
Firebird 2.5 Language Reference
Release 1.00

Dmitry Filippov
Alexander Karpeykin

Alexey Kovyazin
Dmitry Kuzmenko

Denis Simonov
Paul Vinkenoog
Dmitry Yemanov

22 January 2018, document version 1.001

Firebird 2.5 Language Reference
Release 1.00

22 January 2018, document version 1.001
by Dmitry Filippov, Alexander Karpeykin, Alexey Kovyazin, Dmitry Kuzmenko, Denis Simonov, Paul Vinkenoog, and
Dmitry Yemanov
The source of much copied reference material: Paul Vinkenoog
Copyright © 2017 Firebird Project and all contributing authors, under the Public Documentation License Version 1.0.
Please refer to the License Notice in the Appendix.

Abstract

This volume represents a compilation of topics concerning Firebird's SQL language written by members of the Rus-
sian-speaking community of Firebird developers and users. In 2014, it culminated in a language reference manual, in Rus-
sian. At the instigation of Alexey Kovyazin, a campaign was launched amongst Firebird users world-wide to raise funds
to pay for a professional translation into English, from which translations into other languages would proceed under the
auspices of the Firebird Documentation Project.

http://www.firebirdsql.org/manual/pdl.html

iv

Table of Contents
1. About the Firebird SQL Language Reference .. 1

Subject Matter ... 1
Authorship ... 1

Language Reference Updates .. 1
Gestation of the Big Book .. 2
Contributors ... 2

Acknowledgments .. 3
2. SQL Language Structure .. 5

Background to Firebird's SQL Language ... 5
SQL Flavours .. 5
SQL Dialects ... 6
Error Conditions .. 7

Basic Elements: Statements, Clauses, Keywords .. 7
Identifiers .. 8
Literals .. 9
Operators and Special Characters .. 9
Comments .. 10

3. Data Types and Subtypes ... 12
Integer Data Types .. 14

SMALLINT ... 14
INTEGER ... 14
BIGINT .. 14
Hexadecimal Format for Integer Numbers ... 15

Floating-Point Data Types .. 15
FLOAT ... 16
DOUBLE PRECISION .. 16

Fixed-Point Data Types .. 16
NUMERIC .. 17
DECIMAL ... 17

Data Types for Dates and Times ... 17
DATE ... 18
TIME ... 19
TIMESTAMP ... 19
Operations Using Date and Time Values ... 19

Character Data Types ... 20
Unicode ... 21
Client Character Set ... 21
Special Character Sets .. 21
Collation Sequence ... 21
Character Indexes ... 23
Character Types in Detail ... 24

Binary Data Types ... 25
BLOB Subtypes ... 25
BLOB Specifics .. 26
ARRAY Type ... 26

Special Data Types .. 28
SQL_NULL Data Type .. 28

Conversion of Data Types .. 29

Firebird 2.5 Language Reference

v

Explicit Data Type Conversion ... 29
Implicit Data Type Conversion ... 33

Custom Data Types—Domains ... 35
Domain Attributes .. 35
Domain Override .. 35
Creating and Administering Domains .. 36

4. Common Language Elements .. 38
Expressions .. 38

Constants ... 39
SQL Operators ... 42
Conditional Expressions ... 45
NULL in Expressions .. 46
Subqueries ... 47

Predicates ... 49
Assertions .. 49
Comparison Predicates ... 49
Existential Predicates .. 60
Quantified Subquery Predicates ... 64

5. Data Definition (DDL) Statements .. 66
DATABASE .. 66

CREATE DATABASE .. 66
ALTER DATABASE .. 70
DROP DATABASE .. 73

SHADOW .. 73
CREATE SHADOW ... 74
DROP SHADOW ... 75

DOMAIN .. 76
CREATE DOMAIN .. 76
ALTER DOMAIN .. 81
DROP DOMAIN .. 84

TABLE ... 85
CREATE TABLE ... 85
ALTER TABLE ... 98
DROP TABLE ... 105
RECREATE TABLE ... 105

INDEX ... 106
CREATE INDEX .. 106
ALTER INDEX .. 110
DROP INDEX .. 111
SET STATISTICS .. 112

VIEW ... 113
CREATE VIEW ... 113
ALTER VIEW ... 116
CREATE OR ALTER VIEW .. 117
DROP VIEW ... 118
RECREATE VIEW ... 119

TRIGGER ... 120
CREATE TRIGGER .. 120
ALTER TRIGGER .. 126
CREATE OR ALTER TRIGGER .. 128
DROP TRIGGER .. 129
RECREATE TRIGGER ... 129

Firebird 2.5 Language Reference

vi

PROCEDURE .. 130
CREATE PROCEDURE .. 130
ALTER PROCEDURE ... 135
CREATE OR ALTER PROCEDURE ... 138
DROP PROCEDURE .. 138
RECREATE PROCEDURE .. 139

EXTERNAL FUNCTION ... 140
DECLARE EXTERNAL FUNCTION ... 140
ALTER EXTERNAL FUNCTION ... 143
DROP EXTERNAL FUNCTION ... 144

FILTER ... 145
DECLARE FILTER .. 145
DROP FILTER ... 147

SEQUENCE (GENERATOR) ... 147
CREATE SEQUENCE ... 148
ALTER SEQUENCE ... 149
SET GENERATOR ... 150
DROP SEQUENCE ... 150

EXCEPTION ... 151
CREATE EXCEPTION .. 151
ALTER EXCEPTION .. 152
CREATE OR ALTER EXCEPTION .. 153
DROP EXCEPTION .. 154
RECREATE EXCEPTION ... 155

COLLATION ... 155
CREATE COLLATION ... 155
DROP COLLATION ... 158

CHARACTER SET ... 159
ALTER CHARACTER SET ... 159

ROLE ... 160
CREATE ROLE ... 160
ALTER ROLE ... 161
DROP ROLE ... 161

COMMENTS ... 162
COMMENT ON ... 162

6. Data Manipulation (DML) Statements ... 164
SELECT .. 164

FIRST, SKIP ... 165
The SELECT Columns List ... 167
The FROM clause ... 170
Joins .. 176
The WHERE clause ... 184
The GROUP BY clause .. 186
The PLAN clause .. 191
UNION ... 195
ORDER BY ... 196
ROWS .. 200
FOR UPDATE [OF] .. 202
WITH LOCK ... 203
INTO .. 206
Common Table Expressions (“WITH ... AS ... SELECT”) .. 207

INSERT .. 211

Firebird 2.5 Language Reference

vii

INSERT ... VALUES .. 212
INSERT ... SELECT ... 212
INSERT ... DEFAULT VALUES .. 213
The RETURNING clause ... 214
Inserting into BLOB columns .. 215

UPDATE ... 215
Using an alias .. 216
The SET Clause .. 216
The WHERE Clause .. 217
The ORDER BY and ROWS Clauses .. 219
The RETURNING Clause ... 219
Updating BLOB columns ... 220

UPDATE OR INSERT .. 220
The RETURNING clause ... 221

DELETE ... 222
Aliases ... 223
WHERE .. 223
PLAN ... 224
ORDER BY and ROWS .. 224
RETURNING ... 225

MERGE .. 226
EXECUTE PROCEDURE .. 228

“Executable” Stored Procedure .. 229
EXECUTE BLOCK .. 230

Input and output parameters .. 232
Statement Terminators .. 233

7. Procedural SQL (PSQL) Statements .. 234
Elements of PSQL .. 234

DML Statements with Parameters ... 234
Transactions ... 234
Module Structure .. 235

Stored Procedures ... 237
Benefits of Stored Procedures ... 237
Types of Stored Procedures .. 237
Creating a Stored Procedure .. 238
Modifying a Stored Procedure ... 238
Deleting a Stored Procedure .. 239

Stored Functions ... 239
PSQL Blocks ... 240
Triggers ... 240

Firing Order (Order of Execution) ... 241
DML Triggers .. 241
Database Triggers ... 242
Creating Triggers .. 242
Modifying Triggers .. 243
Deleting a Trigger .. 244

Writing the Body Code ... 244
Assignment Statements ... 245
DECLARE CURSOR .. 246
DECLARE VARIABLE ... 248
BEGIN ... END .. 251
IF ... THEN ... ELSE ... 252

Firebird 2.5 Language Reference

viii

WHILE ... DO .. 254
LEAVE ... 255
EXIT .. 257
SUSPEND ... 257
EXECUTE STATEMENT .. 258
FOR SELECT .. 263
FOR EXECUTE STATEMENT ... 266
OPEN ... 267
FETCH ... 269
CLOSE ... 270
IN AUTONOMOUS TRANSACTION .. 271
POST_EVENT ... 272

Trapping and Handling Errors ... 273
System Exceptions ... 273
Custom Exceptions ... 274
EXCEPTION ... 274
WHEN ... DO .. 276

8. Built-in functions and Variables .. 280
Context variables .. 280

CURRENT_CONNECTION ... 280
CURRENT_DATE .. 280
CURRENT_ROLE .. 281
CURRENT_TIME ... 281
CURRENT_TIMESTAMP .. 282
CURRENT_TRANSACTION .. 283
CURRENT_USER .. 283
DELETING ... 283
GDSCODE .. 284
INSERTING .. 284
NEW .. 285
'NOW' ... 285
OLD ... 286
ROW_COUNT ... 286
SQLCODE ... 287
SQLSTATE ... 287
'TODAY' ... 288
'TOMORROW' ... 289
UPDATING ... 289
'YESTERDAY' ... 290
USER ... 290

Scalar Functions ... 291
Functions for Working with Context Variables .. 291
Mathematical Functions .. 294
Functions for Working with Strings ... 306
Date and Time Functions .. 322
Type Casting Functions .. 326
Functions for Bitwise Operations .. 329
Functions for Working with UUID .. 332
Functions for Working with Generators (Sequences) .. 334
Conditional Functions ... 335

Aggregate Functions ... 339
AVG() .. 340

Firebird 2.5 Language Reference

ix

COUNT() .. 340
LIST() ... 341
MAX() .. 343
MIN() ... 343
SUM() .. 344

9. Transaction Control .. 346
Transaction Statements ... 346

SET TRANSACTION .. 346
COMMIT .. 352
ROLLBACK .. 353
SAVEPOINT ... 355
RELEASE SAVEPOINT .. 356
Internal Savepoints ... 356
Savepoints and PSQL ... 357

10. Security .. 358
User Authentication .. 358

Specially Privileged Users .. 358
RDB$ADMIN Role .. 360
Administrators .. 363
SQL Statements for User Management .. 364

SQL Privileges ... 368
The Object Owner .. 368
Statements for Granting Privileges .. 368
Statements for Revoking Privileges ... 374

Appendix A: Supplementary Information ... 379
The RDB$VALID_BLR Field ... 379

How Invalidation Works ... 379
A Note on Equality .. 381

Appendix B: Exception Codes and Messages ... 382
SQLSTATE Error Codes and Descriptions .. 382
SQLCODE and GDSCODE Error Codes and Descriptions ... 390

Appendix C: Reserved Words and Keywords ... 424
Reserved words .. 424
Keywords ... 425

Appendix D: System Tables ... 429
RDB$BACKUP_HISTORY .. 430
RDB$CHARACTER_SETS .. 430
RDB$CHECK_CONSTRAINTS ... 431
RDB$COLLATIONS ... 432
RDB$DATABASE ... 432
RDB$DEPENDENCIES ... 433
RDB$EXCEPTIONS .. 434
RDB$FIELDS .. 434
RDB$FIELD_DIMENSIONS .. 438
RDB$FILES ... 438
RDB$FILTERS .. 439
RDB$FORMATS ... 439
RDB$FUNCTIONS .. 440
RDB$FUNCTION_ARGUMENTS ... 441
RDB$GENERATORS .. 442
RDB$INDICES .. 442
RDB$INDEX_SEGMENTS .. 444

Firebird 2.5 Language Reference

x

RDB$LOG_FILES ... 444
RDB$PAGES ... 444
RDB$PROCEDURES ... 445
RDB$PROCEDURE_PARAMETERS ... 446
RDB$REF_CONSTRAINTS ... 447
RDB$RELATIONS .. 448
RDB$RELATION_CONSTRAINTS ... 449
RDB$RELATION_FIELDS .. 450
RDB$ROLES ... 451
RDB$SECURITY_CLASSES ... 452
RDB$TRANSACTIONS ... 452
RDB$TRIGGERS ... 453
RDB$TRIGGER_MESSAGES .. 454
RDB$TYPES ... 454
RDB$USER_PRIVILEGES .. 455
RDB$VIEW_RELATIONS ... 456

Appendix E: Monitoring Tables .. 457
MON$ATTACHMENTS .. 458

Using MON$ATTACHMENTS to Kill a Connection ... 459
MON$CALL_STACK .. 459
MON$CONTEXT_VARIABLES .. 460
MON$DATABASE .. 461
MON$IO_STATS ... 462
MON$MEMORY_USAGE ... 463
MON$RECORD_STATS .. 464
MON$STATEMENTS .. 464

Using MON$STATEMENTS to Cancel a Query ... 465
MON$TRANSACTIONS .. 465

Appendix F: Character Sets and Collation Sequences ... 467
Appendix G: License notice .. 473
Appendix H: Document History .. 474

xi

List of Tables
3.1. Overview of Data Types .. 12
3.2. Method of Physical Storage for Real Numbers .. 16
3.3. Arithmetic Operations for Date and Time Data Types ... 19
3.4. Collation Sequences for Character Set UTF8 .. 22
3.5. Maximum Index Lengths by Page Size and Character Size .. 23
3.6. Conversions with CAST .. 30
3.7. Date and Time Literal Format Arguments ... 31
3.8. Literals with Predefined Values of Date and Time ... 32
3.9. Rules for Overriding Domain Attributes in Column Definition ... 35
4.1. Description of Expression Elements ... 38
4.2. Operator Type Precedence ... 42
4.3. Arithmetic Operator Precedence ... 43
4.4. Comparison Operator Precedence ... 43
4.5. Logical Operator Precedence .. 44
5.1. CREATE DATABASE Statement Parameters ... 67
5.2. ALTER DATABASE Statement Parameters ... 71
5.3. CREATE SHADOW Statement Parameters .. 74
5.4. DROP SHADOW Statement Parameter .. 76
5.5. CREATE DOMAIN Statement Parameters ... 77
5.6. ALTER DOMAIN Statement Parameters .. 82
5.7. CREATE TABLE Statement Parameters ... 87
5.8. ALTER TABLE Statement Parameters ... 100
5.9. DROP TABLE Statement Parameter ... 105
5.10. CREATE INDEX Statement Parameters ... 107
5.11. Maximum Indexes per Table .. 108
5.12. Maximum indexable (VAR)CHAR length ... 108
5.13. ALTER INDEX Statement Parameter ... 110
5.14. DROP INDEX Statement Parameter ... 111
5.15. SET STATISTICS Statement Parameter .. 112
5.16. CREATE VIEW Statement Parameters ... 113
5.17. ALTER VIEW Statement Parameters .. 117
5.18. CREATE OR ALTER VIEW Statement Parameters .. 118
5.19. DROP VIEW Statement Parameter ... 119
5.20. RECREATE VIEW Statement Parameters ... 119
5.21. CREATE TRIGGER Statement Parameters ... 121
5.22. ALTER TRIGGER Statement Parameters ... 126
5.23. DROP TRIGGER Statement Parameter ... 129
5.24. CREATE PROCEDURE Statement Parameters ... 131
5.25. ALTER PROCEDURE Statement Parameters .. 136
5.26. DROP PROCEDURE Statement Parameter ... 139
5.27. DECLARE EXTERNAL FUNCTION Statement Parameters .. 141
5.28. ALTER EXTERNAL FUNCTION Statement Parameters ... 143
5.29. DROP EXTERNAL FUNCTION Statement Parameter .. 144
5.30. DECLARE FILTER Statement Parameters .. 145
5.31. DROP FILTER Statement Parameter .. 147
5.32. CREATE SEQUENCE | CREATE GENERATOR Statement Parameter .. 148
5.33. ALTER SEQUENCE Statement Parameters .. 149
5.34. SET GENERATOR Statement Parameters .. 150
5.35. DROP SEQUENCE | DROP GENERATOR Statement Parameter .. 151
5.36. CREATE EXCEPTION Statement Parameters ... 151

Firebird 2.5 Language Reference

xii

5.37. ALTER EXCEPTION Statement Parameters ... 153
5.38. CREATE OR ALTER EXCEPTION Statement Parameters .. 153
5.39. DROP EXCEPTION Statement Parameter .. 154
5.40. RECREATE EXCEPTION Statement Parameters .. 155
5.41. CREATE COLLATION Statement Parameters .. 156
5.42. Specific Collation Attributes ... 157
5.43. DROP COLLATION Statement Parameters .. 159
5.44. ALTER CHARACTER SET Statement Parameters .. 159
5.45. CREATE ROLE Statement Parameter ... 161
5.46. COMMENT ON Statement Parameters ... 163
6.1. Arguments for the FIRST and SKIP Clauses ... 165
6.2. Arguments for the SELECT Columns List .. 167
6.3. Arguments for the FROM Clause ... 170
6.4. Arguments for JOIN Clauses .. 176
6.5. Arguments for the GROUP BY Clause ... 187
6.6. Arguments for the PLAN Clause .. 191
6.7. Arguments for the ORDER BY Clause ... 197
6.8. Arguments for the ROWS Clause ... 200
6.9. How TPB settings affect explicit locking .. 204
6.10. Arguments for Common Table Expressions ... 207
6.11. Arguments for the INSERT Statement Parameters ... 211
6.12. Arguments for the UPDATE Statement Parameters .. 215
6.13. Arguments for the UPDATE OR INSERT Statement Parameters .. 221
6.14. Arguments for the DELETE Statement Parameters .. 222
6.15. Arguments for the MERGE Statement Parameters ... 226
6.16. Arguments for the EXECUTE PROCEDURE Statement Parameters ... 228
6.17. Arguments for the EXECUTE BLOCK Statement Parameters .. 230
7.1. SET TERM Parameters .. 236
7.2. PSQL Block Parameters ... 240
7.3. Assignment Statement Parameters .. 245
7.4. DECLARE CURSOR Statement Parameters ... 246
7.5. DECLARE VARIABLE Statement Parameters .. 249
7.6. IF ... THEN ... ELSE Parameters .. 253
7.7. WHILE ... DO Parameters ... 254
7.8. LEAVE Statement Parameters .. 255
7.9. EXECUTE STATEMENT Statement Parameters ... 259
7.10. FOR SELECT Statement Parameters .. 264
7.11. FOR EXECUTE STATEMENT Statement Parameters ... 266
7.12. OPEN Statement Parameter .. 267
7.13. FETCH Statement Parameters .. 270
7.14. CLOSE Statement Parameter .. 271
7.15. IN AUTONOMOUS TRANSACTION Statement Parameter .. 272
7.16. POST_EVENT Statement Parameter ... 273
7.17. EXCEPTION Statement Parameters .. 274
7.18. WHEN ... DO Statement Parameters ... 277
8.1. CURRENT_TIME Parameter ... 281
8.2. CURRENT_TIMESTAMP Parameter ... 282
8.3. RDB$GET_CONTEXT Function Parameters .. 291
8.4. Context variables in the SYSTEM namespace ... 292
8.5. RDB$SET_CONTEXT Function Parameters ... 293
8.6. ABS Function Parameter .. 294
8.7. ACOS Function Parameter ... 294

Firebird 2.5 Language Reference

xiii

8.8. ASIN Function Parameter .. 295
8.9. ATAN Function Parameter ... 295
8.10. ATAN2 Function Parameters .. 296
8.11. CEIL[ING] Function Parameters ... 296
8.12. COS Function Parameter .. 297
8.13. COSH Function Parameter ... 297
8.14. COT Function Parameter .. 298
8.15. EXP Function Parameter .. 298
8.16. FLOOR Function Parameter ... 298
8.17. LN Function Parameter .. 299
8.18. LOG Function Parameters .. 299
8.19. LOG10 Function Parameter .. 300
8.20. MOD Function Parameters ... 300
8.21. POWER Function Parameters ... 301
8.22. ROUND Function Parameters ... 302
8.23. SIGN Function Parameter .. 303
8.24. SIN Function Parameter ... 303
8.25. SINH Function Parameter .. 304
8.26. SQRT Function Parameter .. 304
8.27. TAN Function Parameter ... 304
8.28. TANH Function Parameters ... 305
8.29. TRUNC Function Parameters ... 305
8.30. ASCII_CHAR Function Parameter .. 306
8.31. ASCII_VAL Function Parameter .. 307
8.32. BIT_LENGTH Function Parameter ... 307
8.33. CHAR[ACTER]_LENGTH Function Parameter .. 308
8.34. HASH Function Parameter ... 309
8.35. LEFT Function Parameters ... 310
8.36. LOWER Function ParameterS .. 310
8.37. LPAD Function Parameters .. 311
8.38. OCTET_LENGTH Function Parameter ... 312
8.39. OVERLAY Function Parameters .. 313
8.40. POSITION Function Parameters ... 314
8.41. REPLACE Function Parameters ... 315
8.42. REVERSE Function Parameter ... 316
8.43. RIGHT Function Parameters .. 317
8.44. RPAD Function Parameters .. 318
8.45. SUBSTRING Function Parameters ... 319
8.46. TRIM Function Parameters .. 320
8.47. UPPER Function Parameter .. 321
8.48. DATEADD Function Parameters .. 322
8.49. DATEDIFF Function Parameters .. 323
8.50. EXTRACT Function Parameters ... 324
8.51. Types and ranges of EXTRACT results .. 325
8.52. CAST Function Parameters .. 326
8.53. Possible Type-castings with CAST .. 327
8.54. BIN_AND Function Parameters .. 329
8.55. BIN_NOT Function Parameter ... 330
8.56. BIN_OR Function Parameters .. 330
8.57. BIN_SHL Function Parameters ... 331
8.58. BIN_SHR Function Parameters .. 331
8.59. BIN_XOR Function Parameters .. 332

Firebird 2.5 Language Reference

xiv

8.60. CHAR_TO_UUID Function Parameter ... 333
8.61. UUID_TO_CHAR Function Parameters .. 334
8.62. GEN_ID Function Parameters .. 334
8.63. COALESCE Function Parameters ... 335
8.64. DECODE Function Parameters ... 336
8.65. IIF Function Parameters ... 337
8.66. MAXVALUE Function Parameters ... 338
8.67. MINVALUE Function Parameters .. 338
8.68. NULLIF Function Parameters ... 339
8.69. AVG Function Parameters .. 340
8.70. COUNT Function Parameters ... 341
8.71. LIST Function Parameters .. 342
8.72. MAX Function Parameters ... 343
8.73. MIN Function Parameters .. 344
8.74. SUM Function Parameters .. 344
9.1. SET TRANSACTION Statement Parameters ... 347
9.2. Compatibility of Access Options for RESERVING .. 351
9.3. COMMIT Statement Parameter .. 352
9.4. ROLLBACK Statement Parameters .. 353
9.5. SAVEPOINT Statement Parameter ... 355
9.6. RELEASE SAVEPOINT Statement Parameter .. 356
10.1. Parameters for RDB$ADMIN Role GRANT and REVOKE ... 360
10.2. Administrator (“Superuser”) Characteristics ... 363
10.3. CREATE USER Statement Parameters ... 364
10.4. ALTER USER Statement Parameters .. 366
10.5. DROP USER Statement Parameter ... 367
10.6. GRANT Statement Parameters ... 369
10.7. List of Privileges on Tables .. 372
10.8. REVOKE Statement Parameters ... 375
B.1. SQLSTATE Codes and Message Texts .. 382
B.2. SQLCODE and GDSCODE Error Codes and Message Texts (1) .. 390
B.3. SQLCODE and GDSCODE Error Codes and Message Texts (2) .. 399
B.4. SQLCODE and GDSCODE Error Codes and Message Texts (3) .. 407
B.5. SQLCODE and GDSCODE Error Codes and Message Texts (4) .. 415
D.1. List of System Tables ... 429
E.1. List of Monitoring Tables .. 457
F.1. Character Sets and Collation Sequences .. 467

1

Chapter 1

About the Firebird SQL
Language Reference

for Firebird 2.5

This Firebird SQL Language Reference is the first comprehensive manual to cover all aspects of the query
language used by developers to communicate, through their applications, with the Firebird relational
database management system. It has a long history.

Subject Matter
The subject matter of this volume is wholly Firebird's implementation of the SQL relational database language.
Firebird conforms closely with international standards for SQL, from data type support, data storage structures,
referential integrity mechanisms, to data manipulation capabilities and access privileges. Firebird also imple-
ments a robust procedural language—procedural SQL (PSQL)— for stored procedures, triggers and dynamical-
ly-executable code blocks. These are the areas addressed in this volume.

Authorship
The material for assembling this Language Reference has been accumulating in the tribal lore of the open source
community of Firebird core developers and user-developers for 15 years. The gift of the InterBase 6 open source
codebase in July 2000 from the (then) Inprise/Borland conglomerate was warmly welcomed. However, it came
without rights to existing documentation. Once the code base had been forked by its owners for private, com-
mercial development, it became clear that the open source, non-commercial Firebird community would never
be granted right of use.

The two important books from the InterBase 6 published set were the Data Definition Guide and the Language
Reference. The former covered the data definition language (DDL) subset of the SQL language, while the latter
covered most of the rest. Fortunately for Firebird users over the years, both have been easy to find on-line as
PDF books.

Language Reference Updates

The Data Definition Guide, covering the creation and maintenance of metadata for databases, was “good
enough” for several years: the data definition language (DDL) of a DBMS is stable and grows slowly in com-
parison to the data manipulation language (DML) employed for queries and the PSQL used for server-based
programming.

About the Firebird SQL Language Reference

2

The leader of the Firebird Project's documentation team, Paul Vinkenoog, took up the cause for documenting
the huge volume of improvements and additions to DML and PSQL as Firebird advanced through its releases.
Paul was personally responsible for collating, assembling and, to a great extent, authoring a cumulative series
of “Language Reference Updates”—one for every major release from v.1.5 forward.

Gestation of the Big Book

From around 2010, Paul, with Firebird Project lead Dmitry Yemanov and a documenter colleague Thomas
Woinke, set about the task of designing and assembling a complete SQL language reference for Firebird. They
began with the material from the LangRef Updates, which is voluminous. It was going to be a big job but, for
all concerned, a spare-time one.

Then, in 2013-4, two benefactor companies—MICEX amd IBSurgeon—funded three writers to take up this
stalled book outline and publish a Firebird 2.5 Language Reference in Russian. They wrote the bulk of the
missing DDL section from scratch and wrote, translated or reused DML and PSQL material from the LangRef
Updates, Russian language support forums, Firebird release notes, read-me files and other sources. By the end
of 2014, they had the task almost complete, in the form of a Microsoft Word document.

Translation . . .

The Russian sponsors, recognising that their efforts needed to be shared with the world-wide Firebird commu-
nity, asked some Project members to initiate a crowd-funding campaign to have the Russian text professionally
translated into English. The translated text would be edited and converted to the Project's standard DocBook
format for addition to the open document library of the Firebird Project. From there, the source text would be
available for translation into other languages for addition to the library.

The fund-raising campaign happened at the end of 2014 and was successful. In June, 2015, professional trans-
lator Dmitry Borodin began translating the Russian text. From him, the raw English text went in stages for edit-
ing and DocBook conversion by Helen Borrie—and here is The Firebird SQL Language Reference for V.2.5,
by...everyone!

. . . and More Translation

Once the DocBook source appears in CVS, we hope the trusty translators will start making versions in German,
Japanese, Italian, French, Portuguese, Spanish, Czech. Certainly, we never have enough translators so please,
you Firebirders who have English as a second language, do consider translating some sections into your first
language.

Contributors

Direct Content

• Dmitry Filippov (writer)
• Alexander Karpeykin (writer)
• Alexey Kovyazin (writer, editor)
• Dmitry Kuzmenko (writer, editor)
• Denis Simonov (writer, editor, coordinator)

About the Firebird SQL Language Reference

3

• Paul Vinkenoog (writer, designer)
• Dmitry Yemanov (writer)

Resource Content

• Adriano dos Santos Fernandes
• Alexander Peshkov
• Vladyslav Khorsun
• Claudio Valderrama
• Helen Borrie
• and others

Translation

• Dmitry Borodin, megaTranslations.ru

Editing and Conversion of English Text

• Helen Borrie

Acknowledgments
The first full language reference manual for Firebird would not have eventuated without the funding that finally
brought it to fruition. We acknowledge these contributions with gratitude and thank you all for stepping up.

Sponsors and Other Donors

Sponsors of the Russian Language Reference Manual

Moscow Exchange (Russia)

Moscow Exchange is the largest exchange holding in Russia and Eastern Europe, founded on De-
cember 19, 2011, through the consolidation of the MICEX (founded in 1992) and RTS (founded in
1995) exchange groups. Moscow Exchange ranks among the world's top 20 exchanges by trading
in bonds and by the total capitalization of shares traded, as well as among the 10 largest exchange
platforms for trading derivatives.

IBSurgeon (ibase.ru) (Russia)

Technical support and developer of administrator tools for the Firebird DBMS.

Sponsors of the Translation Project

Syntess Software BV (Netherlands)
Mitaro Business Solutions (Liechtenstein)

Other Donors

Listed below are the names of companies and individuals whose cash contributions covered the costs for trans-
lation into English, editing of the raw, translated text and conversion of the whole into the Firebird Project's
standard DocBook 4 documentation source format.

http://www.moex.com
http://www.ib-aid.com
http://ibase.ru
http://www.syntess.nl
http://www.mitaro.li

About the Firebird SQL Language Reference

4

Integrity Software Design, Inc. (U.S.A.) dimari GmbH (Germany)
beta Eigenheim GmbH (Germany) KIMData GmbH (Germany)
Jason Wharton (U.S.A) Trans-X (Sweden)
Sanchez Balcewich (Uruguay) Cointec Ingenieros y Consultores, S.L. (Spain)
Aage Johansen (Norway) Mattic Software (Netherlands)
André Knappstein (Germany) Paul F. McGuire (U.S.A.)
Marcus Marques da Rocha (Brazil) Martin Kerkhoff
Thomas Vedel (Denmark) Bulhan Bulhan (Australia)
Alexandre Benson Smith (Brazil) Guillermo Nabrink (Brazil)
Pierre Voirin (France) Heiko Tappe (Germany)
Doug Chamberlin (U.S.A.) Craig Cox (U.S.A.)
OMNet, Inc. (Switzerland) Alfred Steller (Germany)
Konrad Butz (Germany) Thomas Smekal (Canada)
Carlos H. Cantu (Brazil) XTRALOG SARL (France)
Laszlo Urmenyi (Brazil) Fernando Pimenta (Brazil)
Rudolf Grauberger (Germany) Thomas Steinmaurer (Austria)
Rene Lobsiger (Switzerland) Hian Pin Tjioe
Xavier Codina Mick Arundell (Australia)
Russell Belding (New Zealand) Anticlei Scheid (Brazil)
Luca Minuti (Italy) Mark Rotteveel (Netherlands)
Chris Mathews (U.S.A.) Hannes Streicher (Germany)
Wolfgang Lemmermeyer (Germany) Paolo Sciarrini (Italy)
Acosta Belzusarri Daniel Motos Guerra
Alberto Alfonso Luna Simeon Bodurov
Cees Meijer Robert Nixon
Olivier Dehorter (France) András Omacht (Hungary)
Web Express Sergio Conzalez
Marc Bleuwart Gabor Boros
Shaymon Gracia Campos Cserna Zsombor (Hungary)
David Keith Uwe Gerold
Daniele Teti (Italy) Pedro Pablo Busto Criado
Istvan Szabo Spiridon Pavlovic
J. L. Garcia Naranjo A. Morales Morales
Helen Cullen (New Zealand) Francisco Ibarra Ozuna

5

Chapter 2

SQL Language Structure
This reference describes the SQL language supported by Firebird.

Background to Firebird's SQL Language
To begin, a few points about some characteristics that are in the background to Firebird's language implemen-
tation.

SQL Flavours

Distinct subsets of SQL apply to different sectors of activity. The SQL subsets in Firebird's language implemen-
tation are:

• Dynamic SQL (DSQL)

• Procedural SQL (PSQL)

• Embedded SQL (ESQL)

• Interactive SQL (ISQL)

Dynamic SQL is the major part of the language which corresponds to the Part 2 (SQL/Foundation) part of the
SQL specification. DSQL represents statements passed by client applications through the public Firebird API
and processed by the database engine.

Procedural SQL augments Dynamic SQL to allow compound statements containing local variables, assign-
ments, conditions, loops and other procedural constructs. PSQL corresponds to the Part 4 (SQL/PSM) part of the
SQL specifications. Originally, PSQL extensions were available in persistent stored modules (procedures and
triggers) only, but in more recent releases they were surfaced in Dynamic SQL as well (see EXECUTE BLOCK).

Embedded SQL defines the DSQL subset supported by Firebird gpre, the application which allows you to
embed SQL constructs into your host programming language (C, C++, Pascal, Cobol, etc.) and preprocess those
embedded constructs into the proper Firebird API calls.

Note

Only a portion of the statements and expressions implemented in DSQL are supported in ESQL.

Interactive ISQL refers to the language that can be executed using Firebird isql, the command-line application
for accessing databases interactively. As a regular client application, its native language is DSQL. It also offers
a few additional commands that are not available outside its specific environment.

SQL Language Structure

6

Both DSQL and PSQL subsets are completely presented in this reference. Neither ESQL nor ISQL flavours are
described here unless mentioned explicitly.

SQL Dialects

SQL dialect is a term that defines the specific features of the SQL language that are available when accessing a
database. SQL dialects can be defined at the database level and specified at the connection level. Three dialects
are available:

• Dialect 1 is intended solely to allow backward comptibility with legacy databases from very old InterBase
versions, v.5 and below. Dialect 1 databases retain certain language features that differ from Dialect 3, the
default for Firebird databases.

- Date and time information are stored in a DATE data type. A TIMESTAMP data type is also available,
that is identical to this DATE implementation.

- Double quotes may be used as an alternative to apostrophes for delimiting string data. This is contrary to
the SQL standard—double quotes are reserved for a distinct syntactic purpose both in standard SQL and
in Dialect 3. Double-quoting strings is therefore to be avoided strenuously.

- The precision for NUMERIC and DECIMAL data types is smaller than in Dialect 3 and, if the precision
of a fixed decimal number is greater than 9, Firebird stores it internally as a long floating point value.

- The BIGINT (64-bit integer) data type is not supported.

- Identifiers are case-insensitive and must always comply with the rules for regular identifiers—see the
section entitled Identifiers, below.

- Although generator values are stored as 64-bit integers, a Dialect 1 client request, SELECT GEN_ID
(MyGen, 1), for example, will return the generator value truncated to 32 bits.

• Dialect 2 is available only on the Firebird client connection and cannot be set in the database. It is intended
to assist debugging of possible problems with legacy data when migrating a database from dialect 1 to 3.

• In Dialect 3 databases,

- numbers (DECIMAL and NUMERIC data types) are stored internally as long fixed point values (scaled
integers) when the precision is greater than 9.

- The TIME data type is available for storing time-of-day data only.

- The DATE data type stores only date information.

- The 64-bit integer data type BIGINT is available.

- Double quotes are reserved for delimiting non-regular identifiers, enabling object names that are case-
sensitive or that do not meet the requirements for regular identifiers in other ways.

- All strings must be delimited with single quotes (apostrophes).

- Generator values are stored as 64-bit integers.

SQL Language Structure

7

Important

Use of Dialect 3 is strongly recommended for newly developed databases and applications. Both database and
connection dialects should match, except under migration conditions with Dialect 2.

This reference describes the semantics of SQL Dialect 3 unless specified otherwise.

Error Conditions

Processing of every SQL statement either completes successfully or fails due to a specific error condition.

Basic Elements: Statements, Clauses, Keywords

The primary construct in SQL is the statement. A statement defines what the database management system
should do with a particular data or metadata object. More complex statements contain simpler constructs—claus-
es and options.

Clauses: A clause defines a certain type of directive in a statement. For instance, the WHERE clause in a SELECT
statement and in some other data manipulation statements (UPDATE, DELETE) specifies criteria for searching
one or more tables for the rows that are to be selected, updated or deleted. The ORDER BY clause specifies how
the output data —result set— should be sorted.

Options: Options, being the simplest constructs, are specified in association with specific keywords to provide
qualification for clause elements. Where alternative options are available, it is usual for one of them to be the
default, used if nothing is specified for that option. For instance, the SELECT statement will return all of the
rows that match the search criteria unless the DISTINCT option restricts the output to non-duplicated rows.

Keywords: All words that are included in the SQL lexicon are keywords. Some keywords are reserved, meaning
their usage as identifiers for database objects, parameter names or variables is prohibited in some or all contexts.
Non-reserved keywords can be used as identifiers, although it is not recommended. From time to time, non-
reserved keywords may become reserved when some new language feature is introduced.

For instance, the following statement will be executed without errors because, although ABS is a keyword, it
is not a reserved word.

CREATE TABLE T (ABS INT NOT NULL);

On the contrary, the following statement will return an error because ADD is both a keyword and
a reserved word.

CREATE TABLE T (ADD INT NOT NULL);

Refer to the list of reserved words and keywords in the chapter Reserved Words and Keywords.

SQL Language Structure

8

Identifiers
All database objects have names, often called identifiers. Two types of names are valid as identifiers: regular
names, similar to variable names in regular programming languages, and delimited names that are specific to
SQL. To be valid, each type of identifier must conform to a set of rules, as follows:

Rules for Regular Object Identifiers:

• Length cannot exceed 31 characters

• The name must start with an unaccented, 7-bit ASCII alphabetic character. It may be followed by other 7-
bit ASCII letters, digits, underscores or dollar signs. No other characters, including spaces, are valid. The
name is case-insensitive, meaning it can be declared and used in either upper or lower case. Thus, from the
system's point of view, the following names are the same:

 fullname
 FULLNAME
 FuLlNaMe
 FullName

Regular name syntax

<name> ::=
 <letter> | <name><letter> | <name><digit> | <name>_ | <name>$

 <letter> ::= <upper letter> | <lower letter>

 <upper letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M |
 N | O | P | Q | R | S | T | U | V | W | X | Y | Z

 <lower letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m |
 n | o | p | q | r | s | t | u | v | w | x | y | z

 <digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Rules for Delimited Object Identifiers:

• Length cannot exceed 31 characters

• The entire string must be enclosed in double-quotes, e.g. "anIdentifier"

• It may contain characters from any Latin character set, including a accented characters, spaces and special
characters

• An identifier can be a reserved word

• Delimited identifiers are case-sensitive in all contexts

• Trailing spaces in delimited names are removed, as with any string constant

SQL Language Structure

9

• Delimited identifiers are available in Dialect 3 only. For more details on dialects, see SQL Dialect

Delimited name syntax

 <delimited name> ::= "<permitted_character>[<permitted_character> …]"

Note

A delimited identifier such as "FULLNAME" is the same as the regular identifiers FULLNAME, fullname,
FullName, and so on. The reason is that Firebird stores all regular names in upper case, regardless of how they
were defined or declared. Delimited identifiers are always stored according to the exact case of their definition
or declaration. Thus, "FullName" (quoted) is different from FullName (unquoted, i.e., regular) which is stored
as FULLNAME in the metadata.

Literals
Literals are used to represent data in a direct format. Examples of standard types of literals are:

 integer - 0, -34, 45, 0X080000000;
 real - 0.0, -3.14, 3.23e-23;
 string - 'text', 'don''t!';
 binary string - x'48656C6C6F20776F726C64'
 date - DATE'2018-01-19';
 time - TIME'15:12:56';
 timestamp - TIMESTAMP'2018-01-19 13:32:02';
 null state - null

Details about handling the literals for each data type are discussed in the next chapter, Data Types and Subtypes.

Operators and Special Characters
A set of special characters is reserved for use as operators or separators.

 <special char> ::= <space> | " | % | & | ' | (|) | * | + | , | - |
 . | / | : | ; | < | = | > | ? | [|] | ^ | { | }

Some of these characters, alone or in combinations, may be used as operators (arithmetical, string, logical), as
SQL command separators, to quote identifiers and to mark the limits of string literals or comments.

Operator Syntax:

<operator> ::=
 <string concatenation operator> |

SQL Language Structure

10

 <arithmetic operator> |
 <comparison operator> |
 <logical operator>

 <string concatentation operator> ::= {||}

 <arithmetic operator> ::= * | / | + | - |

 <comparison operator> ::=
 {=} | {<>} | {!=} | {~=} | {^=} |
 {>} | {<} | {>=} | {<=} | {!>} | {~>} | {^>} |
 {!<} | {~<} | {^<}

 <logical operator> ::= NOT | AND | OR

For more details on operators, see Expressions.

Comments
Comments may be present in SQL scripts, SQL statements and PSQL modules. A comment can be any text
specified by the code writer, usually used to document how particular parts of the code work. The parser ignores
the text of comments.

Firebird supports two types of comments: block and in-line.

Syntax:

 <comment> ::= <block comment> | <single-line comment>

 <block comment> ::=
 /* <ASCII char>[<ASCII char> …] */

 <single-line comment> ::=
 -- <ASCII char>[<ASCII char> …]<end line>

Block comments start with the /* character pair and end with the */ character pair. Text in block comments may
be of any length and can occupy multiple lines.

In-line comments start with a pair of hyphen characters, -- and continue up to the end of the current line.

Example:

 CREATE PROCEDURE P(APARAM INT)
 RETURNS (B INT)
 AS
 BEGIN
 /* This text will be ignored during the execution of the statement
 since it is a comment
 */
 B = A + 1; -- In-line comment
 SUSPEND;

SQL Language Structure

11

 END

12

Chapter 3

Data Types and Subtypes
Data of various types are used to:

• define columns in a database table in the CREATE TABLE statement or change columns using ALTER TABLE

• declare or change a domain using the CREATE DOMAIN or ALTER DOMAIN statements

• declare local variables in stored procedures, PSQL blocks and triggers and specify parameters in stored pro-
cedures

• indirectly specify arguments and return values when declaring external functions (UDFs—user-defined func-
tions)

• provide arguments for the CAST() function when explicitly converting data from one type to another

Table 3.1. Overview of Data Types

Name Size Precision & Limits Description

BIGINT 64 bits From -263 to (263 -
1)

The data type is available in Dialect 3 only

BLOB Varying The size of a BLOB
segment is limited
to 64K. The max-
imum size of a
BLOB field is 4 GB

A data type of a dynamically variable size
for storing large amounts of data, such
as images, text, digital sounds. The basic
structural unit is a segment. The Blob sub-
type defines its content

CHAR(n),
CHARACTER(n)

n characters. Size
in bytes depends on
the encoding, the
number of bytes in a
character

from 1 to 32,767
bytes

A fixed-length character data type. When
its data is displayed, trailing spaces are
added to the string up to the specified
length. Trailing spaces are not stored in the
database but are restored to match the de-
fined length when the column is displayed
on the client side. Network traffic is re-
duced by not sending spaces over the LAN.
If the number of characters is not specified,
1 is used by default.

DATE 32 bits From 01.01.0001
AD to 31.12.9999
AD

ISC_DATE. Date only, no time element

DECIMAL (pre-
cision, scale)

Varying (16, 32 or
64 bits)

precision = from
1 to 18, defines the
least possible num-
ber of digits to store;

A number with a decimal point that
has scale digits after the point. scale
must be less than or equal to preci-
sion. Example: DECIMAL(10,3) con-

Data Types and Subtypes

13

Name Size Precision & Limits Description

scale = from 0 to
18, defines the num-
ber of digits after the
decimal point

tains a number in exactly the following for-
mat: ppppppp.sss

DOUBLE PRECI-
SION

64 bits 2.225 * 10-308 to
1.797 * 10308

Double-precision IEEE, ~15 digits, reli-
able size depends on the platform

FLOAT 32 bits 1.175 * 10-38 to
3.402 * 1038

Single-precision IEEE, ~7 digits

INTEGER, INT 32 bits -2,147,483,648 up
to 2,147,483,647

Signed long

NUMERIC (pre-
cision, scale)

Varying (16, 32 or
64 bits)

precision = from
1 to 18, defines
the exact number
of digits to store;
scale = from 0 to
18, defines the num-
ber of digits after the
decimal point

A number with a decimal point that
has scale digits after the point. scale
must be less than or equal to preci-
sion. Example: NUMERIC(10,3) con-
tains a number in exactly the following for-
mat: ppppppp.sss

SMALLINT 16 bits -32,768 to 32,767 Signed short (word)

TIME 32 bits 0:00 to
23:59:59.9999

ISC_TIME. Time of day. It cannot be used
to store an interval of time

TIMESTAMP 64 bits (2 X 32 bits) From start of
day 01.01.0001 AD
to end of day
31.12.9999 AD

Date and time of day

VARCHAR(n),
CHAR VARY-
ING, CHARAC-
TER VARYING

n characters. Size
in bytes depends on
the encoding, the
number of bytes in a
character

from 1 to 32,765
bytes

Variable length string type. The total size
of characters in bytes cannot be larger than
(32KB-3), taking into account their en-
coding. The two trailing bytes store the
declared length. There is no default size:
the n argument is mandatory. Leading and
trailing spaces are stored and they are not
trimmed, except for those trailing charac-
ters that are past the declared length.

Note About Dates

Bear in mind that a time series consisting of dates in past centuries is processed without taking into account the
actual historical facts, as though the Gregorian calendar were applicable throughout the entire series.

Data Types and Subtypes

14

Integer Data Types

The SMALLINT, INTEGER and BIGINT data types are used for integers of various precision in Dialect 3.
Firebird does not support an unsigned integer data type.

SMALLINT

The 16-bit SMALLINT data type is for compact data storage of integer data for which only a narrow range of
possible values is required for storing them. Numbers of the SMALLINT type are within the range from -216 to
216 - 1, that is, from -32,768 to 32,767.

SMALLINT Examples:

 CREATE DOMAIN DFLAG AS SMALLINT DEFAULT 0 NOT NULL
 CHECK (VALUE=-1 OR VALUE=0 OR VALUE=1);

 CREATE DOMAIN RGB_VALUE AS SMALLINT;

INTEGER

The INTEGER data type is a 32-bit integer. The shorthand name of the data type is INT. Numbers of the INTE-
GER type are within the range from -232 to 232 - 1, that is, from -2,147,483,648 to 2,147,483,647.

INTEGER Example:

CREATE TABLE CUSTOMER (
 CUST_NO INTEGER NOT NULL,
 CUSTOMER VARCHAR(25) NOT NULL,
 CONTACT_FIRST VARCHAR(15),
 CONTACT_LAST VARCHAR(20),
 ...
 PRIMARY KEY (CUST_NO))

BIGINT

BIGINT is an SQL:99-compliant 64-bit integer data type, available only in Dialect 3. If a client uses Dialect 1,
the generator value sent by the server is reduced to a 32-bit integer (INTEGER). When Dialect 3 is used for
connection, the generator value is of type BIGINT.

Numbers of the BIGINT type are within the range from -263 to 263 - 1, or from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

Data Types and Subtypes

15

Hexadecimal Format for Integer Numbers

Starting from Firebird 2.5, constants of the three integer types can be specified in hexadecimal format by means
of 9 to 16 hexadecimal digits for BIGINT or 1 to 8 digits for INTEGER. Hex representation for writing to
SMALLINT is not explicitly supported but Firebird will transparently convert a hex number to SMALLINT if
necessary, provided it falls within the ranges of negative and positive SMALLINT.

The usage and numerical value ranges of hexadecimal notation are described in more detail in the discussion of
number constants in the chapter entitled Common Language Elements.

Examples Using Integer Types:

 CREATE TABLE WHOLELOTTARECORDS (
 ID BIGINT NOT NULL PRIMARY KEY,
 DESCRIPTION VARCHAR(32)
);

 INSERT INTO MYBIGINTS VALUES (
 -236453287458723,
 328832607832,
 22,
 -56786237632476,
 0X6F55A09D42, -- 478177959234
 0X7FFFFFFFFFFFFFFF, -- 9223372036854775807
 0XFFFFFFFFFFFFFFFF, -- -1
 0X80000000, -- -2147483648, an INTEGER
 0X080000000, -- 2147483648, a BIGINT
 0XFFFFFFFF, -- -1, an INTEGER
 0X0FFFFFFFF -- 4294967295, a BIGINT
);

The hexadecimal INTEGERs in the above example are automatically cast to BIGINT before being inserted
into the table. However, this happens after the numerical value is determined, so 0x80000000 (8 digits) and
0x080000000 (9 digits) will be saved as different BIGINT values.

