants
	Hexadecimal Notation for Numerals
	Hexadecimal Value Ranges

	SQL Operators
	Operator Precedence
	Concatenation Operator
	Arithmetic Operators
	Comparison Operators
	Logical Operators

	NEXT VALUE FOR

	Conditional Expressions
	CASE
	Simple CASE
	Searched CASE

	NULL in Expressions
	Expressions Returning NULL
	NULL in Logical Expressions

	Subqueries
	Correlated Subqueries
	Scalar Results

	Predicates
	Assertions
	Comparison Predicates
	Other Comparison Predicates
	BETWEEN
	LIKE
	Wildcards
	Using the ESCAPE Character Option

	STARTING WITH
	CONTAINING
	SIMILAR TO
	Syntax: SQL Regular Expressions
	Building Regular Expressions
	Characters
	Wildcards
	Character Classes
	Predefined Character Classes

	Quantifiers
	OR-ing Terms
	Subexpressions
	Escaping Special Characters

	IS [NOT] DISTINCT FROM
	IS [NOT] NULL

	Existential Predicates
	EXISTS
	IN
	SINGULAR

	Quantified Subquery Predicates
	ALL
	ANY and SOME

	Data Definition (DDL) Statements
	DATABASE
	CREATE DATABASE
	Using a Database Alias
	Creating a Database Remotely
	Optional Parameters for CREATE DATABASE
	Examples Using CREATE DATABASE

	ALTER DATABASE
	Parameters for ALTER DATABASE

	DROP DATABASE

	SHADOW
	CREATE SHADOW
	AUTO | MANUAL Modes
	Options for CREATE SHADOW

	DROP SHADOW

	DOMAIN
	CREATE DOMAIN
	Type-specific Details
	CREATE DOMAIN Examples

	ALTER DOMAIN
	What ALTER DOMAIN Cannot Alter
	ALTER DOMAIN Examples

	DROP DOMAIN

	TABLE
	CREATE TABLE
	Making a Column Non-nullable
	Character Columns
	Setting a DEFAULT Value
	Domain-based Columns
	Calculated Fields
	Defining an ARRAY Column
	Constraints
	Names for Constraints and Their Indexes
	Named Constraints
	The USING Clause

	PRIMARY KEY
	The UNIQUE Constraint
	NULL in Unique Keys

	FOREIGN KEY
	Foreign Key Actions

	CHECK Constraint

	Global Temporary Tables (GTT)
	Restrictions on GTTs

	External Tables
	External File Format
	Row Delimiters

	CREATE TABLE Examples

	ALTER TABLE
	Version Count Increments
	The ADD Clause
	The DROP Clause
	The DROP CONSTRAINT Clause
	The ALTER [COLUMN] Clause
	Renaming a Column: the TO Keyword
	Changing the Data Type of a Column: the TYPE Keyword
	Changing the Position of a Column: the POSITION
 Keyword
	The DROP DEFAULT and SET DEFAULT Clauses
	The COMPUTED [BY] or GENERATED ALWAYS AS Clauses
	Attributes that Cannot Be Altered
	Examples Using ALTER TABLE

	DROP TABLE
	RECREATE TABLE

	INDEX
	CREATE INDEX
	Unique Indexes
	Index Direction
	Computed (Expression) Indexes
	Limits on Indexes
	Maximum Indexes per Table
	Character Index Limits

	Examples Using CREATE INDEX

	ALTER INDEX
	Use of ALTER INDEX on a Constraint Index

	DROP INDEX
	SET STATISTICS
	Index Selectivity

	VIEW
	CREATE VIEW
	Updatable Views
	WITH CHECK OPTION
	Ownership of a View

	ALTER VIEW
	CREATE OR ALTER VIEW
	DROP VIEW
	RECREATE VIEW

	TRIGGER
	CREATE TRIGGER
	Statement Terminators
	Relation Triggers (on Tables or Views)
	Forms of Declaration
	Phase
	Row Events
	Firing Order of Triggers
	Variable Declarations
	The Trigger Body