Floating-Point Data Types

Floating point data types are stored in an IEEE 754 binary format that comprises sign, exponent and mantissa.
Precision is dynamic, corresponding to the physical storage format of the value, which is exactly 4 bytes for the
FLOAT type and 8 bytes for DOUBLE PRECISION.

Considering the peculiarities of storing floating-point numbers in a database, these data types are not recom-
mended for storing monetary data. For the same reasons, columns with floating-point data are not recommended
for use as keys or to have uniqueness constraints applied to them.

For testing data in columns with floating-point data types, expressions should check using a range, for instance,
BETWEEN, rather than searching for exact matches.

When using these data types in expressions, extreme care is advised regarding the rounding of evaluation results.

Data Types and Subtypes

16

FLOAT

This data type has an approximate precision of 7 digits after the decimal point. To ensure the safety of storage,
rely on 6 digits.

DOUBLE PRECISION

This data type is stored with an approximate precision of 15 digits.

Fixed-Point Data Types

Fixed-point data types ensure the predictability of multiplication and division operations, making them the
choice for storing monetary values. Firebird implements two fixed-point data types: NUMERIC and DECIMAL.
According to the standard, both types limit the stored number to the declared scale (the number of digits after
the decimal point).

Different treatments limit precision for each type: precision for NUMERIC columns is exactly “as declared”,
while DECIMAL columns accepts numbers whose precision is at least equal to what was declared.

For instance, NUMERIC(4, 2) defines a number consisting altogether of four digits, including two digits after
the decimal point; that is, it can have up to two digits before the point and no more than two digits after the
point. If the number 3.1415 is written to a column with this data type definition, the value of 3.14 will be saved
in the NUMERIC(4, 2) column.

The form of declaration for fixed-point data, for instance, NUMERIC(p, s), is common to both types. It is
important to realise that the s argument in this template is scale, rather than “a count of digits after the decimal
point”. Understanding the mechanism for storing and retrieving fixed-point data should help to visualise why:
for storage, the number is multiplied by 10s (10 to the power of s), converting it to an integer; when read, the
integer is converted back.

The method of storing fixed-point data in the DBMS depends on several factors: declared precision, database
dialect, declaration type.

Table 3.2. Method of Physical Storage for Real Numbers

Scale Data type Dialect 1 Dialect 3

1 - 4 NUMERIC SMALLINT SMALLINT

1 - 4 DECIMAL INTEGER INTEGER

5 - 9 NUMERIC OR DECIMAL INTEGER INTEGER

10 - 18 NUMERIC OR DECIMAL DOUBLE PRECISION BIGINT

Data Types and Subtypes

17

NUMERIC

Data Declaration Format:

 NUMERIC(p, s)

Storage Examples: Further to the explanation above, the DBMS will store NUMERIC data according the de-
clared precision (p) and scale (s). Some more examples are:

 NUMERIC(4) stored as SMALLINT (exact data)
 NUMERIC(4,2) SMALLINT (data * 102)
 NUMERIC(10,4) (Dialect 1) DOUBLE PRECISION
 (Dialect 3) BIGINT (data * 104)

Caution

Always keep in mind that the storage format depends on the precision. For instance, you define the column
type as NUMERIC(2,2) presuming that its range of values will be -0.99...0.99. However, the actual range of
values for the column will be -327.68..327.67, which is due to storing the NUMERIC(2,2) data type in the
SMALLINT format. In storage, the NUMERIC(4,2), NUMERIC(3,2) and NUMERIC(2,2) data types are the
same, in fact. It means that if you really want to store data in a column with the NUMERIC(2,2) data type and
limit the range to -0.99...0.99, you will have to create a constraint for it.

DECIMAL

Data Declaration Format:

 DECIMAL(p, s)

Storage Examples: The storage format in the database for DECIMAL is very similar to NUMERIC, with some
differences that are easier to observe with the help of some more examples:

 DECIMAL(4) stored as INTEGER (exact data)
 DECIMAL(4,2) INTEGER (data * 102)
 DECIMAL(10,4) (Dialect 1) DOUBLE PRECISION
 (Dialect 3) BIGINT (data * 104)

Data Types for Dates and Times
The DATE, TIME and TIMESTAMP data types are used to work with data containing dates and times. Dialect 3
supports all the three types, while Dialect 1 has only DATE. The DATE type in Dialect 3 is “date-only”, whereas

Data Types and Subtypes

18

the Dialect 1 DATE type stores both date and time-of-day, equivalent to TIMESTAMP in Dialect 3. Dialect 1
has no “date-only” type.

Note

Dialect 1 DATE data can be defined alternatively as TIMESTAMP and this is recommended for new definitions
in Dialect 1 databases.

Fractions of Seconds: If fractions of seconds are stored in date and time data types, Firebird stores them to ten-
thousandths of a second. If a lower granularity is preferred, the fraction can be specified explicitly as thousandths,
hundredths or tenths of a second in Dialect 3 databases of ODS 11 or higher.

Some useful knowledge about subseconds precision:

The time-part of a TIME or TIMESTAMP is a 4-byte WORD, with room for decimilliseconds precision and time
values are stored as the number of deci-milliseconds elapsed since midnight. The actual precision of values
stored in or read from time(stamp) functions and variables is:

• CURRENT_TIME defaults to seconds precision and can be specified up to milliseconds precision with
 CURRENT_TIME (0|1|2|3)

• CURRENT_TIMESTAMP milliseconds precision. Precision from seconds to milliseconds can be specified
with CURRENT_TIMESTAMP (0|1|2|3)

• Literal 'NOW': milliseconds precision

• Functions DATEADD() and DATEDIFF() support up to milliseconds precision. Deci-milliseconds can be
specified but they are rounded to the nearest integer before any operation is performed

• The EXTRACT() function returns up to deci-milliseconds precision with the SECOND and MILLISECOND
arguments

• For TIME and TIMESTAMP literals Firebird happily accepts up to deci-milliseconds precision, but truncates
(not rounds) the time part to the nearest lower or equal millisecond. Try, for example, SELECT TIME
'14:37:54.1249' FROM rdb$database

• the '+' and '-' operators work with deci-milliseconds precision, but only within the expression. As soon as
something is stored or even just SELECTed from RDB$DATABASE, it reverts to milliseconds precision

Deci-milliseconds precision is rare and is not currently stored in columns or variables. The best assumption to
make from all this is that, although Firebird stores TIME and the TIMESTAMP time-part values as the number
of deci-milliseconds (10-4 seconds) elapsed since midnight, the actual precision could vary from seconds to
milliseconds.

DATE

The DATE data type in Dialect 3 stores only date without time. The available range for storing data is from
January 01, 1 to December 31, 9999.

Dialect 1 has no “date-only” type.

Data Types and Subtypes

19

Tip

In Dialect 1, date literals without a time part, as well as 'TODAY', 'YESTERDAY' and 'TOMORROW' automati-
cally get a zero time part.

If, for some reason, it is important to you to store a Dialect 1 timestamp literal with an explicit zero time-part,
the engine will accept a literal like '25.12.2016 00:00:00.0000'. However, '25.12.2016' would
have precisely the same effect, with fewer keystrokes!

TIME

The TIME data type is available in Dialect 3 only. It stores the time of day within the range from 00:00:00.0000
to 23:59:59.9999.

If you need to get the time-part from DATE in Dialect 1, you can use the EXTRACT function.

Examples Using EXTRACT():

 EXTRACT (HOUR FROM DATE_FIELD)
 EXTRACT (MINUTE FROM DATE_FIELD)
 EXTRACT (SECOND FROM DATE_FIELD)

See also the EXTRACT() function in the chapter entitled Built-in Functions and Variables.

TIMESTAMP

The TIMESTAMP data type is available in Dialect 3 and Dialect 1. It comprises two 32-bit words—a date-part
and a time-part—to form a structure that stores both date and time-of-day. It is the same as the DATE type in
Dialect 1.

The EXTRACT function works equally well with TIMESTAMP as with the Dialect 1 DATE type.

Operations Using Date and Time Values

The method of storing date and time values makes it possible to involve them as operands in some arithmetic
operations. In storage, a date value or date-part of a timestamp is represented as the number of days elapsed
since “date zero”—November 17, 1898—whilst a time value or the time-part of a timestamp is represented as
the number of seconds (with fractions of seconds taken into account) since midnight.

An example is to subtract an earlier date, time or timestamp from a later one, resulting in an interval of time,
in days and fractions of days.

Table 3.3. Arithmetic Operations for Date and Time Data Types

Operand 1 Operation Operand 2 Result

DATE + TIME TIMESTAMP

Data Types and Subtypes

20

Operand 1 Operation Operand 2 Result

DATE + Numeric value n
DATE increased by n whole days. Bro-
ken values are rounded (not floored) to the
nearest integer

TIME + DATE TIMESTAMP

TIME + Numeric value n
TIME increased by n seconds. The frac-
tional part is taken into account

TIMESTAMP + Numeric value n

TIMESTAMP, where the date will ad-
vance by the number of days and part of a
day represented by number n—so “+ 2.75”
will push the date forward by 2 days and
18 hours

DATE - DATE
Number of days elapsed, within the range
DECIMAL(9, 0)

DATE - Numeric value n
DATE reduced by n whole days. Broken
values are rounded (not floored) to the
nearest integer

TIME - TIME
Number of seconds elapsed, within the
range DECIMAL(9, 4)

TIME - Numeric value n
TIME reduced by n seconds. The fraction-
al part is taken into account

TIMESTAMP - TIMESTAMP
Number of days and part-day, within the
range DECIMAL(18, 9)

TIMESTAMP - Numeric value n

TIMESTAMP where the date will retreat
by the number of days and part of a day
represented by number n—so “- 2.25” will
reduce the date by 2 days and 6 hours

Notes

The DATE type is considered as TIMESTAMP in Dialect 1.

See also: DATEADD, DATEADD

Character Data Types
For working with character data, Firebird has the fixed-length CHAR and the variable-length VARCHAR data
types. The maximum size of text data stored in these data types is 32,767 bytes for CHAR and 32,765 bytes for
VARCHAR. The maximum number of characters that will fit within these limits depends on the CHARACTER
SET being used for the data under consideration. The collation sequence does not affect this maximum, although
it may affect the maximum size of any index that involves the column.

Data Types and Subtypes

21

If no character set is explicitly specified when defining a character object, the default character set specified
when the database was created will be used. If the database does not have a default character set defined, the
field gets the character set NONE.

Unicode

Most current development tools support Unicode, implemented in Firebird with the character sets UTF8 and
UNICODE_FSS. UTF8 comes with collations for many languages. UNICODE_FSS is more limited and is used
mainly by Firebird internally for storing metadata. Keep in mind that one UTF8 character occupies up to 4 bytes,
thus limiting the size of CHAR fields to 8,191 characters (32,767/4).

Note

The actual “bytes per character” value depends on the range the character belongs to. Non-accented Latin letters
occupy 1 byte, Cyrillic letters from the WIN1251 encoding occupy 2 bytes, characters from other encodings
may occupy up to 4 bytes.

The UTF8 character set implemented in Firebird supports the latest version of the Unicode standard, thus rec-
ommending its use for international databases.

Client Character Set

While working with strings, it is essential to keep the character set of the client connection in mind. If there is
a mismatch between the character sets of the stored data and that of the client connection, the output results for
string columns are automatically re-encoded, both when data are sent from the client to the server and when they
are sent back from the server to the client. For example, if the database was created in the WIN1251 encoding
but KOI8R or UTF8 is specified in the client's connection parameters, the mismatch will be transparent.

Special Character Sets

Character set NONE: The character set NONE is a special character set in Firebird. It can be characterized
such that each byte is a part of a string, but the string is stored in the system without any clues about what
constitutes any character: character encoding, collation, case, etc. are simply unknown. It is the responsibility
of the client application to deal with the data and provide the means to interpret the string of bytes in some way
that is meaningful to the application and the human user.

Character set OCTETS: Data in OCTETS encoding are treated as bytes that may not actually be interpreted as
characters. OCTETS provides a way to store binary data, which could be the results of some Firebird functions.
The database engine has no concept of what it is meant to do with a string of bits in OCTETS, other than just
store it and retrieve it. Again, the client side is responsible for validating the data, presenting them in formats
that are meaningful to the application and its users and handling any exceptions arising from decoding and
encoding them.

Collation Sequence

Each character set has a default collation sequence (COLLATE) that specifies the collation order. Usually, it
provides nothing more than ordering based on the numeric code of the characters and a basic mapping of upper-

Data Types and Subtypes

22

and lower-case characters. If some behaviour is needed for strings that is not provided by the default collation
sequence and a suitable alternative collation is supported for that character set, a COLLATE collation clause
can be specified in the column definition.

A COLLATE collation clause can be applied in other contexts besides the column definition. For greater-
than/less-than comparison operations, it can be added in the WHERE clause of a SELECT statement. If output
needs to be sorted in a special alphabetic sequence, or case-insensitively, and the appropriate collation exists,
then a COLLATE clause can be included with the ORDER BY clause when rows are being sorted on a character
field and with the GROUP BY clause in case of grouping operations.

Case-Insensitive Searching

For a case-insensitive search, the UPPER function could be used to convert both the search argument and the
searched strings to upper-case before attempting a match:

 …
 where upper(name) = upper(:flt_name)

For strings in a character set that has a case-insensitive collation available, you can simply apply the collation,
to compare the search argument and the searched strings directly. For example, using the WIN1251 character set,
the collation PXW_CYRL is case-insensitive for this purpose:

 …
 WHERE FIRST_NAME COLLATE PXW_CYRL >= :FLT_NAME
 …
 ORDER BY NAME COLLATE PXW_CYRL

See also: CONTAINING

UTF8 Collation Sequences

The following table shows the possible collation sequences for the UTF8 character set.

Table 3.4. Collation Sequences for Character Set UTF8

Collation Characteristics

UCS_BASIC
Collation works according to the position of the character in the table (binary).
Added in Firebird 2.0

UNICODE
Collation works according to the UCA algorithm (Unicode Collation Algorithm)
(alphabetical). Added in Firebird 2.0

UTF8
The default, binary collation, identical to UCS_BASIC, which was added for SQL
compatibility

UNICODE_CI
Case-insensitive collation, works without taking character case into account.
Added in Firebird 2.1

UNICODE_CI_AI
Case-insensitive, accent-insensitive collation, works alphabetically without taking
character case or accents into account. Added in Firebird 2.5

Data Types and Subtypes

23

Example: An example of collation for the UTF8 character set without taking into account the case or accentu-
ation of characters (similar to COLLATE PXW_CYRL).

 ...
 ORDER BY NAME COLLATE UNICODE_CI_AI

Character Indexes

In Firebird earlier than version 2.0, a problem can occur with building an index for character columns that use
a non-standard collation sequence: the length of an indexed field is limited to 252 bytes with no COLLATE
specified or 84 bytes if COLLATE is specified. Multi-byte character sets and compound indexes limit the size
even further.

Starting from Firebird 2.0, the maximum length for an index equals one quarter of the page size, i.e. from 1,024
to 4,096 bytes. The maximum length of an indexed string is 9 bytes less than that quarter-page limit.

Calculating Maximum Length of an Indexed String Field: The following formula calculates the maximum
length of an indexed string (in characters):

 max_char_length = FLOOR((page_size / 4 - 9) / N)

where N is the number of bytes per character in the character set.

The table below shows the maximum length of an indexed string (in characters), according to page size and
character set, calculated using this formula.

Table 3.5. Maximum Index Lengths by Page Size and Character Size

Bytes per character
Page Size

1 2 3 4 6

4,096 1,015 507 338 253 169

8,192 2,039 1,019 679 509 339

16,384 4,087 2,043 1,362 1,021 682

Note

With case-insensitive collations (“_CI”), one character in the index will occupy not 4, but 6 (six) bytes, so the
maximum key length for a page of, for example, 4,096 bytes, will be 169 characters.

See also: CREATE DATABASE, Collation sequence, SELECT, WHERE, GROUP BY, ORDER BY

Data Types and Subtypes

24

Character Types in Detail

CHAR

CHAR is a fixed-length data type. If the entered number of characters is less than the declared length, trailing
spaces will be added to the field. Generally, the pad character does not have to be a space: it depends on the
character set, For example, the pad character for the OCTETS character set is zero.

The full name of this data type is CHARACTER, but there is no requirement to use full names and people rarely
do so.

Fixed-length character data can be used to store codes whose length is standard and has a definite “width” in
directories. An example of such a code is an EAN13 barcode—13 characters, all filled.

Declaration Syntax:

 CHAR [(length)] [CHARACTER SET <set>] [COLLATE <name>]

Note

If no length is specified, it is taken to be 1.

A valid length is from 1 to the maximum number of characters that can be accommodated within 32,767
bytes.

VARCHAR

VARCHAR is the basic string type for storing texts of variable length, up to a maximum of 32,765 bytes. The
stored structure is equal to the actual size of the data plus 2 bytes where the length of the data is recorded.

All characters that are sent from the client application to the database are considered meaningful, including the
leading and trailing spaces. However, trailing spaces are not stored: they will be restored upon retrieval, up to
the recorded length of the string.

The full name of this type is CHARACTER VARYING. Another variant of the name is written as CHAR VARYING.

Syntax:

 VARCHAR (length) [CHARACTER SET <set>] [COLLATE <name>]

NCHAR

NCHAR is a fixed-length character data type with the ISO8859_1 character set predefined. In all other respects
it is the same as CHAR.

Data Types and Subtypes

25

Syntax:

 NCHAR (length)

The synonymous name is NATIONAL CHAR. A similar data type is available for the variable-length string type:
NATIONAL CHARACTER VARYING.

Binary Data Types
BLOBs (Binary Large Objects) are complex structures used to store text and binary data of an undefined length,
often very large.

Syntax:

 BLOB [SUB_TYPE <subtype>]
 [SEGMENT SIZE <segment size>]
 [CHARACTER SET <character set>]

Shortened syntax:

 BLOB (<segment size>)
 BLOB (<segment size>, <subtype>)
 BLOB (, <subtype>)

Segment Size: Specifying the BLOB segment is throwback to times past, when applications for working with
BLOB data were written in C (Embedded SQL) with the help of the gpre pre-compiler. Nowadays, it is effec-
tively irrelevant. The segment size for BLOB data is determined by the client side and is usually larger than
the data page size, in any case.

BLOB Subtypes

The optional SUB_TYPE parameter specifies the nature of data written to the column. Firebird provides two pre-
defined subtypes for storing user data:

Subtype 0: BINARY: If a subtype is not specified, the specification is assumed to be for untyped data and the
default SUB_TYPE 0 is applied. The alias for subtype zero is BINARY. This is the subtype to specify when the
data are any form of binary file or stream: images, audio, word-processor files, PDFs and so on..

Subtype 1: TEXT: Subtype 1 has an alias, TEXT, which can be used in declarations and definitions. For instance,
 BLOB SUB_TYPE TEXT. It is a specialized subtype used to store plain text data that is too large to fit into a
string type. A CHARACTER SET may be specified, if the field is to store text with a different encoding to that
specified for the database. From Firebird 2.0, a COLLATE clause is also supported.

Custom Subtypes: It is also possible to add custom data subtypes, for which the range of enumeration from
-1 to -32,768 is reserved. Custom subtypes enumerated with positive numbers are not allowed, as the Firebird
engine uses the numbers from 2-upward for some internal subtypes in metadata.

Data Types and Subtypes

26

BLOB Specifics
Size: The maximum size of a BLOB field is limited to 4GB, regardless of whether the server is 32-bit or 64-bit.
(The internal structures related to BLOBs maintain their own 4-byte counters.) For a page size of 4 KB (4096
bytes) the maximum size is lower—slightly less than 2GB.

Operations and Expressions: Text BLOBs of any length and any character set—including multi-byte—can be
operands for practically any statement or internal functions. The following operators are supported completely:

= (assignment)
=, <>, <, <=, >, >= (comparison)
|| (concatenation)
BETWEEN, IS [NOT] DISTINCT FROM,
IN, ANY|SOME,
ALL
Partial support:

• An error occurs with these if the search argument is larger than or equal to 32 KB:

STARTING [WITH], LIKE,
CONTAINING

• Aggregation clauses work not on the contents of the field itself, but on the BLOB ID. Aside from that, there
are some quirks:

SELECT DISTINCT returns several NULL values by mistake if they are
present

ORDER BY —
GROUP BY concatenates the same strings if they are adjacent to

each other, but does not do it if they are remote from
each other

BLOB Storage:

• By default, a regular record is created for each BLOB and it is stored on a data page that is allocated for it.
If the entire BLOB fits onto this page, it is called a level 0 BLOB. The number of this special record is stored
in the table record and occupies 8 bytes.

• If a BLOB does not fit onto one data page, its contents are put onto separate pages allocated exclusively to it
(blob pages), while the numbers of these pages are stored into the BLOB record. This is a level 1 BLOB.

• If the array of page numbers containing the BLOB data does not fit onto a data page, the array is put on
separate blob pages, while the numbers of these pages are put into the BLOB record. This is a level 2 BLOB.

• Levels higher than 2 are not supported.

See also: FILTER, DECLARE FILTER

ARRAY Type
The support of arrays in the Firebird DBMS is a departure from the traditional relational model. Supporting
arrays in the DBMS could make it easier to solve some data-processing tasks involving large sets of similar data.

Data Types and Subtypes

27

Arrays in Firebird are stored in BLOB of a specialized type. Arrays can be one-dimensional and multidimensional
and of any data type except BLOB and ARRAY.

Example:

 CREATE TABLE SAMPLE_ARR (
 ID INTEGER NOT NULL PRIMARY KEY,
 ARR_INT INTEGER [4]);

This example will create a table with a field of the array type consisting of four integers. The subscripts of this
array are from 1 to 4.

Specifying Explicit Boundaries for Dimensions

By default, dimensions are 1-based—subscripts are numbered from 1. To specify explicit upper and lower
bounds of the subscript values, use the following syntax:

 [<lower>:<upper>]

Adding More Dimensions

A new dimension is added after a comma in the syntax. In this example we create a table with a two-dimensional
array, with the lower bound of subscripts in both dimensions starting from zero:

 CREATE TABLE SAMPLE_ARR2 (
 ID INTEGER NOT NULL PRIMARY KEY,
 ARR_INT INTEGER [0:3, 0:3]);

The DBMS does not offer much in the way of language or tools for working with the contents of arrays.
The database employee.fdb, found in the ../examples/empbuild directory of any Firebird distribution
package, contains a sample stored procedure showing some simple work with arrays:

PSQL Source for SHOW_LANGS, a procedure involving an array:

 CREATE OR ALTER PROCEDURE SHOW_LANGS (
 CODE VARCHAR(5),
 GRADE SMALLINT,
 CTY VARCHAR(15))
 RETURNS (LANGUAGES VARCHAR(15))
 AS
 DECLARE VARIABLE I INTEGER;
 BEGIN
 I = 1;
 WHILE (I <= 5) DO
 BEGIN
 SELECT LANGUAGE_REQ[:I]
 FROM JOB
 WHERE (JOB_CODE = :CODE)

Data Types and Subtypes

28

 AND (JOB_GRADE = :GRADE)
 AND (JOB_COUNTRY = :CTY)
 AND (LANGUAGE_REQ IS NOT NULL))
 INTO :LANGUAGES;

 IF (LANGUAGES = '') THEN
 /* PRINTS 'NULL' INSTEAD OF BLANKS */
 LANGUAGES = 'NULL';
 I = I +1;
 SUSPEND;
 END
 END

If the features described are enough for your tasks, you might consider using arrays in your projects. Currently,
no improvements are planned to enhance support for arrays in Firebird.

Special Data Types
“Special” data types ...

SQL_NULL Data Type

The SQL_NULL type holds no data, but only a state: NULL or NOT NULL. It is not available as a data type for
declaring table fields, PSQL variables or parameter descriptions. It was added to support the use of untyped
parameters in expressions involving the IS NULL predicate.

An evaluation problem occurs when optional filters are used to write queries of the following type:

 WHERE col1 = :param1 OR :param1 IS NULL

After processing, at the API level, the query will look like this:

 WHERE col1 = ? OR ? IS NULL

This is a case where the developer writes an SQL query and considers :param1 as though it were a variable that
he can refer to twice. However, at the API level, the query contains two separate and independent parameters.
The server cannot determine the type of the second parameter since it comes in association with IS NULL.

The SQL_NULL data type solves this problem. Whenever the engine encounters an '? IS NULL' predicate
in a query, it assigns the SQL_NULL type to the parameter, which will indicate that parameter is only about
“nullness” and the data type or the value need not be addressed.

The following example demonstrates its use in practice. It assumes two named parameters—say, :size and
:colour—which might, for example, get values from on-screen text fields or drop-down lists. Each named
parameter corresponds with two positional parameters in the query.

 SELECT

Data Types and Subtypes

29

 SH.SIZE, SH.COLOUR, SH.PRICE
 FROM SHIRTS SH
 WHERE (SH.SIZE = ? OR ? IS NULL)
 AND (SH.COLOUR = ? OR ? IS NULL)

Explaining what happens here assumes the reader is familiar with the Firebird API and the passing of parameters
in XSQLVAR structures—what happens under the surface will not be of interest to those who are not writing
drivers or applications that communicate using the “naked” API.

The application passes the parameterized query to the server in the usual positional ?-form. Pairs of “identical”
parameters cannot be merged into one so, for two optional filters, for example, four positional parameters are
needed: one for each ? in our example.

After the call to isc_dsql_describe_bind(), the SQLTYPE of the second and fourth parameters will be
set to SQL_NULL. Firebird has no knowledge of their special relation with the first and third parameters: that
responsibility lies entirely on the application side.

Once the values for size and colour have been set (or left unset) by the user and the query is about to be executed,
each pair of XSQLVARs must be filled as follows:

User has supplied a value
First parameter (value compare): set *sqldata to the supplied value and *sqlind to 0 (for NOT NULL)

Second parameter (NULL test): set sqldata to null (null pointer, not SQL NULL) and *sqlind to 0 (for NOT
NULL)

User has left the field blank
Both parameters: set sqldata to null (null pointer, not SQL NULL) and *sqlind to -1 (indicating NULL)

In other words: The value compare parameter is always set as usual. The SQL_NULL parameter is set the same,
except that sqldata remains null at all times.

Conversion of Data Types
When composing an expression or specifying an operation, the aim should be to use compatible data types for
the operands. When a need arises to use a mixture of data types, it should prompt you to look for a way to convert
incompatible operands before subjecting them to the operation. The ability to convert data may well be an issue
if you are working with Dialect 1 data.

Explicit Data Type Conversion

The CAST function enables explicit conversion between many pairs of data types.

Syntax:

 CAST ({ <value> | NULL } AS <data_type>)

 <data_type> ::= sql_datatype |
 [TYPE OF] domain |

Data Types and Subtypes

30

 TYPE OF COLUMN relname.colname

Casting to a Domain

When you cast to a domain, any constraints declared for it are taken into account, i.e., NOT NULL or CHECK
constraints. If the <value> does not pass the check, the cast will fail.

If TYPE OF is additionally specified—casting to its base type—any domain constraints are ignored during the
cast. If TYPE OF is used with a character type (CHAR/VARCHAR), the character set and collation are retained.

Casting to TYPE OF COLUMN

When operands are cast to the type of a column, the specified column may be from a table or a view.

Only the type of the column itself is used. For character types, the cast includes the character set, but not the
collation. The constraints and default values of the source column are not applied.

Example:

 CREATE TABLE TTT (
 S VARCHAR (40)
 CHARACTER SET UTF8 COLLATE UNICODE_CI_AI);
 COMMIT;

 SELECT
 CAST ('I have many friends' AS TYPE OF COLUMN TTT.S)
 FROM RDB$DATABASE;

Conversions Possible for the CAST Function

Table 3.6. Conversions with CAST

From Data Type To Data Type

Numeric types Numeric types, [VAR]CHAR, BLOB

[VAR]CHAR [VAR]CHAR, BLOB, Numeric types, DATE, TIME, TIMESTAMP

BLOB [VAR]CHAR, BLOB, Numeric types, DATE, TIME, TIMESTAMP

DATE, TIME [VAR]CHAR, BLOB, TIMESTAMP

TIMESTAMP [VAR]CHAR, BLOB, DATE, TIME

Important

Keep in mind that partial information loss is possible. For instance, when you cast the TIMESTAMP data type
to the DATE data type, the time-part is lost.

Data Types and Subtypes

31

Literal Formats

To cast string data types to the DATE, TIME or TIMESTAMP data types, you need the string argument to be
one of the predefined date and time literals (see Table 3.7) or a representation of the date in one of the allowed
date-time literal formats:

 <datetime_literal> ::= {
 [YYYY<p>]MM<p>DD[<p>HH[<p>mm[<p>SS[<p>NNNN]]]] |
 MM<p>DD[<p>YYYY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]] |
 DD<p>MM[<p>YYYY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]] |
 MM<p>DD[<p>YY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]] |
 DD<p>MM[<p>YY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]] |
 NOW |
 TODAY |
 TOMORROW |
 YESTERDAY
 }

 <date_literal> ::= {
 [YYYY<p>]MM<p>DD |
 MM<p>DD[<p>YYYY] |
 DD<p>MM[<p>YYYY] |
 MM<p>DD[<p>YY] |
 DD<p>MM[<p>YY] |
 TODAY |
 TOMORROW |
 YESTERDAY
 }

 <time_literal> := HH[<p>mm[<p>SS[<p>NNNN]]]

 <p> ::= whitespace | . | : | , | - | /

Table 3.7. Date and Time Literal Format Arguments

Argument Description

datetime_literal Date and time literal

time_literal Time literal

date_literal Date literal

YYYY Four-digit year

YY Two-digit year

MM
Month. It may contain 1 or 2 digits (1-12 or 01-12). You can al-
so specify the three-letter shorthand name or the full name of a
month in English. Case-insensitive

DD Day. It may contain 1 or 2 digits (1-31 or 01-31)

Data Types and Subtypes

32

Argument Description

HH Hour. It may contain 1 or 2 digits (0-23 or 00-23)

mm Minutes. It may contain 1 or 2 digits (0-59 or 00-59)

SS Seconds. It may contain 1 or 2 digits (0-59 or 00-59)

NNNN
Ten-thousandths of a second. It may contain from 1 to 4 digits
(0-9999)

p
A separator, any of permitted characters. Leading and trailing
spaces are ignored

Table 3.8. Literals with Predefined Values of Date and Time

Data Type
Literal Description

Dialect 1 Dialect 3

'NOW' Current date and time DATE TIMESTAMP

'TODAY' Current date DATE with zero time DATE

'TOMORROW' Current date + 1 (day) DATE with zero time DATE

'YESTERDAY' Current date - 1 (day) DATE with zero time DATE

Important

Use of the complete specification of the year in the four-digit form—YYYY—is strongly recommended, to
avoid confusion in date calculations and aggregations.

Sample Date Literal Interpretations:

 select
 cast('04.12.2014' as date) as d1, -- DD.MM.YYYY
 cast('04 12 2014' as date) as d2, -- MM DD YYYY
 cast('4-12-2014' as date) as d3, -- MM-DD-YYYY
 cast('04/12/2014' as date) as d4, -- MM/DD/YYYY
 cast('04,12,2014' as date) as d5, -- MM,DD,YYYY
 cast('04.12.14' as date) as d6, -- DD.MM.YY
 -- DD.MM with current year
 cast('04.12' as date) as d7,
 -- MM/DD with current year
 cast('04/12' as date) as d8,
 cast('2014/12/04' as date) as d9, -- YYYY/MM/DD
 cast('2014 12 04' as date) as d10, -- YYYY MM DD
 cast('2014.12.04' as date) as d11, -- YYYY.MM.DD
 cast('2014-12-04' as date) as d12, -- YYYY-MM-DD
 cast('4 Jan 2014' as date) as d13, -- DD MM YYYY
 cast('2014 Jan 4' as date) as dt14, -- YYYY MM DD
 cast('Jan 4, 2014' as date) as dt15, -- MM DD, YYYY
 cast('11:37' as time) as t1, -- HH:mm
 cast('11:37:12' as time) as t2, -- HH:mm:ss
 cast('11:31:12.1234' as time) as t3, -- HH:mm:ss.nnnn

Data Types and Subtypes

33

 cast('11.37.12' as time) as t4, -- HH.mm.ss
 -- DD.MM.YYYY HH:mm
 cast('04.12.2014 11:37' as timestamp) as dt1,
 -- MM/DD/YYYY HH:mm:ss
 cast('04/12/2014 11:37:12' as timestamp) as dt2,
 -- DD.MM.YYYY HH:mm:ss.nnnn
 cast('04.12.2014 11:31:12.1234' as timestamp) as dt3,
 -- MM/DD/YYYY HH.mm.ss
 cast('04/12/2014 11.37.12' as timestamp) as dt4
 from rdb$database

Shorthand Casts for Date and Time Data Types

Firebird allows the use of a shorthand “C-style” type syntax for casts from string to the types DATE, TIME and
TIMESTAMP.

Syntax:

 data_type 'date_literal_string'

Example:

-- 1
 UPDATE PEOPLE
 SET AGECAT = 'SENIOR'
 WHERE BIRTHDATE < DATE '1-Jan-1943';
-- 2
 INSERT INTO APPOINTMENTS
 (EMPLOYEE_ID, CLIENT_ID, APP_DATE, APP_TIME)
 VALUES (973, 8804, DATE 'today' + 2, TIME '16:00');
-- 3
 NEW.LASTMOD = TIMESTAMP 'now';

Note

These shorthand expressions are evaluated directly during parsing, as though the statement were already pre-
pared for execution. Thus, even if the query is run several times, the value of, for instance, timestamp
'now' remains the same no matter how much time passes.

If you need the time to be evaluated at each execution, use the full CAST syntax. An example of using such
an expression in a trigger:

 NEW.CHANGE_DATE = CAST('now' AS TIMESTAMP);

Implicit Data Type Conversion
Implicit data conversion is not possible in Dialect 3—the CAST function is almost always required to avoid
data type clashes.

Data Types and Subtypes

34

In Dialect 1, in many expressions, one type is implicitly cast to another without the need to use the CAST
function. For instance, the following statement in Dialect 1 is valid:

UPDATE ATABLE
 SET ADATE = '25.12.2016' + 1

and the date literal will be cast to the date type implicitly.

In Dialect 3, this statement will throw error 35544569, "Dynamic SQL Error: expression evaluation not sup-
ported, Strings cannot be added or subtracted in dialect 3"—a cast will be needed:

UPDATE ATABLE
 SET ADATE = CAST ('25.12.2016' AS DATE) + 1

or, with the short cast:

UPDATE ATABLE
 SET ADATE = DATE '25.12.2016' + 1

In Dialect 1, mixing integer data and numeric strings is usually possible because the parser will try to cast the
string implicitly. For example,

 2 + '1'

will be executed correctly.

In Dialect 3, an expression like this will raise an error, so you will need to write it as a CAST expression:

 2 + CAST('1' AS SMALLINT)

The exception to the rule is during string concatenation.

Implicit Conversion During String Concatenation

When multiple data elements are being concatenated, all non-string data will undergo implicit conversion to
string, if possible.

Example:

 SELECT 30||' days hath September, April, June and November' CONCAT$
 FROM RDB$DATABASE

 CONCAT$
 --
 30 days hath September, April, June and November

Data Types and Subtypes

35

Custom Data Types—Domains
In Firebird, the concept of a “user-defined data type” is implemented in the form of the domain. Creating a
domain does not truly create a new data type, of course. A domain provides the means to encapsulate an existing
data type with a set of attributes and make this “capsule” available for multiple usage across the whole database.
If several tables need columns defined with identical or nearly identical attributes, a domain makes sense.

Domain usage is not limited to column definitions for tables and views. Domains can be used to declare input
and output parameters and variables in PSQL code.

Domain Attributes

A domain definition contains required and optional attributes. The data type is a required attribute. Optional
attributes include:

• a default value

• to allow or forbid NULL

• CHECK constraints

• character set (for character data types and text BLOB fields)

• collation (for character data types)

Sample domain definition:

 CREATE DOMAIN BOOL3 AS SMALLINT
 CHECK (VALUE IS NULL OR VALUE IN (0, 1));

See also: Explicit Data Type Conversion for the description of differences in the data conversion mechanism
when domains are specified for the TYPE OF and TYPE OF COLUMN modifiers.

Domain Override

While defining a column using a domain, it is possible to override some of the attributes inherited from the
domain. Table 3.9 summarises the rules for domain override.

Table 3.9. Rules for Overriding Domain Attributes in Column Definition

Attribute Override? Comments

Data type No

Default value Yes

Data Types and Subtypes

36

Attribute Override? Comments

Text character set Yes
It can be also used to restore the default database val-
ues for the column

Text collation sequence Yes

CHECK constraints Yes
To add new conditions to the check, you can use the
corresponding CHECK clauses in the CREATE and
ALTER statements at the table level.

NOT NULL No
Often it is better to leave domain nullable in its def-
inition and decide whether to make it NOT NULL
when using the domain to define columns.

Creating and Administering Domains

A domain is created with the DDL statement CREATE DOMAIN.

Short Syntax:

 CREATE DOMAIN <name> [AS] <type>
 [DEFAULT {<const> | <literal> | NULL | <context_var>}]
 [NOT NULL] [CHECK (<condition>)]
 [COLLATE collation];

See also: CREATE DOMAIN in the Data Definition Language (DDL) section.

Altering a Domain

To change the attributes of a domain, use the DDL statement ALTER DOMAIN. With this statement you can

• rename the domain

• change the data type

• delete the current default value

• set a new default value

• delete an existing CHECK constraint

• add a new CHECK constraint

Short Syntax:

 ALTER DOMAIN name
 [{TO new_name}]

Data Types and Subtypes

37

 [{SET DEFAULT {literal | NULL | <context_var>} |
 DROP DEFAULT}]
 [{ADD [CONSTRAINT] CHECK (<dom_condition>) |
 DROP CONSTRAINT}]
 [{TYPE <datatype>}];

When planning to alter a domain, its dependencies must be taken into account: whether there are table columns,
any variables, input and/or output parameters with the type of this domain declared in the PSQL code. If you
change domains in haste, without carefully checking them, your code may stop working!

Important

When you convert data types in a domain, you must not perform any conversions that may result in data loss.
Also, for example, if you convert VARCHAR to INTEGER, check carefully that all data using this domain can
be successfully converted.

See also: ALTER DOMAIN in the Data Definition Language (DDL) section.

Deleting (Dropping) a Domain

The DDL statement DROP DOMAIN deletes a domain from the database, provided it is not in use by any other
database objects.

Syntax:

 DROP DOMAIN name

Important

Any user connected to the database can delete a domain.

Example:

 DROP DOMAIN Test_Domain

See also: DROP DOMAIN in the Data Definition Language (DDL) section.

38

Chapter 4

Common Language Elements
This chapter covers the elements that are common throughout the implementation of the SQL language—the
expressions that are used to extract and operate on assertions about data and the predicates that test the truth
of those assertions.

Expressions
SQL expressions provide formal methods for evaluating, transforming and comparing values. SQL expressions
may include table columns, variables, constants, literals, various statements and predicates and also other ex-
pressions. The complete list of possible tokens in expressions follows.

Table 4.1. Description of Expression Elements

Element Description

Column name
Identifier of a column from a specified table used in evaluations or as a
search condition. A column of the array type cannot be an element in an ex-
pression except when used with the IS [NOT] NULL predicate.

Array element
An expression may contain a reference to an array member i.e.,
<array_name>[s], where s is the subscript of the member in the array
<array_name>

Arithmetic operators The +, -, *, / characters used to calculate values

Concatenation operator The || (“double-pipe”) operator used to concatenate strings

Logical operators
The reserved words NOT, AND and OR, used to combine simple search
conditions in order to create complex assertions

Comparison operators The symbols =, <>, !=, ~=, ^=, <, <=, >, >=, !<, ~<, ^<, !>, ~> and ^>

Comparison predicates
LIKE, STARTING WITH, CONTAINING, SIMILAR TO, BETWEEN, IS [NOT]
NULL and IS [NOT] DISTINCT FROM

Existential predicates

Predicates used to check the existence of values in a set. The IN predicate
can be used both with sets of comma-separated constants and with sub-
queries that return a single column. The EXISTS, SINGULAR, ALL, ANY and
SOME predicates can be used only with subqueries

Constant A number; or a string literal enclosed in apostrophes

Date/time literal

An expression, similar to a string literal enclosed in apostrophes, that can
be interpreted as a date, time or timestamp value. Date literals can be pre-
defined literals ('TODAY', 'NOW', etc.) or strings of characters and numer-
als, such as '25.12.2016 15:30:35', that can be resolved as date and/or time
strings

Common Language Elements

39

Element Description

Context variable An internally-defined context variable

Local variable
Declared local variable, input or output parameter of a PSQL module (stored
procedure, trigger, unnamed PSQL block in DSQL)

Positional parameter
A member of in an ordered group of one or more unnamed parameters
passed to a stored procedure or prepared query

Subquery
A SELECT statement enclosed in parentheses that returns a single (scalar)
value or, when used in existential predicates, a set of values

Function identifier The identifier of an internal or external function in a function expression

Type cast

An expression explicitly converting data of one data type to another using
the CAST function (CAST (<value> AS <datatype>)). For date/
time literals only, the shorthand syntax <datatype> <value> is also supported
(DATE '25.12.2016')

Conditional expression Expressions using CASE and related internal functions

Parentheses

Bracket pairs (…) used to group expressions. Operations inside the parenthe-
ses are performed before operations outside them. When nested parentheses
are used, the most deeply nested expressions are evaluated first and then the
evaluations move outward through the levels of nesting.

COLLATE clause
Clause applied to CHAR and VARCHAR types to specify the character-set-
specific collation sequence to use in string comparisons

NEXT VALUE FOR se-
quence

Expression for obtaining the next value of a specified generator (sequence).
The internal GEN_ID() function does the same

Constants
A constant is a value that is supplied directly in an SQL statement, not derived from an expression, a parameter,
a column reference nor a variable. It can be a string or a number.

String Constants (Literals)

A string constant is a series of characters enclosed between a pair of apostrophes (“single quotes”). The maximum
length of a string is 32,767 bytes; the maximum character count will be determined by the number of bytes used
to encode each character.

Note

• Double quotes are NOT VALID for quoting strings. SQL reserves a different purpose for them.

• If a literal apostrophe is required within a string constant, it is “escaped” by prefixing it with another apos-
trophe. For example, 'Mother O''Reilly's home-made hooch'.

• Care should be taken with the string length if the value is to be written to a VARCHAR column. The maximum
length for a VARCHAR is 32,765 bytes.

Common Language Elements

40

The character set of a string constant is assumed to be the same as the character set of its destined storage.

String Constants in Hexadecimal Notation

From Firebird 2.5 forward, string literals can be entered in hexadecimal notation, so-called “binary strings”.
Each pair of hex digits defines one byte in the string. Strings entered this way will have character set OCTETS
by default but the introducer syntax can be used to force a string to be interpreted as another character set.

Syntax:

{x|X}'<hexstring>'

 <hexstring>> ::= an even number of <hexdigit>
 <hexdigit> ::= one of 0..9, A..F, a..f

Examples:

 select x'4E657276656E' from rdb$database
 -- returns 4E657276656E, a 6-byte 'binary' string

 select _ascii x'4E657276656E' from rdb$database
 -- returns 'Nerven' (same string, now interpreted as ASCII text)

 select _iso8859_1 x'53E46765' from rdb$database
 -- returns 'Säge' (4 chars, 4 bytes)

 select _utf8 x'53C3A46765' from rdb$database
 -- returns 'Säge' (4 chars, 5 bytes)

Notes

The client interface determines how binary strings are displayed to the user. The isql utility, for example,
uses upper case letters A-F, while FlameRobin uses lower case letters. Other client programs may use other
conventions, such as displaying spaces between the byte pairs: '4E 65 72 76 65 6E'.

The hexadecimal notation allows any byte value (including 00) to be inserted at any position in the string.
However, if you want to coerce it to anything other than OCTETS, it is your responsibility to supply the bytes
in a sequence that is valid for the target character set.

Introducer Syntax for String Literals

If necessary, a string literal may be preceded by a character set name, itself prefixed with an underscore “_”.
This is known as introducer syntax. Its purpose is to inform the engine about how to interpret and store the
incoming string.

Example

INSERT INTO People
VALUES (_ISO8859_1 'Hans-Jörg Schäfer')

Common Language Elements

41

Number Constants

A number constant is any valid number in a supported notation:

• In SQL, for numbers in the standard decimal notation, the decimal point is always represented by period (full-
stop, dot) character and thousands are not separated. Inclusion of commas, blanks, etc. will cause errors.

• Exponential notation is supported. For example, 0.0000234 can be expressed as 2.34e-5.

• Hexadecimal notation is supported by Firebird 2.5 and higher versions—see below.

Hexadecimal Notation for Numerals

From Firebird 2.5 forward, integer values can be entered in hexadecimal notation. Numbers with 1-8 hex digits
will be interpreted as type INTEGER; numbers with 9-16 hex digits as type BIGINT.

Syntax:

0{x|X}<hexdigits>

 <hexdigits> ::= 1-16 of <hexdigit>
 <hexdigit> ::= one of 0..9, A..F, a..f

Examples:

select 0x6FAA0D3 from rdb$database -- returns 117088467
select 0x4F9 from rdb$database -- returns 1273
select 0x6E44F9A8 from rdb$database -- returns 1850014120
select 0x9E44F9A8 from rdb$database -- returns -1639646808 (an INTEGER)
select 0x09E44F9A8 from rdb$database -- returns 2655320488 (a BIGINT)
select 0x28ED678A4C987 from rdb$database -- returns 720001751632263
select 0xFFFFFFFFFFFFFFFF from rdb$database -- returns -1

Hexadecimal Value Ranges

• Hex numbers in the range 0 .. 7FFF FFFF are positive INTEGERs with values between 0 .. 2147483647
decimal. To coerce a number to BIGINT, prepend enough zeroes to bring the total number of hex digits to
nine or above. That changes the type but not the value.

• Hex numbers between 8000 0000 .. FFFF FFFF require some attention:

- When written with eight hex digits, as in 0x9E44F9A8, a value is interpreted as 32-bit INTEGER. Since
the leftmost bit (sign bit) is set, it maps to the negative range -2147483648 .. -1 decimal.

- With one or more zeroes prepended, as in 0x09E44F9A8, a value is interpreted as 64-bit BIGINT in the
range 0000 0000 8000 0000 .. 0000 0000 FFFF FFFF. The sign bit is not set now, so they map to the
positive range 2147483648 .. 4294967295 decimal.

Common Language Elements

42

Thus, in this range—and only in this range—prepending a mathematically insignificant 0 results in a totally
different value. This is something to be aware of.

• Hex numbers between 1 0000 0000 .. 7FFF FFFF FFFF FFFF are all positive BIGINT.

• Hex numbers between 8000 0000 0000 0000 .. FFFF FFFF FFFF FFFF are all negative BIGINT.

• A SMALLINT cannot be written in hex, strictly speaking, since even 0x1 is evaluated as INTEGER. How-
ever, if you write a positive integer within the 16-bit range 0x0000 (decimal zero) to 0x7FFF (decimal 32767)
it will be converted to SMALLINT transparently.

It is possible to write to a negative SMALLINT in hex, using a 4-byte hex number within the range
0xFFFF8000 (decimal -32768) to 0xFFFFFFFF (decimal -1).

SQL Operators

SQL operators comprise operators for comparing, calculating, evaluating and concatenating values.

Operator Precedence

SQL Operators are divided into four types. Each operator type has a precedence, a ranking that determines the
order in which operators and the values obtained with their help are evaluated in an expression.The higher the
precedence of the operator type is, the earlier it will be evaluated. Each operator has its own precedence within
its type, that determines the order in which they are evaluated in an expression.

Operators with the same precedence are evaluated from left to right. To force a different evaluation order,
operations can be grouped by means of parentheses.

Table 4.2. Operator Type Precedence

Operator Type Precedence Explanation

Concatenation 1 Strings are concatenated before any other operations take place

Arithmetic 2
Arithmetic operations are performed after strings are concate-
nated, but before comparison and logical operations

Comparison 3
Comparison operations take place after string concatenation and
arithmetic operations, but before logical operations

Logical 4 Logical operators are executed after all other types of operators

Concatenation Operator

The concatenation operator, two pipe characters known as “double pipe”— || — concatenates (connects together)
two character strings to form a single string. Character strings can be constants or values obtained from columns
or other expressions.

Example:

Common Language Elements

43

 SELECT LAST_NAME || ', ' || FIRST_NAME AS FULL_NAME
 FROM EMPLOYEE

Arithmetic Operators

Table 4.3. Arithmetic Operator Precedence

Operator Purpose Precedence

+ signed_number Unary plus 1

- signed_number Unary minus 1

* Multiplication 2

/ Division 2

+ Addition 3

- Subtraction 3

Example:

 UPDATE T
 SET A = 4 + 1/(B-C)*D

Note

Where operators have the same precedence, they are evaluated in left-to-right sequence.

Comparison Operators

Table 4.4. Comparison Operator Precedence

Operator Purpose Precedence

= Is equal to, is identical to 1

<>, !=, ~=, ^= Is not equal to 1

> Is greater than 1

< Is less than 1

>= Is greater than or equal to 1

<= Is less than or equal to 1

!>, ~>, ^> Is not greater than 1

!<, ~<, ^< Is not less than 1

Common Language Elements

44

This group also includes comparison predicates BETWEEN, LIKE, CONTAINING, SIMILAR TO, IS and others.

Example:

 IF (SALARY > 1400) THEN
 …

See also: Other Comparison Predicates.

Logical Operators

Table 4.5. Logical Operator Precedence

Operator Purpose Precedence

NOT Negation of a search condition 1

AND
Combines two or more predicates, each of which

must be true for the entire predicate to be true
2

OR
Combines two or more predicates, of
which at least one predicate must be
true for the entire predicate to be true

3

Example:

 IF (A < B OR (A > C AND A > D) AND NOT (C = D)) THEN …

NEXT VALUE FOR

Available: DSQL, PSQL

NEXT VALUE FOR returns the next value of a sequence. SEQUENCE is an SQL-compliant term for a generator
in Firebird and its ancestor, InterBase. The NEXT VALUE FOR operator is equivalent to the legacy GEN_ID (...,
1) function and is the recommended syntax for retrieving the next sequence value.

Syntax for NEXT VALUE FOR:

 NEXT VALUE FOR sequence-name

Example:

 NEW.CUST_ID = NEXT VALUE FOR CUSTSEQ;

Common Language Elements

45

Note

Unlike GEN_ID (..., 1), the NEXT VALUE FOR variant does not take any parameters and thus, provides no way
to retrieve the current value of a sequence, nor to step the next value by more than 1. GEN_ID (..., <step value>)
is still needed for these tasks. A <step value> of 0 returns the current sequence value.

See also: SEQUENCE (GENERATOR), GEN_ID()

Conditional Expressions

A conditional expression is one that returns different values according to how a certain condition is met. It
is composed by applying a conditional function construct, of which Firebird supports several. This section de-
scribes only one conditional expression construct: CASE. All other conditional expressions apply internal func-
tions derived from CASE and are described in Conditional Functions.

CASE

Available: DSQL, PSQL

The CASE construct returns a single value from a number of possible ones. Two syntactic variants are supported:

• The simple CASE, comparable to a case construct in Pascal or a switch in C

• The searched CASE, which works like a series of “if ... else if ... else if” clauses.

Simple CASE

Syntax:

 …
 CASE <test-expr>
 WHEN <expr> THEN <result>
 [WHEN <expr> THEN <result> ...]
 [ELSE <defaultresult>]
 END
 …

When this variant is used, <test-expr> is compared to <expr> 1, <exp> 2 etc., until a match is found
and the corresponding result is returned. If no match is found, <defaultresult> from the optional ELSE clause is
returned. If there are no matches and no ELSE clause, NULL is returned.

The matching works identically to the "=" operator. That is, if <test-expr> is NULL, it does not match any <expr>,
not even an expression that resolves to NULL.

The returned result does not have to be a literal value: it might be a field or variable name, compound expression
or NULL literal.

Example:

Common Language Elements

46

 SELECT
 NAME,
 AGE,
 CASE UPPER(SEX)
 WHEN 'M' THEN 'Male'
 WHEN 'F' THEN 'Female'
 ELSE 'Unknown'
 END GENDER,
 RELIGION
 FROM PEOPLE

A short form of the simple CASE construct is used in the DECODE function.

Searched CASE

Syntax:

 CASE
 WHEN <bool_expr> THEN <result>
 [WHEN <bool_expr> THEN <result> …]
 [ELSE <defaultresult>]
 END

The <bool_expr> expression is one that gives a ternary logical result: TRUE, FALSE or NULL. The first expres-
sion to return TRUE determines the result. If no expressions return TRUE, <defaultresult> from the optional
ELSE clause is returned as the result. If no expressions return TRUE and there is no ELSE clause, the result will
be NULL.

As with the simple CASE construct, the result need not be a literal value: it might be a field or variable name,
a compound expression, or be NULL.

Example:

 CANVOTE = CASE
 WHEN AGE >= 18 THEN 'Yes'
 WHEN AGE < 18 THEN 'No'
 ELSE 'Unsure'
 END

NULL in Expressions

NULL is not a value in SQL, but a state indicating that the value of the element either unknown or it does not
exist. It is not a zero, nor a void, nor an “empty string”, and it does not act like any value.

When you use NULL in numeric, string or date/time expressions, the result will always be NULL. When you
use NULL in logical (Boolean) expressions, the result will depend on the type of the operation and on other
participating values. When you compare a value to NULL, the result will be unknown.

Common Language Elements

47

Important to Note

NULL means NULL but, in Firebird, the logical result unknown is also represented by NULL.

Expressions Returning NULL

Expressions in this list will always return NULL:

 1 + 2 + 3 + NULL
 'Home ' || 'sweet ' || NULL
 MyField = NULL
 MyField <> NULL
 NULL = NULL
 not (NULL)

If it seems difficult to understand why, remember that NULL is a state that stands for “unknown”.

NULL in Logical Expressions

It has already been shown that not (NULL) results in NULL. The interaction is a bit more complicated for
the logical AND and logical OR operators:

 NULL or false = NULL
 NULL or true = true
 NULL or NULL = NULL
 NULL and false = false
 NULL and true = NULL
 NULL and NULL = NULL

Up to and including Firebird 2.5.x, there is no implementation for a logical (Boolean) data type—that is coming
in Firebird 3. However, there are logical expressions (predicates) that can return true, false or unknown.

Examples:

 (1 = NULL) or (1 <> 1) -- returns NULL
 (1 = NULL) or (1 = 1) -- returns TRUE
 (1 = NULL) or (1 = NULL) -- returns NULL
 (1 = NULL) and (1 <> 1) -- returns FALSE
 (1 = NULL) and (1 = 1) -- returns NULL
 (1 = NULL) and (1 = NULL) -- returns NULL

Subqueries
A subquery is a special form of expression that is actually a query embedded within another query. Subqueries
are written in the same way as regular SELECT queries, but they must be enclosed in parentheses. Subquery
expressions can be used in the following ways:

• To specify an output column in the SELECT list

Common Language Elements

48

• To obtain values or conditions for search predicates (the WHERE, HAVING clauses).

• To produce a set that the enclosing query can select from, as though were a regular table or view. Subqueries
like this appear in the FROM clause (derived tables) or in a Common Table Expression (CTE)

Correlated Subqueries

A subquery can be correlated. A query is correlated when the subquery and the main query are interdependent.
To process each record in the subquery, it is necessary to fetch a record in the main query; i.e., the subquery
fully depends on the main query.

Sample Correlated Subquery:

 SELECT *
 FROM Customers C
 WHERE EXISTS
 (SELECT *
 FROM Orders O
 WHERE C.cnum = O.cnum
 AND O.adate = DATE '10.03.1990');

When subqueries are used to get the values of the output column in the SELECT list, a subquery must return
a scalar result.

Scalar Results

Subqueries used in search predicates, other than existential and quantified predicates, must return a scalar result;
that is, not more than one column from not more than one matching row or aggregation. If the result would
return more, a run-time error will occur (“Multiple rows in a singleton select...”).

Note

Although it is reporting a genuine error, the message can be slightly misleading. A “singleton SELECT” is
a query that must not be capable of returning more than one row. However, “singleton” and “scalar” are not
synonymous: not all singleton SELECTS are required to be scalar; and single-column selects can return multiple
rows for existential and quantified predicates.

Subquery Examples:

1. A subquery as the output column in a SELECT list:

 SELECT
 e.first_name,
 e.last_name,
 (SELECT
 sh.new_salary
 FROM
 salary_history sh
 WHERE
 sh.emp_no = e.emp_no

Common Language Elements

49

 ORDER BY sh.change_date DESC ROWS 1) AS last_salary
 FROM
 employee e

2. A subquery in the WHERE clause for obtaining the employee's maximum salary and filtering by it:

 SELECT
 e.first_name,
 e.last_name,
 e.salary
 FROM
 employee e
 WHERE
 e.salary = (
 SELECT MAX(ie.salary)
 FROM employee ie
)

Predicates
A predicate is a simple expression asserting some fact, let's call it P. If P resolves as TRUE, it succeeds. If it
resolves to FALSE or NULL (UNKNOWN), it fails. A trap lies here, though: suppose the predicate, P, returns
FALSE. In this case NOT(P) will return TRUE. On the other hand, if P returns NULL (unknown), then NOT(P)
returns NULL as well.

In SQL, predicates can appear in CHECK constraints, WHERE and HAVING clauses, CASE expressions, the IIF()
function and in the ON condition of JOIN clauses.

Assertions

An assertion is a statement about the data that, like a predicate, can resolve to TRUE, FALSE or NULL. Asser-
tions consist of one or more predicates, possibly negated using NOT and connected by AND and OR operators.
Parentheses may be used for grouping predicates and controlling evaluation order.

A predicate may embed other predicates. Evaluation sequence is in the outward direction, i.e., the innermost
predicates are evaluated first. Each “level” is evaluated in precedence order until the truth of the ultimate asser-
tion is resolved.

Comparison Predicates

A comparison predicate consists of two expressions connected with a comparison operator. There are six tradi-
tional comparison operators:

 =, >, <, >=, <=, <>

Common Language Elements

50

(For the complete list of comparison operators with their variant forms, see Comparison Operators.)

If one of the sides (left or right) of a comparison predicate has NULL in it, the value of the predicate will be
UNKNOWN.

Examples:

1. Retrieve information about computers with the CPU frequency not less than 500 MHz and the price lower
than $800:

 SELECT *
 FROM Pc
 WHERE speed >= 500 AND price < 800;

2. Retrieve information about all dot matrix printers that cost less than $300:

 SELECT *
 FROM Printer
 WHERE ptrtype = 'matrix' AND price < 300;

3. The following query will return no data, even if there are printers with no type specified for them, because
a predicate that compares NULL with NULL returns NULL:

 SELECT *
 FROM Printer
 WHERE ptrtype = NULL AND price < 300;

On the other hand, ptrtype can be tested for NULL and return a result: it is just that it is not a comparison
test:

 SELECT *
 FROM Printer
 WHERE ptrtype IS NULL AND price < 300;

—see IS [NOT] NULL.

Note about String Comparison

When CHAR and VARCHAR fields are compared for equality, trailing spaces are ignored in all cases.

Other Comparison Predicates

Other comparison predicates are marked by keyword symbols.

BETWEEN

Available: DSQL, PSQL, ESQL

Common Language Elements

51

Syntax:

 <value> [NOT] BETWEEN <value_1> AND <value_2>

The BETWEEN predicate tests whether a value falls within a specified range of two values. (NOT BETWEEN
tests whether the value does not fall within that range.)

The operands for BETWEEN predicate are two arguments of compatible data types. Unlike in some other DBMS,
the BETWEEN predicate in Firebird is not symmetrical—if the lower value is not the first argument, the BE-
TWEEN predicate will always return False. The search is inclusive (the values represented by both arguments
are included in the search). In other words, the BETWEEN predicate could be rewritten:

 <value> >= <value_1> AND <value> <= <value_2>

When BETWEEN is used in the search conditions of DML queries, the Firebird optimizer can use an index on
the searched column, if it is available.

Example:

 SELECT *
 FROM EMPLOYEE
 WHERE HIRE_DATE BETWEEN date '01.01.1992' AND CURRENT_DATE

LIKE

Available: DSQL, PSQL, ESQL

Syntax:

 <match value> [NOT] LIKE <pattern>
 [ESCAPE <escape character>]

 <match value> ::= character-type expression

 <pattern> ::= search pattern

 <escape character> ::= escape character

The LIKE predicate compares the character-type expression with the pattern defined in the second expression.
Case- or accent-sensitivity for the comparison is determined by the collation that is in use. A collation can be
specified for either operand, if required.

Wildcards

Two wildcard symbols are available for use in the search pattern:

Common Language Elements

52

• the percentage symbol (%) will match any sequence of zero or more characters in the tested value

• the underscore character (_) will match any single character in the tested value

If the tested value matches the pattern, taking into account wildcard symbols, the predicate is True.

Using the ESCAPE Character Option

If the search string contains either of the wildcard symbols, the ESCAPE clause can be used to specify an escape
character. The escape character must precede the '%' or '_' symbol in the search string, to indicate that the symbol
is to be interpreted as a literal character.

Examples using LIKE:

1. Find the numbers of departments whose names start with the word “Software”:

 SELECT DEPT_NO
 FROM DEPT
 WHERE DEPT_NAME LIKE 'Software%';

It is possible to use an index on the DEPT_NAME field if it exists.

About LIKE and the Optimizer

Actually, the LIKE predicate does not use an index. However, if the predicate takes the form of LIKE
'string%' , it will be converted to the STARTING WITH predicate, which will use an index.

So—if you need to search for the beginning of a string, it is recommended to use the STARTING WITH
predicate instead of the LIKE predicate.

2. Search for employees whose names consist of 5 letters, start with the letters “Sm” and end with “th”. The
predicate will be true for such names as “Smith” and “Smyth”.

 SELECT
 first_name
 FROM
 employee
 WHERE first_name LIKE 'Sm_th'

3. Search for all clients whose address contains the string “Rostov”:

 SELECT *
 FROM CUSTOMER
 WHERE ADDRESS LIKE '%Rostov%'

Common Language Elements

53

Note

If you need to do a case-insensitive search for something enclosed inside a string (LIKE '%Abc%'),
use of the CONTAINING predicate is recommended, in preference to the LIKE predicate.

4. Search for tables containing the underscore character in their names. The “#” character is specified as the
escape character:

 SELECT
 RDB$RELATION_NAME
 FROM RDB$RELATIONS
 WHERE RDB$RELATION_NAME LIKE '%#_%' ESCAPE '#'

See also: STARTING WITH, CONTAINING, SIMILAR TO

STARTING WITH

Available: DSQL, PSQL, ESQL

Syntax:

 <value> [NOT] STARTING WITH <value>

The STARTING WITH predicate searches for a string or a string-like type that starts with the characters in its
<value> argument. The search is case-sensitive.

When STARTING WITH is used in the search conditions of DML queries, the Firebird optimizer can use an index
on the searched column, if it exists.

Example: Search for employees whose last names start with “Jo”:

 SELECT LAST_NAME, FIRST_NAME
 FROM EMPLOYEE
 WHERE LAST_NAME STARTING WITH 'Jo'

See also: LIKE

CONTAINING

Available: DSQL, PSQL, ESQL

Syntax:

 <value> [NOT] CONTAINING <value>

Common Language Elements

54

The CONTAINING predicate searches for a string or a string-like type looking for the sequence of characters
that matches its argument. It can be used for an alphanumeric (string-like) search on numbers and dates. A
CONTAINING search is not case-sensitive. However, if an accent-sensitive collation is in use then the search
will be accent-sensitive.

When CONTAINING is used in the search conditions of DML queries, the Firebird optimizer can use an index
on the searched column, if a suitable one exists.

Examples:

1. Search for projects whose names contain the substring “Map”:

 SELECT *
 FROM PROJECT
 WHERE PROJ_NAME CONTAINING 'Map';

Two rows with the names “AutoMap” and “MapBrowser port” are returned.

2. Search for changes in salaries with the date containing number 84 (in this case, it means changes that took
place in 1984):

 SELECT *
 FROM SALARY_HISTORY
 WHERE CHANGE_DATE CONTAINING 84;

See also: LIKE

SIMILAR TO

Available: DSQL, PSQL

Syntax:

 string-expression [NOT] SIMILAR TO <pattern> [ESCAPE <escape-char>]
 <pattern> ::= an SQL regular expression
 <escape-char> ::= a single character

SIMILAR TO matches a string against an SQL regular expression pattern. Unlike in some other languages, the
pattern must match the entire string in order to succeed—matching a substring is not enough. If any operand is
NULL, the result is NULL. Otherwise, the result is TRUE or FALSE.

Syntax: SQL Regular Expressions

The following syntax defines the SQL regular expression format. It is a complete and correct top-down defini-
tion. It is also highly formal, rather long and probably perfectly fit to discourage everybody who hasn't already
some experience with regular expessions (or with highly formal, rather long top-down definitions). Feel free
to skip it and read the next section, Building Regular Expressions, which uses a bottom-up approach, aimed
at the rest of us.

Common Language Elements

55

 <regular expression> ::= <regular term> ['|' <regular term> ...]

 <regular term> ::= <regular factor> ...

 <regular factor> ::= <regular primary> [<quantifier>]

 <quantifier> ::= ?
 | *
 | +
 | '{' <m> [,[<n>]] '}'

 <m>, <n> ::= unsigned int, with <m> <= <n> if both present

 <regular primary> ::= <character>
 | <character class>
 | %
 | (<regular expression>)

 <character> ::= <escaped character>
 | <non-escaped character>

 <escaped character> ::= <escape-char> <special character>
 | <escape-char> <escape-char>

 <special character> ::= any of the characters []()|^-+*%_?{

 <non-escaped character> ::= any character that is not a <special character>
 and not equal to <escape-char> (if defined)
 <character class> ::= '_'
 | '[' <member> ... ']'
 | '[^' <non-member> ... ']'
 | '[' <member> ... '^' <non-member> ... ']'

 <member>, <non-member> ::= <character>
 | <range>
 | <predefined class>

 <range> ::= <character>-<character>

 <predefined class> ::= '[:' <predefined class name> ':]'

 <predefined class name> ::= ALPHA | UPPER | LOWER | DIGIT
 | ALNUM | SPACE | WHITESPACE

Building Regular Expressions

In this section are the elements and rules for building SQL regular expressions.

Characters

Within regular expressions, most characters represent themselves. The only exceptions are the special characters
below:

Common Language Elements

56

 [] () | ^ - + * % _ ? { }

...and the escape character, if it is defined.

A regular expression that contains no special or escape characters matches only strings that are identical to itself
(subject to the collation in use). That is, it functions just like the “=” operator:

 'Apple' similar to 'Apple' -- true
 'Apples' similar to 'Apple' -- false
 'Apple' similar to 'Apples' -- false
 'APPLE' similar to 'Apple' -- depends on collation

Wildcards

The known SQL wildcards _ and % match any single character and a string of any length, respectively:

 'Birne' similar to 'B_rne' -- true
 'Birne' similar to 'B_ne' -- false
 'Birne' similar to 'B%ne' -- true
 'Birne' similar to 'Bir%ne%' -- true
 'Birne' similar to 'Birr%ne' -- false

Notice how % also matches the empty string.

Character Classes

A bunch of characters enclosed in brackets define a character class. A character in the string matches a class in
the pattern if the character is a member of the class:

 'Citroen' similar to 'Cit[arju]oen' -- true
 'Citroen' similar to 'Ci[tr]oen' -- false
 'Citroen' similar to 'Ci[tr][tr]oen' -- true

As can be seen from the second line, the class only matches a single character, not a sequence.

Within a class definition, two characters connected by a hyphen define a range. A range comprises the two
endpoints and all the characters that lie between them in the active collation. Ranges can be placed anywhere in
the class definition without special delimiters to keep them apart from the other elements.

 'Datte' similar to 'Dat[q-u]e' -- true
 'Datte' similar to 'Dat[abq-uy]e' -- true
 'Datte' similar to 'Dat[bcg-km-pwz]e' -- false

Predefined Character Classes

The following predefined character classes can also be used in a class definition:

[:ALPHA:]: Latin letters a..z and A..Z. With an accent-insensitive collation, this class also matches accented
forms of these characters.

Common Language Elements

57

[:DIGIT:]: Decimal digits 0..9.

[:ALNUM:]: Union of [:ALPHA:] and [:DIGIT:].

[:UPPER:]: Uppercase Latin letters A..Z. Also matches lowercase with case-insensitive collation and accented
forms with accent-insensitive collation.

[:LOWER:]: Lowercase Latin letters a..z. Also matches uppercase with case-insensitive collation and accented
forms with accent-insensitive collation.

[:SPACE:]: Matches the space character (ASCII 32).

[:WHITESPACE:]: Matches horizontal tab (ASCII 9), linefeed (ASCII 10), vertical tab (ASCII 11), formfeed
(ASCII 12), carriage return (ASCII 13) and space (ASCII 32).

Including a predefined class has the same effect as including all its members. Predefined classes are only allowed
within class definitions. If you need to match against a predefined class and nothing more, place an extra pair
of brackets around it.

 'Erdbeere' similar to 'Erd[[:ALNUM:]]eere' -- true
 'Erdbeere' similar to 'Erd[[:DIGIT:]]eere' -- false
 'Erdbeere' similar to 'Erd[a[:SPACE:]b]eere' -- true
 'Erdbeere' similar to [[:ALPHA:]] -- false
 'E' similar to [[:ALPHA:]] -- true

If a class definition starts with a caret, everything that follows is excluded from the class. All other characters
match:

 'Framboise' similar to 'Fra[^ck-p]boise' -- false
 'Framboise' similar to 'Fr[^a][^a]boise' -- false
 'Framboise' similar to 'Fra[^[:DIGIT:]]boise' -- true

If the caret is not placed at the start of the sequence, the class contains everything before the caret, except for
the elements that also occur after the caret:

 'Grapefruit' similar to 'Grap[a-m^f-i]fruit' -- true
 'Grapefruit' similar to 'Grap[abc^xyz]fruit' -- false
 'Grapefruit' similar to 'Grap[abc^de]fruit' -- false
 'Grapefruit' similar to 'Grap[abe^de]fruit' -- false

 '3' similar to '[[:DIGIT:]^4-8]' -- true
 '6' similar to '[[:DIGIT:]^4-8]' -- false

Lastly, the already mentioned wildcard “_” is a character class of its own, matching any single character.

Quantifiers

A question mark immediately following a character or class indicates that the preceding item may occur 0 or
1 times in order to match:

 'Hallon' similar to 'Hal?on' -- false
 'Hallon' similar to 'Hal?lon' -- true

Common Language Elements

58

 'Hallon' similar to 'Halll?on' -- true
 'Hallon' similar to 'Hallll?on' -- false
 'Hallon' similar to 'Halx?lon' -- true
 'Hallon' similar to 'H[a-c]?llon[x-z]?' -- true

An asterisk immediately following a character or class indicates that the preceding item may occur 0 or more
times in order to match:

 'Icaque' similar to 'Ica*que' -- true
 'Icaque' similar to 'Icar*que' -- true
 'Icaque' similar to 'I[a-c]*que' -- true
 'Icaque' similar to '_*' -- true
 'Icaque' similar to '[[:ALPHA:]]*' -- true
 'Icaque' similar to 'Ica[xyz]*e' -- false

A plus sign immediately following a character or class indicates that the preceding item must occur 1 or more
times in order to match:

 'Jujube' similar to 'Ju_+' -- true
 'Jujube' similar to 'Ju+jube' -- true
 'Jujube' similar to 'Jujuber+' -- false
 'Jujube' similar to 'J[jux]+be' -- true
 'Jujube' sililar to 'J[[:DIGIT:]]+ujube' -- false

If a character or class is followed by a number enclosed in braces, it must be repeated exactly that number of
times in order to match:

 'Kiwi' similar to 'Ki{2}wi' -- false
 'Kiwi' similar to 'K[ipw]{2}i' -- true
 'Kiwi' similar to 'K[ipw]{2}' -- false
 'Kiwi' similar to 'K[ipw]{3}' -- true

If the number is followed by a comma, the item must be repeated at least that number of times in order to match:

 'Limone' similar to 'Li{2,}mone' -- false
 'Limone' similar to 'Li{1,}mone' -- true
 'Limone' similar to 'Li[nezom]{2,}' -- true

If the braces contain two numbers separated by a comma, the second number not smaller than the first, then the
item must be repeated at least the first number and at most the second number of times in order to match:

 'Mandarijn' similar to 'M[a-p]{2,5}rijn' -- true
 'Mandarijn' similar to 'M[a-p]{2,3}rijn' -- false
 'Mandarijn' similar to 'M[a-p]{2,3}arijn' -- true

The quantifiers ?, * and + are shorthand for {0,1}, {0,} and {1,}, respectively.

OR-ing Terms

Regular expression terms can be OR'ed with the | operator. A match is made when the argument string matches
at least one of the terms:

Common Language Elements

59

 'Nektarin' similar to 'Nek|tarin' -- false
 'Nektarin' similar to 'Nektarin|Persika' -- true
 'Nektarin' similar to 'M_+|N_+|P_+' -- true

Subexpressions

One or more parts of the regular expression can be grouped into subexpressions (also called subpatterns) by
placing them between parentheses. A subexpression is a regular expression in its own right. It can contain all
the elements allowed in a regular expression, and can also have quantifiers added to it.

 'Orange' similar to 'O(ra|ri|ro)nge' -- true
 'Orange' similar to 'O(r[a-e])+nge' -- true
 'Orange' similar to 'O(ra){2,4}nge' -- false
 'Orange' similar to 'O(r(an|in)g|rong)?e' -- true

Escaping Special Characters

In order to match against a character that is special in regular expressions, that character has to be escaped. There
is no default escape character; rather, the user specifies one when needed:

'Peer (Poire)' similar to 'P[^]+ \(P[^]+\)' escape '\' -- true
'Pera [Pear]' similar to 'P[^]+ #[P[^]+#]' escape '#' -- true
'Päron-Äppledryck' similar to 'P%$-Ä%' escape '$' -- true
'Pärondryck' similar to 'P%--Ä%' escape '-' -- false

The last line demonstrates that the escape character can also escape itself, if needed.

IS [NOT] DISTINCT FROM

Available: DSQL, PSQL

Syntax:

 operand1 IS [NOT] DISTINCT FROM operand2

Two operands are considered DISTINCT if they have a different value or if one of them is NULL and the other
non-null. They are NOT DISTINCT if they have the same value or if both of them are NULL.

See also: IS [NOT] NULL

IS [NOT] NULL

Available: DSQL, PSQL, ESQL

Syntax:

Common Language Elements

60

 <value> IS [NOT] NULL

Since NULL is not a value, these operators are not comparison operators. The IS [NOT] NULL predicate tests
the assertion that the expression on the left side has a value (IS NOT NULL) or has no value (IS NULL).

Example: Search for sales entries that have no shipment date set for them:

 SELECT * FROM SALES
 WHERE SHIP_DATE IS NULL;

Note regarding the IS predicates

Up to and including Firebird 2.5, the IS predicates, like the other comparison predicates, do not have precedence
over the others. In Firebird 3.0 and higher, these predicates take precedence above the others.

Existential Predicates

This group of predicates includes those that use subqueries to submit values for all kinds of assertions in search
conditions. Existential predicates are so called because they use various methods to test for the existence or non-
existence of some assertion, returning TRUE if the existence or non-existence is confirmed or FALSE otherwise.

EXISTS

Available: DSQL, PSQL, ESQL

Syntax:

 [NOT] EXISTS(<select_stmt>)

The EXISTS predicate uses a subquery expression as its argument. It returns TRUE if the subquery result would
contain at least one row; otherwise it returns FALSE.

NOT EXISTS returns FALSE if the subquery result would contain at least one row; it returns TRUE otherwise.

Note

The subquery can specify multiple columns, or SELECT *, because the evaluation is made on the number of
rows that match its criteria, not on the data.

Examples:

1. Find those employees who have projects.

 SELECT *
 FROM employee

Common Language Elements

61

 WHERE EXISTS(SELECT *
 FROM employee_project ep
 WHERE ep.emp_no = employee.emp_no)

2. Find those employees who have no projects.

 SELECT *
 FROM employee
 WHERE NOT EXISTS(SELECT *
 FROM employee_project ep
 WHERE ep.emp_no = employee.emp_no)

IN

Available: DSQL, PSQL, ESQL

Syntax:

 <value> [NOT] IN(<select_stmt> | <value_list>)

 <value_list> ::= <value_1> [, <value_2> …]

The IN predicate tests whether the value of the expression on the left side is present in the set of values specified
on the right side. The set of values cannot have more than 1500 items. The IN predicate could be replaced with
the following equivalent form:

 (<value> = <value_1> [OR <value> = <value_2> …])

When the IN predicate is used in the search conditions of DML queries, the Firebird optimizer can use an index
on the searched column, if a suitable one exists.

In its second form, the IN predicate tests whether the value of the expression on the left side is present (or not
present, if NOT IN is used) in the result of the executed subquery on the right side.

The subquery must be specified to result in only one column, otherwise the error “count of column list and
variable list do not match” will occur.

Queries specified using the IN predicate with a subquery can be replaced with a similar query using the EXISTS
predicate. For instance, the following query:

 SELECT
 model, speed, hd
 FROM PC
 WHERE
 model IN (SELECT model
 FROM product
 WHERE maker = 'A');

Common Language Elements

62

can be replaced with a similar one using the EXISTS predicate:

 SELECT
 model, speed, hd
 FROM PC
 WHERE
 EXISTS (SELECT *
 FROM product
 WHERE maker = 'A'
 AND product.model = PC.model);

However, a query using NOT IN with a subquery does not always give the same result as its NOT EXISTS
counterpart. The reason is that EXISTS always returns TRUE or FALSE, whereas IN returns NULL in one of
these two cases:

1. when the test value is NULL and the IN () list is not empty
2. when the test value has no match in the IN () list and at least one list element is NULL
It is in only these two cases that IN () will return NULL while the corresponding EXISTS predicate will return
FALSE ('no matching row found'). In a search or, for example, an IF (...) statement, both results mean “failure”
and it makes no difference to the outcome.

But, for the same data, NOT IN () will return NULL, while NOT EXISTS will return TRUE, leading to opposite
results.

As an example, suppose you have the following query:

 -- Looking for people who were not born
 -- on the same day as any famous New York citizen
 SELECT P1.name AS NAME
 FROM Personnel P1
 WHERE P1.birthday NOT IN (SELECT C1.birthday
 FROM Celebrities C1
 WHERE C1.birthcity = 'New York');

Now, assume that the NY celebrities list is not empty and contains at least one NULL birthday. Then for every
citizen who does not share his birthday with a NY celebrity, NOT IN will return NULL, because that is what IN
does. The search condition is thereby not satisfied and the citizen will be left out of the SELECT result, which
is wrong.

For citizens whose birthday does match with a celebrity's birthday, NOT IN will correctly return FALSE, so they
will be left out too, and no rows will be returned.

If the NOT EXISTS form is used:

 -- Looking for people who were not born
 -- on the same day as any famous New York citizen
 SELECT P1.name AS NAME
 FROM Personnel P1
 WHERE NOT EXISTS (SELECT *
 FROM Celebrities C1
 WHERE C1.birthcity = 'New York'
 AND C1.birthday = P1.birthday);

non-matches will have a NOT EXISTS result of TRUE and their records will be in the result set.

Common Language Elements

63

Advice

If there is any chance of NULLs being encountered when searching for a non-match, you will want to use
NOT EXISTS.

Examples of use:

1. Find employees with the names “Pete”, “Ann” and “Roger”:

 SELECT *
 FROM EMPLOYEE
 WHERE FIRST_NAME IN ('Pete', 'Ann', 'Roger');

2. Find all computers that have models whose manufacturer starts with the letter “A”:

 SELECT
 model, speed, hd
 FROM PC
 WHERE
 model IN (SELECT model
 FROM product
 WHERE maker STARTING WITH 'A');

See also: EXISTS

SINGULAR

Available: DSQL, PSQL, ESQL

Syntax:

 [NOT] SINGULAR(<select_stmt>)

The SINGULAR predicate takes a subquery as its argument and evaluates it as True if the subquery returns exactly
one result row; otherwise the predicate is evaluated as False. The subquery may list several output columns
since the rows are not returned anyway. They are only tested for (singular) existence. For brevity, people usually
specify 'SELECT *'. The SINGULAR predicate can return only two values: TRUE or FALSE.

Example: Find those employees who have only one project.

 SELECT *
 FROM employee
 WHERE SINGULAR(SELECT *
 FROM
 employee_project ep
 WHERE
 ep.emp_no = employee.emp_no)

Common Language Elements

64

Quantified Subquery Predicates

A quantifier is a logical operator that sets the number of objects for which this assertion is true. It is not a numeric
quantity, but a logical one that connects the assertion with the full set of possible objects. Such predicates are
based on logical universal and existential quantifiers that are recognised in formal logic.

In subquery expressions, quantified predicates make it possible to compare separate values with the results of
subqueries; they have the following common form:

 <value expression> <comparison operator> <quantifier> <subquery>

ALL

Available: DSQL, PSQL, ESQL

Syntax:

 <value> <op> ALL(<select_stmt>)

When the ALL quantifier is used, the predicate is TRUE if every value returned by the subquery satisfies the
condition in the predicate of the main query.

Example: Show only those clients whose ratings are higher than the rating of every client in Paris.

 SELECT c1.*
 FROM Customers c1
 WHERE c1.rating > ALL
 (SELECT c2.rating
 FROM Customers c2
 WHERE c2.city = 'Paris')

Important

If the subquery returns an empty set, the predicate is TRUE for every left-side value, regardless of the operator.
This may appear to be contradictory, because every left-side value will thus be considered both smaller and
greater than, both equal to and unequal to, every element of the right-side stream.

Nevertheless, it aligns perfectly with formal logic: if the set is empty, the predicate is true 0 times, i.e., for
every row in the set.

ANY and SOME

Available: DSQL, PSQL, ESQL

Common Language Elements

65

Syntax:

 <value> <op> {ANY | SOME} (<select_stmt>)

The quantifiers ANY and SOME are identical in their behaviour. Apparently, both are present in the SQL standard
so that they could be used interchangeably in order to improve the readability of operators. When the ANY or the
SOME quantifier is used, the predicate is true if any of the values returned by the subquery satisfies the condition
in the predicate of the main query. If the subquery would return no rows at all, the predicate is automatically
considered as False.

Example: Show only those clients whose ratings are higher than those of one or more clients in Rome.

 SELECT *
 FROM Customers
 WHERE rating > ANY
 (SELECT rating
 FROM Customers
 WHERE city = 'Rome')

66

Chapter 5

Data Definition
(DDL) Statements

DDL is the data definition language subset of Firebird's SQL language. DDL statements are used to create,
modify and delete database objects that have been created by users. When a DDL statement is committed, the
metadata for the object are created, changed or deleted.

DATABASE

This section describes how to create a database, connect to an existing database, alter the file structure of a
database and how to delete one. It also explains how to back up a database in two quite different ways and how
to switch the database to the “copy-safe” mode for performing an external backup safely.

CREATE DATABASE

Used for: Creating a new database

Available in: DSQL, ESQL

Syntax:

 CREATE {DATABASE | SCHEMA} '<filespec>'
 [USER 'username' [PASSWORD 'password']]
 [PAGE_SIZE [=] size]
 [LENGTH [=] num [PAGE[S]]
 [SET NAMES 'charset']
 [DEFAULT CHARACTER SET default_charset
 [COLLATION collation]] -- not supported in ESQL
 [<sec_file> [<sec_file> ...]]
 [DIFFERENCE FILE 'diff_file']; -- not supported in ESQL

 <filespec> ::= [<server_spec>]{filepath | db_alias}

 <server_spec> ::= servername [/{port|service}]: | \\servername\

 <sec_file> ::= FILE 'filepath'
 [LENGTH [=] num [PAGE[S]] [STARTING [AT [PAGE]] pagenum]

Data Definition (DDL) Statements

67

Table 5.1. CREATE DATABASE Statement Parameters

Parameter Description

filespec File specification for primary database file

server_spec
Remote server specification in TCP/IP or Windows Networking style. Optional-
ly includes a port number or service name

filepath
Full path and file name including its extension. The file name must be specified
according to the rules of the platform file system being used.

db_alias Database alias previously created in the aliases.conf file

servername Host name or IP address of the server where the database is to be created

username
User name of the owner of the new database. It may consist of up to 31 charac-
ters. Case-insensitive

password
Password of the user name as the database owner. The maximum length is 31
characters; however only the first 8 characters are considered. Case-sensitive

size
Page size for the database, in bytes. Possible values are 4096 (the default), 8192
and 16384

num Maximum size of the primary database file, or a secondary file, in pages

charset
Specifies the character set of the connection available to a client connecting after
the database is successfully created. Single quotes are required

default_charset Specifies the default character set for string data types

collation Default collation for the default character set

sec_file File specificaton for a secondary file

pagenum Starting page number for a secondary database file

diff_file File path and name for DIFFERENCE files (.delta files)

The CREATE DATABASE statement creates a new database. You can use CREATE DATABASE or CREATE
SCHEMA. They are synonymous.

A database may consist of one or several files. The first (main) file is called the primary file, subsequent files
are called secondary file[s].

Multi-file Databases

Nowadays, multi-file databases are considered a throwback. It made sense to use multi-file databases on old file
systems where the size of any file is limited. For instance, you could not create a file larger than 4 GB on FAT32.

The primary file specification is the name of the database file and its extension with the full path to it according
to the rules of the OS platform file system being used. The database file must not exist at the moment when the
database is being created. If it does exist, you will get an error message and the database will not be created.

If the full path to the database is not specified, the database will be created in one of the system directories. The
particular directory depends on the operating system. For this reason, unless you have a strong reason to prefer
that situation, always specify the absolute path, when creating either the database or an alias for it.

Data Definition (DDL) Statements

68

Using a Database Alias

You can use aliases instead of the full path to the primary database file. Aliases are defined in the aliases.
conf file in the following format:

 alias = filepath

Creating a Database Remotely

If you create a database on a remote server, you should specify the remote server specification. The remote
server specification depends on the protocol being used. If you use the TCP/IP protocol to create a database, the
primary file specification should look like this:

servername[/{port|service}]:{filepath | db_alias}

If you use the Named Pipes protocol to create a database on a Windows server, the primary file specification
should look like this:

\\servername\{filepath | db_alias}

Optional Parameters for CREATE DATABASE

Optional USER and PASSWORD: Clauses for specifying the user name and the password, respectively, of an
existing user in the security database security2.fdb. You do not have to specify the username and password
if the ISC_USER and ISC_PASSWORD environment variables are set. The user specified in the process of creating
the database will be its owner. This will be important when considering database and object privileges.

Optional PAGE_SIZE: Clause for specifying the database page size. This size will be set for the primary file
and all secondary files of the database. If you specify the database page size less than 4,096, it will be changed
automatically to the default page size, 4,096. Other values not equal to either 4,096, 8,192 or 16,384 will be
changed to the closest smaller supported value. If the database page size is not specified, it is set to the default
value of 4,096.

Optional LENGTH: Clause specifying the maximum size of the primary or secondary database file, in pages.
When a database is created, its primary and secondary files will occupy the minimum number of pages necessary
to store the system data, regardless of the value specified in the LENGTH clause. The LENGTH value does not
affect the size of the only (or last, in a multi-file database) file. The file will keep increasing its size automatically
when necessary.

Optional SET NAMES: Clause specifying the character set of the connection available after the database is
successfully created. The character set NONE is used by default. Notice that the character set should be enclosed
in a pair of apostrophes (single quotes).

Optional DEFAULT CHARACTER SET: Clause specifying the default character set for creating data structures
of string data types. Character sets are applied to CHAR, VARCHAR and BLOB TEXT data types. The character

Data Definition (DDL) Statements

69

set NONE is used by default. It is also possible to specify the default COLLATION for the default character set,
making that collation sequence the default for the default character set. The default will be used for the entire
database except where an alternative character set, with or without a specified collation, is used explicitly for
a field, domain, variable, cast expression, etc.

STARTING AT: Clause that specifies the database page number at which the next secondary database file should
start. When the previous file is completely filled with data according to the specified page number, the system
will start adding new data to the next database file.

Optional DIFFERENCE FILE: Clause specifying the path and name for the file delta that stores any mutations to
the database file after it has been switched to the “copy-safe” mode by the ALTER DATABASE BEGIN BACKUP
statement. For the detailed description of this clause, see ALTER DATABASE.

SET SQL DIALECT: Databases are created in Dialect 3 by default. For the database to be created in SQL dialect
1, you will need to execute the statement SET SQL DIALECT 1 from script or the client application, e.g. isql,
before the CREATE DATABASE statement.

Examples Using CREATE DATABASE

1. Creating a database in Windows, located on disk D with a page size of 8,192. The owner of the database
will be the user wizard. The database will be in Dialect 1 and it will use WIN1251 as its default character set.

SET SQL DIALECT 1;
CREATE DATABASE 'D:\test.fdb'
USER 'wizard' PASSWORD 'player'
PAGE_SIZE = 8192 DEFAULT CHARACTER SET WIN1251;

2. Creating a database in the Linux operating system with a page size of 4,096. The owner of the database
will be the user wizard. The database will be in Dialect 3 and it will use UTF8 as its default character set,
with UNICODE_CI_AI as the default collation.

CREATE DATABASE '/home/firebird/test.fdb'
USER 'wizard' PASSWORD 'player'
DEFAULT CHARACTER SET UTF8 COLLATION UNICODE_CI_AI;

3. Creating a database on the remote server “baseserver” with the path specified in the alias “test” that has been
defined previously in the file aliases.conf. The TCP/IP protocol is used. The owner of the database
will be the user wizard. The database will be in Dialect 3 and will use UTF8 as its default character set.

CREATE DATABASE 'baseserver:test'
USER 'wizard' PASSWORD 'player'
DEFAULT CHARACTER SET UTF8;

4. Creating a database in Dialect 3 with UTF8 as its default character set. The primary file will contain up
to 10,000 pages with a page size of 8,192. As soon as the primary file has reached the maximum number
of pages, Firebird will start allocating pages to the secondary file test.fdb2. If that file is filled up to
its maximum as well, test.fdb3 becomes the recipient of all new page allocations. As the last file, it
has no page limit imposed on it by Firebird. New allocations will continue for as long as the file system

Data Definition (DDL) Statements

70

allows it or until the storage device runs out of free space. If a LENGTH parameter were supplied for this
last file, it would be ignored.

SET SQL DIALECT 3;
CREATE DATABASE 'baseserver:D:\test.fdb'
USER 'wizard' PASSWORD 'player'
PAGE_SIZE = 8192
DEFAULT CHARACTER SET UTF8
FILE 'D:\test.fdb2'
STARTING AT PAGE 10001
FILE 'D:\test.fdb3'
STARTING AT PAGE 20001;

5. Creating a database in Dialect 3 with UTF8 as its default character set. The primary file will contain up to
10,000 pages with a page size of 8,192. As far as file size and the use of secondary files are concerned, this
database will behave exactly like the one in the previous example.

SET SQL DIALECT 3;
CREATE DATABASE 'baseserver:D:\test.fdb'
USER 'wizard' PASSWORD 'player'
PAGE_SIZE = 8192
LENGTH 10000 PAGES
DEFAULT CHARACTER SET UTF8
FILE 'D:\test.fdb2'
FILE 'D:\test.fdb3'
STARTING AT PAGE 20001;

See also: ALTER DATABASE, DROP DATABASE

ALTER DATABASE

Used for: Altering the file organisation of a database or toggling its “copy-safe” state

Available in: DSQL—both functions. ESQL—file reorganisation only

Syntax:

ALTER {DATABASE | SCHEMA}
[<add_sec_clause> [<add_sec_clause> ...]]
[ADD DIFFERENCE FILE 'diff_file' | DROP DIFFERENCE FILE]
[{BEGIN | END} BACKUP];

<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]

<sec_file> ::= FILE 'filepath'

ADD FILE <sec_file>

 [STARTING [AT [PAGE]] pagenum]
 [LENGTH [=] num [PAGE[S]]

Data Definition (DDL) Statements

71

Note

Multiple files can be added in one ADD clause:

 ALTER DATABASE
 ADD FILE x LENGTH 8000
 FILE y LENGTH 8000
 FILE z

Multiple ADD FILE clauses are allowed; and an ADD FILE clause that adds multiple files (as in the example
above) can be mixed with others that add only one file. The statement was incorrectly documented in the old
InterBase 6 Language Reference.

Table 5.2. ALTER DATABASE Statement Parameters

Parameter Description

add_sec_clause Adding a secondary database file

sec_file File specification for secondary file

filepath Full path and file name of the delta file or the secondary database file

pagenum Page number from which the secondary database file is to start

num Maximum size of the secondary file in pages

diff_file File path and name of the .delta file (difference file)

The ALTER DATABASE statement can

• add secondary files to a database
• switch a single-file database into and out of the “copy-safe” mode (DSQL only)
• set or unset the path and name of the delta file for physical backups (DSQL only)

Only administrators have the authority to use ALTER DATABASE.

Parameters for ALTER DATABASE

The ADD FILE clause: adds a secondary file to the database. It is necessary to specify the full path to the file
and the name of the secondary file. The description for the secondary file is similar to the one given for the
CREATE DATABASE statement.

The ADD DIFFERENCE FILE clause: specifies the path and name of the delta file that stores any mutations
to the database whenever it is switched to the “copy-safe” mode. This clause does not actually add any file. It
just overrides the default name and path of the .delta file. To change the existing settings, you should delete the
previously specified description of the .delta file using the DROP DIFFERENCE FILE clause before specifying
the new description of the delta file. If the path and name of the .delta file are not overridden, the file will have
the same path and name as the database, but with the .delta file extension.

Data Definition (DDL) Statements

72

Caution

If only a file name is specified, the .delta file will be created in the current directory of the server. On Windows,
this will be the system directory—a very unwise location to store volatile user files and contrary to Windows
file system rules.

DROP DIFFERENCE FILE: This is the clause that deletes the description (path and name) of the .delta file
specified previously in the ADD DIFFERENCE FILE clause. The file is not actually deleted. DROP DIFFERENCE
FILE deletes the path and name of the .delta file from the database header. Next time the database is switched
to the “copy-safe” mode, the default values will be used (i.e. the same path and name as those of the database,
but with the .delta extension).

BEGIN BACKUP: This is the clause that switches the database to the “copy-safe” mode. ALTER DATABASE
with this clause freezes the main database file, making it possible to back it up safely using file system tools, even
if users are connected and performing operations with data. Until the backup state of the database is reverted to
NORMAL, all changes made to the database will be written to the .delta (difference) file.

Important

Despite its syntax, a statement with the BEGIN BACKUP clause does not start a backup process but just creates
the conditions for doing a task that requires the database file to be read-only temporarily.

END BACKUP: is the clause used to switch the database from the “copy-safe” mode to the normal mode. A
statement with this clause merges the .delta file with the main database file and restores the normal operation
of the database. Once the END BACKUP process starts, the conditions no longer exist for creating safe backups
by means of file system tools.

Warning

Use of BEGIN BACKUP and END BACKUP and copying the database files with filesystem tools, is not safe
with multi-file databases! Use this method only on single-file databases.

Making a safe backup with the gbak utility remains possible at all times, although it is not recommended to
run gbak while the database is in LOCKED or MERGE state.

Examples of ALTER DATABASE Usage

1. Adding a secondary file to the database. As soon as 30000 pages are filled in the previous primary or
secondary file, the Firebird engine will start adding data to the secondary file test4.fdb.

ALTER DATABASE
ADD FILE 'D:\test4.fdb'
STARTING AT PAGE 30001;

2. Specifying the path and name of the delta file:

ALTER DATABASE
ADD DIFFERENCE FILE 'D:\test.diff';

3. Deleting the description of the delta file:

Data Definition (DDL) Statements

73

ALTER DATABASE
DROP DIFFERENCE FILE;

4. Switching the database to the “copy-safe” mode:

ALTER DATABASE
BEGIN BACKUP;

5. Switching the database back from the “copy-safe” mode to the normal operation mode:

ALTER DATABASE
END BACKUP;

See also: CREATE DATABASE, DROP DATABASE

DROP DATABASE

Used for: Deleting the database to which you are currently connected

Available in: DSQL, ESQL

Syntax:

DROP DATABASE

The DROP DATABASE statement deletes the current database. Before deleting a database, you have to connect
to it. The statement deletes the primary file, all secondary files and all shadow files.