	Database Triggers
	Execution of Database Triggers and Exception Handling
	Traps
	Trigger Suppression

	Two-phase Commit
	Some Caveats

	ALTER TRIGGER
	Permitted Changes to Triggers

	CREATE OR ALTER TRIGGER
	DROP TRIGGER
	RECREATE TRIGGER

	PROCEDURE
	CREATE PROCEDURE
	Statement Terminators
	Parameters
	Use of Domains in Declarations
	Use of Column Type in Declarations

	Variable and Cursor Declarations
	

	ALTER PROCEDURE
	CREATE OR ALTER PROCEDURE
	DROP PROCEDURE
	RECREATE PROCEDURE

	EXTERNAL FUNCTION
	DECLARE EXTERNAL FUNCTION
	DECLARE EXTERNAL FUNCTION Input Parameters
	Clauses and Keywords

	ALTER EXTERNAL FUNCTION
	DROP EXTERNAL FUNCTION

	FILTER
	DECLARE FILTER
	Specifying the Subtypes
	Parameters

	DROP FILTER

	SEQUENCE (GENERATOR)
	CREATE SEQUENCE
	ALTER SEQUENCE
	SET GENERATOR
	DROP SEQUENCE

	EXCEPTION
	CREATE EXCEPTION
	ALTER EXCEPTION
	CREATE OR ALTER EXCEPTION
	DROP EXCEPTION
	RECREATE EXCEPTION

	COLLATION
	CREATE COLLATION
	How the Engine Detects the Collation
	Specific Attributes

	DROP COLLATION

	CHARACTER SET
	ALTER CHARACTER SET

	ROLE
	CREATE ROLE
	ALTER ROLE
	DROP ROLE

	COMMENTS
	COMMENT ON

	Data Manipulation (DML) Statements
	SELECT
	FIRST, SKIP
	Characteristics of FIRST and SKIP

	The SELECT Columns List
	The FROM clause
	Selecting FROM a table or view
	Selecting FROM a stored procedure
	Selecting FROM a derived table
	Selecting FROM a CTE

	Joins
	Inner vs. outer joins
	Qualified joins
	Explicit-condition joins
	Named columns joins

	Natural joins
	A Note on Equality
	Cross joins
	Ambiguous field names in joins
	Joins with stored procedures

	The WHERE clause
	The GROUP BY clause
	HAVING

	The PLAN clause
	Simple plans
	Composite plans

	UNION
	ORDER BY
	Sorting Direction
	Collation Order
	NULLs Position
	Ordering UNION-ed Sets

	ROWS
	Mixing ROWS and FIRST/SKIP
	ROWS Syntax in UNION Queries

	FOR UPDATE [OF]
	WITH LOCK
	Usage with a FOR UPDATE Clause
	How the engine deals with WITH LOCK
	Caveats using WITH LOCK

	INTO
	Common Table Expressions (“WITH ... AS ... SELECT”)
	Recursive CTEs

	INSERT
	INSERT ... VALUES
	INSERT ... SELECT
	The “Unstable Cursor” Problem

	INSERT ... DEFAULT VALUES
	The RETURNING clause
	Inserting into BLOB columns

	UPDATE
	Using an alias
	The SET Clause
	The WHERE Clause
	The “Unstable Cursor” Problem

	The ORDER BY and ROWS Clauses
	The RETURNING Clause
	The INTO Sub-clause

	Updating BLOB columns

	UPDATE OR INSERT
	The RETURNING clause

	DELETE
	Aliases
	WHERE
	PLAN
	ORDER BY and ROWS
	RETURNING

	MERGE
	EXECUTE PROCEDURE
	“Executable” Stored Procedure

	EXECUTE BLOCK
	Input and output parameters
	Statement Terminators

	Procedural SQL (PSQL) Statements
	Elements of PSQL
	DML Statements with Parameters
	Transactions
	Module Structure
	The Module Header
	The Module Body

	Stored Procedures
	Benefits of Stored Procedures
	Types of Stored Procedures
	Executable Procedures
	Selectable Procedures