Only administrators have the authority to use DROP DATABASE.

Example: Deleting the database the client is connected to.

DROP DATABASE;

See also: CREATE DATABASE, ALTER DATABASE

SHADOW
A shadow is an exact, page-by-page copy of a database. Once a shadow is created, all changes made in the
database are immediately reflected in the shadow. If the primary database file becomes unavailable for some
reason, the DBMS will switch to the shadow.

Data Definition (DDL) Statements

74

This section describes how to create and delete shadow files.

CREATE SHADOW

Used for: Creating a shadow for the current database

Available in: DSQL, ESQL

Syntax:

CREATE SHADOW sh_num [AUTO | MANUAL] [CONDITIONAL]
'filepath' [LENGTH [=] num [PAGE[S]]]
[<secondary_file> ...];

<secondary_file> ::=
 FILE 'filepath'
 [STARTING [AT [PAGE]] pagenum]
 [LENGTH [=] num [PAGE[S]]]

Table 5.3. CREATE SHADOW Statement Parameters

Parameter Description

sh_num Shadow number—a positive number identifying the shadow set

filepath
The name of the shadow file and the path to it, in accord with the rules of the op-
erating system

num Maximum shadow size, in pages

secondary_file Secondary file specification

page_num The number of the page at which the secondary shadow file should start

The CREATE SHADOW statement creates a new shadow. The shadow starts duplicating the database right at the
moment it is created. It is not possible for a user to connect to a shadow.

Like a database, a shadow may be multi-file. The number and size of a shadow's files are not related to the
number and size of the files of database it is shadowing.

The page size for shadow files is set to be equal to the database page size and cannot be changed.

If a calamity occurs involving the original database, the system converts the shadow to a copy of the database
and switches to it. The shadow is then unavailable. What happens next depends on the MODE option.

AUTO | MANUAL Modes

When a shadow is converted to a database, it becomes unavailable. A shadow might alternatively become un-
available because someone accidentally deletes its file, or the disk space where the shadow files are stored is
exhausted or is itself damaged.

Data Definition (DDL) Statements

75

• If the AUTO mode is selected (the default value), shadowing ceases automatically, all references to it are
deleted from the database header and the database continues functioning normally.

If the CONDITIONAL option was set, the system will attempt to create a new shadow to replace the lost one.
It does not always succeed, however, and a new one may need to be created manually.

• If the MANUAL mode attribute is set when the shadow becomes unavailable, all attempts to connect to the
database and to query it will produce error messages. The database will remain inaccessible until either the
shadow again becomes available or the database administrator deletes it using the DROP SHADOW statement.
MANUAL should be selected if continuous shadowing is more important than uninterrupted operation of
the database.

Options for CREATE SHADOW

Optional LENGTH: Clause specifying the maximum size of the primary or secondary shadow file in pages.
The LENGTH value does not affect the size of the only shadow file, nor the last if it is a set. The last (or only)
file will keep automatically increasing in size as long as it is necessary.

STARTING AT: Clause specifying the shadow page number at which the next shadow file should start. The
system will start adding new data to the next shadow file when the previous file is filled with data up to the
specified page number.

Only administrators have the authority to use CREATE SHADOW.

Tip

You can verify the sizes, names and location of the shadow files by connecting to the database using isql and
running the command SHOW DATABASE;

Examples Using CREATE SHADOW:

1. Creating a shadow for the current database as “shadow number 1”:

CREATE SHADOW 1 'g:\data\test.shd';

2. Creating a multi-file shadow for the current database as “shadow number 2”:

CREATE SHADOW 2 'g:\data\test.sh1'
LENGTH 8000 PAGES
FILE 'g:\data\test.sh2';

See also: CREATE DATABASE, DROP SHADOW

DROP SHADOW

Used for: Deleting a shadow from the current database

Data Definition (DDL) Statements

76

Available in: DSQL, ESQL

Syntax:

DROP SHADOW sh_num

Table 5.4. DROP SHADOW Statement Parameter

Parameter Description

sh_num Shadow number—a positive number identifying the shadow set

The DROP SHADOW statement deletes the specified shadow for the database one is connected to. When a shadow
is dropped, all files related to it are deleted and shadowing to the specified sh_num ceases.

Only administrators have the authority to use DROP SHADOW.

Example of Dropping a Shadow: Deleting “shadow number 1”.

DROP SHADOW 1;

See also: CREATE SHADOW

DOMAIN

Domain is one of the object types in a relational database. A domain is created as a specific data type with some
attributes attached to it. Once it has been defined in the database, it can be reused repeatedly to define table
columns, PSQL arguments and PSQL local variables. Those objects inherit all of the attributes of the domain.
Some attributes can be overriden when the new object is defined, if required.

This section describes the syntax of statements used to create, modify and delete domains. A detailed description
of domains and their usage can be found in Custom Data Types—Domains.

CREATE DOMAIN

Used for: Creating a new domain

Available in: DSQL, ESQL

Syntax:

CREATE DOMAIN name [AS] <datatype>

Data Definition (DDL) Statements

77

[DEFAULT {literal | NULL | <context_var>}]
[NOT NULL] [CHECK (<dom_condition>)]
[COLLATE collation_name];

<datatype> ::=
 {SMALLINT | INTEGER | BIGINT} [<array_dim>]
 | {FLOAT | DOUBLE PRECISION} [<array_dim>]
 | {DATE | TIME | TIMESTAMP} [<array_dim>]
 | {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]
 | {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(size)]
 [<array_dim>] [CHARACTER SET charset_name]
 | {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING]
 [(size)] [<array_dim>]
 | BLOB [SUB_TYPE {subtype_num | subtype_name}]
 [SEGMENT SIZE seglen] [CHARACTER SET charset_name]
 | BLOB [(seglen [, subtype_num])]

<array_dim> ::= [[m:]n [,[m:]n ...]]

<dom_condition> ::=
 <val> <operator> <val>
 | <val> [NOT] BETWEEN <val> AND <val>
 | <val> [NOT] IN (<val> [, <val> ...] | <select_list>)
 | <val> IS [NOT] NULL
 | <val> IS [NOT] DISTINCT FROM <val>
 | <val> [NOT] CONTAINING <val>
 | <val> [NOT] STARTING [WITH] <val>
 | <val> [NOT] LIKE <val> [ESCAPE <val>]
 | <val> [NOT] SIMILAR TO <val> [ESCAPE <val>]
 | <val> <operator> {ALL | SOME | ANY} (<select_list>)
 | [NOT] EXISTS (<select_expr>)
 | [NOT] SINGULAR (<select_expr>)
 | (<dom_condition>)
 | NOT <dom_condition>
 | <dom_condition> OR <dom_condition>
 | <dom_condition> AND <dom_condition>

<operator> ::=
 <> | != | ^= | ~= | = | < | > | <= | >= | !< | ^< | ~< | !> | ^> | ~>

<val> ::=
 VALUE
 | literal
 | <context_var>
 | <expression>
 | NULL
 | NEXT VALUE FOR genname
 | GEN_ID(genname, <val>)
 | CAST(<val> AS <datatype>)
 | (<select_one>)
 | func([<val> [, <val> ...]])

Table 5.5. CREATE DOMAIN Statement Parameters

Parameter Description

name Domain name consisting of up to 31 characters

Data Definition (DDL) Statements

78

Parameter Description

datatype SQL data type

literal A literal value that is compatible with datatype

context_var Any context variable whose type is compatible with datatype

dom_condition Domain condition

collation_name
Name of a collation sequence that is valid for charset_name, if it is sup-
plied with datatype or, otherwise, is valid for the default character set of the
database

array_dim Array dimensions

m, n INTEGER numbers defining the index range of an array dimension

precision
The total number of significant digits that a value of the datatype can hold
(1..18)

scale The number of digits after the decimal point (0..precision)

size The maximum size of a string in characters

charset_name
The name of a valid character set, if the character set of the domain is to be dif-
ferent to the default character set of the database

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

select_one A scalar SELECT statement—selecting one column and returning only one row

select_list A SELECT statement selecting one column and returning zero or more rows

select_expr
A SELECT statement selecting one or more columns and returning zero or more
rows

expression An expression resolving to a value that is compatible with datatype

genname Sequence (generator) name

func Internal function or UDF

The CREATE DOMAIN statement creates a new domain.

Any SQL data type can be specified as the domain type.

Type-specific Details

ARRAY Types:

• If the domain is to be an array, the base type can be any SQL data type except BLOB and ARRAY.
• The dimensions of the array are specified between square brackets. (In the Syntax block, these brackets appear

in boldface to distinguish them from the square brackets that identify optional syntax elements.)

Data Definition (DDL) Statements

79

• For each array dimension, one or two integer numbers define the lower and upper boundaries of its index
range:
- By default, arrays are 1-based. The lower boundary is implicit and only the upper boundary need be

specified. A single number smaller than 1 defines the range num..1 and a number greater than 1 defines
the range 1..num.

- Two numbers separated by a colon (':') and optional whitespace, the second greater than the first, can be
used to define the range explicitly. One or both boundaries can be less than zero, as long as the upper
boundary is greater than the lower.

• When the array has multiple dimensions, the range definitions for each dimension must be separated by
commas and optional whitespace.

• Subscripts are validated only if an array actually exists. It means that no error messages regarding invalid
subscripts will be returned if selecting a specific element returns nothing or if an array field is NULL.

CHARACTER Types: You can use the CHARACTER SET clause to specify the character set for the CHAR,
VARCHAR and BLOB (SUB_TYPE TEXT) types. If the character set is not specified, the character set specified
as DEFAULT CHARACTER SET in creating the database will be used. If no character set was specified then, the
character set NONE is applied by default when you create a character domain.

Warning

With character set NONE, character data are stored and retrieved the way they were submitted. Data in any
encoding can be added to a column based on such a domain, but it is impossible to add this data to a column with
a different encoding. Because no transliteration is performed between the source and destination encodings,
errors may result.

DEFAULT Clause: The optional DEFAULT clause allows you to specify a default value for the domain. This
value will be added to the table column that inherits this domain when the INSERT statement is executed, if no
value is specified for it in the DML statement. Local variables and arguments in PSQL modules that reference
this domain will be initialized with the default value. For the default value, use a literal of a compatible type
or a context variable of a compatible type.

NOT NULL Constraint: Columns and variables based on a domain with the NOT NULL constraint will be
prevented from being written as NULL, i.e., a value is required.

Caution

When creating a domain, take care to avoid specifying limitations that would contradict one another. For in-
stance, NOT NULL and DEFAULT NULL are contradictory.

CHECK Constraint[s]: The optional CHECK clause specifies constraints for the domain. A domain constraint
specifies conditions that must be satisfied by the values of table columns or variables that inherit from the
domain. A condition must be enclosed in parentheses. A condition is a logical expression (also called a predicate)
that can return the Boolean results TRUE, FALSE and UNKNOWN. A condition is considered satisfied if the
predicate returns the value TRUE or “unknown value” (equivalent to NULL). If the predicate returns FALSE, the
condition for acceptance is not met.

VALUE Keyword: The keyword VALUE in a domain constraint substitutes for the table column that is based on
this domain or for a variable in a PSQL module. It contains the value assigned to the variable or the table column.
VALUE can be used anywhere in the CHECK constraint, though it is usually used in the left part of the condition.

COLLATE: The optional COLLATE clause allows you to specify the collation sequence if the domain is based
on one of the string data types, including BLOBs with text subtypes. If no collation sequence is specified, the
collation sequence will be the one that is default for the specified character set at the time the domain is created.

Data Definition (DDL) Statements

80

Any user connected to the database can create a domain.

CREATE DOMAIN Examples

1. Creating a domain that can take values greater than 1,000, with a default value of 10,000.

CREATE DOMAIN CUSTNO AS
INTEGER DEFAULT 10000
CHECK (VALUE > 1000);

2. Creating a domain that can take the values 'Yes' and 'No' in the default character set specified during the
creation of the database.

CREATE DOMAIN D_BOOLEAN AS
CHAR(3) CHECK (VALUE IN ('Yes', 'No'));

3. Creating a domain with the UTF8 character set and the UNICODE_CI_AI collation sequence.

CREATE DOMAIN FIRSTNAME AS
VARCHAR(30) CHARACTER SET UTF8
COLLATE UNICODE_CI_AI;

4. Creating a domain of the DATE type that will not accept NULL and uses the current date as the default value.

CREATE DOMAIN D_DATE AS
DATE DEFAULT CURRENT_DATE
NOT NULL;

5. Creating a domain defined as an array of 2 elements of the NUMERIC(18, 3) type. The starting array index
is 1.

CREATE DOMAIN D_POINT AS
NUMERIC(18, 3) [2];

Note

Domains defined over an array type may be used only to define table columns. You cannot use array
domains to define local variables in PSQL modules.

6. Creating a domain whose elements can be only country codes defined in the COUNTRY table.

CREATE DOMAIN D_COUNTRYCODE AS CHAR(3)
CHECK (EXISTS(SELECT * FROM COUNTRY
 WHERE COUNTRYCODE = VALUE));

Data Definition (DDL) Statements

81

Note

The example is given only to show the possibility of using predicates with queries in the domain test
condition. It is not recommended to create this style of domain in practice unless the lookup table contains
data that are never deleted.

See also: ALTER DOMAIN, DROP DOMAIN

ALTER DOMAIN

Used for: Altering the current attributes of a domain or renaming it

Available in: DSQL, ESQL

Syntax:

ALTER DOMAIN domain_name
 [TO <new_name>]
 [TYPE <datatype>]
 [SET DEFAULT {literal | NULL | <context_var>} | DROP DEFAULT]
 [ADD [CONSTRAINT] CHECK (<dom_condition>) | DROP CONSTRAINT]

<datatype> ::=
 {SMALLINT | INTEGER | BIGINT}
 | {FLOAT | DOUBLE PRECISION}
 | {DATE | TIME | TIMESTAMP}
 | {DECIMAL | NUMERIC} [(precision [, scale])]
 | {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(size)]
 [CHARACTER SET charset_name]
 | {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(size)]
 | BLOB [SUB_TYPE {subtype_num | subtype_name}]
 [SEGMENT SIZE seglen] [CHARACTER SET charset_name]
 | BLOB [(seglen [, subtype_num])]

<dom_condition> ::=
 <val> <operator> <val>
 | <val> [NOT] BETWEEN <val> AND <val>
 | <val> [NOT] IN (<val> [, <val> ...] | <select_list>)
 | <val> IS [NOT] NULL
 | <val> IS [NOT] DISTINCT FROM <val>
 | <val> [NOT] CONTAINING <val>
 | <val> [NOT] STARTING [WITH] <val>
 | <val> [NOT] LIKE <val> [ESCAPE <val>]
 | <val> [NOT] SIMILAR TO <val> [ESCAPE <val>]
 | <val> <operator> {ALL | SOME | ANY} (<select_list>)
 | [NOT] EXISTS (<select_expr>)
 | [NOT] SINGULAR (<select_expr>)
 | (<dom_condition>)
 | NOT <dom_condition>
 | <dom_condition> OR <dom_condition>
 | <dom_condition> AND <dom_condition>

Data Definition (DDL) Statements

82

<operator> ::=
 <> | != | ^= | ~= | = | < | > | <= | >= | !< | ^< | ~< | !> | ^> | ~>

<val> ::=
 VALUE
 | literal
 | <context_var>
 | <expression>
 | NULL
 | NEXT VALUE FOR genname
 | GEN_ID(genname, <val>)
 | CAST(<val> AS <datatype>)
 | (<select_one>)
 | func([<val> [, <val> ...]])

Table 5.6. ALTER DOMAIN Statement Parameters

Parameter Description

new_name New name for domain, consisting of up to 31 characters

datatype SQL data type

literal A literal value that is compatible with datatype

context_var Any context variable whose type is compatible with datatype

precision
The total number of significant digits that a value of the datatype can hold
(1..18)

scale The number of digits after the decimal point (0..precision)

size The maximum size of a string in characters

charset_name
The name of a valid character set, if the character set of the domain is to be
changed

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

select_one A scalar SELECT statement—selecting one column and returning only one row

select_list A SELECT statement selecting one column and returning zero or more rows

select_expr
A SELECT statement selecting one or more columns and returning zero or more
rows

expression An expression resolving to a value that is compatible with datatype

genname Sequence (generator) name

func Internal function or UDF

The ALTER DOMAIN statement enables changes to the current attributes of a domain, including its name. You
can make any number of domain alterations in one ALTER DOMAIN statement.

Data Definition (DDL) Statements

83

TO <name>: Use the TO clause to rename the domain, as long as there are no dependencies on the domain,
i.e. table columns, local variables or procedure arguments referencing it.

SET DEFAULT: With the SET DEFAULT clause you can set a new default value. If the domain already has
a default value, there is no need to delete it first—it will be replaced by the new one.

DROP DEFAULT: Use this clause to delete a previously specified default value and replace it with NULL.

ADD CONSTRAINT CHECK: Use the ADD CONSTRAINT CHECK clause to add a CHECK constraint to the
domain. If the domain already has a CHECK constraint, it will have to be deleted first, using an ALTER DOMAIN
statement that includes a DROP CONSTRAINT clause.

TYPE: The TYPE clause is used to change the data type of the domain to a different, compatible one. The
system will forbid any change to the type that could result in data loss. An example would be if the number of
characters in the new type were smaller than in the existing type.

Important

When you alter the attributes of a domain, existing PSQL code may become invalid. For information on how
to detect it, read the piece entitled The RDB$VALID_BLR Field in Appendix A.

Any user connected to the database can alter a domain, provided it is not prevented by dependencies from objects
to which that user does not have sufficient privileges.

What ALTER DOMAIN Cannot Alter

• If the domain was declared as an array, it is not possible to change its type or its dimensions; nor can any
other type be changed to an ARRAY type.

• In Firebird 2.5 and lower, the NOT NULL constraint can be neither enabled nor disabled for a domain.
• There is no way to change the default collation without dropping the domain and recreating it with the desired

attributes.

ALTER DOMAIN Examples

1. Changing the data type to INTEGER and setting or changing the default value to 2,000:

ALTER DOMAIN CUSTNO
 TYPE INTEGER
 SET DEFAULT 2000;

2. Renaming a domain.

ALTER DOMAIN D_BOOLEAN TO D_BOOL;

3. Deleting the default value and adding a constraint for the domain:

Data Definition (DDL) Statements

84

ALTER DOMAIN D_DATE
 DROP DEFAULT
 ADD CONSTRAINT CHECK (VALUE >= date '01.01.2000');

4. Changing the CHECK constraint:

ALTER DOMAIN D_DATE
 DROP CONSTRAINT;

ALTER DOMAIN D_DATE
 ADD CONSTRAINT CHECK
 (VALUE BETWEEN date '01.01.1900' AND date '31.12.2100');

5. Changing the data type to increase the permitted number of characters:

ALTER DOMAIN FIRSTNAME
 TYPE VARCHAR(50) CHARACTER SET UTF8;

See also: CREATE DOMAIN, DROP DOMAIN

DROP DOMAIN

Used for: Deleting an existing domain

Available in: DSQL, ESQL

Syntax:

DROP DOMAIN domain_name

The DROP DOMAIN statement deletes a domain that exists in the database. It is not possible to delete a domain
if it is referenced by any database table columns or used in any PSQL module. In order to delete a domain that is
in use, all columns in all tables that refer to the domain will have to be dropped and all references to the domain
will have to be removed from PSQL modules.

Any user connected to the database can drop a domain.

Example

Deleting the COUNTRYNAME domain:

DROP DOMAIN COUNTRYNAME;

See also: CREATE DOMAIN, ALTER DOMAIN

Data Definition (DDL) Statements

85

TABLE

As a relational DBMS, Firebird stores data in tables. A table is a flat, two-dimensional structure containing any
number of rows. Table rows are often called records.

All rows in a table have the same structure and consist of columns. Table columns are often called fields. A table
must have at least one column. Each column contains a single type of SQL data.

This section describes how to create, alter and delete tables in a database.

CREATE TABLE

Used for: creating a new table (relation)

Available in: DSQL, ESQL

Syntax:

CREATE [GLOBAL TEMPORARY] TABLE tablename
 [EXTERNAL [FILE] '<filespec>']
 (<col_def> [, {<col_def> | <tconstraint>} ...])
 [ON COMMIT {DELETE | PRESERVE} ROWS];

<col_def> ::= <regular_col_def> | <computed_col_def>

<regular_col_def> ::=
 colname {<datatype> | domainname}
 [DEFAULT {literal | NULL | <context_var>}]
 [NOT NULL]
 [<col_constraint>]
 [COLLATE collation_name]

<computed_col_def> ::=
 colname [<datatype>]
 {COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<datatype> ::=
 {SMALLINT | INTEGER | BIGINT} [<array_dim>]
 | {FLOAT | DOUBLE PRECISION} [<array_dim>]
 | {DATE | TIME | TIMESTAMP} [<array_dim>]
 | {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]
 | {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(size)]
 [<array_dim>] [CHARACTER SET charset_name]
 | {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING]
 [(size)] [<array_dim>]
 | BLOB [SUB_TYPE {subtype_num | subtype_name}]
 [SEGMENT SIZE seglen] [CHARACTER SET charset_name]
 | BLOB [(seglen [, subtype_num])]

<array_dim> ::= [[m:]n [, [m:]n ...]]

Data Definition (DDL) Statements

86

<col_constraint> ::=
 [CONSTRAINT constr_name]
 { PRIMARY KEY [<using_index>]
 | UNIQUE [<using_index>]
 | REFERENCES other_table [(colname)] [<using_index>]
 [ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 [ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 | CHECK (<check_condition>) }

<tconstraint> ::=
 [CONSTRAINT constr_name]
 { PRIMARY KEY (col_list) [<using_index>]
 | UNIQUE (col_list) [<using_index>]
 | FOREIGN KEY (col_list)
 REFERENCES other_table [(col_list)] [<using_index>]
 [ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 [ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 | CHECK (<check_condition>) }"

<col_list> ::= colname [, colname ...]

<using_index> ::= USING
 [ASC[ENDING] | DESC[ENDING]] INDEX indexname

<check_condition> ::=
 <val> <operator> <val>
 | <val> [NOT] BETWEEN <val> AND <val>
 | <val> [NOT] IN (<val> [, <val> ...] | <select_list>)
 | <val> IS [NOT] NULL
 | <val> IS [NOT] DISTINCT FROM<val>
 | <val> [NOT] CONTAINING <val>
 | <val> [NOT] STARTING [WITH] <val>
 | <val> [NOT] LIKE <val> [ESCAPE <val>]
 | <val> [NOT] SIMILAR TO <val> [ESCAPE <val>]
 | <val> <operator> {ALL | SOME | ANY} (<select_list>)
 | [NOT] EXISTS (<select_expr>)
 | [NOT] SINGULAR (<select_expr>)
 | (<check_condition>)
 | NOT <check_condition>
 | <check_condition> OR <check_condition>
 | <check_condition> AND <check_condition>

<operator> ::=
<> | != | ^= | ~= | = | < | > | <= | >= | !< | ^< | ~< | !> | ^> | ~>

<val> ::=
 colname [[<array_idx> [, <array_idx> ...]]]
 | literal
 | <context_var>
 | <expression>
 | NULL
 | NEXT VALUE FOR genname
 | GEN_ID(genname, <val>)
 | CAST(<val> AS <datatype>)
 | (<select_one>)
 | func([<val> [, <val> ...]])

Data Definition (DDL) Statements

87

Table 5.7. CREATE TABLE Statement Parameters

Parameter Description

tablename
Name (identifier) for the table. It may consist of up to 31 characters and must be
unique in the database.

filespec
File specification (only for external tables). Full file name and path, enclosed in
single quotes, correct for the local file system and located on a storage device
that is physically connected to Firebird's host computer.

colname
Name (identifier) for a column in the table. May consist of up to 31 characters
and must be unique in the table.

datatype SQL data type

col_constraint Column constraint

tconstraint Table constraint

constr_name The name (identifier) of a constraint. May consist of up to 31 characters.

other_table The name of the table referenced by the foreign key constraint

other_col The name of the column in other_table that is referenced by the foreign key

literal A literal value that is allowed in the given context

context_var Any context variable whose data type is allowed in the given context

check_condition
The condition applied to a CHECK constraint, that will resolve as either true,
false or NULL

collation Collation

array_dim Array dimensions

m, n INTEGER numbers defining the index range of an array dimension

precision
The total number of significant digits that a value of the datatype can hold
(1..18)

scale The number of digits after the decimal point (0..precision)

size The maximum size of a string in characters

charset_name
The name of a valid character set, if the character set of the column is to be dif-
ferent to the default character set of the database

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

select_one A scalar SELECT statement—selecting one column and returning only one row

select_list A SELECT statement selecting one column and returning zero or more rows

select_expr
A SELECT statement selecting one or more columns and returning zero or more
rows

Data Definition (DDL) Statements

88

Parameter Description

expression An expression resolving to a value that is is allowed in the given context

genname Sequence (generator) name

func Internal function or UDF

The CREATE TABLE statement creates a new table. Any user can create it and its name must be unique among
the names of all tables, views and stored procedures in the database.

A table must contain at least one column that is not computed and the names of columns must be unique in
the table.

A column must have either an explicit SQL data type, the name of a domain whose attributes will be copied for
the column, or be defined as COMPUTED BY an expression (a calculated field).

A table may have any number of table constraints, including none.

Making a Column Non-nullable

In Firebird, columns are nullable by default. The optional NOT NULL clause specifies that the column cannot
take NULL in place of a value.

Character Columns

You can use the CHARACTER SET clause to specify the character set for the CHAR, VARCHAR and BLOB (text
subtype) types. If the character set is not specified, the character set specified during the creation of the database
will be used by default. If no character set was specified during the creation of the database, the NONE character
set is applied by default. In this case, data is stored and retrieved the way it was submitted. Data in any encoding
can be added to such a column, but it is not possible to add this data to a column with a different encoding. No
transliteration is performed between the source and destination encodings, which may result in errors.

The optional COLLATE clause allows you to specify the collation sequence for character data types, including
BLOB SUB_TYPE TEXT. If no collation sequence is specified, the collation sequence that is default for the
specified character set during the creation of the column is applied by default.

Setting a DEFAULT Value

The optional DEFAULT clause allows you to specify the default value for the table column. This value will be
added to the column when an INSERT statement is executed if no value was specified for it and that column
was omitted from the INSERT command.

The default value can be a literal of a compatible type, a context variable that is type-compatible with the data
type of the column, or NULL, if the column allows it. If no default value is explicitly specified, NULL is implied.

An expression cannot be used as a default value.

Data Definition (DDL) Statements

89

Domain-based Columns

To define a column, you can use a previously defined domain. If the definition of a column is based on a domain,
it may contain a new default value, additional CHECK constraints and a COLLATE clause that will override
the values specified in the domain definition. The definition of such a column may contain additional column
constraints (for instance, NOT NULL), if the domain does not have it.

Important

It is not possible to define a domain-based column that is nullable if the domain was defined with the NOT
NULL attribute. If you want to have a domain that might be used for defining both nullable and non-nullable
columns and variables, it is better practice to make the domain nullable and apply NOT NULL in the downstream
column definitions and variable declarations.

Calculated Fields

Calculated fields can be defined with the COMPUTED [BY] or GENERATED ALWAYS AS clause (according
to the SQL:2003 standard). They mean the same. Describing the data type is not required (but possible) for
calculated fields, as the DBMS calculates and stores the appropriate type as a result of the expression analysis.
Appropriate operations for the data types included in an expression must be specified precisely.

If the data type is explicitly specified for a calculated field, the calculation result is converted to the specified
type. This means, for instance, that the result of a numeric expression could be rendered as a string.

In a query that selects a COMPUTED BY column, the expression is evaluated for each row of the selected data.

Tip

Instead of a computed column, in some cases it makes sense to use a regular column whose value is evaluated
in triggers for adding and updating data. It may reduce the performance of inserting/updating records, but it
will increase the performance of data selection.

Defining an ARRAY Column

• If the column is to be an array, the base type can be any SQL data type except BLOB and ARRAY.
• The dimensions of the array are specified between square brackets. (In the Syntax block these brackets appear

in boldface to distinguish them from the square brackets that identify optional syntax elements.)
• For each array dimension, one or two integer numbers define the lower and upper boundaries of its index

range:
- By default, arrays are 1-based. The lower boundary is implicit and only the upper boundary need be

specified. A single number smaller than 1 defines the range num..1 and a number greater than 1 defines
the range 1..num.

- Two numbers separated by a colon (':') and optional whitespace, the second greater than the first, can be
used to define the range explicitly. One or both boundaries can be less than zero, as long as the upper
boundary is greater than the lower.

• When the array has multiple dimensions, the range definitions for each dimension must be separated by
commas and optional whitespace.

• Subscripts are validated only if an array actually exists. It means that no error messages regarding invalid
subscripts will be returned if selecting a specific element returns nothing or if an array field is NULL.

Data Definition (DDL) Statements

90

Constraints

Four types of constraints can be specified. They are:

• Primary key (PRIMARY KEY)
• Unique key (UNIQUE)
• Foreign key (REFERENCES)
• CHECK constraint (CHECK)

Constraints can be specified at column level (“column constraints”) or at table level (“table constraints”). Ta-
ble-level constraints are needed when keys (uniqueness constraint, Primary Key, Foreign Key) are to be formed
across multiple columns and when a CHECK constraint involves other columns in the row besides the column
being defined. Syntax for some types of constraint may differ slightly according to whether the constraint is
being defined at column or table level.

• A column-level constraint is specified during a column definition, after all column attributes except COLLA-
TION are specified, and can involve only the column specified in that definition

• Table-level constraints are specified after all of the column definitions. They are a more flexible way to set
constraints, since they can cater for constraints involving multiple columns

• You can mix column-level and table-level constraints in the same CREATE TABLE statement

The system automatically creates the corresponding index for a primary key (PRIMARY KEY), a unique key
(UNIQUE) and a foreign key (REFERENCES for a column-level constraint, FOREIGN KEY REFERENCES for one
at the table level).

Names for Constraints and Their Indexes

Column-level constraints and their indexes are named automatically:

• The constraint name has the form INTEG_n, where nrepresents one or more numerals

• The index name has the form RDB$PRIMARYn (for a primary key index), RDB$FOREIGNn (for a foreign key
index) or RDB$n (for a unique key index). Again, n represents one or more numerals

Automatic naming of table-level constraints and their indexes follows the same pattern, unless the names are
supplied explicitly.

Named Constraints

A constraint can be named explicitly if the CONSTRAINT clause is used for its definition. While the CON-
STRAINT clause is optional for defining column-level constraints, it is mandatory for table-level. By default,
the constraint index will have the same name as the constraint. If a different name is wanted for the constraint
index, a USING clause can be included.

The USING Clause

The USING clause allows you to specify a user-defined name for the index that is created automatically and,
optionally, to define the direction of the index—either ascending (the default) or descending.

Data Definition (DDL) Statements

91

PRIMARY KEY

The PRIMARY KEY constraint is built on one or more key columns, each column having the NOT NULL constraint
specified for it. The values across the key columns in any row must be unique. A table can have only one primary
key.

• A single-column Primary Key can be defined as a column level or a table-level constraint
• A multi-column Primary Key must be specified as a table-level constraint

The UNIQUE Constraint

The UNIQUE constraint defines the requirement of content uniqueness for the values in a key throughout the
table. A table can contain any number of unique key constraints.

As with the Primary Key, the Unique constraint can be multi-column. If so, it must be specified as a table-level
constraint.

NULL in Unique Keys

Firebird's SQL-99-compliant rules for UNIQUE constraints allow one or more NULLs in a column with a UNIQUE
constraint. That makes it possible to define a UNIQUEconstraint on a column that does not have the NOT NULL
constraint.

For UNIQUE keys that span multiple columns, the logic is a little complicated:

• Multiple rows having null in all the columns of the key are allowed
• Multiple rows having keys with different combinations of nulls and non-null values are allowed
• Multiple rows having the same key columns null and the rest filled with non-null values are allowed, provided

the values differ in at least one column
• Multiple rows having the same key columns null and the rest filled with non-null values that are the same

in every column will violate the constraint
The rules for uniqueness can be summarised thus:

Illustration:

RECREATE TABLE t(x int, y int, z int, unique(x,y,z));
INSERT INTO t values(NULL, 1, 1);
INSERT INTO t values(NULL, NULL, 1);
INSERT INTO t values(NULL, NULL, NULL);
INSERT INTO t values(NULL, NULL, NULL); -- Permitted
INSERT INTO t values(NULL, NULL, 1); -- Not permitted

FOREIGN KEY

A Foreign Key ensures that the participating column(s) can contain only values that also exist in the referenced
column(s) in the master table. These referenced columns are often called target columns. They must be the

Data Definition (DDL) Statements

92

primary key or a unique key in the target table. They need not have a NOT NULL constraint defined on them
although, if they are the primary key, they will, of course, have that constraint.

The foreign key columns in the referencing table itself do not require a NOT NULL constraint.

A single-column Foreign Key can be defined in the column declaration, using the keyword REFERENCES:

... ,
ARTIFACT_ID INTEGER REFERENCES COLLECTION (ARTIFACT_ID),

The column ARTIFACT_ID in the example references a column of the same name in the table COLLECTIONS.

Both single-column and multi-column foreign keys can be defined at the table level. For a multi-column Foreign
Key, the table-level declaration is is the only option. This method also enables the provision of an optional name
for the constraint:

...
CONSTRAINT FK_ARTSOURCE FOREIGN KEY(DEALER_ID, COUNTRY)
 REFERENCES DEALER (DEALER_ID, COUNTRY),

Notice that the column names in the referenced (“master”) table may differ from those in the Foreign Key.

Note

If no target columns are specified, the Foreign Key automatically references the target table's Primary Key.

Foreign Key Actions

With the sub-clauses ON UPDATE and ON DELETE it is possible to specify an action to be taken on the affected
foreign key column(s) when referenced values in the master table are changed:

• NO ACTION (the default) - Nothing is done

• CASCADE - The change in the master table is propagated to the corresponding row(s) in the child table. If
a key value changes, the corresponding key in the child records changes to the new value; if the master row
is deleted, the child records are deleted.

• SET DEFAULT - The Foreign Key columns in the affected rows will be set to their default values as they
were when the foreign key constraint was defined.

• SET NULL - The Foreign Key columns in the affected rows will be set to NULL.
The specified action, or the default NO ACTION, could cause a Foreign Key column to become invalid. For
example, it could get a value that is not present in the master table, or it could become NULL while the column
has a NOT NULL constraint. Such conditions will cause the operation on the master table to fail with an error
message.

Example:

...

Data Definition (DDL) Statements

93

 CONSTRAINT FK_ORDERS_CUST
 FOREIGN KEY (CUSTOMER) REFERENCES CUSTOMERS (ID)
 ON UPDATE CASCADE ON DELETE SET NULL

CHECK Constraint

The CHECK constraint defines the condition the values inserted in this column must satisfy. A condition is
a logical expression (also called a predicate) that can return the TRUE, FALSE and UNKNOWN values. A
condition is considered satisfied if the predicate returns TRUE or value UNKNOWN (equivalent to NULL). If
the predicate returns FALSE, the value will not be accepted. This condition is used for inserting a new row into
the table (the INSERT statement) and for updating the existing value of the table column (the UPDATE statement)
and also for statements where one of these actions may take place (UPDATE OR INSERT, MERGE).

Important

A CHECK constraint on a domain-based column does not replace an existing CHECK condition on the domain,
but becomes an addition to it. The Firebird engine has no way, during definition, to verify that the extra CHECK
does not conflict with the existing one.

CHECK conditions—whether defined at table level or column level— refer to table columns by their names.
The use of the keyword VALUE as a placeholder, as in domain CHECK constraints, is not valid in the context
of defining column constraints.

Example: with two column-level constraints and one at table-level:

CREATE TABLE PLACES (
 ...
 LAT DECIMAL(9, 6) CHECK (ABS(LAT) <= 90),
 LON DECIMAL(9, 6) CHECK (ABS(LON) <= 180),
 ...
 CONSTRAINT CHK_POLES CHECK (ABS(LAT) < 90 OR LON = 0)
);

Global Temporary Tables (GTT)

Global temporary tables have persistent metadata, but their contents are transaction-bound (the default) or con-
nection-bound. Every transaction or connection has its own private instance of a GTT, isolated from all the
others. Instances are only created if and when the GTT is referenced. They are destroyed when the transaction
ends or on disconnection. The metadata of a GTT can be modified or removed using ALTER TABLE and DROP
TABLE, respectively.

Syntax:

CREATE GLOBAL TEMPORARY TABLE name
 (<column_def> [, {<column_def> | <table_constraint>} ...])
 [ON COMMIT {DELETE | PRESERVE} ROWS]

Data Definition (DDL) Statements

94

Syntax notes

• ON COMMIT DELETE ROWS creates a transaction-level GTT (the default), ON COMMIT PRESERVE ROWS
a connection-level GTT

• An EXTERNAL [FILE] clause is not allowed in the definition of a global temporary table

Restrictions on GTTs

GTTs can be “dressed up” with all the features and paraphernalia of ordinary tables (keys, references, indexes,
triggers and so on) but there are a few restrictions:

• GTTs and regular tables cannot reference one another
• A connection-bound (“PRESERVE ROWS”) GTT cannot reference a transaction-bound (“DELETE

ROWS”) GTT
• Domain constraints cannot reference any GTT
• The destruction of a GTT instance at the end of its life cycle does not cause any BEFORE/AFTER delete

triggers to fire

Tip

In an existing database, it is not always easy to distinguish a regular table from a GTT, or a transaction-level
GTT from a connection-level GTT. Use this query to find out what type of table you are looking at:

select t.rdb$type_name
 from rdb$relations r
 join rdb$types t on r.rdb$relation_type = t.rdb$type
 where t.rdb$field_name = 'RDB$RELATION_TYPE'
 and r.rdb$relation_name = 'TABLENAME'

For an overview of the types of all the relations in the database:

 select r.rdb$relation_name, t.rdb$type_name
 from rdb$relations r
 join rdb$types t on r.rdb$relation_type = t.rdb$type
 where t.rdb$field_name = 'RDB$RELATION_TYPE'
 and coalesce (r.rdb$system_flag, 0) = 0

The RDB$TYPE_NAME field will show PERSISTENT for a regular table, VIEW
for a view, GLOBAL_TEMPORARY_PRESERVE for a connection-bound GTT and
GLOBAL_TEMPORARY_DELETE for a transaction_bound GTT.

External Tables

The optional EXTERNAL [FILE] clause specifies that the table is stored outside the database in an external text
file of fixed-length records. The columns of a table stored in an external file can be of any type except BLOB or
ARRAY, although for most purposes, only columns of CHAR types would be useful.

All you can do with a table stored in an external file is insert new rows (INSERT) and query the data (SELECT).
Updating existing data (UPDATE) and deleting rows (DELETE) are not possible.

A file that is defined as an external table must be located on a storage device that is physically present on
the machine where the Firebird server runs and, if the parameter ExternalFileAccess in the firebird.conf

Data Definition (DDL) Statements

95

configuration file is Restrict, it must be in one of the directories listed there as the argument for Restrict.
If the file does not exist yet, Firebird will create it on first access.

Important

The ability to use external files for a table depends on the value set for the ExternalFileAccess parameter in
firebird.conf:

• If it is set to None (the default), any attempt to access an external file will be denied.

• The Restrict setting is recommended, for restricting external file access to directories created explicitly
for the purpose by the server administrator. For example:

- ExternalFileAccess = Restrict externalfiles will restrict access to a directory named
externalfiles directly beneath the Firebird root directory

- ExternalFileAccess = d:\databases\outfiles; e:\infiles will restrict access to just
those two directories on the Windows host server. Note that any path that is a network mapping will not
work. Paths enclosed in single or double quotes will not work, either.

• If this parameter is set to Full, external files may be accessed anywhere on the host file system. It creates
a security vulnerability and is not recommended.

External File Format

The “row” format of the external table is fixed length. There are no field delimiters: both field and row boundaries
are determined by maximum sizes, in bytes, of the field definitions. It is important to keep this in mind, both
when defining the structure of the external table and when designing an input file for an external table that is
to import data from another application. The ubiquitous “.csv” format, for example, is of no use as an input file
and cannot be generated directly into an external file.

The most useful data type for the columns of external tables is the fixed-length CHAR type, of suitable lengths
for the data they are to carry. Date and number types are easily cast to and from strings whereas, unless the
files are to be read by another Firebird database, the native data types will appear to external applications as
unparseable “alphabetti”.

Of course, there are ways to manipulate typed data so as to generate output files from Firebird that can be read
directly as input files to other applications, using stored procedures, with or without employing external tables.
Such techniques are beyond the scope of a language reference. Here, we provide some guidelines and tips for
producing and working with simple text files, since the external table feature is often used as an easy way to
produce or read transaction-independent logs that can be studied off-line in a text editor or auditing application.

Row Delimiters

Generally, external files are more useful if rows are separated by a delimiter, in the form of a “newline” sequence
that is recognised by reader applications on the intended platform. For most contexts on Windows, it is the two-
byte 'CRLF' sequence, carriage return (ASCII code decimal 13) and line feed (ASCII code decimal 10). On
POSIX, LF on its own is usual; for some MacOSX applications, it may be LFCR. There are various ways to
populate this delimiter column. In our example below, it is done by using a Before Insert trigger and the internal
function ASCII_CHAR.

External Table Example

For our example, we will define an external log table that might be used by an exception handler in a stored
procedure or trigger. The external table is chosen because the messages from any handled exceptions will be
retained in the log, even if the transaction that launched the process is eventually rolled back because of another,

Data Definition (DDL) Statements

96

unhandled exception. For demonstration purposes, it has just two data columns, a time stamp and a message.
The third column stores the row delimiter:

CREATE TABLE ext_log
 EXTERNAL FILE 'd:\externals\log_me.txt' (
 stamp CHAR (24),
 message CHAR(100),
 crlf CHAR(2)); -- for a Windows context
COMMIT;

Now, a trigger, to write the timestamp and the row delimiter each time a message is written to the file:

SET TERM ^;
CREATE TRIGGER bi_ext_log FOR ext_log
ACTIVE BEFORE INSERT
AS
BEGIN
 IF (new.stamp is NULL) then
 new.stamp = CAST (CURRENT_TIMESTAMP as CHAR(24));
 new.crlf = ASCII_CHAR(13) || ASCII_CHAR(10);
END ^
COMMIT ^
SET TERM ;^

Inserting some records (which could have been done by an exception handler or a fan of Shakespeare):

insert into ext_log (message)
values('Shall I compare thee to a summer''s day?');
insert into ext_log (message)
values('Thou art more lovely and more temperate')

The output:

2015-10-07 15:19:03.4110Shall I compare thee to a summer's day?
2015-10-07 15:19:58.7600Thou art more lovely and more temperate

CREATE TABLE Examples

1. Creating the COUNTRY table with the primary key specified as a column constraint.

CREATE TABLE COUNTRY (
 COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
 CURRENCY VARCHAR(10) NOT NULL);

2. Creating the STOCK table with the named primary key specified at the column level and the named unique
key specified at the table level.

CREATE TABLE STOCK (

Data Definition (DDL) Statements

97

 MODEL SMALLINT NOT NULL CONSTRAINT PK_STOCK PRIMARY KEY,
 MODELNAME CHAR(10) NOT NULL,
 ITEMID INTEGER NOT NULL,
 CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

3. Creating the JOB table with a primary key constraint spanning two columns, a foreign key constraint for
the COUNTRY table and a table-level CHECK constraint. The table also contains an array of 5 elements.

CREATE TABLE JOB (
 JOB_CODE JOBCODE NOT NULL,
 JOB_GRADE JOBGRADE NOT NULL,
 JOB_COUNTRY COUNTRYNAME,
 JOB_TITLE VARCHAR(25) NOT NULL,
 MIN_SALARY NUMERIC(18, 2) DEFAULT 0 NOT NULL,
 MAX_SALARY NUMERIC(18, 2) NOT NULL,
 JOB_REQUIREMENT BLOB SUB_TYPE 1,
 LANGUAGE_REQ VARCHAR(15) [1:5],
 PRIMARY KEY (JOB_CODE, JOB_GRADE),
 FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY)
 ON UPDATE CASCADE
 ON DELETE SET NULL,
 CONSTRAINT CHK_SALARY CHECK (MIN_SALARY < MAX_SALARY)
);

4. Creating the PROJECT table with primary, foreign and unique key constraints with custom index names
specified with the USING clause.

CREATE TABLE PROJECT (
 PROJ_ID PROJNO NOT NULL,
 PROJ_NAME VARCHAR(20) NOT NULL UNIQUE USING DESC INDEX IDX_PROJNAME,
 PROJ_DESC BLOB SUB_TYPE 1,
 TEAM_LEADER EMPNO,
 PRODUCT PRODTYPE,
 CONSTRAINT PK_PROJECT PRIMARY KEY (PROJ_ID) USING INDEX IDX_PROJ_ID,
 FOREIGN KEY (TEAM_LEADER) REFERENCES EMPLOYEE (EMP_NO)
 USING INDEX IDX_LEADER
);

5. Creating the SALARY_HISTORY table with two computed fields. The first one is declared according
to the SQL:2003 standard, while the second one is declared according to the traditional declaration of
computed fields in Firebird.

CREATE TABLE SALARY_HISTORY (
 EMP_NO EMPNO NOT NULL,
 CHANGE_DATE TIMESTAMP DEFAULT 'NOW' NOT NULL,
 UPDATER_ID VARCHAR(20) NOT NULL,
 OLD_SALARY SALARY NOT NULL,
 PERCENT_CHANGE DOUBLE PRECISION DEFAULT 0 NOT NULL,
 SALARY_CHANGE GENERATED ALWAYS AS
 (OLD_SALARY * PERCENT_CHANGE / 100),
 NEW_SALARY COMPUTED BY

Data Definition (DDL) Statements

98

 (OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100)
);

6. Creating a connection-scoped global temporary table.

CREATE GLOBAL TEMPORARY TABLE MYCONNGTT (
 ID INTEGER NOT NULL PRIMARY KEY,
 TXT VARCHAR(32),
 TS TIMESTAMP DEFAULT CURRENT_TIMESTAMP)
ON COMMIT PRESERVE ROWS;

7. Creating a transaction-scoped global temporary table that uses a foreign key to reference a connec-
tion-scoped global temporary table. The ON COMMIT sub-clause is optional because DELETE ROWS
is the default.

CREATE GLOBAL TEMPORARY TABLE MYTXGTT (
 ID INTEGER NOT NULL PRIMARY KEY,
 PARENT_ID INTEGER NOT NULL REFERENCES MYCONNGTT(ID),
 TXT VARCHAR(32),
 TS TIMESTAMP DEFAULT CURRENT_TIMESTAMP)
 ON COMMIT DELETE ROWS;

ALTER TABLE

Used for: altering the structure of a table.

Available in: DSQL, ESQL

Syntax:

ALTER TABLE tablename
<operation> [, <operation> ...]

<operation> ::= ADD <col_def>
 ADD <tconstraint>
 DROP colname
 DROP CONSTRAINT constr_name
 ALTER [COLUMN] colname <col_mod>

<col_def> ::= <regular_col_def> | <computed_col_def>

<regular_col_def> ::=
 colname {<datatype> | domainname}
 [DEFAULT {literal | NULL | <context_var>}]
 [NOT NULL]
 [<col_constraint>]
 [COLLATE collation_name]

<computed_col_def> ::=
 colname [<datatype>]

Data Definition (DDL) Statements

99

 {COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<col_mod> ::= <regular_col_mod> | <computed_col_mod>

<regular_col_mod> ::=
 TO newname
 | POSITION newpos
 | TYPE {<datatype> | domainname}
 | SET DEFAULT {literal | NULL | <context_var>}
 | DROP DEFAULT

<computed_col_mod> ::=
 TO newname
 | POSITION newpos
 | [TYPE <datatype>] {COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<datatype> ::=
 {SMALLINT | INTEGER | BIGINT} [<array_dim>]
 | {FLOAT | DOUBLE PRECISION} [<array_dim>]
 | {DATE | TIME | TIMESTAMP} [<array_dim>]
 | {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]
 | {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(size)]
 [<array_dim>] [CHARACTER SET charset_name]
 | {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING]
 [(size)] [<array_dim>]
 | BLOB [SUB_TYPE {subtype_num | subtype_name}]
 [SEGMENT SIZE seglen] [CHARACTER SET charset_name]
 | BLOB [(seglen [, subtype_num])]

<array_dim> ::= [[m]:n [,[m]:n ...]]

<col_constraint> ::=
 [CONSTRAINT constr_name]
 { PRIMARY KEY [<using_index>]
 | UNIQUE [<using_index>]
 | REFERENCES other_table [(colname)] [<using_index>]
 [ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 [ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 | CHECK (<check_condition>) }

<tconstraint> ::=
 [CONSTRAINT constr_name]
 { PRIMARY KEY (col_list) [<using_index>]
 | UNIQUE (col_list) [<using_index>]
 | FOREIGN KEY (col_list)
 REFERENCES other_table [(col_list)] [<using_index>]
 [ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 [ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 | CHECK (<check_condition>) }

<col_list> ::= colname [, colname ...]

<using_index> ::= USING
[ASC[ENDING] | DESC[ENDING]] INDEX indexname

<check_condition> ::=
 <val> <operator> <val>
 | <val> [NOT] BETWEEN <val> AND <val>

Data Definition (DDL) Statements

100

 | <val> [NOT] IN (<val> [, <val> ...] | <select_list>)
 | <val> IS [NOT] NULL
 | <val> IS [NOT] DISTINCT FROM <val>
 | <val> [NOT] CONTAINING <val>
 | <val> [NOT] STARTING [WITH] <val>
 | <val> [NOT] LIKE <val> [ESCAPE <val>]
 | <val> [NOT] SIMILAR TO <val> [ESCAPE <val>]
 | <val> <operator> {ALL | SOME | ANY} (<select_list>)
 | [NOT] EXISTS (<select_expr>)
 | [NOT] SINGULAR (<select_expr>)
 | (<search_condition>)
 | NOT <search_condition>
 | <search_condition> OR <search_condition>
 | <search_condition> AND <search_condition>

<operator> ::=
 <> | != | ^= | ~= | = | < | > | <= | >= | !< | ^< | ~< | !> | ^> | ~>

<val> ::=
 colname [[<array_idx> [, <array_idx> ...]]]
 | literal
 | <context_var>
 | <expression>
 | NULL
 | NEXT VALUE FOR genname
 | GEN_ID(genname, <val>)
 | CAST(<val> AS <datatype>)
 | (<select_one>)
 | func([<val> [, <val> ...]])

Table 5.8. ALTER TABLE Statement Parameters

Parameter Description

tablename Name (identifier) of the table

operation One of the available operations altering the structure of the table

colname
Name (identifier) for a column in the table, max. 31 characters. Must be unique
in the table.

newname
New name (identifier) for the column, max. 31 characters. Must be unique in the
table.

newpos
The new column position (an integer between 1 and the number of columns in
the table)

col_constraint Column constraint

tconstraint Table constraint

constr_name The name (identifier) of a constraint. May consist of up to 31 characters.

other_table The name of the table referenced by the foreign key constraint

literal A literal value that is allowed in the given context

context_var A context variable whose type is allowed in the given context

Data Definition (DDL) Statements

101

Parameter Description

check_condition
The condition of a CHECK constraint that will be satisfied if it evaluates to
TRUE or UNKNOWN/NULL

collation

Name of a collation sequence that is valid for charset_name, if it is sup-
plied with datatype or, otherwise, is valid for the default character set of the
database

array_dim Array dimensions

m, n INTEGER numbers defining the index range of an array dimension

precision
The total number of significant digits that a value of the datatype can hold
(1..18)

scale The number of digits after the decimal point (0..precision)

size The maximum size of a string in characters

charset_name
The name of a valid character set, if the character set of the column is to be dif-
ferent to the default character set of the database

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

select_one A scalar SELECT statement—selecting one column and returning only one row

select_list A SELECT statement selecting one column and returning zero or more rows

select_expr
A SELECT statement selecting one or more columns and returning zero or more
rows

expression An expression resolving to a value that is is allowed in the given context

genname Sequence (generator) name

func Internal function or UDF

The ALTER TABLE statement changes the structure of an existing table. With one ALTER TABLE statement it
is possible to perform multiple operations, adding/dropping columns and constraints and also altering column
specifications.

Multiple operations in an ALTER TABLE statement are separated with commas.

Version Count Increments

Some changes in the structure of a table increment the metadata change counter (“version count”) assigned to
every table. The number of metadata changes is limited to 255 for each table. Once the counter reaches the 255
limit, you will not be able to make any further changes to the structure of the table without resetting the counter.

To reset the metadata change counter: You should back up and restore the database using the gbak utility.

Data Definition (DDL) Statements

102

The ADD Clause

With the ADD clause you can add a new column or a new table constraint. The syntax for defining the column
and the syntax of defining the table constraint correspond with those described for CREATE TABLE statement.

Effect on Version Count:

• Each time a new column is added, the metadata change counter grows by one
• Adding a new table constraint does not increase the metadata change counter

Points to Be Aware of

1. Be careful about adding a new column with the NOT NULL constraint set. It may lead to breaking the
logical integrity of data, since you will have existing records containing NULL in a non-nullable column.
When adding a non-nullable column, it is recommended either to set a default value for it or to update the
column in existing rows with a non-null value.

2. When a new CHECK constraint is added, existing data is not tested for compliance. Prior testing of existing
data against the new CHECK expression is recommended.

The DROP Clause

The DROP <column name> clause deletes the specified column from the table. An attempt to drop a column
will fail if anything references it. Consider the following items as sources of potential dependencies:

• column or table constraints
• indexes
• stored procedures and triggers
• views

Effect on Version Count: Each time a column is dropped, the table's metadata change counter is increased
by one.

The DROP CONSTRAINT Clause

The DROP CONSTRAINT clause deletes the specified column-level or table-level constraint.

A PRIMARY KEY or UNIQUE key constraint cannot be deleted if it is referenced by a FOREIGN KEY constraint in
another table. It will be necessary to drop that FOREIGN KEY constraint before attempting to drop the PRIMARY
KEY or UNIQUE key constraint it references.

Effect on Version Count: Deleting a column constraint or a table constraint does not increase the metadata
change counter.

The ALTER [COLUMN] Clause

With the ALTER [COLUMN] clause, attributes of existing columns can be modified without the need to drop and
re-add the column. Permitted modifications are:

Data Definition (DDL) Statements

103

• change the name (does not affect the metadata change counter)

• change the data type (increases the metadata change counter by one)

• change the column position in the column list of the table (does not affect the metadata change counter)

• delete the default column value (does not affect the metadata change counter)

• set a default column value or change the existing default (does not affect the metadata change counter)

• change the type and expression for a computed column (does not affect the metadata change counter)

Renaming a Column: the TO Keyword

The TO keyword with a new identifier renames an existing column. The table must not have an existing column
that has the same identifier.

It will not be possible to change the name of a column that is included in any constraint: PRIMARY KEY, UNIQUE
key, FOREIGN KEY, column constraint or the CHECK constraint of the table.

Renaming a column will also be disallowed if the column is used in any trigger, stored procedure or view.

Changing the Data Type of a Column: the TYPE Keyword

The keyword TYPE changes the data type of an existing column to another, allowable type. A type change that
might result in data loss will be disallowed. As an example, the number of characters in the new type for a CHAR
or VARCHAR column cannot be smaller than the existing specification for it.

If the column was declared as an array, no change to its type or its number of dimensions is permitted.

The data type of a column that is involved in a foreign key, primary key or unique constraint cannot be changed
at all.

Changing the Position of a Column: the POSITION Keyword

The POSITION keyword changes the position of an existing column in the notional “left-to-right” layout of
the record.

Numbering of column positions starts at 1.

• If a position less than 1 is specified, an error message will be returned
• If a position number is greater than the number of columns in the table, its new position will be adjusted

silently to match the number of columns.

The DROP DEFAULT and SET DEFAULT Clauses

The optional DROP DEFAULT clause deletes the default value for the column if it was put there previously by
a CREATE TABLE or ALTER TABLE statement.

• If the column is based on a domain with a default value, the default value will revert to the domain default

Data Definition (DDL) Statements

104

• An execution error will be raised if an attempt is made to delete the default value of a column which has no
default value or whose default value is domain-based

The optional SET DEFAULT clause sets a default value for the column. If the column already has a default value,
it will be replaced with the new one. The default value applied to a column always overrides one inherited from
a domain.

The COMPUTED [BY] or GENERATED ALWAYS AS Clauses

The data type and expression underlying a computed column can be modified using a COMPUTED [BY] or
GENERATED ALWAYS AS clause in the ALTER TABLE ALTER [COLUMN] statement. Converting a regular
column to a computed one and vice versa are not permitted.

Attributes that Cannot Be Altered

The following alterations are not supported:

• Enabling or disabling the NOT NULL constraint on a column
• Changing the default collation for a character type column

Only the table owner and administrators have the authority to use ALTER TABLE.

Examples Using ALTER TABLE

1. Adding the CAPITAL column to the COUNTRY table.

ALTER TABLE COUNTRY
ADD CAPITAL VARCHAR(25);

2. Adding the CAPITAL column with the UNIQUE constraint and deleting the CURRENCY column.

ALTER TABLE COUNTRY
 ADD CAPITAL VARCHAR(25) NOT NULL UNIQUE,
 DROP CURRENCY;

3. Adding the CHK_SALARY check constraint and a foreign key to the JOB table.

ALTER TABLE JOB
ADD CONSTRAINT CHK_SALARY CHECK (MIN_SALARY < MAX_SALARY),
ADD FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY);

4. Setting default value for the MODEL field, changing the type of the ITEMID column and renaming the
MODELNAME column.

ALTER TABLE STOCK

Data Definition (DDL) Statements

105

ALTER COLUMN MODEL SET DEFAULT 1,
ALTER COLUMN ITEMID TYPE BIGINT,
ALTER COLUMN MODELNAME TO NAME;

5. Changing the computed columns NEW_SALARY and SALARY_CHANGE.

ALTER TABLE SALARY_HISTORY
ALTER NEW_SALARY GENERATED ALWAYS AS
 (OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100),
ALTER SALARY_CHANGE COMPUTED BY
 (OLD_SALARY * PERCENT_CHANGE / 100);

See also: CREATE TABLE, DROP TABLE, CREATE DOMAIN

DROP TABLE

Used for: deleting a table

Available in: DSQL, ESQL

Syntax:

drop table tablename;

Table 5.9. DROP TABLE Statement Parameter

Parameter Description

tablename Name (identifier) of the table

The DROP TABLE statement deletes an existing table. If the table has dependencies, the DROP TABLE statement
will fail with an execution error.

When a table is dropped, all triggers for its events and indexes built for its fields will be deleted as well.

Only the table owner and administrators have the authority to use DROP TABLE.

Example: Deleting the COUNTRY table.

DROP TABLE COUNTRY;

See also: CREATE TABLE, ALTER TABLE, RECREATE TABLE

RECREATE TABLE

Used for: creating a new table (relation) or recreating an existing one

Data Definition (DDL) Statements

106

Available in: DSQL

Syntax:

RECREATE [GLOBAL TEMPORARY] TABLE tablename
 [EXTERNAL [FILE] '<filespec>']
 (<col_def> [, {<col_def> | <tconstraint>} ...])
 [ON COMMIT {DELETE | PRESERVE} ROWS]

See the CREATE TABLE section for the full syntax of CREATE TABLE and descriptions of defining tables,
columns and constraints.

RECREATE TABLE creates or recreates a table. If a table with this name already exists, the RECREATE TABLE
statement will try to drop it and create a new one. Existing dependencies will prevent the statement from exe-
cuting.

Example: Creating or recreating the COUNTRY table.

RECREATE TABLE COUNTRY (
 COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
 CURRENCY VARCHAR(10) NOT NULL);

See also: CREATE TABLE, DROP TABLE

INDEX

An index is a database object used for faster data retrieval from a table or for speeding up the sorting of query. In-
dexes are used also to enforce the refererential integrity constraints PRIMARY KEY, FOREIGN KEY and UNIQUE.

This section describes how to create indexes, activate and deactivate them, delete them and collect statistics
(recalculate selectivity) for them.

CREATE INDEX

Used for: Creating an index for a table

Available in: DSQL, ESQL

Syntax:

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]]
INDEX indexname ON tablename
{(col [, col …]) | COMPUTED BY (<expression>)};

Data Definition (DDL) Statements

107

Table 5.10. CREATE INDEX Statement Parameters

Parameter Description

indexname Index name. It may consist of up to 31 characters

tablename The name of the table for which the index is to be built

col
Name of a column in the table. Columns of the types BLOB and ARRAY and
computed fields cannot be used in an index

expression
The expression that will compute the values for a computed index, also known
as an “expression index”

The CREATE INDEX statement creates an index for a table that can be used to speed up searching, sorting and
grouping. Indexes are created automatically in the process of defining constraints, such as primary key, foreign
key or unique constraints.

An index can be built on the content of columns of any data type except for BLOB and arrays. The name (iden-
tifier) of an index must be unique among all index names.

Key Indexes

When a primary key, foreign key or unique constraint is added to a table or column, an index with the same name
is created automatically, without an explicit directive from the designer. For example, the PK_COUNTRY
index will be created automatically when you execute and commit the following statement:

ALTER TABLE COUNTRY ADD CONSTRAINT PK_COUNTRY
 PRIMARY KEY (ID);

Unique Indexes

Specifying the keyword UNIQUE in the index creation statement creates an index in which uniqueness will be
enforced throughout the table. The index is referred to as a “unique index”. A unique index is not a constraint.

Unique indexes cannot contain duplicate key values (or duplicate key value combinations, in the case of com-
pound, or multi-column, or multi-segment) indexes. Duplicated NULLs are permitted, in accordance with the
SQL:99 standard, in both single-segment and multi-segment indexes.

Index Direction

All indexes in Firebird are uni-directional. An index may be constructed from the lowest value to the highest
(ascending order) or from the highest value to the lowest (descending order). The keywords ASC[ENDING] and
DESC[ENDING] are used to specify the direction of the index. The default index order is ASC[ENDING]. It is
quite valid to define both an ascending and a descending index on the same column or key set.

Tip

A descending index can be useful on a column that will be subjected to searches on the high values (“newest”,
maximum, etc.)

Data Definition (DDL) Statements

108

Computed (Expression) Indexes

In creating an index, you can use the COMPUTED BY clause to specify an expression instead of one or more
columns. Computed indexes are used in queries where the condition in a WHERE, ORDER BY or GROUP BY
clause exactly matches the expression in the index definition. The expression in a computed index may involve
several columns in the table.

Note

You can actually create a computed index on a computed field, but the index will never be used.

Limits on Indexes

Certain limits apply to indexes.

The maximum length of a key in an index is limited to ¼ of the page size.

Maximum Indexes per Table

The number of indexes that can be accommodated for each table is limited. The actual maximum for a specific
table depends on the page size and the number of columns in the indexes.

Table 5.11. Maximum Indexes per Table

Number of Indexes Depending on Column Count
Page Size

Single 2-Column 3-Column

4096 203 145 113

8192 408 291 227

16384 818 584 454

Character Index Limits

The maximum indexed string length is 9 bytes less than the maximum key length. The maximum indexable
string length depends on the page size and the character set.

Table 5.12. Maximum indexable (VAR)CHAR length

Maximum Indexable String Length by Charset Type
Page Size

1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char

4096 1015 507 338 253

Data Definition (DDL) Statements

109

Maximum Indexable String Length by Charset Type
Page Size

1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char

8192 2039 1019 679 509

16384 4087 2043 1362 1021

Only the table owner and administrators have the authority to use CREATE INDEX.

Examples Using CREATE INDEX

1. Creating an index for the UPDATER_ID table in the SALARY_HISTORY table

CREATE INDEX IDX_UPDATER
 ON SALARY_HISTORY (UPDATER_ID);

2. Creating an index with keys sorted in the descending order for the CHANGE_DATE column in the
SALARY_HISTORY table

CREATE DESCENDING INDEX IDX_CHANGE
 ON SALARY_HISTORY (CHANGE_DATE);

3. Creating a multi-segment index for the ORDER_STATUS, PAID columns in the SALES table

CREATE INDEX IDX_SALESTAT
 ON SALES (ORDER_STATUS, PAID);

4. Creating an index that does not permit duplicate values for the NAME column in the COUNTRY table

CREATE UNIQUE INDEX UNQ_COUNTRY_NAME
 ON COUNTRY (NAME);

5. Creating a computed index for the PERSONS table

CREATE INDEX IDX_NAME_UPPER ON PERSONS
 COMPUTED BY (UPPER (NAME));

An index like this can be used for a case-insensitive search:

SELECT *
 FROM PERSONS
 WHERE UPPER(NAME) STARTING WITH UPPER('Iv');

Data Definition (DDL) Statements

110

See also: ALTER INDEX, DROP INDEX

ALTER INDEX

Used for: Activating or deactivating an index; rebuilding an index

Available in: DSQL, ESQL

Syntax:

ALTER INDEX indexname {ACTIVE | INACTIVE};

Table 5.13. ALTER INDEX Statement Parameter

Parameter Description

indexname Index name

The ALTER INDEX statement activates or deactivates an index. There is no facility on this statement for altering
any attributes of the index.

• With the INACTIVE option, the index is switched from the active to inactive state. The effect is similar to the
DROP INDEX statement except that the index definition remains in the database. Altering a constraint index
to the inactive state is not permitted.

An active index can be deactivated if there are no queries using that index; otherwise, an “object in use”
error is returned.

Activating an inactive index is also safe. However, if there are active transactions modifying the table, the
transaction containing the ALTER INDEX statement will fail if it has the NOWAIT attribute. If the transaction
is in WAIT mode, it will wait for completion of concurrent transactions.

On the other side of the coin, if our ALTER INDEX succeeds and starts to rebuild the index at COMMIT, other
transactions modifying that table will fail or wait, according to their WAIT/NO WAIT attributes. The situation
is exactly the same for CREATE INDEX.

How is it Useful?

It might be useful to switch an index to the inactive state whilst inserting, updating or deleting a large batch
of records in the table that owns the index.

• With the ACTIVE option, if the index is in the inactive state, it will be switched to active state and the system
rebuilds the index.

How is it Useful?

Even if the index is active when ALTER INDEX ... ACTIVE is executed, the index will be rebuilt. Rebuilding
indexes can be a useful piece of houskeeping to do, occasionally, on the indexes of a large table in a database
that has frequent inserts, updates or deletes but is infrequently restored.

Data Definition (DDL) Statements

111

Use of ALTER INDEX on a Constraint Index

Altering the enforcing index of a PRIMARY KEY, FOREIGN KEY or UNIQUE constraint to INACTIVE is not
permitted. However, ALTER INDEX ... ACTIVE works just as well with constraint indexes as it does with others,
as an index rebuilding tool.

Only the table owner and administrators have the authority to use ALTER INDEX.

ALTER INDEX Examples:

1. Deactivating the IDX_UPDATER index

ALTER INDEX IDX_UPDATER INACTIVE;

2. Switching the IDX_UPDATER index back to the active state and rebuilding it

ALTER INDEX IDX_UPDATER ACTIVE;

See also: CREATE INDEX, DROP INDEX, SET STATISTICS

DROP INDEX

Used for: Deleting an index

Available in: DSQL, ESQL

Syntax:

DROP INDEX indexname;

Table 5.14. DROP INDEX Statement Parameter

Parameter Description

indexname Index name

The DROP INDEX statement deletes an the named index from the database.

Note

A constraint index cannot deleted using DROP INDEX. Constraint indexes are dropped during the process of
executing the command ALTER TABLE ... DROP CONSTRAINT

Only the table owner and administrators have the authority to use DROP INDEX.

Data Definition (DDL) Statements

112

DROP INDEX Example: Deleting the IDX_UPDATER index

DROP INDEX IDX_UPDATER;

See also: CREATE INDEX, ALTER INDEX

SET STATISTICS

Used for: Recalculating the selectivity of an index

Available in: DSQL, ESQL

Syntax:

SET STATISTICS INDEX indexname

Table 5.15. SET STATISTICS Statement Parameter

Parameter Description

indexname Index name

The SET STATISTICS statement recalculates the selectivity of the specified index.

Index Selectivity

The selectivity of an index is the result of evaluating the number of rows that can be selected in a search on
every index value. A unique index has the maximum selectivity because it is impossible to select more than one
row for each value of an index key if it is used. Keeping the selectivity of an index up to date is important for
the optimizer's choices in seeking the most optimal query plan.

Index statistics in Firebird are not automatically recalculated in response to large batches of inserts, updates
or deletions. It may be beneficial to recalculate the selectivity of an index after such operations because the
selectivity tends to become outdated.

Note

The statements CREATE INDEX and ALTER INDEX ACTIVE both store index statistics that completely corre-
spond to the contents of the newly-[re]built index.

The selectivity of an index can be recalculated by the owner of the table or an administrator. It can be performed
under concurrent load without risk of corruption. However, be aware that, under concurrent load, the newly
calculated statistics could become outdated as soon as SET STATISTICS finishes.

Example Using SET STATISTICS: Recalculating the selectivity of the index IDX_UPDATER

Data Definition (DDL) Statements

113

SET STATISTICS INDEX IDX_UPDATER;

See also: CREATE INDEX, ALTER INDEX

VIEW

A view is a virtual table that is actually a stored and named SELECT query for retrieving data of any complexity.
Data can be retrieved from one or more tables, from other views and also from selectable stored procedures.

Unlike regular tables in relational databases, a view is not an independent data set stored in the database. The
result is dynamically created as a data set when the view is selected.

The metadata of a view are available to the process that generates the binary code for stored procedures and
triggers, just as though they were concrete tables storing persistent data.

CREATE VIEW

Used for: Creating a view

Available in: DSQL

Syntax:

CREATE VIEW viewname [<full_column_list>]
AS <select_statement>
[WITH CHECK OPTION];

<full_column_list> ::= (colname [, colname ...])

Table 5.16. CREATE VIEW Statement Parameters

Parameter Description

viewname View name, maximum 31 characters

select_statement SELECT statement

full_column_list The list of columns in the view

colname View column name. Duplicate column names are not allowed.

The CREATE VIEW statement creates a new view. The identifier (name) of a view must be unique among the
names of all views, tables and stored procedures in the database.

The name of the new view can be followed by the list of column names that should be returned to the caller
when the view is invoked. Names in the list do not have to be related to the names of the columns in the base
tables from which they derive.

Data Definition (DDL) Statements

114

If the view column list is omitted, the system will use the column names and/or aliases from the SELECT state-
ment. If duplicate names or non-aliased expression-derived columns make this impossible to obtain a valid list,
creation of the view fails with an error.

The number of columns in the view's list must exactly match the number of columns in the selection list of the
underlying SELECT statement in the view definition.

Additional Points

• If the full list of columns is specified, it makes no sense to specify aliases in the SELECT statement because
the names in the column list will override them

• The column list is optional if all of the columns in the SELECT are explicitly named and are unique in the
selection list

Updatable Views

A view can be updatable or read-only. If a view is updatable, the data retrieved when this view is called can be
changed by the DML statements INSERT, UPDATE, DELETE, UPDATE OR INSERT or MERGE. Changes made
in an updatable view are applied to the underlying table(s).

A read-only view can be made updateable with the use of triggers. Once triggers have been defined on a view,
changes posted to it will never be written automatically to the underlying table, even if the view was updateable
to begin with. It is the responsibility of the programmer to ensure that the triggers update (or delete from, or
insert into) the base tables as needed.

A view will be automatically updatable if all of the following conditions are met:

• the SELECT statement queries only one table or one updatable view

• the SELECT statement does not call any stored procedures

• each base table (or base view) column not present in the view definition is covered by one of the following
conditions:

- it is nullable
- it has a non-NULL default value
- it has a trigger that supplies a permitted value

• the SELECT statement contains no fields derived from subqueries or other expressions

• the SELECT statement does not contain fields defined through aggregate functions, such as MIN, MAX, AVG,
SUM, COUNT, LIST

• the SELECT statement contains no ORDER BY or GROUP BY clause

• the SELECT statement does not include the keyword DISTINCT or row-restrictive keywords such as ROWS,
FIRST, SKIP

WITH CHECK OPTION

The optional WITH CHECK OPTION clause requires an updatable view to check whether new or updated data
meet the condition specified in the WHERE clause of the SELECT statement. Every attempt to insert a new record

Data Definition (DDL) Statements

115

or to update an existing one is checked as to whether the new or updated record would meet the WHERE criteria.
If they fail the check, the operation is not performed and an appropriate error message is returned.

WITH CHECK OPTION can be specified only in a CREATE VIEW statement in which a WHERE clause is
present to restrict the output of the main SELECT statement. An error message is returned otherwise.

Please note:

If WITH CHECK OPTION is used, the engine checks the input against the WHERE clause before passing anything
to the base relation. Therefore, if the check on the input fails, any default clauses or triggers on the base relation
that might have been designed to correct the input will never come into action.

Furthermore, view fields omitted from the INSERT statement are passed as NULLs to the base relation, regard-
less of their presence or absence in the WHERE clause. As a result, base table defaults defined on such fields
will not be applied. Triggers, on the other hand, will fire and work as expected.

For views that do not have WITH CHECK OPTION, fields omitted from the INSERT statement are not passed
to the base relation at all, so any defaults will be applied.

Ownership of a View

The creator of a view becomes its owner.

To create a view, a non-admin user needs at least SELECT access to the underlying table(s) and/or view(s), and
the EXECUTE privilege on any selectable stored procedures involved.

To enable insertions, updates and deletions through the view, the creator/owner must also possess the corre-
sponding INSERT, UPDATE and DELETE rights on the base object(s).

Granting other users privileges on the view is only possible if the view owner himself has these privileges on
the underlying objects WITH GRANT OPTION. It will always be the case if the view owner is also the owner
of the underlying objects.

Examples of Creating Views:

1. Creating view returning the JOB_CODE and JOB_TITLE columns only for those jobs where
MAX_SALARY is less than $15,000.

CREATE VIEW ENTRY_LEVEL_JOBS AS
SELECT JOB_CODE, JOB_TITLE
FROM JOB
WHERE MAX_SALARY < 15000;

2. Creating a view returning the JOB_CODE and JOB_TITLE columns only for those jobs where
MAX_SALARY is less than $15,000. Whenever a new record is inserted or an existing record is updated,
the MAX_SALARY < 15000 condition will be checked. If the condition is not true, the insert/update op-
eration will be rejected.

CREATE VIEW ENTRY_LEVEL_JOBS AS
SELECT JOB_CODE, JOB_TITLE
FROM JOB
WHERE MAX_SALARY < 15000

Data Definition (DDL) Statements

116

WITH CHECK OPTION;

3. Creating a view with an explicit column list.

CREATE VIEW PRICE_WITH_MARKUP (
 CODE_PRICE,
 COST,
 COST_WITH_MARKUP
) AS
SELECT
 CODE_PRICE,
 COST,
 COST * 1.1
FROM PRICE;

4. Creating a view with the help of aliases for fields in the SELECT statement (the same result as in Example
3).

CREATE VIEW PRICE_WITH_MARKUP AS
SELECT
 CODE_PRICE,
 COST,
 COST * 1.1 AS COST_WITH_MARKUP
FROM PRICE;

5. Creating a read-only view based on two tables and a stored procedure.

CREATE VIEW GOODS_PRICE AS
SELECT
 goods.name AS goodsname,
 price.cost AS cost,
 b.quantity AS quantity
FROM
 goods
 JOIN price ON goods.code_goods = price.code_goods
 LEFT JOIN sp_get_balance(goods.code_goods) b ON 1 = 1;

See also: ALTER VIEW, CREATE OR ALTER VIEW, RECREATE VIEW, DROP VIEW

ALTER VIEW

Used for: Modifying an existing view

Available in: DSQL

Syntax:

Data Definition (DDL) Statements

117

ALTER VIEW viewname [<full_column_list>]
AS <select_statement>
[WITH CHECK OPTION];

<full_column_list> ::= (colname [, colname ...])

Table 5.17. ALTER VIEW Statement Parameters

Parameter Description

viewname Name of an existing view

select_statement SELECT statement

full_column_list The list of columns in the view

colname View column name. Duplicate column names are not allowed.

Use the ALTER VIEW statement for changing the definition of an existing view. Privileges for views remain
intact and dependencies are not affected.

The syntax of the ALTER VIEW statement corresponds completely with that of CREATE VIEW.

Caution

Be careful when you change the number of columns in a view. Existing application code and PSQL modules
that access the view may become invalid. For information on how to detect this kind of problem in stored
procedures and trigger, see The RDB$VALID_BLR Field in the Appendix.

Only the view owner and administrators have the authority to use ALTER VIEW.

Example using ALTER VIEW: Altering the view PRICE_WITH_MARKUP

ALTER VIEW PRICE_WITH_MARKUP (
 CODE_PRICE,
 COST,
 COST_WITH_MARKUP
) AS
SELECT
 CODE_PRICE,
 COST,
 COST * 1.15
FROM PRICE;

See also: CREATE VIEW, CREATE OR ALTER VIEW, RECREATE VIEW

CREATE OR ALTER VIEW

Used for: Creating a new view or altering an existing view.

Available in: DSQL

Data Definition (DDL) Statements

118

Syntax:

CREATE OR ALTER VIEW viewname [<full_column_list>]
AS <select_statement>
[WITH CHECK OPTION];

<full_column_list> ::= (colname [, colname ...])

Table 5.18. CREATE OR ALTER VIEW Statement Parameters

Parameter Description

viewname Name of a view which may or may not exist

select_statement SELECT statement

full_column_list The list of columns in the view

colname View column name. Duplicate column names are not allowed.

Use the CREATE OR ALTER VIEW statement for changing the definition of an existing view or creating it if it
does not exist. Privileges for an existing view remain intact and dependencies are not affected.

The syntax of the CREATE OR ALTER VIEW statement corresponds completely with that of CREATE VIEW.

Example: Creating the new view PRICE_WITH_MARKUP view or altering it if it already exists:

CREATE OR ALTER VIEW PRICE_WITH_MARKUP (
 CODE_PRICE,
 COST,
 COST_WITH_MARKUP
) AS
SELECT
 CODE_PRICE,
 COST,
 COST * 1.15
FROM PRICE;

See also: CREATE VIEW, ALTER VIEW, RECREATE VIEW

DROP VIEW

Used for: Deleting (dropping) a view

Available in: DSQL

Syntax:

DROP VIEW viewname;

Data Definition (DDL) Statements

119

Table 5.19. DROP VIEW Statement Parameter

Parameter Description

viewname View name

The DROP VIEW statement deletes an existing view. The statement will fail if the view has dependencies.

Only the view owner and administrators have the authority to use DROP VIEW.

Example: Deleting the PRICE_WITH_MARKUP view.

DROP VIEW PRICE_WITH_MARKUP;

See also: CREATE VIEW, RECREATE VIEW, CREATE OR ALTER VIEW

RECREATE VIEW

Used for: Creating a new view or recreating an existing view

Available in: DSQL

Syntax:

RECREATE VIEW viewname [<full_column_list>]
AS <select_statement>
[WITH CHECK OPTION];

<full_column_list> ::= (colname [, colname ...])

Table 5.20. RECREATE VIEW Statement Parameters

Parameter Description

viewname View name, maximum 31 characters

select_statement SELECT statement

full_column_list The list of columns in the view

colname View column name. Duplicate column names are not allowed.

Creates or recreates a view. If there is a view with this name already, the engine will try to drop it before creating
the new instance. If the existing view cannot be dropped, because of dependencies or insufficient rights, for
example, RECREATE VIEW fails with an error.

Example: Creating the new view PRICE_WITH_MARKUP view or recreating it, if it already exists.

RECREATE VIEW PRICE_WITH_MARKUP (

Data Definition (DDL) Statements

120

 CODE_PRICE,
 COST,
 COST_WITH_MARKUP
) AS
SELECT
 CODE_PRICE,
 COST,
 COST * 1.15
FROM PRICE;

See also: CREATE VIEW, DROP VIEW, CREATE OR ALTER VIEW

TRIGGER

A trigger is a special type of stored procedure that is not called directly, instead being executed when a specified
event occurs in the associated table or view. A trigger is specific to one and only one relation (table or view)
and one phase in the timing of the event (BEFORE or AFTER). It can be specified to execute for one specific
event (insert, update, delete) or for some combination of two or three of those events.

Another form of trigger—known as a “database trigger”—can be specified to fire in association with the start
or end of a user session (connection) or a user transaction.

CREATE TRIGGER

Used for: Creating a new trigger

Available in: DSQL, ESQL

Syntax:

CREATE TRIGGER trigname {
 <relation_trigger_legacy> |
 <relation_trigger_sql2003> |
 <database_trigger> }
AS
 [<declarations>]
BEGIN
 [<PSQL_statements>]
END

<relation_trigger_legacy> ::=
 FOR {tablename | viewname}
 [ACTIVE | INACTIVE]
 {BEFORE | AFTER} <mutation_list>
 [POSITION number]

<relation_trigger_sql2003> ::=
 [ACTIVE | INACTIVE]
 {BEFORE | AFTER} <mutation_list>
 [POSITION number]
 ON {tablename | viewname}

Data Definition (DDL) Statements

121

<database_trigger> ::=
 [ACTIVE | INACTIVE] ON db_event [POSITION number]

<mutation_list> ::=
 <mutation> [OR <mutation> [OR <mutation>]]

<mutation> ::= { INSERT | UPDATE | DELETE }

<db_event> ::= {
 CONNECT |
 DISCONNECT |
 TRANSACTION START |
 TRANSACTION COMMIT |
 TRANSACTION ROLLBACK
}

<declarations> ::= {<declare_var> | <declare_cursor>};
 [{<declare_var> | <declare_cursor>}; …]

Table 5.21. CREATE TRIGGER Statement Parameters

Parameter Description

trigname
Trigger name consisting of up to 31 characters. It must be unique among all trig-
ger names in the database.

relation_trigger_legacy Legacy style of trigger declaration for a relation trigger

relation_trigger_sql2003 Relation trigger declaration compliant with the SQL:2003 standard

database_trigger Database trigger declaration

tablename Name of the table with which the relation trigger is associated

viewname Name of the view with which the relation trigger is associated

mutation_list List of relation (table | view) events

number Position of the trigger in the firing order. From 0 to 32,767

db_event Connection or transaction event

declarations Section for declaring local variables and named cursors

declare_var Local variable declaration

declare_cursor Named cursor declaration

PSQL_statements Statements in Firebird's programming language (PSQL)

The CREATE TRIGGER statement is used for creating a new trigger. A trigger can be created either for a relation
(table | view) event (or a combination of events), or for a database event.

CREATE TRIGGER, along with its associates ALTER TRIGGER, CREATE OR ALTER TRIGGER and RECREATE
TRIGGER, is a compound statement, consisting of a header and a body. The header specifies the name of the
trigger, the name of the relation (for a relation trigger), the phase of the trigger and the event[s] it applies to. The
body consists of optional declarations of local variables and named cursors followed by one or more statements,

Data Definition (DDL) Statements

122

or blocks of statements, all enclosed in an outer block that begins with the keyword BEGIN and ends with the
keyword END. Declarations and embedded statements are terminated with semi-colons (;).

The name of the trigger must be unique among all trigger names.

Statement Terminators

Some SQL statement editors—specifically the isql utility that comes with Firebird and possibly some third-
party editors—employ an internal convention that requires all statements to be terminated with a semi-colon.
This creates a conflict with PSQL syntax when coding in these environments. If you are unacquainted with
this problem and its solution, please study the details in the PSQL chapter in the section entitled Switching the
Terminator in isql.

Relation Triggers (on Tables or Views)

Relation triggers are executed at the row (record) level every time the row image changes. A trigger can be either
ACTIVE or INACTIVE. Only active triggers are executed. Triggers are created ACTIVE by default.

Forms of Declaration

Firebird supports two forms of declaration for relation triggers:

• The original, legacy syntax
• The SQL:2003 standard-compliant form (recommended)
The SQL:2003 standard-compliant form is the recommended one.

A relation trigger specifies—among other things—a phase and one or more events.

Phase

Phase concerns the timing of the trigger with regard to the change-of-state event in the row of data:

• A BEFORE trigger is fired before the specified database operation (insert, update or delete) is carried out
• An AFTER trigger is fired after the database operation has been completed

Row Events

A relation trigger definition specifies at least one of the DML operations INSERT, UPDATE and DELETE, to
indicate one or more events on which the trigger should fire. If multiple operations are specified, they must be
separated by the keyword OR. No operation may occur more than once.

Within the statement block, the Boolean context variables INSERTING, UPDATING and DELETING can be used
to test which operation is currently executing.

Firing Order of Triggers

The keyword POSITION allows an optional execution order (“firing order”) to be specified for a series of triggers
that have the same phase and event as their target. The default position is 0. If no positions are specified, or if
several triggers have a single position number, the triggers will be executed in the alphabetical order of their
names.

Data Definition (DDL) Statements

123

Variable Declarations

The optional declarations section beneath the keyword AS in the header of the trigger is for defining variables and
named cursors that are local to the trigger. For more details, see DECLARE VARIABLE and DECLARE CURSOR
in the Procedural SQL chapter.

The Trigger Body

The local declarations (if any) are the final part of a trigger's header section. The trigger body follows, where
one or more blocks of PSQL statements are enclosed in a structure that starts with the keyword BEGIN and
terminates with the keyword END.

Only the owner of the view or table and administrators have the authority to use CREATE TRIGGER.

Examples of CREATE TRIGGER for Tables and Views:

1. Creating a trigger in the “legacy” form, firing before the event of inserting a new record into the CUS-
TOMER table occurs.

CREATE TRIGGER SET_CUST_NO FOR CUSTOMER
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN
 IF (NEW.CUST_NO IS NULL) THEN
 NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
END

2. Creating a trigger firing before the event of inserting a new record into the CUSTOMER table in the
SQL:2003 standard-compliant form.

CREATE TRIGGER set_cust_no
ACTIVE BEFORE INSERT POSITION 0 ON customer
AS
BEGIN
 IF (NEW.cust_no IS NULL) THEN
 NEW.cust_no = GEN_ID(cust_no_gen, 1);
END

3. Creating a trigger that will file after either inserting, updating or deleting a record in the CUSTOMER table.

CREATE TRIGGER TR_CUST_LOG
ACTIVE AFTER INSERT OR UPDATE OR DELETE POSITION 10
ON CUSTOMER
AS
BEGIN
 INSERT INTO CHANGE_LOG (LOG_ID,
 ID_TABLE,
 TABLE_NAME,
 MUTATION)
 VALUES (NEXT VALUE FOR SEQ_CHANGE_LOG,

Data Definition (DDL) Statements

124

 OLD.CUST_NO,
 'CUSTOMER',
 CASE
 WHEN INSERTING THEN 'INSERT'
 WHEN UPDATING THEN 'UPDATE'
 WHEN DELETING THEN 'DELETE'
 END);
END

Database Triggers

Triggers can be defined to fire upon “database events”, which really refers to a mixture of events that act across
the scope of a session (connection) and events that act across the scope of an individual transaction:

• CONNECT
• DISCONNECT
• TRANSACTION START
• TRANSACTION COMMIT
• TRANSACTION ROLLBACK

Execution of Database Triggers and Exception Handling

CONNECT and DISCONNECT triggers are executed in a transaction created specifically for this purpose. If all
goes well, the transaction is committed. Uncaught exceptions cause the transaction to roll back, and

• for a CONNECT trigger, the connection is then broken and the exception is returned to the client

• for a DISCONNECT trigger, exceptions are not reported. The connection is broken as intended

TRANSACTION triggers are executed within the transaction whose start, commit or rollback evokes them. The
action taken after an uncaught exception depends on the event:

• In a TRANSACTION START trigger, the exception is reported to the client and the transaction is rolled back

• In a TRANSACTION COMMIT trigger, the exception is reported, the trigger's actions so far are undone and
the commit is cancelled

• In a TRANSACTION ROLLBACK trigger, the exception is not reported and the transaction is rolled back as
intended.

Traps

Obviously there is no direct way of knowing if a DISCONNECT or TRANSACTION ROLLBACK trigger caused
an exception. It also follows that the connection to the database cannot happen if a CONNECT trigger causes an
exception and a transaction cannot start if a TRANSACTION START trigger causes one, either. Both phenomena
effectively lock you out of your database until you get in there with database triggers suppressed and fix the
bad code.

Trigger Suppression

Some Firebird command-line tools have been supplied with switches that an administrator can use to suppress
the automatic firing of database triggers. So far, they are:

Data Definition (DDL) Statements

125

gbak -nodbtriggers
isql -nodbtriggers
nbackup -T

Two-phase Commit

In a two-phase commit scenario, TRANSACTION COMMIT triggers fire in the prepare phase, not at the commit.

Some Caveats

1. The use of the IN AUTONOMOUS TRANSACTION DO statement in the database event triggers related to
transactions (TRANSACTION START, TRANSACTION ROLLBACK, TRANSACTION COMMIT) may cause
the autonomous transaction to enter an infinite loop

2. The DISCONNECT and TRANSACTION ROLLBACK event triggers will not be executed when clients are
disconnected via monitoring tables (DELETE FROM MON$ATTACHMENTS)

Only the database owner and administrators have the authority to create database triggers.

Examples of CREATE TRIGGER for “Database Triggers”:

1. Creating a trigger for the event of connecting to the database that logs users logging into the system. The
trigger is created as inactive.

CREATE TRIGGER tr_log_connect
INACTIVE ON CONNECT POSITION 0
AS
BEGIN
 INSERT INTO LOG_CONNECT (ID,
 USERNAME,
 ATIME)
 VALUES (NEXT VALUE FOR SEQ_LOG_CONNECT,
 CURRENT_USER,
 CURRENT_TIMESTAMP);
END

2. Creating a trigger for the event of connecting to the database that does not permit any users, except for
SYSDBA, to log in during off hours.

CREATE EXCEPTION E_INCORRECT_WORKTIME 'The working day has not started yet.';

CREATE TRIGGER TR_LIMIT_WORKTIME ACTIVE
ON CONNECT POSITION 1
AS
BEGIN
 IF ((CURRENT_USER <> 'SYSDBA') AND
 NOT (CURRENT_TIME BETWEEN time '9:00' AND time '17:00')) THEN
 EXCEPTION E_INCORRECT_WORKTIME;
END

Data Definition (DDL) Statements

126

See also: ALTER TRIGGER, CREATE OR ALTER TRIGGER, RECREATE TRIGGER, DROP TRIGGER

ALTER TRIGGER

Used for: Modifying and deactivating an existing trigger

Available in: DSQL, ESQL

Syntax:

ALTER TRIGGER trigname
[ACTIVE | INACTIVE]
[{BEFORE | AFTER} <mutation_list> | ON db_event]
[POSITION number]
[
 AS
 [<declarations>]
 BEGIN
 [<PSQL_statements>]
 END
]

<mutation_list> ::=
 <mutation> [OR <mutation> [OR <mutation>]]

<mutation> ::= { INSERT | UPDATE | DELETE }

<db_event> ::= {
 CONNECT |
 DISCONNECT |
 TRANSACTION START |
 TRANSACTION COMMIT |
 TRANSACTION ROLLBACK
}

<declarations> ::= {<declare_var> | <declare_cursor>};
 [{<declare_var> | <declare_cursor>}; …]

Table 5.22. ALTER TRIGGER Statement Parameters

Parameter Description

trigname Name of an existing trigger

mutation_list List of relation (table | view) events

number Position of the trigger in the firing order. From 0 to 32,767

declarations Section for declaring local variables and named cursors

declare_var Local variable declaration

declare_cursor Named cursor declaration

PSQL_statements Statements in Firebird's programming language (PSQL)

Data Definition (DDL) Statements

127

The ALTER TRIGGER statement allows certain changes to the header and body of a trigger.

Permitted Changes to Triggers

• Status (ACTIVE | INACTIVE)

• Phase (BEFORE | AFTER)

• Events; but relation trigger events cannot be changed to database trigger events, nor vice versa

• Position in the firing order

• Modifications to code in the trigger body

If some element was not specified, it remains unchanged.

Reminders

The BEFORE keyword directs that the trigger be executed before the associated event occurs; the AFTER
keyword directs that it be executed after the event.

More than one relation event—INSERT, UPDATE, DELETE—can be covered in a single trigger. The events
should be separated with the keyword OR. No event should be mentioned more than once.

The keyword POSITION allows an optional execution order (“firing order”) to be specified for a series of triggers
that have the same phase and event as their target. The default position is 0. If no positions are specified, or if
several triggers have a single position number, the triggers will be executed in the alphabetical order of their
names.

Administrators and the following users have the authority to use ALTER TRIGGER:

• For relation triggers, the owner of the table
• For database triggers, the owner of the database

Examples using ALTER TRIGGER:

1. Deactivating the set_cust_no trigger (switching it to the inactive status).

ALTER TRIGGER set_cust_no INACTIVE;

2. Changing the firing order position of the set_cust_no trigger.

ALTER TRIGGER set_cust_no POSITION 14;

3. Switching the TR_CUST_LOG trigger to the inactive status and modifying the list of events.

ALTER TRIGGER TR_CUST_LOG
INACTIVE AFTER INSERT OR UPDATE;

Data Definition (DDL) Statements

128

4. Switching the tr_log_connect trigger to the active status, changing its position and body.

ALTER TRIGGER tr_log_connect
ACTIVE POSITION 1
AS
BEGIN
 INSERT INTO LOG_CONNECT (ID,
 USERNAME,
 ROLENAME,
 ATIME)
 VALUES (NEXT VALUE FOR SEQ_LOG_CONNECT,
 CURRENT_USER,
 CURRENT_ROLE,
 CURRENT_TIMESTAMP);
END

See also: CREATE TRIGGER, CREATE OR ALTER TRIGGER, RECREATE TRIGGER, DROP TRIGGER

CREATE OR ALTER TRIGGER

Used for: Creating a new trigger or altering an existing trigger

Available in: DSQL

Syntax:

CREATE OR ALTER TRIGGER trigname {
 <relation_trigger_legacy> |
 <relation_trigger_sql2003> |
 <database_trigger> }
AS
[<declarations>]
BEGIN
[<PSQL_statements>]
END

For the full detail of the syntax, see CREATE TRIGGER.

The CREATE OR ALTER TRIGGER statement creates a new trigger if it does not exist; otherwise it alters and
recompiles it with the privileges intact and dependencies unaffected.

Example using CREATE OR ALTER TRIGGER: Creating a new trigger if it does not exist or altering it
if it does exist.

CREATE OR ALTER TRIGGER set_cust_no
ACTIVE BEFORE INSERT POSITION 0 ON customer
AS
BEGIN
 IF (NEW.cust_no IS NULL) THEN
 NEW.cust_no = GEN_ID(cust_no_gen, 1);
END

Data Definition (DDL) Statements

129

See also: CREATE TRIGGER, ALTER TRIGGER, RECREATE TRIGGER

DROP TRIGGER

Used for: Deleting an existing trigger

Available in: DSQL, ESQL

Syntax:

DROP TRIGGER trigname

Table 5.23. DROP TRIGGER Statement Parameter

Parameter Description

trigname Trigger name

The DROP TRIGGER statement deletes an existing trigger.

Administrators and the following users have the authority to use DROP TRIGGER:

• For relation triggers, the owner of the table
• For database triggers, the owner of the database

Example using DROP TRIGGER: Deleting the set_cust_no trigger.

DROP TRIGGER set_cust_no;

See also: CREATE TRIGGER, RECREATE TRIGGER

RECREATE TRIGGER

Used for: Creating a new trigger or recreating an existing trigger

Available in: DSQL

Syntax:

RECREATE TRIGGER trigname {
 <relation_trigger_legacy> |
 <relation_trigger_sql2003> |
 <database_trigger> }
AS
[<declarations>]
BEGIN

Data Definition (DDL) Statements

130

[<PSQL_statements>]
END

For the full detail of the syntax, see CREATE TRIGGER.

The RECREATE TRIGGER statement creates a new trigger if no trigger with the specified name exists; otherwise
the RECREATE TRIGGER statement tries to delete the existing trigger and create a new one. The operation will
fail on COMMIT if the trigger dependencies.

Warning

Be aware that dependency errors are not detected until the COMMIT phase of this operation.

Example using RECREATE TRIGGER: Creating or recreating the set_cust_no trigger.

RECREATE TRIGGER set_cust_no
ACTIVE BEFORE INSERT POSITION 0 ON customer
AS
BEGIN
 IF (NEW.cust_no IS NULL) THEN
 NEW.cust_no = GEN_ID(cust_no_gen, 1);
END

See also: CREATE TRIGGER, DROP TRIGGER, CREATE OR ALTER TRIGGER

PROCEDURE

A stored procedure is a software module that can be called from a client, another procedure, an executable block
or a trigger. Stored procedures, executable blocks and triggers are written in procedural SQL (PSQL). Most SQL
statements are available in PSQL as well, sometimes with limitations or extensions. Among notable exceptions
are DDL and transaction control statements.