	Creating a Stored Procedure
	Modifying a Stored Procedure
	Deleting a Stored Procedure

	Stored Functions
	PSQL Blocks
	Triggers
	Firing Order (Order of Execution)
	DML Triggers
	Trigger Options
	OLD and NEW Context Variables

	Database Triggers
	Creating Triggers
	Modifying Triggers
	Deleting a Trigger

	Writing the Body Code
	Assignment Statements
	DECLARE CURSOR
	Cursor Idiosyncrasies
	Examples Using Named Cursors

	DECLARE VARIABLE
	Data Type for Variables

	BEGIN ... END
	IF ... THEN ... ELSE
	WHILE ... DO
	LEAVE
	EXIT
	SUSPEND
	EXECUTE STATEMENT
	Parameterized Statements
	Special Rules for Parameterized Statements

	WITH {AUTONOMOUS | COMMON} TRANSACTION
	WITH CALLER PRIVILEGES
	ON EXTERNAL [DATA SOURCE]
	Connection Pooling
	Transaction Pooling
	Exception Handling
	Miscellaneous Notes

	AS USER, PASSWORD and ROLE
	Caveats with EXECUTE STATEMENT

	FOR SELECT
	The Undeclared Cursor

	FOR EXECUTE STATEMENT
	OPEN
	FETCH
	CLOSE
	IN AUTONOMOUS TRANSACTION
	POST_EVENT

	Trapping and Handling Errors
	System Exceptions
	Custom Exceptions
	EXCEPTION
	WHEN ... DO
	Targeting GDSCODE
	Scope of a WHEN ... DO Statement

	Built-in functions and Variables
	Context variables
	CURRENT_CONNECTION
	CURRENT_DATE
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	SQLSTATE
	'TODAY'
	'TOMORROW'
	UPDATING
	'YESTERDAY'
	USER

	Scalar Functions
	Functions for Working with Context Variables
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()

	Mathematical Functions
	ABS()
	ACOS()
	ASIN()
	ATAN()
	ATAN2()
	CEIL(), CEILING()
	COS()
	COSH()
	COT()
	EXP()
	FLOOR()
	LN()
	LOG()
	LOG10()
	MOD()
	PI()
	POWER()
	RAND()
	ROUND()
	SIGN()
	SIN()
	SINH()
	SQRT()
	TAN()
	TANH()
	TRUNC()

	Functions for Working with Strings
	ASCII_CHAR()
	ASCII_VAL()
	BIT_LENGTH()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	HASH()
	LEFT()
	LOWER()
	LPAD()
	OCTET_LENGTH()
	OVERLAY()
	POSITION()
	REPLACE()
	REVERSE()
	RIGHT()
	RPAD()
	SUBSTRING()
	TRIM()
	UPPER()

	Date and Time Functions
	DATEADD()
	DATEDIFF()
	EXTRACT()
	Returned Data Types and Ranges
	MILLISECOND
	WEEK

	Type Casting Functions
	CAST()
	“Shorthand” Syntax

	Functions for Bitwise Operations
	BIN_AND()
	BIN_NOT()
	BIN_OR()
	BIN_SHL()
	BIN_SHR()
	BIN_XOR()

	Functions for Working with UUID
	CHAR_TO_UUID()
	GEN_UUID()
	UUID_TO_CHAR()

	Functions for Working with Generators (Sequences)
	GEN_ID()

	Conditional Functions
	COALESCE()
	DECODE()
	IIF()
	MAXVALUE()
	MINVALUE()
	NULLIF()

	Aggregate Functions
	AVG()
	COUNT()
	LIST()
	MAX()
	MIN()
	SUM()

	Transaction Control
	Transaction Statements
	SET TRANSACTION
	Transaction Parameters
	Transaction Name
	Access Mode
	Lock Resolution Mode
	WAIT Mode
	NO WAIT Mode

	Isolation Level
	SNAPSHOT Isolation Level
	SNAPSHOT TABLE STABILITY Isolation Level
	READ COMMITTED Isolation Level
	RECORD_VERSION