Stored procedures can have many input and output parameters.

CREATE PROCEDURE

Used for: Creating a new stored procedure

Available in: DSQL, ESQL

Syntax:

CREATE PROCEDURE procname
[(<inparam> [, <inparam> ...])]
[RETURNS (<outparam> [, <outparam> ...])]
AS
[<declarations>]

Data Definition (DDL) Statements

131

BEGIN
[<PSQL_statements>]
END

 <inparam> ::= <param_decl> [{= | DEFAULT} <value>]

 <outparam> ::= <param_decl>

 <value> ::= {literal | NULL | context_var}

 <param_decl> ::= paramname <type> [NOT NULL]
 [COLLATE collation]

<type> ::=
 <datatype> |
 [TYPE OF] domain |
 TYPE OF COLUMN rel.col

<datatype> ::=
 {SMALLINT | INT[EGER] | BIGINT}
 | {FLOAT | DOUBLE PRECISION}
 | {DATE | TIME | TIMESTAMP}
 | {DECIMAL | NUMERIC} [(precision [, scale])]
 | {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(size)]
 [CHARACTER SET charset]
 | {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING]
 [(size)]
 | BLOB [SUB_TYPE {subtype_num | subtype_name}]
 [SEGMENT SIZE seglen] [CHARACTER SET charset]
 | BLOB [(seglen [, subtype_num])]

<declarations> ::=
 {<declare_var> | <declare_cursor>};
 [{<declare_var> | <declare_cursor>}; …]

Table 5.24. CREATE PROCEDURE Statement Parameters

Parameter Description

procname
Stored procedure name consisting of up to 31 characters. Must be unique among
all table, view and procedure names in the database

inparam Input parameter description

outparam Output parameter description

declarations Section for declaring local variables and named cursors

declare_var Local variable declaration

declare_cursor Named cursor declaration

PSQL_statements Procedural SQL statements

literal A literal value that is assignment-compatible with the data type of the parameter

context_var
Any context variable whose type is compatible with the data type of the parame-
ter

Data Definition (DDL) Statements

132

Parameter Description

paramname
The name of an input or output parameter of the procedure. It may consist of up
to 31 characters. The name of the parameter must be unique among input and
output parameters of the procedure and its local variables

datatype SQL data type

collation Collation sequence

domain Domain name

rel Table or view name

col Table or view column name

precision
The total number of significant digits that the parameter should be able to hold
(1..18)

scale The number of digits after the decimal point (0..precision)

size The maximum size of a string type parameter or variable, in characters

charset Character set of a string type parameter or variable

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

The CREATE PROCEDURE statement creates a new stored procedure. The name of the procedure must be unique
among the names of all stored procedures, tables and views in the database.

CREATE PROCEDURE is a compound statement, consisting of a header and a body. The header specifies the
name of the procedure and declares input parameters and the output parameters, if any, that are to be returned
by the procedure.

The procedure body consists of declarations for any local variables and named cursors that will be used by
the procedure, followed by one or more statements, or blocks of statements, all enclosed in an outer block that
begins with the keyword BEGIN and ends with the keyword END. Declarations and embedded statements are
terminated with semi-colons (;).

Statement Terminators

Some SQL statement editors—specifically the isql utility that comes with Firebird and possibly some third-
party editors—employ an internal convention that requires all statements to be terminated with a semi-colon.
This creates a conflict with PSQL syntax when coding in these environments. If you are unacquainted with
this problem and its solution, please study the details in the PSQL chapter in the section entitled Switching the
Terminator in isql.

Parameters

Each parameter has a data type specified for it. The NOT NULL constraint can also be specified for any parameter,
to prevent NULL being passed or assigned to it.

Data Definition (DDL) Statements

133

A collation sequence can be specified for string-type parameters, using the COLLATE clause.

Input Parameters:

Input parameters are presented as a parenthesized list following the name of the procedure. They are
passed into the procedure as values, so anything that changes them inside the procedure has no effect
on the parameters in the calling program.

Input parameters may have default values. Those that do have values specified for them must be
located at the end of the list of parameters.

Output Parameters:

The optional RETURNS clause is for specifying a parenthesised list of output parameters for the stored
procedure.

Use of Domains in Declarations

A domain name can be specified as the type of a parameter. The parameter will inherit all domain attributes. If
a default value is specified for the parameter, it overrides the default value specified in the domain definition.

If the TYPE OF clause is added before the domain name, only the data type of the domain is used: any of the
other attributes of the domain— NOT NULL constraint, CHECK constraints, default value— are neither checked
nor used. However, if the domain is of a text type, its character set and collation sequence are always used.

Use of Column Type in Declarations

Input and output parameters can also be declared using the data type of columns in existing tables and views.
The TYPE OF COLUMN clause is used for that, specifying relationname.columnname as its argument.

When TYPE OF COLUMN is used, the parameter inherits only the data type and, for string types, the character
set and collation sequence. The constraints and default value of the column are ignored.

Bug warning for pre-Firebird 3 versions:

For input parameters, the collation that comes with the column's type is ignored in comparisons (e.g. equality
tests). For local variables, the behaviour varies.

The bug was fixed for Firebird 3.

Variable and Cursor Declarations

The optional declarations section, located last in the header section of the procedure definition, defines variables
local to the procedure and its named cursors. Local variable declarations follow the same rules as parameters
regarding specification of the data type. See details in the PSQL chapter for DECLARE VARIABLE and DECLARE
CURSOR.

The header section is followed by the procedure body, consisting of one or more PSQL statements enclosed
between the outer keywords BEGIN and END. Multiple BEGIN ... END blocks of terminated statements may be
embedded inside the procedure body.

Any user connected to the database can create a new stored procedure. The user who creates a stored procedure
becomes its owner.

Data Definition (DDL) Statements

134

Examples: Creating a stored procedure that inserts a record into the BREED table and returns the code of the
inserted record:

CREATE PROCEDURE ADD_BREED (
 NAME D_BREEDNAME, /* Domain attributes are inherited */
 NAME_EN TYPE OF D_BREEDNAME, /* Only the domain type is inherited */
 SHORTNAME TYPE OF COLUMN BREED.SHORTNAME,
 /* The table column type is inherited */
 REMARK VARCHAR(120) CHARACTER SET WIN1251 COLLATE PXW_CYRL,
 CODE_ANIMAL INT NOT NULL DEFAULT 1
)
RETURNS (
 CODE_BREED INT
)
AS
BEGIN
 INSERT INTO BREED (
 CODE_ANIMAL, NAME, NAME_EN, SHORTNAME, REMARK)
 VALUES (
 :CODE_ANIMAL, :NAME, :NAME_EN, :SHORTNAME, :REMARK)
 RETURNING CODE_BREED INTO CODE_BREED;
END

Creating a selectable stored procedure that generates data for mailing labels (from employee.fdb):

CREATE PROCEDURE mail_label (cust_no INTEGER)
RETURNS (line1 CHAR(40), line2 CHAR(40), line3 CHAR(40),
 line4 CHAR(40), line5 CHAR(40), line6 CHAR(40))
AS
 DECLARE VARIABLE customer VARCHAR(25);
 DECLARE VARIABLE first_name VARCHAR(15);
 DECLARE VARIABLE last_name VARCHAR(20);
 DECLARE VARIABLE addr1 VARCHAR(30);
 DECLARE VARIABLE addr2 VARCHAR(30);
 DECLARE VARIABLE city VARCHAR(25);
 DECLARE VARIABLE state VARCHAR(15);
 DECLARE VARIABLE country VARCHAR(15);
 DECLARE VARIABLE postcode VARCHAR(12);
 DECLARE VARIABLE cnt INTEGER;
BEGIN
 line1 = '';
 line2 = '';
 line3 = '';
 line4 = '';
 line5 = '';
 line6 = '';

 SELECT customer, contact_first, contact_last, address_line1,
 address_line2, city, state_province, country, postal_code
 FROM CUSTOMER
 WHERE cust_no = :cust_no
 INTO :customer, :first_name, :last_name, :addr1, :addr2,
 :city, :state, :country, :postcode;

 IF (customer IS NOT NULL) THEN
 line1 = customer;

Data Definition (DDL) Statements

135

 IF (first_name IS NOT NULL) THEN
 line2 = first_name || ' ' || last_name;
 ELSE
 line2 = last_name;
 IF (addr1 IS NOT NULL) THEN
 line3 = addr1;
 IF (addr2 IS NOT NULL) THEN
 line4 = addr2;

 IF (country = 'USA') THEN
 BEGIN
 IF (city IS NOT NULL) THEN
 line5 = city || ', ' || state || ' ' || postcode;
 ELSE
 line5 = state || ' ' || postcode;
 END
 ELSE
 BEGIN
 IF (city IS NOT NULL) THEN
 line5 = city || ', ' || state;
 ELSE
 line5 = state;
 line6 = country || ' ' || postcode;
 END

 SUSPEND; -- the statement that sends an output row to the buffer
 -- and makes the procedure "selectable"
END

See also: CREATE OR ALTER PROCEDURE, ALTER PROCEDURE, RECREATE PROCEDURE, DROP PROCE-
DURE

ALTER PROCEDURE

Used for: Modifying an existing stored procedure

Available in: DSQL, ESQL

Syntax:

ALTER PROCEDURE procname
[(<inparam> [, <inparam> ...])]
[RETURNS (<outparam> [, <outparam> ...])]
AS
[<declarations>]
BEGIN
[<PSQL_statements>]
END

 <inparam> ::= <param_decl> [{= | DEFAULT} value]

 <outparam> ::= <param_decl>

 <param_decl> ::= paramname <type> [NOT NULL]

Data Definition (DDL) Statements

136

 [COLLATE collation]

<type> ::=
 <datatype> |
 [TYPE OF] domain |
 TYPE OF COLUMN rel.col

<datatype> ::=
 {SMALLINT | INT[EGER] | BIGINT}
 | {FLOAT | DOUBLE PRECISSION}
 | {DATE | TIME | TIMESTAMP}
 | {DECIMAL | NUMERIC} [(precision [, scale])]
 | {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(size)]
 [CHARACTER SET charset]
 | {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING]
 [(size)]
 | BLOB [SUB_TYPE {subtype_num | subtype_name}]
 [SEGMENT SIZE seglen] [CHARACTER SET charset]
 | BLOB [(seglen [, subtype_num])]

 <declarations> ::= {<declare_var> | <declare_cursor>};
 [{<declare_var> | <declare_cursor>}; …]

Table 5.25. ALTER PROCEDURE Statement Parameters

Parameter Description

procname Name of an existing stored procedure

inparam Input parameter description

outparam Output parameter description

declarations Section for declaring local variables and named cursors

declare_var Local variable declaration

declare_cursor Named cursor declaration

PSQL_statements Procedural SQL statements

literal A literal value that is assignment-compatible with the data type of the parameter

context_var
Any context variable whose type is compatible with the data type of the parame-
ter

paramname
The name of an input or output parameter of the procedure. It may consist of up
to 31 characters. The name of the parameter must be unique among input and
output parameters of the procedure and its local variables

datatype SQL data type

collation Collation sequence

domain Domain name

rel Table or view name

col Table or view column name

Data Definition (DDL) Statements

137

Parameter Description

precision
The total number of significant digits that the parameter should be able to hold
(1..18)

scale The number of digits after the decimal point (0..precision)

size The maximum size of a string type parameter or variable, in characters

charset Character set of a string type parameter or variable

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

The ALTER PROCEDURE statement allows the following changes to a stored procedure definition:

• the set and characteristics of input and output parameters
• local variables
• code in the body of the stored procedure
After ALTER PROCEDURE executes, existing privileges remain intact and dependencies are not affected.

Caution

Take care about changing the number and type of input and output parameters in stored procedures. Existing
application code and procedures and triggers that call it could become invalid because the new description
of the parameters is incompatible with the old calling format. For information on how to troubleshoot such a
situation, see the article The RDB$VALID_BLR Field in the Appendix.

The procedure owner and Administrators have the authority to use ALTER PROCEDURE.

ALTER PROCEDURE Example: Altering the GET_EMP_PROJ stored procedure.

ALTER PROCEDURE GET_EMP_PROJ (
 EMP_NO SMALLINT)
RETURNS (
 PROJ_ID VARCHAR(20))
AS
BEGIN
 FOR SELECT
 PROJ_ID
 FROM
 EMPLOYEE_PROJECT
 WHERE
 EMP_NO = :emp_no
 INTO :proj_id
 DO
 SUSPEND;
END

See also: CREATE PROCEDURE, CREATE OR ALTER PROCEDURE, RECREATE PROCEDURE, DROP PROCE-
DURE

Data Definition (DDL) Statements

138

CREATE OR ALTER PROCEDURE

Used for: Creating a new stored procedure or altering an existing one

Available in: DSQL

Syntax:

CREATE OR ALTER PROCEDURE procname
[(<inparam> [, <inparam> ...])]
[RETURNS (<outparam> [, <outparam> ...])]
AS
[<declarations>]
BEGIN
[<PSQL_statements>]
END

For the full syntax detail, see CREATE DATABASE.

The CREATE OR ALTER PROCEDURE statement creates a new stored procedure or alters an existing one. If the
stored procedure does not exist, it will be created by invoking a CREATE PROCEDURE statement transparently.
If the procedure already exists, it will be altered and compiled without affecting its existing privileges and
dependencies.

Example: Creating or altering the GET_EMP_PROJ procedure.

CREATE OR ALTER PROCEDURE GET_EMP_PROJ (
 EMP_NO SMALLINT)
RETURNS (
 PROJ_ID VARCHAR(20))
AS
BEGIN
 FOR SELECT
 PROJ_ID
 FROM
 EMPLOYEE_PROJECT
 WHERE
 EMP_NO = :emp_no
 INTO :proj_id
 DO
 SUSPEND;
END

See also: CREATE PROCEDURE, ALTER PROCEDURE, RECREATE PROCEDURE

DROP PROCEDURE

Used for: Deleting a stored procedure

Available in: DSQL, ESQL

Data Definition (DDL) Statements

139

Syntax:

DROP PROCEDURE procname

Table 5.26. DROP PROCEDURE Statement Parameter

Parameter Description

procname Name of an existing stored procedure

The DROP PROCEDURE statement deletes an existing stored procedure. If the stored procedure has any depen-
dencies, the attempt to delete it will fail and the appropriate error will be raised.

The procedure owner and Administrators have the authority to use DROP PROCEDURE.

Example: Deleting the GET_EMP_PROJ stored procedure.

DROP PROCEDURE GET_EMP_PROJ;

See also: CREATE PROCEDURE, RECREATE PROCEDURE

RECREATE PROCEDURE

Used for: Creating a new stored procedure or recreating an existing one

Available in: DSQL

Syntax:

RECREATE PROCEDURE procname
[(<inparam> [, <inparam> ...])]
[RETURNS (<outparam> [, <outparam> ...])]
AS
[<declarations>]
BEGIN
[<PSQL_statements>]
END

For the full syntax detail, see CREATE PROCEDURE.

The RECREATE PROCEDURE statement creates a new stored procedure or recreates an existing one. If there is
a procedure with this name already, the engine will try to delete it and create a new one. Recreating an existing
procedure will fail at the COMMIT request if the procedure has dependencies.

Warning

Be aware that dependency errors are not detected until the COMMIT phase of this operation.

Data Definition (DDL) Statements

140

After a procedure is successfully recreated, privileges to execute the stored procedure and the privileges of the
stored procedure itself are dropped.

Example: Creating the new GET_EMP_PROJ stored procedure or recreating the existing GET_EMP_PROJ
stored procedure.

RECREATE PROCEDURE GET_EMP_PROJ (
 EMP_NO SMALLINT)
RETURNS (
 PROJ_ID VARCHAR(20))
AS
BEGIN
 FOR SELECT
 PROJ_ID
 FROM
 EMPLOYEE_PROJECT
 WHERE
 EMP_NO = :emp_no
 INTO :proj_id
 DO
 SUSPEND;
END

See also: CREATE PROCEDURE, DROP PROCEDURE, CREATE OR ALTER PROCEDURE

EXTERNAL FUNCTION

REVIEW STATUS

All sections from this point forward to the end of the chapter are awaiting technical and editorial review.

External functions, also known as “user-defined functions” (UDFs) are programs written in an external program-
ming language and stored in dynamically loaded libraries. Once declared to a database, they become available
in dynamic and procedural statements as though they were implemented in the SQL language internally.

External functions extend the possibilities for processing data with SQL considerably. To make a function avail-
able to a database, it is declared using the statement DECLARE EXTERNAL FUNCTON.

The library containing a function is loaded when any function included in it is called.

Note

External functions may be contained in more than one library—or “module”, as it is referred to in the syntax.

DECLARE EXTERNAL FUNCTION

Used for: Declaring a user-defined function (UDF) to the database

Data Definition (DDL) Statements

141

Available in: DSQL, ESQL

Syntax:

DECLARE EXTERNAL FUNCTION funcname
[<arg_type_decl> [, <arg_type_decl> ...]]
RETURNS {
 sqltype [BY {DESCRIPTOR | VALUE}] |
 CSTRING(length) |
 PARAMETER param_num }
[FREE_IT]
ENTRY_POINT 'entry_point' MODULE_NAME 'library_name';

<arg_type_decl> ::=
 sqltype [{BY DESCRIPTOR} | NULL] |
 CSTRING(length) [NULL]

Table 5.27. DECLARE EXTERNAL FUNCTION Statement Parameters

Parameter Description

funcname

Function name in the database. It may consist of up to 31 characters. It should
be unique among all internal and external function names in the database and
need not be the same name as the name exported from the UDF library via
ENTRY_POINT.

entry_point The exported name of the function

library_name
The name of the module (MODULE_NAME from which the function is exported.
This will be the name of the file, without the “.dll” or “.so” file extension.

sqltype SQL data type. It cannot be an array or an array element

length The maximum length of a null-terminated string, specified in bytes

param_num
The number of the input parameter, numbered from 1 in the list of input parame-
ters in the declaration, describing the data type that will be returned by the func-
tion

The DECLARE EXTERNAL FUNCTION statement makes a user-defined function available in the database. UDF
declarations must be made in each database that is going to use them. There is no need to declare UDFs that
will never be used.

The name of the external function must be unique among all function names. It may be different from the
exported name of the function, as specified in the ENTRY_POINT argument.

DECLARE EXTERNAL FUNCTION Input Parameters

The input parameters of the function follow the name of the function and are separated with commas. Each
parameter has an SQL data type specified for it. Arrays cannot be used as function parameters. As well as the
SQL types, the CSTRING type is available for specifying a null-terminated string with a maximum length of
LENGTH bytes.

Data Definition (DDL) Statements

142

By default, input parameters are passed by reference. The BY DESCRIPTOR clause may be specified instead,
if the input parameter is passed by descriptor. Passing a parameter by descriptor makes it possible to process
NULLs.

Clauses and Keywords

RETURNS clause: (Required) specifies the output parameter returned by the function. A function is scalar:
it returns one and only one parameter. The output parameter can be of any SQL type (except an array or an
array element) or a null-terminated string (CSTRING). The output parameter can be passed by reference (the
default), by descriptor or by value. If the BY DESCRIPTOR clause is specified, the output parameter is passed
by descriptor. If the BY VALUE clause is specified, the output parameter is passed by value.

PARAMETER keyword: specifies that the function returns the value from the parameter under number
param_num. It is necessary if you need to return a value of data type BLOB.

FREE_IT keyword: means that the memory allocated for storing the return value will be freed after the function
is executed. It is used only if the memory was allocated dynamically in the UDF. In such a UDF, the memory
must be allocated with the help of the ib_util_malloc function from the ib_util module, a requirement
for compatibility with the functions used in Firebird code and in the code of the shipped UDF modules, for
allocating and freeing memory.

ENTRY_POINT clause: specifies the name of the entry point (the name of the imported function), as exported
from the module.

MODULE_NAME clause: defines the name of the module where the exported function is located. The link to
the module should not be the full path and extension of the file, if that can be avoided. If the module is located in
the default location (in the ../UDF subdirectory of the Firebird server root) or in a location explicitly configured
in firebird.conf, it makes it easier to move the database between different platforms. The UDFAccess
parameter in the firebird.conf file allows access restrictions to external functions modules to be configured.

 Any user connected to the database can declare an external function (UDF).

Examples using DECLARE EXTERNAL FUNCTION:

1. Declaring the addDate external function located in the fbudf module. The input and output parameters are
passed by reference.

DECLARE EXTERNAL FUNCTION addDay
TIMESTAMP, INT
RETURNS TIMESTAMP
ENTRY_POINT 'addDay' MODULE_NAME 'fbudf';

2. Declaring the invl external function located in the fbudf module. The input and output parameters are passed
by descriptor.

DECLARE EXTERNAL FUNCTION invl
INT BY DESCRIPTOR, INT BY DESCRIPTOR
RETURNS INT BY DESCRIPTOR
ENTRY_POINT 'idNvl' MODULE_NAME 'fbudf';

Data Definition (DDL) Statements

143

3. Declaring the isLeapYear external function located in the fbudf module. The input parameter is passed by
reference, while the output parameter is passed by value.

DECLARE EXTERNAL FUNCTION isLeapYear
TIMESTAMP
RETURNS INT BY VALUE
ENTRY_POINT 'isLeapYear' MODULE_NAME 'fbudf';

4. Declaring the i64Truncate external function located in the fbudf module. The input and output parameters
are passed by descriptor. The second parameter of the function is used as the return value.

DECLARE EXTERNAL FUNCTION i64Truncate
NUMERIC(18) BY DESCRIPTOR, NUMERIC(18) BY DESCRIPTOR
RETURNS PARAMETER 2
ENTRY_POINT 'fbtruncate' MODULE_NAME 'fbudf';

See also: ALTER EXTERNAL FUNCTION, DROP EXTERNAL FUNCTION

ALTER EXTERNAL FUNCTION

Used for: Changing the entry point and/or the module name for a user-defined function (UDF)

Available in: DSQL

Syntax:

ALTER EXTERNAL FUNCTION funcname
[ENTRY_POINT 'new_entry_point']
[MODULE_NAME 'new_library_name'];

Table 5.28. ALTER EXTERNAL FUNCTION Statement Parameters

Parameter Description

funcname Function name in the database

new_entry_point The new exported name of the function

new_library_name
The new name of the module (MODULE_NAME from which the function is ex-
ported. This will be the name of the file, without the “.dll” or “.so” file exten-
sion.

The ALTER EXTERNAL FUNCTION statement changes the entry point and/or the module name for a user-defined
function (UDF). Existing dependencies remain intact after the statement containing the change[s] is executed.

The ENTRY_POINT clause: is for specifying the new entry point (the name of the function as exported from
the module).

Data Definition (DDL) Statements

144

The MODULE_NAME clause: Is for specifying the new name of the module where the exported function is
located.

 Any user connected to the database can change the entry point and the module name.

Examples using ALTER EXTERNAL FUNCTION:

1. Changing the entry point for an external function

ALTER EXTERNAL FUNCTION invl ENTRY_POINT 'intNvl';

2. Changing the module name for an external function

ALTER EXTERNAL FUNCTION invl MODULE_NAME 'fbudf2';

See also: DECLARE EXTERNAL FUNCTION, DROP EXTERNAL FUNCTION

DROP EXTERNAL FUNCTION

Used for: Removing a user-defined function (UDF) from a database

Available in: DSQL, ESQL

Syntax:

DROP EXTERNAL FUNCTION funcname

Table 5.29. DROP EXTERNAL FUNCTION Statement Parameter

Parameter Description

funcname Function name in the database

The DROP EXTERNAL FUNCTION statement deletes the declaration of a user-defined function from the database.
If there are any dependencies on the external function, the statement will fail and the appropriate error will be
raised.

 Any user connected to the database can delete the declaration of an internal function.

Example using DROP EXTERNAL FUNCTION: Deleting the declaration of the addDay function.

DROP EXTERNAL FUNCTION addDay;

See also: DECLARE EXTERNAL FUNCTION

Data Definition (DDL) Statements

145

FILTER

A BLOB FILTER filter is a database object that is actually a special type of external function, with the sole
purpose of taking a BLOB object in one format and converting it to a BLOB object in another format. The formats
of the BLOB objects are specifed with user-defined BLOB subtypes.

External functions for converting BLOB types are stored in dynamic libraries and loaded when necessary.

For more details on BLOB subtypes, see Binary Data Types.

DECLARE FILTER

Used for: Declaring a BLOB filter to the database

Available in: DSQL, ESQL

Syntax:

DECLARE FILTER filtername
INPUT_TYPE <sub_type> OUTPUT_TYPE <sub_type>
ENTRY_POINT 'function_name' MODULE_NAME 'library_name';

<sub_type> ::= number | <mnemonic>

<mnemonic> ::= binary | text | blr | acl | ranges
 | summary | format | transaction_description
 | external_file_description | user_defined

Table 5.30. DECLARE FILTER Statement Parameters

Parameter Description

filtername
Filter name in the database. It may consist of up to 31 characters. It need not be
the same name as the name exported from the filter library via ENTRY_POINT.

sub_type BLOB subtype

number BLOB SUB_TYPE number (must be negative)

mnemonic BLOB SUB_TYPE mnemonic name

function_name The exported name (entry point) of the function

library_name The name of the module where the filter is located

user_defined User-define BLOB SUB_TYPE mnemonic name

Data Definition (DDL) Statements

146

The DECLARE FILTER statement makes a BLOB filter available to the database. The name of the BLOB filter
must be unique among the names of BLOB filters.

Specifying the Subtypes

The subtypes can be specified as the subtype number or as the subtype mnemonic name. Custom subtypes must
be represented by negative numbers (from -1 to -32,768). An attempt to declare more than one BLOB filter with
the same combination of the input and output types will fail with an error.

INPUT_TYPE: clause defining the BLOB subtype of the object to be converted

OUTPUT_TYPE: clause definimg the BLOB subtype of the object to be created.

Note

Mnemonic names can be defined for custom BLOB subtypes and inserted manually into the system table RDB
$TYPES system table:

 INSERT INTO RDB$TYPES (RDB$FIELD_NAME, RDB$TYPE, RDB$TYPE_NAME)
 VALUES ('RDB$FIELD_SUB_TYPE', -33, 'MIDI');

After the transaction is confirmed, the mnemonic names can be used in declarations when you create new filters.

The value of the column RDB$FIELD_NAME must always be 'RDB$FIELD_SUB_TYPE'. If mnemonic
names in upper case, they can be used case-insensitively and without quotation marks when a filter is declared.

Warning: From Firebird 3 onward, the system tables will no longer be writable by users.

Parameters

ENTRY_POINT: clause defining the name of the entry point (the name of the imported function) in the module.

MODULE_NAME: The clause defining the name of the module where the exported function is located. By
default, modules must be located in the UDF folder of the root directory on the server. The UDFAccess parameter
in firebird.conf allows editing of access restrictions to filter libraries.

* *

 Any user connected to the database can declare a BLOB filter.

Examples:

1. Creating a BLOB filter using subtype numbers.

DECLARE FILTER DESC_FILTER
INPUT_TYPE 1
OUTPUT_TYPE -4
ENTRY_POINT 'desc_filter'
MODULE_NAME 'FILTERLIB';

2. Creating a BLOB filter using subtype mnemonic names.

Data Definition (DDL) Statements

147

DECLARE FILTER FUNNEL
INPUT_TYPE blr OUTPUT_TYPE text
ENTRY_POINT 'blr2asc' MODULE_NAME 'myfilterlib';

See also: DROP FILTER

DROP FILTER

Used for: Removing a BLOB filter declaration from the database

Available in: DSQL, ESQL

Syntax:

DROP FILTER filtername;

Table 5.31. DROP FILTER Statement Parameter

Parameter Description

filtername Filter name in the database

The DROP FILTER statement removes the declaration of a BLOB filter from the database. Removing a BLOB
filter from a database makes it unavailable for use rom that database. The dynamic library where the conversion
function is located remains intact and the removal from one database does not affect other databases in which
the same BLOB filter is still declared.

 Any user connected to the database can drop a BLOB filter.

Example: Deleting a BLOB filter.

DROP FILTER DESC_FILTER;

See also: DECLARE FILTER

SEQUENCE (GENERATOR)

A sequence or a generator is a database object used to get unique number values to fill a series. “Sequence”
is the SQL-compliant term for the same thing which, in Firebird, has traditionally been known as “generator”.
Both terms are implemented in Firebird, which recognises and has syntax for both terms.

Data Definition (DDL) Statements

148

Sequences (or generators) are always stored as 64-bit integers, regardless of the SQL dialect of the database.

Caution

If a client is connected using Dialect 1, the server sends sequence values to it as 32-bit integers. Passing a
sequence value to a 32-bit field or variable will not cause errors as long as the current value of the sequence
does not exceed the limits of a 32-bit number. However, as soon as the sequence value exceeds this limit, a
database in Dialect 3 will produce an error. A database in Dialect 1 will keep cutting the values, which will
compromise the uniqueness of the series.

This section describes how to create, set and delete sequences.

CREATE SEQUENCE

Used for: Creating a new SEQUENCE (GENERATOR)

Available in: DSQL, ESQL

Syntax:

CREATE {SEQUENCE | GENERATOR} seq_name

Table 5.32. CREATE SEQUENCE | CREATE GENERATOR Statement Parameter

Parameter Description

seq_name Sequence (generator) name. It may consist of up to 31 characters

The statements CREATE SEQUENCE and CREATE GENERATOR are synonymous—both create a new sequence.
Either can be used but CREATE SEQUENCE is recommended if standards-compliant metadata management is
important.

When a sequence is created, its value is set to 0. Each time the NEXT VALUE FOR seq_name operator is used
with that sequence, its value increases by 1. The GEN_ID(seq_name, <step>) function can be called instead, to
“step” the series by a different integer number.

Any user connected to the database can create a sequence (generator).

Examples:

1. Creating the EMP_NO_GEN series using CREATE SEQUENCE.

CREATE SEQUENCE EMP_NO_GEN;

2. Creating the EMP_NO_GEN series using CREATE GENERATOR.

Data Definition (DDL) Statements

149

CREATE GENERATOR EMP_NO_GEN;

See also: ALTER SEQUENCE, SET GENERATOR, DROP SEQUENCE (GENERATOR), NEXT VALUE FOR,
GEN_ID() function

ALTER SEQUENCE

Used for: Setting the value of a sequence or generator to a specified value

Available in: DSQL

Syntax:

ALTER SEQUENCE seq_name RESTART WITH new_val

Table 5.33. ALTER SEQUENCE Statement Parameters

Parameter Description

seq_name Sequence (generator) name

new_val New sequence (generator) value. A 64-bit integer from -2-63 to 263-1.

The ALTER SEQUENCE statement sets the current value of a sequence or generator to the specified value.

Warning

Incorrect use of the ALTER SEQUENCE statement (changing the current value of the sequence or generator) is
likely to break the logical integrity of data.

Any user connected to the database can set the sequence (generator) value.

Examples:

1. Setting the value of the EMP_NO_GEN sequence to 145.

ALTER SEQUENCE EMP_NO_GEN RESTART WITH 145;

2. Doing the same thing, using SET GENERATOR:

SET GENERATOR EMP_NO_GEN TO 145;

See also: SET GENERATOR, CREATE SEQUENCE (GENERATOR), DROP SEQUENCE (GENERATOR), NEXT
VALUE FOR, GEN_ID() function

Data Definition (DDL) Statements

150

SET GENERATOR

Used for: Setting the value of a sequence or generator to a specified value

Available in: DSQL, ESQL

Syntax:

SET GENERATOR seq_name TO new_val

Table 5.34. SET GENERATOR Statement Parameters

Parameter Description

seq_name Generator (sequence) name

new_val New sequence (generator) value. A 64-bit integer from -2-63 to 263-1.

The SET GENERATOR statement sets the current value of a sequence or generator to the specified value.

Note

Although SET GENERATOR is considered outdated, it is retained for backward compatibility. Using the stan-
dards-compliant ALTER SEQUENCE is current and is recommended.

Any user connected to the database can set the sequence (generator) value.

Examples:

1. Setting the value of the EMP_NO_GEN sequence to 145:

SET GENERATOR EMP_NO_GEN TO 145;

2. Doing the same thing, using ALTER SEQUENCE:

ALTER SEQUENCE EMP_NO_GEN RESTART WITH 145;

See also: ALTER SEQUENCE, CREATE SEQUENCE (GENERATOR)

DROP SEQUENCE

Used for: Deleting SEQUENCE (GENERATOR)

Available in: DSQL, ESQL

Data Definition (DDL) Statements

151

Syntax:

DROP {SEQUENCE | GENERATOR} seq_name

Table 5.35. DROP SEQUENCE | DROP GENERATOR Statement Parameter

Parameter Description

seq_name Sequence (generator) name. It may consist of up to 31 characters

The statements DROP SEQUENCE and DROP GENERATOR statements are equivalent: both delete an existing
sequence (generator). Either is valid but DROP SEQUENCE, being current, is recommended.

The statements will fail if the sequence (generator) has dependencies.

Any user connected to the database can drop a sequence (generator).

Example: Dropping the EMP_NO_GEN series:

DROP SEQUENCE EMP_NO_GEN;

See also: CREATE SEQUENCE (GENERATOR, ALTER SEQUENCE, SET GENERATOR

EXCEPTION

This section describes how to create, modify and delete custom exceptions for use in error handlers in PSQL
modules.

CREATE EXCEPTION

Used for: Creating a new exception for use in PSQL modules

Available in: DSQL, ESQL

Syntax:

CREATE EXCEPTION exception_name 'message'

Table 5.36. CREATE EXCEPTION Statement Parameters

Parameter Description

exception_name Exception name. The maximum length is 31 characters

Data Definition (DDL) Statements

152

Parameter Description

message Default error message. The maximum length is 1,021 characters

The statement CREATE EXCEPTION creates a new exception for use in PSQL modules. If an exception of the
same name exists, the statement will fail with an appropriate error message.

The exception name is a standard identifier. In a Dialect 3 database, it can be enclosed in double quotes to make
it case-sensitive and, if required, to use characters that are not valid in regular identifiers. See Identifiers for
more information.

The default message is stored in character set NONE, i.e., in characters of any single-byte character set. The text
can be overridden in the PSQL code when the exception is thrown.

Any user connected to the database can create an exception.

Examples:

1. Creating an exception named E_LARGE_VALUE:

CREATE EXCEPTION E_LARGE_VALUE
 'The value is out of range';

2. Creating an exception named ERROR_REFIN_RATE:

CREATE EXCEPTION ERROR_REFIN_RATE
 'Error detected in the spread of discount rates';

Tips

Grouping CREATE EXCEPTION statements together in system update scripts will simplify working with them
and documenting them. A system of prefixes for naming and categorising groups of exceptions is recommend-
ed.

Custom exceptions are stored in the system table RDB$EXCEPTIONS.

See also: ALTER EXCEPTION, CREATE OR ALTER EXCEPTION, DROP EXCEPTION, RECREATE EXCEPTION

ALTER EXCEPTION

Used for: Modifying a the message returned from a custom exception

Available in: DSQL, ESQL

Syntax:

ALTER EXCEPTION exception_name 'message'

Data Definition (DDL) Statements

153

Table 5.37. ALTER EXCEPTION Statement Parameters

Parameter Description

exception_name Exception name

message New default error message. The maximum length is 1,021 characters

The statement ALTER EXCEPTION can be used at any time, to modify the default text of the message. Any user
connected to the database can alter an exception message.

Examples:

1. Changing the default message for the exception E_LARGE_VALUE:

ALTER EXCEPTION E_LARGE_VALUE
 'The value exceeds the prescribed limit of 32,765 bytes';

2. Changing the default message for the exception ERROR_REFIN_RATE:

ALTER EXCEPTION ERROR_REFIN_RATE 'Rate is outside the allowed range';

See also: CREATE EXCEPTION, CREATE OR ALTER EXCEPTION, DROP EXCEPTION, RECREATE EXCEPTION

CREATE OR ALTER EXCEPTION

Used for: Modifying a the message returned from a custom exception, if the exception exists; otherwise, creating
a new exception

Available in: DSQL

Syntax:

CREATE OR ALTER EXCEPTION exception_name 'message'

Table 5.38. CREATE OR ALTER EXCEPTION Statement Parameters

Parameter Description

exception_name Exception name

message Error message. The maximum length is limited to 1,021 characters

The statement CREATE OR ALTER EXCEPTION is used to create the specified exception if it does not exist, or
to modify the text of the error message returned from it if it exists already. If an existing exception is altered by
this statement, any existing dependencies will remain intact.

Data Definition (DDL) Statements

154

Any user connected to the database can use this statement to create an exception or alter the text of one that
already exists.

Example: Changing the message for the exception E_LARGE_VALUE:

CREATE OR ALTER EXCEPTION E_LARGE_VALUE
 'The value is higher than the permitted range 0 to 32,765';

See also: CREATE EXCEPTION, ALTER EXCEPTION, RECREATE EXCEPTION

DROP EXCEPTION

Used for: Deleting a custom exception

Available in: DSQL, ESQL

Syntax:

DROP EXCEPTION exception_name

Table 5.39. DROP EXCEPTION Statement Parameter

Parameter Description

exception_name Exception name

The statement DROP EXCEPTION is used to delete an exception. Any dependencies on the exception will cause
the statement to fail and the exception will not be deleted.

If an exception is used only in stored procedures, it can be deleted at any time. If it is used in a trigger, it cannot
be deleted.

In planning to delete an exception, all references to it should first be removed from the code of stored procedures,
to avoid its absence causing errors.

Any user connected to the database can delete an exception.

Examples:

1. Deleting exception ERROR_REFIN_RATE:

DROP EXCEPTION ERROR_REFIN_RATE;

2. Deleting exception E_LARGE_VALUE:

DELETE EXCEPTION E_LARGE_VALUE;

Data Definition (DDL) Statements

155

See also: CREATE EXCEPTION, RECREATE EXCEPTION

RECREATE EXCEPTION

Used for: Creating a new custom exception or recreating an existing one

Available in: DSQL

Syntax:

RECREATE EXCEPTION exception_name 'message'

Table 5.40. RECREATE EXCEPTION Statement Parameters

Parameter Description

exception_name Exception name. The maximum length is 31 characters

message Error message. The maximum length is limited to 1,021 characters

The statement RECREATE EXCEPTION creates a new exception for use in PSQL modules. If an exception of the
same name exists already, the RECREATE EXCEPTION statement will try to delete it and create a new one. If
there are any dependencies on the existing exception, the attempted deletion fails and RECREATE EXCEPTION
is not executed.

Any user connected to the database can [re]create an exception.

Example: Recreating the E_LARGE_VALUE exception:

RECREATE EXCEPTION E_LARGE_VALUE
 'The value exceeds its limit';

See also: CREATE EXCEPTION, DROP EXCEPTION, CREATE OR ALTER EXCEPTION

COLLATION

CREATE COLLATION

Used for: Making a new collation for a supported character set available to the database

Available in: DSQL

Data Definition (DDL) Statements

156

Syntax:

CREATE COLLATION collname
FOR charset
[FROM basecoll | FROM EXTERNAL ('extname')]
[NO PAD | PAD SPACE]
[CASE [IN]SENSITIVE]
[ACCENT [IN]SENSITIVE]
['<specific-attributes>'];

<specific-attributes> ::= <attribute> [; <attribute> ...]

<attribute> ::= attrname=attrvalue

Table 5.41. CREATE COLLATION Statement Parameters

Parameter Description

collname The name to use for the new collation. The maximum length is 31 characters

charset A character set present in the database

basecoll A collation already present in the database

extname The collation name used in the .conf file

The CREATE COLLATION statement does not “create” anything: its purpose is to make a collation known to a
database. The collation must already be present on the system, typically in a library file, and must be properly
registered in a .conf file in the intl subdirectory of the Firebird installation.

The collation may alternatively be based on one that is already present in the database.

How the Engine Detects the Collation

If no FROM clause is present, Firebird will scan the .conf file(s) in the intl subdirectory for a collation with
the name specified as the object of CREATE COLLATION. In other words, omitting the FROM basecoll clause is
equivalent to specifying FROM EXTERNAL ('collname').

The single-quoted 'extname' is case-sensitive and must correspond exactly with the collation name in the
.conf file. The collname, charset and basecoll parameters are case-insensitive unless enclosed in
double-quotes.

Specific Attributes

The available specific attributes are listed in the table below. Not all specific attributes apply to every collation,
even if specifying them does not cause an error.

Important

Specific attributes are case sensitive.

Data Definition (DDL) Statements

157

In the table, “1 bpc” indicates that an attribute is valid for collations of character sets using 1 byte per character
(so-called narrow character sets). “UNI” stands for “UNICODE collations”.

Table 5.42. Specific Collation Attributes

Atrribute Values Valid for Comment

DISABLE-COM-
PRESSIONS

0, 1 1 bpc

Disables compressions (a.k.a. contractions).
Compressions cause certain character se-
quences to be sorted as atomic units, e.g.
Spanish c+h as a single character ch

DISABLE-EXPANSIONS 0, 1 1 bpc

Disables expansions. Expansions cause cer-
tain characters (e.g. ligatures or umlauted
vowels) to be treated as character sequences
and sorted accordingly

ICU-VERSION
default
or M.m

UNI

Specifies the ICU library version to use.
Valid values are the ones defined in the ap-
plicable <intl_module> element in intl/
fbintl.conf. Format: either the string
literal “default” or a major+minor version
number like “3.0” (both unquoted).

LOCALE xx_YY UNI
Specifies the collation locale. Requires com-
plete version of ICU libraries. Format: a lo-
cale string like “du_NL” (unquoted)

MULTI-LEVEL 0, 1 1 bpc Uses more than one ordering level

NUMERIC-SORT 0, 1 UNI

Treats contiguous groups of decimal digits
in the string as atomic units and sorts them
numerically. (This is also known as natural
sorting)

SPECIALS-FIRST 0, 1 1 bpc
Orders special characters (spaces, symbols
etc.) before alphanumeric characters

Tip

If you want to add a new character set with its default collation into your database, declare and run the stored
procedure sp_register_character_set(name, max_bytes_per_character), found in misc/
intl.sql/ under the Firebird installation directory.

Note: in order for this to work, the character set must be present on the system and registered in a .conf file
in the intl subdirectory.

Any user connected to the database can use CREATE COLLATION to add a new collation.

Examples using CREATE COLLATION:

1. Creating a collation using the name found in the fbintl.conf file (case-sensitive).

CREATE COLLATION ISO8859_1_UNICODE FOR ISO8859_1;

Data Definition (DDL) Statements

158

2. Creating a collation using a special (user-defined) name (the “external” name must completely match the
name in the fbintl.conf file).

CREATE COLLATION LAT_UNI
FOR ISO8859_1
FROM EXTERNAL ('ISO8859_1_UNICODE');

3. Creating a case-insensitive collation based on one already existing in the database.

CREATE COLLATION ES_ES_NOPAD_CI
FOR ISO8859_1
FROM ES_ES
NO PAD
CASE INSENSITIVE;

4. Creating a case-insensitive collation based on one already existing in the database with specific attributes.

CREATE COLLATION ES_ES_CI_COMPR
FOR ISO8859_1
FROM ES_ES
CASE INSENSITIVE
'DISABLE-COMPRESSIONS=0';

5. Creating a case-insensitive collation by the value of numbers (the so-called natural collation).

CREATE COLLATION nums_coll FOR UTF8
FROM UNICODE
CASE INSENSITIVE 'NUMERIC-SORT=1';

CREATE DOMAIN dm_nums AS varchar(20)
CHARACTER SET UTF8 COLLATE nums_coll; -- original (manufacturer) numbers

CREATE TABLE wares(id int primary key, articul dm_nums ...);

See also: DROP COLLATION

DROP COLLATION

Used for: Removing a collation from the database

Available in: DSQL

Syntax:

Data Definition (DDL) Statements

159

DROP COLLATION collname

Table 5.43. DROP COLLATION Statement Parameters

Parameter Description

collname The name of the collation

The DROP COLLATION statement removes the specified collation from the database, if is there. An error will
be raised if the specified collation is not present.

Tip

If you want to remove an entire character set with all its collations from the database, declare and execute the
stored procedure sp_unregister_character_set(name) from the misc/intl.sql subdirectory of
the Firebird installation.

Any user connected to the database can use DROP COLLATION to remove a collation.

Example using DROP COLLATION: Deleting the ES_ES_NOPAD_CI collation.

DROP COLLATION ES_ES_NOPAD_CI;

See also: CREATE COLLATION

CHARACTER SET

ALTER CHARACTER SET

Used for: Setting the default collation for a character set

Available in: DSQL

Syntax:

ALTER CHARACTER SET charset
SET DEFAULT COLLATION collation;

Table 5.44. ALTER CHARACTER SET Statement Parameters

Parameter Description

charset Character set identifier

Data Definition (DDL) Statements

160

Parameter Description

collation The name of the collation

The statement ALTER CHARACTER SET statement changes the default collation for the specified character set.
It will affect the future usage of the character set, except for cases where the COLLATE clause is explicitly
overridden. In that case, the collation sequence of existing domains, columns and PSQL variables will remain
intact after the change to the default collation of the underlying character set.

NOTES

If you change the default collation for the database character set (the one defined when the database was cre-
ated), it will change the default collation for the database.

If you change the default collation for the character set that was specified during the connection, string constants
will be interpreted according to the new collation value, except in those cases where the character set and/or
the collation have been overridden.

Example of use: Setting the default UNICODE_CI_AI collation for the UTF8 encoding.

ALTER CHARACTER SET UTF8
 SET DEFAULT COLLATION UNICODE_CI_AI;

ROLE

A role is a database object that packages a set of SQL privileges. Roles implement the concept of access control
at a group level. Multiple privileges are granted to the role and then that role can be granted to or revoked from
one or many users.

A user that is granted a role must supply that role in his login credentials in order to exercise the associated
privileges. Any other privileges granted to the user are not affected by his login with the role. Logging in with
multiple roles simultaneously is not supported.

In this section the tasks of creating and dropping roles are discussed.

CREATE ROLE

Used for: Creating a new ROLE object

Available in: DSQL, ESQL

Syntax:

CREATE ROLE rolename;

Data Definition (DDL) Statements

161

Table 5.45. CREATE ROLE Statement Parameter

Parameter Description

rolename Role name. The maximum length is 31 characters

The statement CREATE ROLE creates a new role object, to which one or more privileges can be granted subse-
quently. The name of a role must be unique among the names of roles in the current database.

Warning

It is advisable to make the name of a role unique among user names as well. The system will not prevent the
creation of a role whose name clashes with an existing user name but, if it happens, the user will be unable
to connect to the database.

 Any user connected to the database can create a role. The user that creates a role becomes its owner.

Example: Creating a role named SELLERS:

CREATE ROLE SELLERS;

See also: DROP ROLE, GRANT, REVOKE

ALTER ROLE

ALTER ROLE has no place in the create-alter-drop paradigm for database objects since a role has no attributes
that can be modified. Its actual effect is to alter an attribute of the database: Firebird uses it to enable and disable
the capability for Windows Adminstrators to assume administrator privileges automatically when logging in.

This procedure can affect only one role: the system-generated role RDB$ADMIN that exists in every database of
ODS 11.2 or higher. Several factors are involved in enabling this feature.

For details, see AUTO ADMIN MAPPING in the Security chapter.

DROP ROLE

Used for: Deleting a role

Available in: DSQL, ESQL

Syntax:

DROP ROLE rolename;

Data Definition (DDL) Statements

162

The statement DROP ROLE deletes an existing role. It takes just a single argument, the name of the role. Once
the role is deleted, the entire set of privileges is revoked from all users and objects that were granted the role.

A role can be deleted by its owner or by an administrator.

Example: Deleting the role SELLERS:

DROP ROLE SELLERS;

See also: CREATE ROLE, GRANT, REVOKE

COMMENTS

Database objects and a database itself may contain comments. It is a convenient mechanism for documenting
the development and maintenance of a database. Comments created with COMMENT ON will survive a gbak
backup and restore.

COMMENT ON

Used for: Documenting metadata

Available in: DSQL

Syntax:

COMMENT ON <object> IS {'sometext' | NULL}

<object> ::=
 DATABASE
 | <basic-type> objectname
 | COLUMN relationname.fieldname
 | PARAMETER procname.paramname

<basic-type> ::=
 CHARACTER SET |
 COLLATION |
 DOMAIN |
 EXCEPTION |
 EXTERNAL FUNCTION |
 FILTER |
 GENERATOR |
 INDEX |
 PROCEDURE |
 ROLE |
 SEQUENCE |
 TABLE |
 TRIGGER |
 VIEW

Data Definition (DDL) Statements

163

Table 5.46. COMMENT ON Statement Parameters

Parameter Description

sometext Comment text

basic-type Metadata object type

objectname Metadata object name

relationname Name of table or view

procname Name of stored procedure

paramname Name of a stored procedure parameter

The COMMENT ON statement adds comments for database objects (metadata). Comments are saved to text fields
of the BLOB type in the RDB$DESCRIPTION column of the corresponding system tables. Client applications
can view comments from these fields.

Note

If you add an empty comment (''), it will be saved as NULL in the database.

The table or procedure owner and Administrators have the authority to use COMMENT ON.

Examples using COMMENT ON:

1. Adding a comment for the current database

COMMENT ON DATABASE IS 'It is a test (''my.fdb'') database';

2. Adding a comment for the METALS table

COMMENT ON TABLE METALS IS 'Metal directory';

3. Adding a comment for the ISALLOY field in the METALS table

COMMENT ON COLUMN METALS.ISALLOY IS '0 = fine metal, 1 = alloy';

4. Adding a comment for a parameter

COMMENT ON PARAMETER ADD_EMP_PROJ. EMP_NO IS 'Employee ID';

164

Chapter 6

Data Manipulation
(DML) Statements

REVIEW STATUS

All sections from this point forward to the end of the chapter are awaiting technical and editorial review.

DML—data manipulation language— is the subset of SQL that is used by applications and procedural modules
to extract and change data. Extraction, for the purpose of reading data, both raw and manipulated, is achieved
with the SELECT statement. INSERT is for adding new data and DELETE is for erasing data that are no longer
required. UPDATE, MERGE and UPDATE OR INSERT all modify data in various ways.

SELECT

Used for: Retrieving data

Available in: DSQL, ESQL, PSQL

Global syntax:

SELECT
[WITH [RECURSIVE] <cte> [, <cte> ...]]
SELECT
 [FIRST m] [SKIP n]
 [DISTINCT | ALL] <columns>
FROM
 source [[AS] alias]
 [<joins>]
[WHERE <condition>]
[GROUP BY <grouping-list>
[HAVING <aggregate-condition>]]
[PLAN <plan-expr>]
[UNION [DISTINCT | ALL] <other-select>]
[ORDER BY <ordering-list>]
[ROWS m [TO n]]
[FOR UPDATE [OF <columns>]]
[WITH LOCK]
[INTO <variables>]

<variables> ::= [:]varname [, [:]varname ...]

Data Manipulation (DML) Statements

165

Description

The SELECT statement retrieves data from the database and hands them to the application or the enclosing SQL
statement. Data are returned in zero or more rows, each containing one or more columns or fields. The total of
rows returned is the result set of the statement.

The only mandatory parts of the SELECT statement are:

• The SELECT keyword, followed by a columns list. This part specifies what you want to retrieve.

• The FROM keyword, followed by a selectable object. This tells the engine where you want to get it from.

In its most basic form, SELECT retrieves a number of columns from a single table or view, like this:

select id, name, address
 from contacts

Or, to retrieve all the columns:

select * from sales

In practice, the rows retrieved are often limited by a WHERE clause. The result set may be sorted by an ORDER
BY clause, and FIRST, SKIP or ROWS may further limit the number of output rows. The column list may contain
all kinds of expressions instead of just column names, and the source need not be a table or view: it may also be
a derived table, a common table expression (CTE) or a selectable stored procedure (SP). Multiple sources may
be combined in a JOIN, and multiple result sets may be combined in a UNION.

The following sections discuss the available SELECT subclauses and their usage in detail.

FIRST, SKIP

Used for: Retrieving a slice of rows from an ordered set

Available in: DSQL, PSQL

Syntax:

SELECT
 [FIRST <m>] [SKIP <n>]
 FROM ...
 ...

<m>, <n> ::= integer-literal | query-parameter | (integer-expression)

Table 6.1. Arguments for the FIRST and SKIP Clauses

Argument Description

integer literal Integer literal

query parameter Query parameter place-holder. ? in DSQL and :paramname in PSQL

integer-expression Expression returning an integer value

Data Manipulation (DML) Statements

166

FIRST and SKIP are non-standard syntax

FIRST and SKIP are Firebird-specific, non-SQL-compliant keywords. You are advised to use the ROWS syntax
wherever possible.

Description

FIRST limits the output of a query to the first m rows. SKIP will suppress the given n rows before starting to
return output.

FIRST and SKIP are both optional. When used together as in “FIRST m SKIP n”, the n topmost rows of the output
set are discarded and the first m rows of the rest of the set are returned.

Characteristics of FIRST and SKIP

• Any argument to FIRST and SKIP that is not an integer literal or an SQL parameter must be enclosed in
parentheses. This implies that a subquery expression must be enclosed in two pairs of parentheses.

• SKIP 0 is allowed but totally pointless.

• FIRST 0 is also allowed and returns an empty set.

• Negative SKIP and/or FIRST values result in an error.

• If a SKIP lands past the end of the dataset, an empty set is returned.

• If the number of rows in the dataset (or the remainder left after a SKIP) is less than the value of the m argument
supplied for FIRST, that smaller number of rows is returned. These are valid results, not error conditions.

Caution

An error occurs when you use FIRST in subqueries. This query

DELETE FROM MYTABLE
 WHERE ID IN (SELECT FIRST 10 ID FROM MYTABLE)

will delete ALL records from the table. The subquery retrieves 10 rows each time, deletes them and the oper-
ation is repeated until the table is empty. Keep it in mind! Or, better, use the ROWS clause in the DELETE
statement.

Examples

The following query will return the first 10 names from the People table:

select first 10 id, name from People
 order by name asc

The following query will return everything but the first 10 names:

select skip 10 id, name from People
 order by name asc

Data Manipulation (DML) Statements

167

And this one returns the last 10 rows. Notice the double parentheses:

select skip ((select count(*) - 10 from People))
 id, name from People
 order by name asc

This query returns rows 81 to 100 of the People table:

select first 20 skip 80 id, name from People
 order by name asc

See also: ROWS

The SELECT Columns List

The columns list contains one or more comma-separated value expressions. Each expression provides a value
for one output column. Alternatively, * (“select star”) can be used to stand for all the columns in a relation (i.e.
a table, view or selectable stored procedure).

Syntax:

SELECT
 [...]
 [DISTINCT | ALL] <output-column> [, <output-column> ...]
 [...]
 FROM ...

<output-column> ::= [qualifier.]*
 | <value-expression> [COLLATE collation] [[AS] alias]

<value-expression> ::= [qualifier.]table-column
 | [qualifier.]view-column
 | [qualifier.]selectable-SP-outparm
 | constant
 | context-variable
 | function-call
 | single-value-subselect
 | CASE-construct
 | “any other expression returning a single
 value of a Firebird data type or NULL”

qualifier ::= a relation name or alias
collation ::= a valid collation name (only for character type columns)

Table 6.2. Arguments for the SELECT Columns List

Argument Description

qualifier Name of relation (view, stored procedure, derived table); or an alias for it

collation
Only for character-type columns: a collation name that exists and is valid for the
character set of the data

alias Column or field alias

Data Manipulation (DML) Statements

168

Argument Description

table-column Name of a table column

view-column Name of a view column

selectable-SP-outparm Declared name of an output parameter of a selectable stored procedure

constant A constant

context-variable Context variable

function-call Scalar or aggregate function call expression

single-value-subselect A subquery returning one scalar value (singleton)

CASE-construct CASE construct setting conditions for a return value

other-single-value-expr Any other expression returning a single value of a Firebird data type; or NULL

Description

It is always valid to qualify a column name (or “*”) with the name or alias of the table, view or se-
lectable SP to which it belongs, followed by a dot. e.g., relationname.columnname, relationname.*,
alias.columnname, alias.*. Qualifying is required if the column name occurs in more than one relation
taking part in a join. Qualifying “*” is always mandatory if it is not the only item in the column list.

Important

Aliases obfuscate the original relation name: once a table, view or procedure has been aliased, only the alias
can be used as its qualifier throughout the query. The relation name itself becomes unavailable.

The column list may optionally be preceded by one of the keywords DISTINCT or ALL:

• DISTINCT filters out any duplicate rows. That is, if two or more rows have the same values in every corre-
sponding column, only one of them is included in the result set

• ALL is the default: it returns all of the rows, including duplicates. ALL is rarely used; it is supported for
compliance with the SQL standard.

A COLLATE clause will not change the appearance of the column as such. However, if the specified collation
changes the case or accent sensitivity of the column, it may influence:

• The ordering, if an ORDER BY clause is also present and it involves that column
• Grouping, if the column is part of a GROUP BY clause
• The rows retrieved (and hence the total number of rows in the result set), if DISTINCT is used

Examples of SELECT queries with different types of column lists

A simple SELECT using only column names:

select cust_id, cust_name, phone
 from customers
 where city = 'London'

A query featuring a concatenation expression and a function call in the columns list:

Data Manipulation (DML) Statements

169

select 'Mr./Mrs. ' || lastname, street, zip, upper(city)
 from contacts
 where date_last_purchase(id) = current_date

A query with two subselects:

select p.fullname,
 (select name from classes c where c.id = p.class) as class,
 (select name from mentors m where m.id = p.mentor) as mentor
from pupils p

The following query accomplishes the same as the previous one using joins instead of subselects:

select p.fullname,
 c.name as class,
 m.name as mentor
from pupils p
 join classes c on c.id = p.class
 join mentors m on m.id = p.mentor

This query uses a CASE construct to determine the correct title, e.g. when sending mail to a person:

select case upper(sex)
 when 'F' then 'Mrs.'
 when 'M' then 'Mr.'
 else ''
 end as title,
 lastname,
 address
from employees

Querying a selectable stored procedure:

select * from interesting_transactions(2010, 3, 'S')
 order by amount

Selecting from columns of a derived table. A derived table is a parenthesized SELECT statement whose result
set is used in an enclosing query as if it were a regular table or view. The derived table is shown in bold here:

select fieldcount,
 count(relation) as num_tables
from (select r.rdb$relation_name as relation,
 count(*) as fieldcount
 from rdb$relations r
 join rdb$relation_fields rf
 on rf.rdb$relation_name = r.rdb$relation_name
 group by relation)
group by fieldcount

Asking the time through a context variable (CURRENT_TIME):

select current_time from rdb$database

For those not familiar with RDB$DATABASE: this is a system table that is present in all Firebird databases and
is guaranteed to contain exactly one row. Although it wasn't created for this purpose, it has become standard
practice among Firebird programmers to select from this table if you want to select “from nothing”, i.e., if you

Data Manipulation (DML) Statements

170

need data that are not bound to a any table or view, but can be derived from the expressions in the output columns
alone. Another example is:

select power(12, 2) as twelve_squared, power(12, 3) as twelve_cubed
 from rdb$database

Finally, an example where you select some meaningful information from RDB$DATABASE itself:

select rdb$character_set_name from rdb$database

As you may have guessed, this will give you the default character set of the database.

See also: Scalar Functions, Aggregate Functions, Context Variables, CASE, Subqueries

The FROM clause

The FROM clause specifies the source(s) from which the data are to be retrieved. In its simplest form, this is just
a single table or view. But the source can also be a selectable stored procedure, a derived table or a common
table expression. Multiple sources can be combined using various types of joins.

This section concentrates on single-source selects. Joins are discussed in a following section.

Syntax:

SELECT
 ...
 FROM <source>
 [<joins>]
 [...]

<source> ::= {table
 | view
 | selectable-stored-procedure [(args)]
 | <derived-table>
 | <common-table-expression>}
 [[AS] alias]

<derived-table> ::= (select-statement) [[AS] alias]
 [(<column-aliases>)]

<common-table-expression>
 ::= WITH [RECURSIVE] <cte-def> [, <cte-def> ...]
 select-statement

<cte-def> ::= name [(<column-aliases>)] AS (select-statement)

<column-aliases> ::= column-alias [, column-alias ...]

Table 6.3. Arguments for the FROM Clause

Argument Description

table Name of a table

Data Manipulation (DML) Statements

171

Argument Description

view Name of a view

selectable-stored-
procedure

Name of a selectable stored procedure

args Selectable stored procedure arguments

derived table Derived table query expression

cte-def Common table expression (CTE) definition, including an “ad hoc” name

select-statement Any SELECT statement

column-aliases Alias for a column in a relation, CTE or derived table

name The “ad hoc” name for a CTE

alias The alias of a data source (table, view, procedure, CTE, derived table)

Selecting FROM a table or view

When selecting from a single table or view, the FROM clause need not contain anything more than the name.
An alias may be useful or even necessary if there are subqueries that refer to the main select statement (as they
often do—subqueries like this are called correlated subqueries).

Examples

select id, name, sex, age from actors
 where state = 'Ohio'

select * from birds
 where type = 'flightless'
 order by family, genus, species

select firstname,
 middlename,
 lastname,
 date_of_birth,
 (select name from schools s where p.school = s.id) schoolname
from pupils p
where year_started = '2012'
order by schoolname, date_of_birth

Data Manipulation (DML) Statements

172

Never mix column names with column aliases!

If you specify an alias for a table or a view, you must always use this alias in place of the table name whenever
you query the columns of the relation (and wherever else you make a reference to columns, such as ORDER
BY, GROUP BY and WHERE clauses.

Correct use:

SELECT PEARS
FROM FRUIT

SELECT FRUIT.PEARS
FROM FRUIT

SELECT PEARS
FROM FRUIT F

SELECT F.PEARS
FROM FRUIT F

Incorrect use:

SELECT FRUIT.PEARS
FROM FRUIT F

Selecting FROM a stored procedure

A selectable stored procedure is a procedure that:

• contains at least one output parameter, and
• utilizes the SUSPEND keyword so the caller can fetch the output rows one by one, just as when selecting

from a table or view.

The output parameters of a selectable stored procedure correspond to the columns of a regular table.

Selecting from a stored procedure without input parameters is just like selecting from a table or view:

select * from suspicious_transactions
 where assignee = 'John'

Any required input parameters must be specified after the procedure name, enclosed in parentheses:

select name, az, alt from visible_stars('Brugge', current_date, '22:30')
 where alt >= 20
 order by az, alt

Values for optional parameters (that is, parameters for which default values have been defined) may be omitted
or provided. However, if you provide them only partly, the parameters you omit must all be at the tail end.

Supposing that the procedure visible_stars from the previous example has two optional parameters:
min_magn (numeric(3,1)) and spectral_class (varchar(12)), the following queries are all valid:

select name, az, alt from visible_stars('Brugge', current_date, '22:30')
select name, az, alt from visible_stars('Brugge', current_date, '22:30', 4.0)

Data Manipulation (DML) Statements

173

select name, az, alt from visible_stars('Brugge', current_date, '22:30', 4.0, 'G')

But this one isn't, because there's a “hole” in the parameter list:

select name, az, alt from visible_stars('Brugge', current_date, '22:30', 'G')

An alias for a selectable stored procedure is specified after the parameter list:

select number,
 (select name from contestants c where c.number = gw.number)
from get_winners('#34517', 'AMS') gw

If you refer to an output parameter (“column”) by qualifying it with the full procedure name, the parameter list
should be omitted:

select number,
 (select name from contestants c where c.number = get_winners.number)
from get_winners('#34517', 'AMS')

See also: Stored Procedures, CREATE PROCEDURE

Selecting FROM a derived table

A derived table is a valid SELECT statement enclosed in parentheses, optionally followed by a table alias and/or
column aliases. The result set of the statement acts as a virtual table which the enclosing statement can query.

Syntax:

(select-query)
 [[AS] derived-table-alias]
 [(<derived-column-aliases>)]

<derived-column-aliases> := column-alias [, column-alias ...]

The set returned data set by this “SELECT FROM (SELECT FROM..)” style of statement is a virtual table that can
be queried within the enclosing statement, as if it were a regular table or view.

Sample using a derived table

The derived table in the query below returns the list of table names in the database and the number of columns
in each. A “drill-down” query on the derived table returns the counts of fields and the counts of tables having
each field count:

SELECT
 FIELDCOUNT,
 COUNT(RELATION) AS NUM_TABLES
FROM (SELECT
 R.RDB$RELATION_NAME RELATION,
 COUNT(*) AS FIELDCOUNT
 FROM RDB$RELATIONS R
 JOIN RDB$RELATION_FIELDS RF

Data Manipulation (DML) Statements

174

 ON RF.RDB$RELATION_NAME = R.RDB$RELATION_NAME
 GROUP BY RELATION)
GROUP BY FIELDCOUNT

A trivial example demonstrating how the alias of a derived table and the list of column aliases (both optional)
can be used:

SELECT
 DBINFO.DESCR, DBINFO.DEF_CHARSET
FROM (SELECT *
 FROM RDB$DATABASE) DBINFO
 (DESCR, REL_ID, SEC_CLASS, DEF_CHARSET)

More about Derived Tables

Derived tables can

• be nested

• be unions and can be used in unions

• contain aggregate functions, subqueries and joins

• be used in aggregate functions, subqueries and joins

• be calls to selectable stored procedures or queries to them

• have WHERE, ORDER BY and GROUP BY clauses, FIRST, SKIP or ROWS directives, et al.

Furthermore,

• Each column in a derived table must have a name. If it does not have a name, such as when it is a constant
or a run-time expression, it should be given an alias, either in the regular way or by including it in the list
of column aliases in the derived table's specification.

- The list of column aliases is optional but, if it exists, it must contain an alias for every column in the
derived table

• The optimizer can process derived tables very effectively. However, if a derived table is included in an inner
join and contains a subquery, the optimizer will be unable to use any join order.

A more useful example

Suppose we have a table COEFFS which contains the coefficients of a number of quadratic equations we have
to solve. It has been defined like this:

create table coeffs (
 a double precision not null,
 b double precision not null,
 c double precision not null,
 constraint chk_a_not_zero check (a <> 0)
)

Depending on the values of a, b and c, each equation may have zero, one or two solutions. It is possible to
find these solutions with a single-level query on table COEFFS, but the code will look rather messy and several

Data Manipulation (DML) Statements

175

values (like the discriminant) will have to be calculated multiple times per row. A derived table can help keep
things clean here:

select
 iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
 iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
 from
 (select b, b*b - 4*a*c, 2*a from coeffs) (b, D, denom)

If we want to show the coefficients next to the solutions (which may not be a bad idea), we can alter the query
like this:

select
 a, b, c,
 iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
 iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
 from
 (select a, b, c, b*b - 4*a*c as D, 2*a as denom
 from coeffs)

Notice that whereas the first query used a column aliases list for the derived table, the second adds aliases
internally where needed. Both methods work, as long as every column is guaranteed to have a name.

Selecting FROM a CTE

A common table expression or CTE is a more complex variant of the derived table, but it is also more powerful.
A preamble, starting with the keyword WITH, defines one or more named CTE's, each with an optional column
aliases list. The main query, which follows the preamble, can then access these CTE's as if they were regular
tables or views. The CTE's go out of scope once the main query has run to completion.

For a full discussion of CTE's, please refer to the section Common Table Expressions (“WITH ... AS ... SELECT”).

The following is a rewrite of our derived table example as a CTE:

with vars (b, D, denom) as (
 select b, b*b - 4*a*c, 2*a from coeffs
)
select
 iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
 iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
from vars

Except for the fact that the calculations that have to be made first are now at the beginning, this isn't a great
improvement over the derived table version. But we can now also eliminate the double calculation of sqrt(D)
for every row:

with vars (b, D, denom) as (
 select b, b*b - 4*a*c, 2*a from coeffs
),
vars2 (b, D, denom, sqrtD) as (
 select b, D, denom, iif (D >= 0, sqrt(D), null) from vars
)
select
 iif (D >= 0, (-b - sqrtD) / denom, null) sol_1,
 iif (D > 0, (-b + sqrtD) / denom, null) sol_2

Data Manipulation (DML) Statements

176

from vars2

The code is a little more complicated now, but it might execute more efficiently (depending on what takes more
time: executing the SQRT function or passing the values of b, D and denom through an extra CTE). Incidentally,
we could have done the same with derived tables, but that would involve nesting.

See also: Common Table Expressions (“WITH ... AS ... SELECT”).

Joins

Joins combine data from two sources into a single set. This is done on a row-by-row basis and usually involves
checking a join condition in order to determine which rows should be merged and appear in the resulting dataset.
There are several types (INNER, OUTER) and classes (qualified, natural, etc.) of joins, each with its own syntax
and rules.

Since joins can be chained, the datasets involved in a join may themselves be joined sets.

Syntax:

SELECT
 ...
 FROM <source>
 [<joins>]
 [...]

<source> ::= {table
 | view
 | selectable-stored-procedure [(args)]
 | derived-table
 | common-table-expression}
 [[AS] alias]

<joins> ::= <join> [<join> ...]

<join> ::= [<join-type>] JOIN <source> <join-condition>
 | NATURAL [<join-type>] JOIN <source>
 | {CROSS JOIN | ,} <source>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

<join-condition> ::= ON condition | USING (column-list)

Table 6.4. Arguments for JOIN Clauses

Argument Description

table Name of a table

view name of a view

selectable-stored-
procedure

Name of a selectable stored procedure

args Selectable stored procedure input parameter[s]

Data Manipulation (DML) Statements

177

Argument Description

derived-table Reference, by name, to a derived table

common-ta-
ble-expression

Reference, by name, to a common table expression (CTE)

alias An alias for a data source (table, view, procedure, CTE, derived table)

condition Join condition (criterion)

column-list The list of columns used for an equi-join

Inner vs. outer joins

A join always combines data rows from two sets (usually referred to as the left set and the right set). By default,
only rows that meet the join condition (i.e., that match at least one row in the other set when the join condition
is applied) make it into the result set. This default type of join is called an inner join. Suppose we have the
following two tables:

Table A:

ID S

87 Just some text

235 Silence

Table B:

CODE X

-23 56.7735

87 416.0

If we join these tables like this:

select *
 from A
 join B on A.id = B.code

then the result set will be:

ID S CODE X

87 Just some text 87 416.0

Data Manipulation (DML) Statements

178

The first row of A has been joined with the second row of B because together they met the condition “A.id =
B.code”. The other rows from the source tables have no match in the opposite set and are therefore not included
in the join. Remember, this is an INNER join. We can make that fact explicit by writing:

select *
 from A
 inner join B on A.id = B.code

However, since INNER is the default, this is rarely done.

It is perfectly possible that a row in the left set matches several rows from the right set or vice versa. In that case,
all those combinations are included, and we can get results like:

ID S CODE X

87 Just some text 87 416.0

87 Just some text 87 -1.0

-23 Don't know -23 56.7735

-23 Still don't know -23 56.7735

-23 I give up -23 56.7735

Sometimes we want (or need) all the rows of one or both of the sources to appear in the joined set, regardless of
whether they match a record in the other source. This is where outer joins come in. A LEFT outer join includes
all the records from the left set, but only matching records from the right set. In a RIGHT outer join it's the other
way around. FULL outer joins include all the records from both sets. In all outer joins, the “holes” (the places
where an included source record doesn't have a match in the other set) are filled up with NULLs.

In order to make an outer join, you must specify LEFT, RIGHT or FULL, optionally followed by the keyword
OUTER.

Below are the results of the various outer joins when applied to our original tables A and B:

select *
 from A
 left [outer] join B on A.id = B.code

ID S CODE X

87 Just some text 87 416.0

235 Silence <null> <null>

select *
 from A
 right [outer] join B on A.id = B.code

Data Manipulation (DML) Statements

179

ID S CODE X

<null> <null> -23 56.7735

87 Just some text 87 416.0

select *
 from A
 full [outer] join B on A.id = B.code

ID S CODE X

<null> <null> -23 56.7735

87 Just some text 87 416.0

235 Silence <null> <null>

Qualified joins

Qualified joins specify conditions for the combining of rows. This happens either explicitly in an ON clause or
implicitly in a USING clause.

Syntax:

<qualified-join> ::= [<join-type>] JOIN <source> <join-condition>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

<join-condition> ::= ON condition | USING (column-list)

Explicit-condition joins

Most qualified joins have an ON clause, with an explicit condition that can be any valid boolean expression but
usually involves some comparison between the two sources involved.

Quite often, the condition is an equality test (or a number of ANDed equality tests) using the “=” operator. Joins
like these are called equi-joins. (The examples in the section on inner and outer joins were al equi-joins.)

Examples of joins with an explicit condition:

/* Select all Detroit customers who made a purchase
 in 2013, along with the purchase details: */
select * from customers c
 join sales s on s.cust_id = c.id
 where c.city = 'Detroit' and s.year = 2013

/* Same as above, but include non-buying customers: */
select * from customers c
 left join sales s on s.cust_id = c.id

Data Manipulation (DML) Statements

180

 where c.city = 'Detroit' and s.year = 2013

/* For each man, select the women who are taller than he.
 Men for whom no such woman exists are not included. */
select m.fullname as man, f.fullname as woman
 from males m
 join females f on f.height > m.height

/* Select all pupils with their class and mentor.
 Pupils without a mentor are also included.
 Pupils without a class are not included. */
select p.firstname, p.middlename, p.lastname,
 c.name, m.name
 from pupils p
 join classes c on c.id = p.class
 left join mentors m on m.id = p.mentor

Named columns joins

Equi-joins often compare columns that have the same name in both tables. If this is the case, we can also use
the second type of qualified join: the named columns join.

Note

Named columns joins are not supported in Dialect 1 databases.

Named columns joins have a USING clause which states just the column names. So instead of this:

select * from flotsam f
 join jetsam j
 on f.sea = j.sea
 and f.ship = j.ship

we can also write:

select * from flotsam
 join jetsam using (sea, ship)

which is considerably shorter. The result set is a little different though—at least when using “SELECT *”:

• The explicit-condition join—with the ON clause—will contain each of the columns SEA and SHIP twice: once
from table FLOTSAM, and once from table JETSAM. Obviously, they will have the same values.

• The named columns join—with the USING clause—will contain these columns only once.

If you want all the columns in the result set of the named columns join, set up your query like this:

select f.*, j.*
 from flotsam f
 join jetsam j using (sea, ship)

This will give you the exact same result set as the explicit-condition join.

For an OUTER named columns join, there's an additional twist when using “SELECT *” or an unqualified column
name from the USING list:

Data Manipulation (DML) Statements

181

If a row from one source set doesn't have a match in the other but must still be included because of the LEFT,
RIGHT or FULL directive, the merged column in the joined set gets the non-NULL value. That is fair enough,
but now you can't tell whether this value came from the left set, the right set, or both. This can be especially
deceiving when the value came from the right hand set, because “*” always shows combined columns in the
left hand part—even in the case of a RIGHT join.

Whether this is a problem or not depends on the situation. If it is, use the “a.*, b.*” approach shown above, with
a and b the names or aliases of the two sources. Or better yet, avoid “*” altogether in your serious queries and
qualify all column names in joined sets. This has the additional benefit that it forces you to think about which
data you want to retrieve and where from.

It is your responsibility to make sure that the column names in the USING list are of compatible types between
the two sources. If the types are compatible but not equal, the engine converts them to the type with the broadest
range of values before comparing the values. This will also be the data type of the merged column that shows
up in the result set if “SELECT *” or the unqualified column name is used. Qualified columns on the other hand
will always retain their original data type.

Natural joins

Taking the idea of the named columns join a step further, a natural join performs an automatic equi-join on all the
columns that have the same name in the left and right table. The data types of these columns must be compatible.

Note

Natural joins are not supported in Dialect 1 databases.

Syntax:

<natural-join> ::= NATURAL [<join-type>] JOIN <source>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

Given these two tables:

create table TA (
 a bigint,
 s varchar(12),
 ins_date date
)

create table TB (
 a bigint,
 descr varchar(12),
 x float,
 ins_date date
)

a natural join on TA and TB would involve the columns a and ins_date, and the following two statements
would have the same effect:

select * from TA
 natural join TB

select * from TA

Data Manipulation (DML) Statements

182

 join TB using (a, ins_date)

Like all joins, natural joins are inner joins by default, but you can turn them into outer joins by specifying LEFT,
RIGHT or FULL before the JOIN keyword.

Caution: if there are no columns with the same name in the two source relations, a CROSS JOIN is performed.
We'll get to this type of join in a minute.

A Note on Equality

Important

This note about equality and inequality operators applies everywhere in Firebird's SQL language, not just in
JOIN conditions.

The “=” operator, which is explicitly used in many conditional joins and implicitly in named column joins and
natural joins, only matches values to values. According to the SQL standard, NULL is not a value and hence
two NULLs are neither equal nor unequal to one another. If you need NULLs to match each other in a join, use
the IS NOT DISTINCT FROM operator. This operator returns true if the operands have the same value or if they
are both NULL.

select *
 from A join B
 on A.id is not distinct from B.code

Likewise, in the—extremely rare—cases where you want to join on inequality, use IS DISTINCT FROM, not
“<>”, if you want NULL to be considered different from any value and two NULLs considered equal:

select *
 from A join B
 on A.id is distinct from B.code

Cross joins

A cross join produces the full set product of the two data sources. This means that it successfully matches every
row in the left source to every row in the right source.

Syntax:

<cross-join> ::= {CROSS JOIN | ,} <source>

Please notice that the comma syntax is deprecated! It is only supported to keep legacy code working and may
disappear in some future version.

Cross-joining two sets is equivalent to joining them on a tautology (a condition that is always true). The following
two statements have the same effect:

select * from TA
 cross join TB

select * from TA
 join TB on 1 = 1

Data Manipulation (DML) Statements

183

Cross joins are inner joins, because they only include matching records – it just so happens that every record
matches! An outer cross join, if it existed, wouldn't add anything to the result, because what outer joins add are
non-matching records, and these don't exist in cross joins.

Cross joins are seldom useful, except if you want to list all the possible combinations of two or more variables.
Suppose you are selling a product that comes in different sizes, different colors and different materials. If these
variables are each listed in a table of their own, this query would return all the combinations:

select m.name, s.size, c.name
 from materials m
 cross join sizes s
 cross join colors c

Ambiguous field names in joins

Firebird rejects unqualified field names in a query if these field names exist in more than one dataset involved
in a join. This is even true for inner equi-joins where the field name figures in the ON clause like this:

select a, b, c
 from TA
 join TB on TA.a = TB.a

There is one exception to this rule: with named columns joins and natural joins, the unqualified field name of
a column taking part in the matching process may be used legally and refers to the merged column of the same
name. For named columns joins, these are the columns listed in the USING clause. For natural joins, they are
the columns that have the same name in both relations. But please notice again that, especially in outer joins,
plain colname isn't always the same as left.colname or right.colname. Types may differ, and one of the
qualified columns may be NULL while the other isn't. In that case, the value in the merged, unqualified column
may mask the fact that one of the source values is absent.

Joins with stored procedures

If a join is performed with a stored procedure that is not correlated with other data streams via input parameters,
there are no oddities. If correlation is involved, an unpleasant quirk reveals itself. The problem is that the opti-
mizer denies itself any way to determine the interrelationships of the input parameters of the procedure from
the fields in the other streams:

SELECT *
FROM MY_TAB
JOIN MY_PROC(MY_TAB.F) ON 1 = 1

Here, the procedure will be executed before a single record has been retrieved from the table, MY_TAB. The
isc_no_cur_rec error error (no current record for fetch operation) is raised, interrupting the execution.

The solution is to use syntax that specifies the join order explicitly:

SELECT *
FROM MY_TAB
LEFT JOIN MY_PROC(MY_TAB.F) ON 1 = 1

Data Manipulation (DML) Statements

184

This forces the table to be read before the procedure and everything works correctly.

Tip

This quirk has been recognised as a bug in the optimizer and will be fixed in the next version of Firebird.

The WHERE clause

The WHERE clause serves to limit the rows returned to the ones that the caller is interested in. The condition
following the keyword WHERE can be as simple as a check like “AMOUNT = 3” or it can be a multilayered, con-
voluted expression containing subselects, predicates, function calls, mathematical and logical operators, context
variables and more.

The condition in the WHERE clause is often called the search condition, the search expression or simply the
search.

In DSQL and ESQL, the search expression may contain parameters. This is useful if a query has to be repeated
a number of times with different input values. In the SQL string as it is passed to the server, question marks are
used as placeholders for the parameters. They are called positional parameters because they can only be told
apart by their position in the string. Connectivity libraries often support named parameters of the form :id,
:amount, :a etc. These are more user-friendly; the library takes care of translating the named parameters to
positional parameters before passing the statement to the server.

The search condition may also contain local (PSQL) or host (ESQL) variable names, preceded by a colon.

Syntax:

SELECT ...
 FROM ...
 [...]
 WHERE <search-condition>
 [...]

<search-condition> ::= a boolean expression returning
 TRUE, FALSE or possibly UNKNOWN (NULL)

Only those rows for which the search condition evaluates to TRUE are included in the result set. Be careful with
possible NULL outcomes: if you negate a NULL expression with NOT, the result will still be NULL and the row
will not pass. This is demonstrated in one of the examples below.

Examples

select genus, species from mammals
 where family = 'Felidae'
 order by genus

select * from persons
 where birthyear in (1880, 1881)
 or birthyear between 1891 and 1898

select name, street, borough, phone

Data Manipulation (DML) Statements

185

 from schools s
 where exists (select * from pupils p where p.school = s.id)
 order by borough, street

select * from employees
 where salary >= 10000 and position <> 'Manager'

select name from wrestlers
 where region = 'Europe'
 and weight > all (select weight from shot_putters
 where region = 'Africa')

select id, name from players
 where team_id = (select id from teams where name = 'Buffaloes')

select sum (population) from towns
 where name like '%dam'
 and province containing 'land'

select password from usertable
 where username = current_user

The following example shows what can happen if the search condition evaluates to NULL.

Suppose you have a table listing some children's names and the number of marbles they possess. At a certain
moment, the table contains these data:

CHILD MARBLES

Anita 23

Bob E. 12

Chris <null>

Deirdre 1

Eve 17

Fritz 0

Gerry 21

Hadassah <null>

Isaac 6

First, please notice the difference between NULL and 0: Fritz is known to have no marbles at all, Chris's and
Hadassah's marble counts are unknown.

Now, if you issue this SQL statement:

select list(child) from marbletable where marbles > 10

you will get the names Anita, Bob E., Eve and Gerry. These children all have more than 10 marbles.

Data Manipulation (DML) Statements

186

If you negate the expression:

select list(child) from marbletable where not marbles > 10

it's the turn of Deirdre, Fritz and Isaac to fill the list. Chris and Hadassah are not included, because they aren't
known to have ten marbles or less. Should you change that last query to:

select list(child) from marbletable where marbles <= 10

the result will still be the same, because the expression NULL <= 10 yields UNKNOWN. This is not the same as
TRUE, so Chris and Hadassah are not listed. If you want them listed with the “poor” children, change the query to:

select list(child) from marbletable where marbles <= 10 or marbles is null

Now the search condition becomes true for Chris and Hadassah, because “marbles is null” obviously
returns TRUE in their case. In fact, the search condition cannot be NULL for anybody now.

Lastly, two examples of SELECT queries with parameters in the search. It depends on the application how you
should define query parameters and even if it is possible at all. Notice that queries like these cannot be executed
immediately: they have to be prepared first. Once a parameterized query has been prepared, the user (or calling
code) can supply values for the parameters and have it executed many times, entering new values before every
call. How the values are entered and the execution started is up to the application. In a GUI environment, the
user typically types the parameter values in one or more text boxes and then clicks an “Execute”, “Run” or
“Refresh” button.

select name, address, phone frome stores
 where city = ? and class = ?

select * from pants
 where model = :model and size = :size and color = :col

The last query cannot be passed directly to the engine; the application must convert it to the other format first,
mapping named parameters to positional parameters.

The GROUP BY clause

GROUP BY merges output rows that have the same combination of values in its item list into a single row.
Aggregate functions in the select list are applied to each group individually instead of to the dataset as a whole.

If the select list only contains aggregate columns or, more generally, columns whose values don't depend on
individual rows in the underlying set, GROUP BY is optional. When omitted, the final result set of will consist
of a single row (provided that at least one aggregated column is present).

If the select list contains both aggregate columns and columns whose values may vary per row, the GROUP BY
clause becomes mandatory.

Syntax:

SELECT ... FROM ...
 GROUP BY <grouping-item> [, <grouping-item> ...]
 [HAVING <grouped-row-condition>]
 ...

Data Manipulation (DML) Statements

187

<grouping-item> ::= <non-aggr-select-item>
 | <non-aggr-expression>

<non-aggr-select-item> ::= column-copy
 | column-alias
 | column-position

Table 6.5. Arguments for the GROUP BY Clause

Argument Description

non-aggr-expression
Any non-aggregating expression that is not included in the SELECT list, i.e. un-
selected columns from the source set or expressions that do not depend on the
data in the set at all

column-copy
A literal copy, from the SELECT list, of an expression that contains no aggre-
gate function

column-alias
The alias, from the SELECT list, of an expression (column) that contains no ag-
gregate function

column-position
The position number, in the SELECT list, of an expression (column) that con-
tains no aggregate function

A general rule of thumb is that every non-aggregate item in the SELECT list must also be in the GROUP BY list.
You can do this in three ways:

1. By copying the item verbatim from the select list, e.g. “class” or “'D:' || upper(doccode)”.

2. By specifying the column alias, if it exists.

3. By specifying the column position as an integer literal between 1 and the number of columns. Integer values
resulting from expressions or parameter substitutions are simply invariables and will be used as such in the
grouping. They will have no effect though, as their value is the same for each row.

Note

If you group by a column position, the expression at that position is copied internally from the select list. If it
concerns a subquery, that subquery will be executed again in the grouping phase. That is to say, grouping by
the column position, rather than duplicating the subquery expression in the grouping clause, saves keystrokes
and bytes, but it is not a way of saving processing cycles!

In addition to the required items, the grouping list may also contain:

• Columns from the source table that are not in the select list, or non-aggregate expressions based on such
columns. Adding such columns may further subdivide the groups. But since these columns are not in the
select list, you can't tell which aggregated row corresponds to which value in the column. So, in general, if
you are interested in this information, you also include the column or expression in the select list—which
brings you back to the rule: “every non-aggregate column in the select list must also be in the grouping list”.

• Expressions that aren't dependent on the data in the underlying set, e.g. constants, context variables, sin-
gle-value non-correlated subselects etc. This is only mentioned for completeness, as adding such items is

Data Manipulation (DML) Statements

188

utterly pointless: they don't affect the grouping at all. “Harmless but useless” items like these may also figure
in the select list without being copied to the grouping list.

Examples

When the select list contains only aggregate columns, GROUP BY is not mandatory:

select count(*), avg(age) from students
 where sex = 'M'

This will return a single row listing the number of male students and their average age. Adding expressions that
don't depend on values in individual rows of table STUDENTS doesn't change that:

select count(*), avg(age), current_date from students
 where sex = 'M'

The row will now have an extra column showing the current date, but other than that, nothing fundamental has
changed. A GROUP BY clause is still not required.

However, in both the above examples it is allowed. This is perfectly valid:

select count(*), avg(age) from students
 where sex = 'M'
 group by class

and will return a row for each class that has boys in it, listing the number of boys and their average age in
that particular class. (If you also leave the current_date field in, this value will be repeated on every row,
which is not very exciting.)

The above query has a major drawback though: it gives you information about the different classes, but it doesn't
tell you which row applies to which class. In order to get that extra bit of information, the non-aggregate column
CLASS must be added to the select list:

select class, count(*), avg(age) from students
 where sex = 'M'
 group by class

Now we have a useful query. Notice that the addition of column CLASS also makes the GROUP BY clause
mandatory. We can't drop that clause anymore, unless we also remove CLASS from the column list.

The output of our last query may look something like this:

CLASS COUNT AVG

2A 12 13.5

2B 9 13.9

3A 11 14.6

3B 12 14.4

...

The headings “COUNT” and “AVG” are not very informative. In a simple case like this, you might get away
with that, but in general you should give aggregate columns a meaningful name by aliasing them:

Data Manipulation (DML) Statements

189

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M'
 group by class

As you may recall from the formal syntax of the columns list, the AS keyword is optional.

Adding more non-aggregate (or rather: row-dependent) columns requires adding them to the GROUP BY clause
too. For instance, you might want to see the above information for girls as well; and you may also want to
differentiate between boarding and day students:

select class,
 sex,
 boarding_type,
 count(*) as number,
 avg(age) as avg_age
 from students
 group by class, sex, boarding_type

This may give you the following result:

CLASS SEX BOARDING_TYPENUMBER AVG_AGE

2A F BOARDING 9 13.3

2A F DAY 6 13.5

2A M BOARDING 7 13.6

2A M DAY 5 13.4

2B F BOARDING 11 13.7

2B F DAY 5 13.7

2B M BOARDING 6 13.8

...

Each row in the result set corresponds to one particular combination of the variables class, sex and boarding type.
The aggregate results—number and average age—are given for each of these rather specific groups individually.
In a query like this, you don't see a total for boys as a whole, or day students as a whole. That's the tradeoff: the
more non-aggregate columns you add, the more you can pinpoint very specific groups, but the more you also
lose sight of the general picture. Of course you can still obtain the “coarser” aggregates through separate queries.

HAVING

Just as a WHERE clause limits the rows in a dataset to those that meet the search condition, so the HAVING
subclause imposes restrictions on the aggregated rows in a grouped set. HAVING is optional, and can only be
used in conjunction with GROUP BY.

The condition(s) in the HAVING clause can refer to:

Data Manipulation (DML) Statements

190

• Any aggregated column in the select list. This is the most widely used alternative.

• Any aggregated expression that is not in the select list, but allowed in the context of the query. This is
sometimes useful too.

• Any column in the GROUP BY list. While legal, it is more efficient to filter on these non-aggregated data at
an earlier stage: in the WHERE clause.

• Any expression whose value doesn't depend on the contents of the dataset (like a constant or a context vari-
able). This is valid but utterly pointless, because it will either suppress the entire set or leave it untouched,
based on conditions that have nothing to do with the set itself.

A HAVING clause can not contain:

• Non-aggregated column expressions that are not in the GROUP BY list.

• Column positions. An integer in the HAVING clause is just an integer.

• Column aliases – not even if they appear in the GROUP BY clause!

Examples

Building on our earlier examples, this could be used to skip small groups of students:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M'
 group by class
 having count(*) >= 5

To select only groups that have a minimum age spread:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M'
 group by class
 having max(age) - min(age) > 1.2

Notice that if you're really interested in this information, you'd normally include min(age) and max(age) –
or the expression “max(age) - min(age)” – in the select list as well!

To include only 3rd classes:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M'
 group by class
 having class starting with '3'

Better would be to move this condition to the WHERE clause:

Data Manipulation (DML) Statements

191

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M' and class starting with '3'
 group by class

The PLAN clause

The PLAN clause enables the user to submit a data retrieval plan, thus overriding the plan that the optimizer
would have generated automatically.

Syntax:

PLAN <plan-expr>

<plan-expr> ::= (<plan-item> [, <plan-item> ...])
 | <sorted-item>
 | <joined-item>
 | <merged-item>

<sorted-item> ::= SORT (<plan-item>)

<joined-item> ::= JOIN (<plan-item>, <plan-item> [, <plan-item> ...])

<merged-item> ::= [SORT] MERGE (<sorted-item>, <sorted-item> [, <sorted-item> ...])

<plan-item> ::= <basic-item> | <plan-expr>

<basic-item> ::= <relation>
 {NATURAL
 | INDEX (<indexlist>)
 | ORDER index [INDEX (<indexlist>)]}

<relation> ::= table
 | view [table]

<indexlist> ::= index [, index ...]

Table 6.6. Arguments for the PLAN Clause

Argument Description

table Table name or its alias

view View name

index Index name

Every time a user submits a query to the Firebird engine, the optimizer computes a data retrieval strategy. Most
Firebird clients can make this retrieval plan visible to the user. In Firebird's own isql utility, this is done with

Data Manipulation (DML) Statements

192

the command SET PLAN ON. If you are studying query plans rather than running queries, SET PLANONLY ON
will show the plan without executing the query.

In most situations, you can trust that Firebird will select the optimal query plan for you. However, if you have
complicated queries that seem to be underperforming, it may very well be worth your while to examine the plan
and see if you can improve on it.

Simple plans

The simplest plans consist of just a relation name followed by a retrieval method. E.g., for an unsorted single-ta-
ble select without a WHERE clause:

select * from students
 plan (students natural)

If there's a WHERE or a HAVING clause, you can specify the index to be used for finding matches:

select * from students
 where class = '3C'
 plan (students index (ix_stud_class))

The INDEX directive is also used for join conditions (to be discussed a little later). It can contain a list of indexes,
separated by commas.

ORDER specifies the index for sorting the set if an ORDER BY or GROUP BY clause is present:

select * from students
 plan (students order pk_students)
 order by id

ORDER and INDEX can be combined:

select * from students
 where class >= '3'
 plan (students order pk_students index (ix_stud_class))
 order by id

It is perfectly OK if ORDER and INDEX specify the same index:

select * from students
 where class >= '3'
 plan (students order ix_stud_class index (ix_stud_class))
 order by class

For sorting sets when there's no usable index available (or if you want to suppress its use), leave out ORDER
and prepend the plan expression with SORT:

select * from students
 plan sort (students natural)
 order by name

Or when an index is used for the search:

select * from students

Data Manipulation (DML) Statements

193

 where class >= '3'
 plan sort (students index (ix_stud_class))
 order by name

Notice that SORT, unlike ORDER, is outside the parentheses. This reflects the fact that the data rows are retrieved
unordered and sorted afterwards by the engine.

When selecting from a view, specify the view and the table involved. For instance, if you have a view FRESHMEN
that selects just the first-year students:

select * from freshmen
 plan (freshmen students natural)

Or, for instance:

select * from freshmen
 where id > 10
 plan sort (freshmen students index (pk_students))
 order by name desc

Important

If a table or view has been aliased, it is the alias, not the original name, that must be used in the PLAN clause.

Composite plans

When a join is made, you can specify the index which is to be used for matching. You must also use the JOIN
directive on the two streams in the plan:

select s.id, s.name, s.class, c.mentor
 from students s
 join classes c on c.name = s.class
 plan join (s natural, c index (pk_classes))

The same join, sorted on an indexed column:

select s.id, s.name, s.class, c.mentor
 from students s
 join classes c on c.name = s.class
 plan join (s order pk_students, c index (pk_classes))
 order by s.id

And on a non-indexed column:

select s.id, s.name, s.class, c.mentor
 from students s
 join classes c on c.name = s.class
 plan sort (join (s natural, c index (pk_classes)))
 order by s.name

With a search added:

select s.id, s.name, s.class, c.mentor

Data Manipulation (DML) Statements

194

 from students s
 join classes c on c.name = s.class
 where s.class <= '2'
 plan sort (join (s index (fk_student_class), c index (pk_classes)))
 order by s.name

As a left outer join:

select s.id, s.name, s.class, c.mentor
 from classes c
 left join students s on c.name = s.class
 where s.class <= '2'
 plan sort (join (c natural, s index (fk_student_class)))
 order by s.name

If there is no index available to match the join criteria (or if you don't want to use it), the plan must first sort both
streams on their join column(s) and then merge them. This is achieved with the SORT directive (which we've
already met) and MERGE instead of JOIN:

select * from students s
 join classes c on c.cookie = s.cookie
 plan merge (sort (c natural), sort (s natural))

Adding an ORDER BY clause means the result of the merge must also be sorted:

select * from students s
 join classes c on c.cookie = s.cookie
 plan sort (merge (sort (c natural), sort (s natural)))
 order by c.name, s.id

Finally, we add a search condition on two indexable colums of table STUDENTS:

select * from students s
 join classes c on c.cookie = s.cookie
 where s.id < 10 and s.class <= '2'
 plan sort (merge (sort (c natural),
 sort (s index (pk_students, fk_student_class))))
 order by c.name, s.id

As follows from the formal syntax definition, JOINs and MERGEs in the plan may combine more than two
streams. Also, every plan expression may be used as a plan item in an encompassing plan. This means that plans
of certain complicated queries may have various nesting levels.

Finally, instead of MERGE you may also write SORT MERGE. As this makes absolutely no difference and may
create confusion with “real” SORT directives (the ones that do make a difference), it's probably best to stick
to plain MERGE.