	NO AUTO UNDO
	IGNORE LIMBO
	RESERVING
	Options for RESERVING Clause

	COMMIT
	COMMIT Options

	ROLLBACK
	ROLLBACK Options
	ROLLBACK TO SAVEPOINT

	SAVEPOINT
	RELEASE SAVEPOINT
	Internal Savepoints
	Savepoints and PSQL

	Security
	User Authentication
	Specially Privileged Users
	POSIX Hosts
	The SYSDBA User on POSIX
	The root User

	Windows Hosts
	The Database Owner

	RDB$ADMIN Role
	Granting the RDB$ADMIN Role in the Security Database
	Doing the Same Task Using gsec
	Using the RDB$ADMIN Role in the Security Database
	Using gsec with RDB$ADMIN Rights

	Granting the RDB$ADMIN Role in a Regular Database
	Using the RDB$ADMIN Role in a Regular Database

	AUTO ADMIN MAPPING
	Auto Admin Mapping in Regular Databases
	Auto Admin Mapping in the Security Database

	Administrators
	SQL Statements for User Management
	CREATE USER
	ALTER USER
	DROP USER

	SQL Privileges
	The Object Owner
	Statements for Granting Privileges
	GRANT
	The TO Clause
	Packaging Privileges in a ROLE Object

	The User PUBLIC
	The WITH GRANT OPTION Clause
	The GRANTED BY Clause
	Alternative Syntax Using AS <username>

	Privileges on Tables and Views
	The EXECUTE Privilege
	Assigning Roles
	The WITH ADMIN OPTION Clause

	Statements for Revoking Privileges
	REVOKE
	The FROM Clause
	Revoking the GRANT OPTION
	Removing the Privilege to One or More Roles
	Revoking Privileges That Were GRANTED BY
	Revoking ALL ON ALL

	A. Supplementary Information
	The RDB$VALID_BLR Field
	How Invalidation Works

	A Note on Equality

	B. Exception Codes and Messages
	SQLSTATE Error Codes and Descriptions
	SQLCODE and GDSCODE Error Codes and Descriptions

	C. Reserved Words and Keywords
	Reserved words
	Keywords

	D. System Tables
	RDB$BACKUP_HISTORY
	RDB$CHARACTER_SETS
	RDB$CHECK_CONSTRAINTS
	RDB$COLLATIONS
	RDB$DATABASE
	RDB$DEPENDENCIES
	RDB$EXCEPTIONS
	RDB$FIELDS
	RDB$FIELD_DIMENSIONS
	RDB$FILES
	RDB$FILTERS
	RDB$FORMATS
	RDB$FUNCTIONS
	RDB$FUNCTION_ARGUMENTS
	RDB$GENERATORS
	RDB$INDICES
	RDB$INDEX_SEGMENTS
	RDB$LOG_FILES
	RDB$PAGES
	RDB$PROCEDURES
	RDB$PROCEDURE_PARAMETERS
	RDB$REF_CONSTRAINTS
	RDB$RELATIONS
	RDB$RELATION_CONSTRAINTS
	RDB$RELATION_FIELDS
	RDB$ROLES
	RDB$SECURITY_CLASSES
	RDB$TRANSACTIONS
	RDB$TRIGGERS
	RDB$TRIGGER_MESSAGES
	RDB$TYPES
	RDB$USER_PRIVILEGES
	RDB$VIEW_RELATIONS

	E. Monitoring Tables
	MON$ATTACHMENTS
	Using MON$ATTACHMENTS to Kill a Connection

	MON$CALL_STACK
	MON$CONTEXT_VARIABLES
	MON$DATABASE
	MON$IO_STATS
	MON$MEMORY_USAGE
	MON$RECORD_STATS
	MON$STATEMENTS
	Using MON$STATEMENTS to Cancel a Query

	MON$TRANSACTIONS

	F. Character Sets and Collation Sequences
	G. License notice
	H. Document History