Warning

Occasionally, the optimizer will accept a plan and then not follow it, even though it does not reject it as invalid.
One such example was

MERGE (unsorted stream, unsorted stream)

It is advisable to treat such as plan as “deprecated”.

Data Manipulation (DML) Statements

195

UNION

A UNION concatenates two or more datasets, thus increasing the number of rows but not the number of columns.
Datasets taking part in a UNION must have the same number of columns, and columns at corresponding positions
must be of the same type. Other than that, they may be totally unrelated.

By default, a union suppresses duplicate rows. UNION ALL shows all rows, including any duplicates. The op-
tional DISTINCT keyword makes the default behaviour explicit.

Syntax:

<union> ::= <individual-select>
 UNION [DISTINCT | ALL]
 <individual-select>
 [UNION [DISTINCT | ALL]
 <individual-select>
 ...]
 [<union-wide-clauses>]

<individual-select> ::= SELECT
 [TRANSACTION name]
 [FIRST <m>] [SKIP <n>]
 [DISTINCT | ALL] <columns>
 [INTO <host-varlist>]
 FROM source [[AS] alias]
 [<joins>]
 [WHERE <condition>]
 [GROUP BY <grouping-list>
 [HAVING <aggregate-condition>]]
 [PLAN <plan-expr>]

<union-wide-clauses> ::= [ORDER BY <ordering-list>]
 [ROWS m [TO n]]
 [FOR UPDATE [OF <columns>]]
 [WITH LOCK]
 [INTO <PSQL-varlist>]

Unions take their column names from the first select query. If you want to alias union columns, do so in the
column list of the topmost SELECT. Aliases in other participating selects are allowed and may even be useful,
but will not propagate to the union level.

If a union has an ORDER BY clause, the only allowed sort items are integer literals indicating 1-based column
positions, optionally followed by an ASC/DESC and/or a NULLS FIRST/LAST directive. This also implies that
you cannot order a union by anything that isn't a column in the union. (You can, however, wrap it in a derived
table, which gives you back all the usual sort options.)

Unions are allowed in subqueries of any kind and can themselves contain subqueries. They can also contain
joins, and can take part in a join when wrapped in a derived table.

Examples

This query presents information from different music collections in one dataset using unions:

select id, title, artist, length, 'CD' as medium

Data Manipulation (DML) Statements

196

 from cds
union
select id, title, artist, length, 'LP'
 from records
union
select id, title, artist, length, 'MC'
 from cassettes
order by 3, 2 -- artist, title

If id, title, artist and length are the only fields in the tables involved, the query can also be written as:

select c.*, 'CD' as medium
 from cds c
union
select r.*, 'LP'
 from records r
union
select c.*, 'MC'
 from cassettes c
order by 3, 2 -- artist, title

Qualifying the “stars” is necessary here because they are not the only item in the column list. Notice how the
“c” aliases in the first and third select do not conflict with each other: their scopes are not union-wide but apply
only to their respective select queries.

The next query retrieves names and phone numbers from translators and proofreaders. Translators who also
work as proofreaders will show up only once in the result set, provided their phone number is the same in both
tables. The same result can be obtained without DISTINCT. With ALL, these people would appear twice.

select name, phone from translators
 union distinct
select name, telephone from proofreaders

A UNION within a subquery:

select name, phone, hourly_rate from clowns
where hourly_rate < all
 (select hourly_rate from jugglers
 union
 select hourly_rate from acrobats)
order by hourly_rate

ORDER BY

When a SELECT statement is executed, the result set is not sorted in any way. It often happens that rows appear
to be sorted chronologically, simply because they are returned in the same order they were added to the table by
INSERT statements. To specify a sorting order for the set specification, an ORDER BY clause is used.

Syntax:

SELECT ... FROM ...
...
ORDER BY <ordering-item> [, <ordering-item> …]

Data Manipulation (DML) Statements

197

<ordering-item> ::=
 {col-name | col-alias | col-position | expression}
 [COLLATE collation-name]
 [ASC[ENDING] | DESC[ENDING]]
 [NULLS {FIRST|LAST}]

Table 6.7. Arguments for the ORDER BY Clause

Argument Description

col-name Full column name

col-alias Column alias

col-position Column position in the SELECT list

expression Any expression

collation-name Collation name (sorting order for string types)

Description

The ORDER BY consists of a comma-separated list of the columns on which the result data set should be sorted.
The sort order can be specified by the name of the column—but only if the column was not previously aliased in
the SELECT columns list. The alias must be used if it was used there. The ordinal position number of the column
in the , the alias given to the column in the SELECT list with the help of the AS keyword or the number of the
column in the SELECT list can be used without restriction.

The three forms of expressing the columns for the sort order can be mixed in the same ORDER BY clause. For
instance, one column in the list can be specified by its name and another column can be specified by its number.

Note

If you use the column position to specify the sort order for a query of the SELECT * style, the server expands
the asterisk to the full column list in order to determine the columns for the sort. It is, however, considered
“sloppy practice” to design ordered sets this way.

Sorting Direction

The keyword ASCENDING, usually abbreviated to ASC, specifies a sort direction from lowest to highest. AS-
CENDING is the default sort direction.

The keyword DESCENDING, usually abbreviated to DESC, specifies a sort direction from highest to lowest.

Specifying ascending order for one column and the descending order for another is allowed.

Collation Order

The keyword COLLATE specifies the collation order for a string column if you need a collation that is different
from the normal one for this column. The normal collation order will be either the default one for the database
character set or one that has been set explicitly in the column's definition.

Data Manipulation (DML) Statements

198

NULLs Position

The keyword NULLS defines where NULL in the associated column will fall in the sort order: NULLS FIRST
places the rows with the NULL column above rows ordered by that column's value; NULLS LAST places those
rows after the ordered rows.

NULLS FIRST is the default.

Ordering UNION-ed Sets

The discrete queries contributing to a UNION cannot take an ORDER BY clause. The only option is to order the
entire output, using one ORDER BY clause at the end of the overall query.

The simplest—and, in some cases, the only— method for specifying the sort order is by the ordinal column
position. However, it is also valid to use the column names or aliases, from the first contributing query only.

The ASC/DESC and/or NULLS directives are available for this global set.

If discrete ordering within the contributing set is required, use of derived tables or common table expressions
for those sets may be a solution.

Examples

Sorting the result set in ascending order, ordering by the RDB$CHARACTER_SET_ID, RDB
$COLLATION_ID columns of the DB$COLLATIONS table:

SELECT
 RDB$CHARACTER_SET_ID AS CHARSET_ID,
 RDB$COLLATION_ID AS COLL_ID,
 RDB$COLLATION_NAME AS NAME
FROM RDB$COLLATIONS
ORDER BY RDB$CHARACTER_SET_ID, RDB$COLLATION_ID

The same, but sorting by the column aliases:

SELECT
 RDB$CHARACTER_SET_ID AS CHARSET_ID,
 RDB$COLLATION_ID AS COLL_ID,
 RDB$COLLATION_NAME AS NAME
FROM RDB$COLLATIONS
ORDER BY CHARSET_ID, COLL_ID

Sorting the output data by the column position numbers:

SELECT
 RDB$CHARACTER_SET_ID AS CHARSET_ID,
 RDB$COLLATION_ID AS COLL_ID,
 RDB$COLLATION_NAME AS NAME

Data Manipulation (DML) Statements

199

FROM RDB$COLLATIONS
ORDER BY 1, 2

Sorting a SELECT * query by position numbers—possible, but nasty and not recommended:

SELECT *
FROM RDB$COLLATIONS
ORDER BY 3, 2

Sorting by the second column in the BOOKS table:

SELECT
 BOOKS.*,
 FILMS.DIRECTOR
FROM BOOKS, FILMS
ORDER BY 2

Caution

Expressions whose calculation results are non-negative integers will be interpreted as column position numbers
and will cause an exception if they fall outside the range from 1 to the number of columns.

Example:

SELECT
 X, Y, NOTE
FROM PAIRS
ORDER BY X+Y DESC

• The number returned by a function or a procedure is unpredictable, regardless of whether the sort order is
defined by the expression itself or by the column number

• Only non-negative integers are interpreted as column numbers

• An integer obtained by one-time evaluation of an expression or by parameter substitution is saved as a
constant, because this value applies to all rows.

Examples, continued

Sorting in descending order by the values of column PROCESS_TIME, with NULLS placed at the beginning
of the set:

SELECT *
FROM MSG
ORDER BY PROCESS_TIME DESC NULLS FIRST

Sorting the set obtained by a UNION of two queries. Results are sorted in descending order for the values in
the second column, with NULLs at the end of the set; and in ascending order for the values of the first column
with NULLs at the beginning.

Data Manipulation (DML) Statements

200

SELECT
 DOC_NUMBER, DOC_DATE
FROM PAYORDER
UNION ALL
SELECT
 DOC_NUMBER, DOC_DATE
FROM BUDGORDER
ORDER BY 2 DESC NULLS LAST, 1 ASC NULLS FIRST

ROWS

Used for: Retrieving a slice of rows from an ordered set

Available in: DSQL, PSQL

Syntax:

SELECT <columns> FROM ...
 [WHERE ...]
 [ORDER BY ...]
 ROWS <m> [TO <n>]

Table 6.8. Arguments for the ROWS Clause

Argument Description

m, n Any integer expressions

Description: Limits the amount of rows returned by the SELECT statement to a specified number or range.

The FIRST and SKIP clauses do the same job as ROWS are not SQL-compliant. Using ROWS is thus preferable
in new code. Unlike FIRST and SKIP, the ROWS and TO clauses accept any type of integer expression as their
arguments, without parentheses. Of course, parentheses may still be needed for nested evaluations inside the
expression and a subquery must always be enclosed in parentheses.

Important

• Numbering of rows in the intermediate set—the overall set cached on disk before the “slice” is extracted—
starts at 1.

• Both FIRST/SKIP and ROWS can be used without the ORDER BY clause, although it rarely makes sense to
do so—except perhaps when you want to take a quick look at the table data and don't care that rows will be
in random order. For this purpose, a query like “SELECT * FROM TABLE1 ROWS 20” would return the
first 20 rows instead of a whole table that might be rather big.

Calling ROWS m retrieves the first m records from the set specified.

Characteristics of using ROWS m without a TO clause:

• If m is greater than the total number of records in the intermediate data set, the entire set is returned

Data Manipulation (DML) Statements

201

• If m = 0, an empty set is returned
• If m < 0, the SELECT statement call fails with an error

Calling ROWS m TO nretrieves the rows from the set, starting at row m and ending after row n—the set is
inclusive.

Characteristics of using ROWS m with a TO clause:

• If m is greater than the total number of rows in the intermediate set and n >= m, an empty set is returned
• If m is not greater than n and n is greater than the total number of rows in the intermediate set, the result set

will be limited to rows starting from m, up to the end of the set
• If m < 1 and n < 1, the SELECT statement call fails with an error
• If n = m - 1, an empty set is returned
• If n < m - 1, the SELECT statement call fails with an error

Using a TO clause without a ROWS clause:

While ROWS replaces the non-standard FIRST and SKIP syntax, there is one situation where the standard syntax
does not provide the same behaviour: specifying SKIP n on its own returns the entire intermediate set, without
the first n rows. The ROWS...TO syntax needs a little help to achieve this.

With the ROWS syntax, you need a ROWS clause in association with the TO clause and deliberately make the
second (n) argument greater than the size of the intermediate data set. This is achieved by creating an expression
for n that uses a subquery to retrieve the count of rows in the intermediate set and adds 1 to it.

Mixing ROWS and FIRST/SKIP

ROWS syntax cannot be mixed with FIRST/SKIP syntax in the same SELECT expression. Using the different
syntaxes in different subqueries in the same statement is allowed.

ROWS Syntax in UNION Queries

When ROWS is used in a UNION query, the ROWS directive is applied to the unioned set and must be placed
after the last SELECT statement.

If a need arises to limit the subsets returned by one or more SELECT statements inside UNION, there are a
couple of options:

1. Use FIRST/SKIP syntax in these SELECT statements—bearing in mind that an ordering clause (ORDER BY)
cannot be applied locally to the discrete queries, but only to the combined output.

2. Convert the queries to derived tables with their own ROWS clauses.

Examples

The following examples rewrite the examples used in the section about FIRST and SKIP, earlier in this chapter.

Retrieve the first ten names from a the output of a sorted query on the PEOPLE table:

SELECT id, name
FROM People
ORDER BY name ASC

Data Manipulation (DML) Statements

202

ROWS 1 TO 10

or its equivalent

SELECT id, name
FROM People
ORDER BY name ASC
ROWS 10

Return all records from the PEOPLE table except for the first 10 names:

SELECT id, name
FROM People
ORDER BY name ASC
ROWS 11 TO (SELECT COUNT(*) FROM People)

And this query will return the last 10 records (pay attention to the parentheses):

SELECT id, name
FROM People
ORDER BY name ASC
ROWS (SELECT COUNT(*) - 9 FROM People)
TO (SELECT COUNT(*) FROM People)

This one will return rows 81-100 from the PEOPLE table:

SELECT id, name
FROM People
ORDER BY name ASC
ROWS 81 TO 100

Note

ROWS can also be used with the UPDATE and DELETE statements.

FOR UPDATE [OF]

Syntax:

SELECT ... FROM single_table
 [WHERE ...]
 [FOR UPDATE [OF ...]]

FOR UPDATE does not do what it suggests. Its only effect currently is to disable the pre-fetch buffer.

Data Manipulation (DML) Statements

203

Tip

It is likely to change in future: the plan is to validate cursors marked with FOR UPDATE if they are truly
updateable and reject positioned updates and deletes for cursors evaluated as non-updateable.

The OF sub-clause does not do anything at all.

WITH LOCK

Available in: DSQL, PSQL

Used for: Limited pessimistic locking

Description: WITH LOCK provides a limited explicit pessimistic locking capability for cautious use in conditions
where the affected row set is:

a. extremely small (ideally, a singleton), and
b. precisely controlled by the application code.

This is for experts only!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

It is essential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:

SELECT ... FROM single_table
 [WHERE ...]
 [FOR UPDATE [OF ...]]
 WITH LOCK

If the WITH LOCK clause succeeds, it will secure a lock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

WITH LOCK can only be used with a top-level, single-table SELECT statement. It is not available:

• in a subquery specification
• for joined sets
• with the DISTINCT operator, a GROUP BY clause or any other aggregating operation
• with a view
• with the output of a selectable stored procedure
• with an external table
• with a UNION query

As the engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardless of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

Data Manipulation (DML) Statements

204

Table 6.9. How TPB settings affect explicit locking

TPB mode Behaviour

isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and are ig-
nored.

isc_tpb_concurrency

+ isc_tpb_nowait

If a record is modified by any transaction that was committed since the trans-
action attempting to get explicit lock started, or an active transaction has per-
formed a modification of this record, an update conflict exception is raised im-
mediately.

isc_tpb_concurrency

+ isc_tpb_wait

If the record is modified by any transaction that has committed since the transac-
tion attempting to get explicit lock started, an update conflict exception is raised
immediately.

If an active transaction is holding ownership on this record (via explicit locking
or by a normal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This means that, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read_committed

+ isc_tpb_nowait

If there is an active transaction holding ownership on this record (via explicit
locking or normal update), an update conflict exception is raised immediately.

isc_tpb_read_committed

+ isc_tpb_wait

If there is an active transaction holding ownership on this record (via explicit
locking or by a normal optimistic write-lock), the transaction attempting the ex-
plicit lock waits for the outcome of blocking transaction and when it finishes, at-
tempts to get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

Usage with a FOR UPDATE Clause

If the FOR UPDATE sub-clause precedes the WITH LOCK sub-clause, buffered fetches are suppressed. Thus, the
lock will be applied to each row, one by one, at the moment it is fetched. It becomes possible, then, that a lock
which appeared to succeed when requested will nevertheless fail subsequently, when an attempt is made to fetch
a row which has become locked by another transaction in the meantime.

Tip

As an alternative, it may be possible in your access components to set the size of the fetch buffer to 1. This
would enable you to process the currently-locked row before the next is fetched and locked, or to handle errors
without rolling back your transaction.

OF <column-names>

This optional sub-clause does nothing at all.

Data Manipulation (DML) Statements

205

See also: FOR UPDATE [OF]

How the engine deals with WITH LOCK

When an UPDATE statement tries to access a record that is locked by another transaction, it either raises an update
conflict exception or waits for the locking transaction to finish, depending on TPB mode. Engine behaviour here
is the same as if this record had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, via joins, subqueries, etc. It also guarantees that rows not meeting the search conditions will not be locked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, parallel transactions commit their changes during the course of the locking
statement's execution.

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches”). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

Caveats using WITH LOCK

• Rolling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

• While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

• Most applications do not need explicit locks at all. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to a relational database in a clustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

• Explicit locking is an advanced feature; do not misuse it! While solutions for these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking

i. Simple:

SELECT * FROM DOCUMENT WHERE ID=? WITH LOCK

ii. Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT WHERE PARENT_ID=?

Data Manipulation (DML) Statements

206

 FOR UPDATE WITH LOCK

INTO

Used for: Passing SELECT output into variables

Available in: PSQL

In PSQL code (triggers, stored procedures and executable blocks), the results of a SELECT statement can be
loaded row-by-row into local variables. It is often the only way to do anything with the returned values at all.
The number, order and types of the variables must match the columns in the output row.

A “plain” SELECT statement can only be used in PSQL if it returns at most one row, i.e., if it is a singleton select.
For multi-row selects, PSQL provides the FOR SELECT loop construct, discussed later in the PSQL chapter.
PSQL also supports the DECLARE CURSOR statement, which binds a named cursor to a SELECT statement. The
cursor can then be used to walk the result set.

Syntax: In PSQL the INTO clause is placed at the very end of the SELECT statement.

SELECT [...] <column-list>
FROM ...
[...]
[INTO <variable-list>]

<variable-list> ::= [:]psqlvar [, [:]psqlvar ...]

Note

The colon prefix before local variable names in PSQL is optional.

Examples

Selecting some aggregated values and passing them into previously declared variables min_amt, avg_amt
and max_amt:

select min(amount), avg(cast(amount as float)), max(amount)
 from orders
 where artno = 372218
 into min_amt, avg_amt, max_amt;

Note

The CAST serves to make the average a real number; otherwise, since amount is presumably an integer field,
SQL rules would truncate it to the nearest lower integer.

A PSQL trigger that retrieves two values as a BLOB field (using the LIST() function) and assigns it INTO a third
field:

select list(name, ', ')
 from persons p
 where p.id in (new.father, new.mother)

Data Manipulation (DML) Statements

207

 into new.parentnames;

Common Table Expressions (“WITH ... AS ... SELECT”)

Available in: DSQL, PSQL

A common table expression or CTE can be described as a virtual table or view, defined in a preamble to a main
query, and going out of scope after the main query's execution. The main query can reference any CTEs defined
in the preamble as if they were regular tables or views. CTEs can be recursive, i.e. self-referencing, but they
cannot be nested.

Syntax:

<cte-construct> ::= <cte-defs>
 <main-query>

<cte-defs> ::= WITH [RECURSIVE] <cte> [, <cte> ...]

<cte> ::= name [(<column-list>)] AS (<cte-stmt>)

<column-list> ::= column-alias [, column-alias ...]

Table 6.10. Arguments for Common Table Expressions

Argument Description

cte-stmt Any SELECT statement, including UNION

main-query
The main SELECT statement, which can refer to the CTEs defined in the pream-
ble

name Alias for a table expression

column-alias Alias for a column in a table expression

Example:

with dept_year_budget as (
 select fiscal_year,
 dept_no,
 sum(projected_budget) as budget
 from proj_dept_budget
 group by fiscal_year, dept_no
)
select d.dept_no,
 d.department,
 dyb_2008.budget as budget_08,
 dyb_2009.budget as budget_09
from department d
 left join dept_year_budget dyb_2008
 on d.dept_no = dyb_2008.dept_no
 and dyb_2008.fiscal_year = 2008
 left join dept_year_budget dyb_2009
 on d.dept_no = dyb_2009.dept_no

Data Manipulation (DML) Statements

208

 and dyb_2009.fiscal_year = 2009
where exists (
 select * from proj_dept_budget b
 where d.dept_no = b.dept_no
)

CTE Notes

• A CTE definition can contain any legal SELECT statement, as long as it doesn't have a “WITH...” preamble
of its own (no nesting).

• CTEs defined for the same main query can reference each other, but care should be taken to avoid loops.

• CTEs can be referenced from anywhere in the main query.

• Each CTE can be referenced multiple times in the main query, using different aliases if necessary.

• When enclosed in parentheses, CTE constructs can be used as subqueries in SELECT statements, but also in
UPDATEs, MERGEs etc.

• In PSQL, CTEs are also supported in FOR loop headers:

for
 with my_rivers as (select * from rivers where owner = 'me')
 select name, length from my_rivers into :rname, :rlen
do
begin
 ..
end

Important

If a CTE is declared, it must be used later: otherwise, you will get an error like this: 'CTE "AAA" is not used
in query'.

Recursive CTEs

A recursive (self-referencing) CTE is a UNION which must have at least one non-recursive member, called the
anchor. The non-recursive member(s) must be placed before the recursive member(s). Recursive members are
linked to each other and to their non-recursive neighbour by UNION ALL operators. The unions between non-
recursive members may be of any type.

Recursive CTEs require the RECURSIVE keyword to be present right after WITH. Each recursive union member
may reference itself only once, and it must do so in a FROM clause.

A great benefit of recursive CTEs is that they use far less memory and CPU cycles than an equivalent recursive
stored procedure.

Execution Pattern

The execution pattern of a recursive CTE is as follows:

• The engine begins execution from a non-recursive member.

Data Manipulation (DML) Statements

209

• For each row evaluated, it starts executing each recursive member one by one, using the current values from
the outer row as parameters.

• If the currently executing instance of a recursive member produces no rows, execution loops back one level
and gets the next row from the outer result set.

Example of recursive CTEs:

WITH RECURSIVE DEPT_YEAR_BUDGET AS (
 SELECT
 FISCAL_YEAR,
 DEPT_NO,
 SUM(PROJECTED_BUDGET) BUDGET
 FROM PROJ_DEPT_BUDGET
 GROUP BY FISCAL_YEAR, DEPT_NO
),
DEPT_TREE AS (
 SELECT
 DEPT_NO,
 HEAD_DEPT,
 DEPARTMENT,
 CAST('' AS VARCHAR(255)) AS INDENT
 FROM DEPARTMENT
 WHERE HEAD_DEPT IS NULL
 UNION ALL
 SELECT
 D.DEPT_NO,
 D.HEAD_DEPT,
 D.DEPARTMENT,
 H.INDENT || ' '
 FROM DEPARTMENT D
 JOIN DEPT_TREE H ON H.HEAD_DEPT = D.DEPT_NO
)
SELECT
 D.DEPT_NO,
 D.INDENT || D.DEPARTMENT DEPARTMENT,
 DYB_2008.BUDGET AS BUDGET_08,
 DYB_2009.BUDGET AS BUDGET_09
FROM DEPT_TREE D
 LEFT JOIN DEPT_YEAR_BUDGET DYB_2008 ON
 (D.DEPT_NO = DYB_2008.DEPT_NO) AND
 (DYB_2008.FISCAL_YEAR = 2008)
 LEFT JOIN DEPT_YEAR_BUDGET DYB_2009 ON
 (D.DEPT_NO = DYB_2009.DEPT_NO) AND
 (DYB_2009.FISCAL_YEAR = 2009)

The next example returns the pedigree of a horse. The main difference is that recursion occurs simultaneously
in two branches of the pedigree.

WITH RECURSIVE PEDIGREE (
 CODE_HORSE,
 CODE_FATHER,
 CODE_MOTHER,
 NAME,
 MARK,

Data Manipulation (DML) Statements

210

 DEPTH)
AS (SELECT
 HORSE.CODE_HORSE,
 HORSE.CODE_FATHER,
 HORSE.CODE_MOTHER,
 HORSE.NAME,
 CAST('' AS VARCHAR(80)),
 0
 FROM
 HORSE
 WHERE
 HORSE.CODE_HORSE = :CODE_HORSE
 UNION ALL
 SELECT
 HORSE.CODE_HORSE,
 HORSE.CODE_FATHER,
 HORSE.CODE_MOTHER,
 HORSE.NAME,
 'F' || PEDIGREE.MARK,
 PEDIGREE.DEPTH + 1
 FROM
 HORSE
 JOIN PEDIGREE
 ON HORSE.CODE_HORSE = PEDIGREE.CODE_FATHER
 WHERE
 PEDIGREE.DEPTH < :MAX_DEPTH
 UNION ALL
 SELECT
 HORSE.CODE_HORSE,
 HORSE.CODE_FATHER,
 HORSE.CODE_MOTHER,
 HORSE.NAME,
 'M' || PEDIGREE.MARK,
 PEDIGREE.DEPTH + 1
 FROM
 HORSE
 JOIN PEDIGREE
 ON HORSE.CODE_HORSE = PEDIGREE.CODE_MOTHER
 WHERE
 PEDIGREE.DEPTH < :MAX_DEPTH
)
SELECT
 CODE_HORSE,
 NAME,
 MARK,
 DEPTH
FROM
 PEDIGREE

Notes on recursive CTEs:

• Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX etc) are not
allowed in recursive union members.

• A recursive reference cannot participate in an outer join.

• The maximum recursion depth is 1024.

Data Manipulation (DML) Statements

211

INSERT

Used for: Inserting rows of data into a table

Available in: DSQL, ESQL, PSQL

Syntax:

INSERT INTO target
{DEFAULT VALUES | [(<column_list>)] <value_source>}
[RETURNING <returning_list> [INTO <variables>]]

<column_list> ::= colname [, colname ...]

<value_source> ::= VALUES (<value_list>) | <select_stmt>

<value_list> ::= value [, value ...]

<returning_list> ::= ret_value [, ret_value ...]
<variables> ::= [:]varname [, [:]varname ...]

Table 6.11. Arguments for the INSERT Statement Parameters

Argument Description

target
The name of the table or view to which a new row, or batch of rows, should be
added

colname Column in the table or view

value An expression whose value is used for inserting into the table

ret_value The expression to be returned in the RETURNING clause

varname Name of a PSQL local variable

Description: The INSERT statement is used to add rows to a table or to one or more tables underlying a view:

• If the column values are supplied in a VALUES clause, exactly one row is inserted

• The values may be provided instead by a SELECT expression, in which case zero to many rows may be inserted

• With the DEFAULT VALUES clause, no values are provided at all and exactly one row is inserted.

Restrictions

• Columns returned to the NEW.column_name context variables in triggers should not have a colon (“:”)
prefixed to their names

• No column may appear more than once in the column list.

Data Manipulation (DML) Statements

212

ALERT :: 'BEFORE INSERT' Triggers

Regardless of the method used for inserting rows, be mindful of any columns in the target table or view that
are populated by BEFORE INSERT triggers, such as primary keys and case-insensitive search columns. Those
columns should be excluded from both the column_list and the VALUES list if, as they should, the triggers
test the NEW.column_name for NULL.

INSERT ... VALUES

The VALUES list must provide a value for every column in the column list, in the same order and of the correct
type. The column list need not specify every column in the target but, if the column list is absent, the engine
requires a value for every column in the table or view (computed columns excluded).

Note

Introducer syntax provides a way to identify the character set of a value that is a string constant (literal).
Introducer syntax works only with literal strings: it cannot be applied to string variables, parameters, column
references or values that are expressions.

Examples:

INSERT INTO cars (make, model, year)
VALUES ('Ford', 'T', 1908);

INSERT INTO cars
VALUES ('Ford', 'T', 1908, 'USA', 850);

-- notice the '_' prefix (introducer syntax)
INSERT INTO People
VALUES (_ISO8859_1 'Hans-Jörg Schäfer')

INSERT ... SELECT

For this method of inserting, the output columns of the SELECT statement must provide a value for every target
column in the column list, in the same order and of the correct type.

Literal values, context variables or expressions of compatible type can be substituted for any column in the
source row. In this case, a source column list and a corresponding VALUES list are required.

If the column list is absent—as it is when SELECT * is used for the source expression—the column_list must
contain the names of every column in the target table or view (computed columns excluded).

Examples:

INSERT INTO cars (make, model, year)
 SELECT make, model, year
 FROM new_cars;

Data Manipulation (DML) Statements

213

INSERT INTO cars
 SELECT * FROM new_cars;

INSERT INTO Members (number, name)
 SELECT number, name FROM NewMembers
 WHERE Accepted = 1
UNION ALL
 SELECT number, name FROM SuspendedMembers
 WHERE Vindicated = 1

INSERT INTO numbers(num)
 WITH RECURSIVE r(n) as (
 SELECT 1 FROM rdb$database
 UNION ALL
 SELECT n+1 FROM r WHERE n < 100
)
SELECT n FROM r

Of course, the column names in the source table need not be the same as those in the target table. Any type of
SELECT statement is permitted, as long as its output columns exactly match the insert columns in number, order
and type. Types need not be exactly the same, but they must be assignment-compatible.

The “Unstable Cursor” Problem

In Firebird, up to and including this version, it is necessary to be aware of an implementation fault that affects
this style of inserts when the objective is to duplicate rows in the same table. For example

INSERT INTO T
 SELECT * FROM T

known affectionately as the “infinite insertion loop”, will continuously select rows and insert them, over and
over, until the system runs out of storage space.

This is a quirk that affects all data-changing DML operations, with a variety of effects. It happens because, in
the execution layers, DML statements use implicit cursors for performing the operations. Thus, using our simple
example, execution works as follows:

FOR SELECT <values> FROM T INTO <tmp_vars>
 DO
 INSERT INTO T VALUES (<tmp_vars>)

The implementation results in behaviour that does not accord with the SQL standards. Future versions of Firebird
will comply with the standard.

INSERT ... DEFAULT VALUES

The DEFAULT VALUES clause allows insertion of a record without providing any values at all, either directly or
from a SELECT statement. This is only possible if every NOT NULL or CHECKed column in the table either has
a valid default declared or gets such a value from a BEFORE INSERT trigger. Furthermore, triggers providing
required field values must not depend on the presence of input values.

Data Manipulation (DML) Statements

214

Example:

INSERT INTO journal
 DEFAULT VALUES
RETURNING entry_id

The RETURNING clause

An INSERT statement adding at most one row may optionally include a RETURNING clause in order to return
values from the inserted row. The clause, if present, need not contain all of the insert columns and may also
contain other columns or expressions. The returned values reflect any changes that may have been made in
BEFORE INSERT triggers.

ALERT :: Multiple INSERTs

In DSQL, a statement with RETURNING always returns only one row. If the RETURNING clause is specified
and more than one row is inserted by the INSERT statement, the statement fails and an error message is returned.
This behaviour may change in future Firebird versions.

Examples:

INSERT INTO Scholars (
 firstname,
 lastname,
 address,
 phone,
 email)
VALUES (
 'Henry',
 'Higgins',
 '27A Wimpole Street',
 '3231212',
 NULL)
RETURNING lastname, fullname, id;

INSERT INTO Dumbbells (firstname, lastname, iq)
 SELECT fname, lname, iq
FROM Friends
 ORDER BY iq ROWS 1
 RETURNING id, firstname, iq
INTO :id, :fname, :iq;

Notes:

• RETURNING is only supported for VALUES inserts and singleton SELECT inserts.

• In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was actually
inserted, the fields in this row are all NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was inserted, nothing is returned, and the target variables keep their existing values.

Data Manipulation (DML) Statements

215

Inserting into BLOB columns

Inserting into BLOB columns is only possible under the following circumstances:

1. The client application has made special provisions for such inserts, using the Firebird API. In this case, the
modus operandi is application-specific and outside the scope of this manual.

2. The value inserted is a text string of no more than 32767 bytes.

Caution

If the value is not a string literal, beware of concatenations, as the output from the expression may exceed
the maximum length.

3. You are using the “INSERT ... SELECT” form and one or more columns in the result set are BLOBs.

UPDATE

Used for: Modifying rows in tables and views

Available in: DSQL, ESQL, PSQL

Syntax:

 UPDATE target [[AS] alias]
 SET col = newval [, col = newval ...]
 [WHERE {search-conditions | CURRENT OF cursorname}]
 [PLAN plan_items]
 [ORDER BY sort_items]
 [ROWS <m> [TO <n>]]
 [RETURNING <returning_list> [INTO <variables>]]

<returning_list> ::= ret_value [, ret_value ...]
<variables> ::= :varname [, :varname ...]

Table 6.12. Arguments for the UPDATE Statement Parameters

Argument Description

target The name of the table or view where the records are updated

alias Alias for the table or view

col Name or alias of a column in the table or view

newval
New value for a column that is to be updated in the table or view by the state-
ment

Data Manipulation (DML) Statements

216

Argument Description

search-conditions A search condition limiting the set of the rows to be updated

cursorname The name of the cursor through which the row[s] to be updated are positioned

plan_items Clauses in the query plan

sort_items Columns listed in an ORDER BY clause

m, n Integer expressions for limiting the number of rows to be updated

ret_value A value to be returned in the RETURNING clause

varname Name of a PSQL local variable

Description: The UPDATE statement changes values in a table or in one or more of the tables that underlie a
view. The columns affected are specified in the SET clause. The rows affected may be limited by the WHERE
and ROWS clauses. If neither WHERE nor ROWS is present, all the records in the table will be updated.

Using an alias

If you assign an alias to a table or a view, the alias must be used when specifying columns and also in any column
references included in other clauses.

Examples:

Correct usage:

update Fruit set soort = 'pisang' where ...

update Fruit set Fruit.soort = 'pisang' where ...

update Fruit F set soort = 'pisang' where ...

update Fruit F set F.soort = 'pisang' where ...

Not possible:

update Fruit F set Fruit.soort = 'pisang' where ...

The SET Clause

In the SET clause, the assignment phrases, containing the columns with the values to be set, are separated by
commas. In an assignment phrase, column names are on the left and the values or expressions containing the
assignment values are on the right. A column may be included only once in the SET clause.

A column name can be used in expressions on the right. The old value of the column will always be used in
these right-side values, even if the column was already assigned a new value earlier in the SET clause.

Here is an example: Data in the TSET table:

Data Manipulation (DML) Statements

217

A B

1 0
2 0

The statement

UPDATE tset SET a = 5, b = a

will change the values to

A B

5 1
5 2

Notice that the old values (1 and 2) are used to update the b column even after the column was assigned a
new value (5).

Note

It was not always like that. Before version 2.5, columns got their new values immediately upon assignment. It
was non-standard behaviour that was fixed in version 2.5.

To maintain compatibility with legacy code, the configuration file firebird.conf includes the parameter
OldSetClauseSemantics, that can be set True (1) to restore the old, bad behaviour. It is a temporary
measure—the parameter will be removed in future.

The WHERE Clause

The WHERE clause sets the conditions that limit the set of records for a searched update.

In PSQL, if a named cursor is being used for updating a set, using the WHERE CURRENT OF clause, the action
is limited to the row where the cursor is currently positioned. This is a positioned update.

Note

The WHERE CURRENT OF clause is available only in PSQL, since there is no statement for creating and ma-
nipulating an explicit cursor in DSQL. Searched updates are also available in PSQL, of course.

Examples:

UPDATE People
 SET firstname = 'Boris'
 WHERE lastname = 'Johnson';

UPDATE employee e
 SET salary = salary * 1.05
 WHERE EXISTS(
 SELECT *

Data Manipulation (DML) Statements

218

 FROM employee_project ep
 WHERE e.emp_no = ep.emp_no);

UPDATE addresses
 SET city = 'Saint Petersburg', citycode = 'PET'
 WHERE city = 'Leningrad'

UPDATE employees
 SET salary = 2.5 * salary
 WHERE title = 'CEO'

For string literals with which the parser needs help to interpret the character set of the data, the introducer syntax
may be used. The string literal is preceded by the character set name, prefixed with an underscore character:

-- notice the '_' prefix

UPDATE People
SET name = _ISO8859_1 'Hans-Jörg Schäfer'
WHERE id = 53662

The “Unstable Cursor” Problem

In Firebird, up to and including this version, it is necessary to be aware of an implementation fault that affects
updates when the WHERE conditions use the IN (select-expr) and the select-expr is of the form SE-
LECT FIRST n or SELECT ... ROWS. For example

UPDATE T
 SET ...
 WHERE ID IN (SELECT FIRST 1 ID FROM T)

known affectionately as the “infinite update loop”, will continuously update rows, over and over, and give the
impression that the server has hung.

Quirks like this can affect any data-changing DML operations, most often when the selection conditions involve
a subquery. Cases have been reported where sort order interferes with expectations, without involving a sub-
query. It happens because, in the execution layers, instead of establishing a stable “target set” and then execut-
ing the data changes to each set member, DML statements use implicit cursors for performing the operations
on whatever row currently meets the conditions, without knowledge of whether that row formerly failed the
condition or was updated already. Thus, using a simple example pattern:

UPDATE T SET <fields> = <values>
 WHERE <conditions>

the execution works as:

FOR SELECT <values> FROM T
 WHERE <conditions>
 INTO <tmp_vars> AS CURSOR <cursor>
 DO

Data Manipulation (DML) Statements

219

 UPDATE T SET <fields> = <tmp_vars>
 WHERE CURRENT OF <cursor>

Firebird's implementation does not accord with the SQL standards, which require that a stable set be established
before any data are changed. Versions of Firebird from V.3 onward will comply with the standard.

The ORDER BY and ROWS Clauses

The ORDER BY and ROWS clauses make sense only when used together. However, they can be used separately.

If ROWS has one argument, m, the rows to be updated will be limited to the first m rows.

Points to note:

• If m > the number of rows being processed, the entire set of rows is updated
• If m = 0, no rows are updated
• If m < 0, an error occurs and the update fails

If two arguments are used, m and n, ROWS limits the rows being updated to rows from m to n inclusively. Both
arguments are integers and start from 1.

Points to note:

• If m > the number of rows being processed, no rows are updated
• If n > the number of rows, rows from m to the end of the set are updated
• If m < 1 or n < 1, an error occurs and the update fails
• If n = m - 1, no rows are updated
• If n < m -1, an error occurs and the update fails

ROWS Example:

UPDATE employees
SET salary = salary + 50
ORDER BY salary ASC
ROWS 20

The RETURNING Clause

An UPDATE statement involving at most one row may include RETURNING in order to return some values from
the row being updated. RETURNING may include data from any row, not necessarily the one that is currently
being updated. It can include literals not associated with columns, if there is a need for that.

When the RETURNING set contains data from the current row, the returned values report changes made in the
BEFORE UPDATE triggers, but not those made in AFTER UPDATE triggers.

The context variables OLD.fieldname and NEW.fieldname can be used as column names. If OLD. or NEW. is not
specified, the column values returned are the NEW. ones.

In DSQL, a statement with RETURNING always returns a single row. If the statement updates no records, the
returned values contain NULL. This behaviour may change in future Firebird versions.

Data Manipulation (DML) Statements

220

The INTO Sub-clause

In PSQL, the INTO clause can be used to pass the returning values to local variables. It is not available in DSQL.
If no records are updated, nothing is returned and variables specified in RETURNING will keep their previous
values.

Note

When a value is returned and assigned to a NEW context variable, it is not valid to use a colon prefix on it.
For example, this is invalid:

...
into :var1, :var2, :new.id

and this is valid:

...
into :var1, :var2, new.id

RETURNING Example (DSQL):

UPDATE Scholars
SET firstname = 'Hugh', lastname = 'Pickering'
WHERE firstname = 'Henry' and lastname = 'Higgins'
RETURNING id, old.lastname, new.lastname

Updating BLOB columns
Updating a BLOB column always replaces the entire contents. Even the BLOB ID, the “handle” that is stored
directly in the column, is changed. BLOBs can be updated if:

1. The client application has made special provisions for this operation, using the Firebird API. In this case,
the modus operandi is application-specific and outside the scope of this manual.

2. The new value is a text string of at most 32767 bytes. Please notice: if the value is not a string literal, beware
of concatenations, as these may exceed the maximum length.

3. The source is itself a BLOB column or, more generally, an expression that returns a BLOB.

4. You use the INSERT CURSOR statement (ESQL only).

UPDATE OR INSERT

Used for: Updating an existing record in a table or, if it does not exist, inserting it

Available in: DSQL, PSQL

Data Manipulation (DML) Statements

221

Syntax:

UPDATE OR INSERT INTO
 {target} [(<column_list>)]
 VALUES (<value_list>)
 [MATCHING (<column_list>)]
 [RETURNING <values> [INTO <variables>]]

<column_list> ::= colname [, colname ...]
<value_list> ::= value [, value ...]
<ret_values> ::= ret_value [, ret_value ...]
<variables> ::= :varname [, :varname ...]

Table 6.13. Arguments for the UPDATE OR INSERT Statement Parameters

Argument Description

target
The name of the table or view where the record[s] is to be updated or a new
record inserted

colname Name of a column in the table or view

value An expression whose value is to be used for inserting or updating the table

ret_value An expression returned in the RETURNING clause

varname Variable name—PSQL only

Description: UPDATE OR INSERT inserts a new record or updates one or more existing records. The action
taken depends on the values provided for the columns in the MATCHING clause (or, if the latter is absent, in the
primary key). If there are records found matching those values, they are updated. If not, a new record is inserted.

MATCHINGPKIS NOT DISTINCTNULL

Restrictions

• If the table has no PK, the MATCHING clause becomes mandatory.
• In the MATCHING list as well as in the update/insert column list, each column name may occur only once.
• The “INTO <variables>” subclause is only available in PSQL.
• When values are returned into the context variable NEW, this name must not be preceded by a colon (“:”).

The RETURNING clause
The optional RETURNING clause, if present, need not contain all the columns mentioned in the statement and
may also contain other columns or expressions. The returned values reflect any changes that may have been
made in BEFORE triggers, but not those in AFTER triggers. OLD.fieldname and NEW.fieldname may both
be used in the list of columns to return; for field names not preceded by either of these, the new value is returned.

In DSQL, a statement with a RETURNING clause always returns exactly one row. If a RETURNING clause is
present and more than one matching record is found, an error is raised. This behaviour may change in a later
version of Firebird.

Example: Modifying data in a table, using UPDATE OR INSERT in a PSQL module. The return value is passed
to a local variable, whose colon prefix is not optional.

Data Manipulation (DML) Statements

222

UPDATE OR INSERT INTO Cows (Name, Number, Location)
 VALUES ('Suzy Creamcheese', 3278823, 'Green Pastures')
 MATCHING (Number)
 RETURNING rec_id into :id;

The “Unstable Cursor” Problem

Because of the way the execution of data-changing DML is implemented in Firebird, up to and including this
version, the sets targeted for updating sometimes produce unexpected results. For more information, refer to
The “Unstable Cursor” Problem in the UPDATE section.

DELETE

Used for: Deleting rows from a table or view

Available in: DSQL, ESQL, PSQL

Syntax:

DELETE
 FROM {target} [[AS] alias]
 [WHERE {search-conditions | CURRENT OF cursorname}]
 [PLAN plan_items]
 [ORDER BY sort_items]
 [ROWS <m> [TO <n>]]
 [RETURNING <returning_list> [INTO <variables>]]

<m>, <n> ::= Any expression evaluating to an integer.
<returning_list> ::= ret_value [, ret_value ...]
<variables> ::= :varname [, :varname ...]

Table 6.14. Arguments for the DELETE Statement Parameters

Argument Description

target The name of the table or view from which the records are to be deleted

alias Alias for the target table or view

search-conditions Search condition limiting the set of rows being targeted for deletion

cursorname The name of the cursor in which current record is positioned for deletion

plan_items Query plan clause

sort_items ORDER BY clause

m, n Integer expressions for limiting the number of rows being deleted

ret_value An expression to be returned in the RETURNING clause

varname Name of a PSQL variable

Data Manipulation (DML) Statements

223

Description: DELETE removes rows from a database table or from one or more of the tables that underlie a
view. WHERE and ROWS clauses can limit the number of rows deleted. If neither WHERE nor ROWS is present,
DELETE removes all the rows in the relation.

Aliases

If an alias is specified for the target table or view, it must be used to qualify all field name references in the
DELETE statement.

Examples:

Supported usage:

delete from Cities where name starting 'Alex'

delete from Cities where Cities.name starting 'Alex'

delete from Cities C where name starting 'Alex'

delete from Cities C where C.name starting 'Alex'

Not possible:

delete from Cities C where Cities.name starting 'Alex'

WHERE

The WHERE clause sets the conditions that limit the set of records for a searched delete.

In PSQL, if a named cursor is being used for deleting a set, using the WHERE CURRENT OF clause, the action
is limited to the row where the cursor is currently positioned. This is a positioned update.

Note

The WHERE CURRENT OF clause is available only in PSQL and ESQL, since there is no statement for creating
and manipulating an explicit cursor in DSQL. Searched deletes are also available in PSQL, of course.

Examples:

DELETE FROM People
 WHERE firstname <> 'Boris' AND lastname <> 'Johnson'

DELETE FROM employee e
 WHERE NOT EXISTS(
 SELECT *
 FROM employee_project ep
 WHERE e.emp_no = ep.emp_no);

Data Manipulation (DML) Statements

224

DELETE FROM Cities
 WHERE CURRENT OF Cur_Cities; -- ESQL and PSQL only

PLAN

A PLAN clause allows the user to optimize the operation manually.

Example:

DELETE FROM Submissions
 WHERE date_entered < '1-Jan-2002'
 PLAN (Submissions INDEX ix_subm_date);

ORDER BY and ROWS

The ORDER BY clause orders the set before the actual deletion takes place. It only makes sense in combination
with ROWS, but is also valid without it.

The ROWS clause limits the number of rows being deleted. Integer literals or any integer expressions can be
used for the arguments m and n.

If ROWS has one argument, m, the rows to be deleted will be limited to the first m rows.

Points to note:

• If m > the number of rows being processed, the entire set of rows is deleted
• If m = 0, no rows are deleted
• If m < 0, an error occurs and the deletion fails

If two arguments are used, m and n, ROWS limits the rows being deleted to rows from m to n inclusively. Both
arguments are integers and start from 1.

Points to note:

• If m > the number of rows being processed, no rows are deleted
• If m > 0 and <= the number of rows in the set and n is outside these values, rows from m to the end of the

set are deleted
• If m < 1 or n < 1, an error occurs and the deletion fails
• If n = m - 1, no rows are deleted
• If n < m -1, an error occurs and the deletion fails

Examples:

Deleting the oldest purchase:

DELETE FROM Purchases

Data Manipulation (DML) Statements

225

 ORDER BY date ROWS 1

Deleting the highest custno(s):

DELETE FROM Sales
 ORDER BY custno DESC ROWS 1 to 10

Deleting all sales, ORDER BY clause pointless:

DELETE FROM Sales
 ORDER BY custno DESC

Deleting one record starting from the end, i.e. from Z…:

DELETE FROM popgroups
 ORDER BY name DESC ROWS 1

Deleting the five oldest groups:

DELETE FROM popgroups
 ORDER BY formed ROWS 5

No sorting (ORDER BY) is specified so 8 found records, starting from the fifth one, will be deleted:

DELETE FROM popgroups
 ROWS 5 TO 12

RETURNING

A DELETE statement removing at most one row may optionally include a RETURNING clause in order to return
values from the deleted row. The clause, if present, need not contain all the relation's columns and may also
contain other columns or expressions.

Notes

• In DSQL, a statement with RETURNING always returns a singleton, never a mult-row set. If no records are
deleted, the returned columns contain NULL. This behaviour may change in future Firebird versions

• The INTO clause is available only in PSQL

- If the row is not deleted, nothing is returned and the target variables keep their values

Examples:

Data Manipulation (DML) Statements

226

DELETE FROM Scholars
 WHERE firstname = 'Henry' and lastname = 'Higgins'
 RETURNING lastname, fullname, id

DELETE FROM Dumbbells
 ORDER BY iq DESC
 ROWS 1
 RETURNING lastname, iq into :lname, :iq;

The “Unstable Cursor” Problem

Because of the way the execution of data-changing DML is implemented in Firebird, up to and including this
version, the sets targeted for deletion sometimes produce unexpected results. For more information, refer to
The “Unstable Cursor” Problem in the UPDATE section.

MERGE

Used for: Merging data from a source set into a target relation

Available in: DSQL, PSQL

Syntax:

MERGE INTO target [[AS] target-alias]
 USING source [[AS] source-alias]
 ON join-condition
 WHEN MATCHED THEN UPDATE SET colname = value [, colname = value ...]
 WHEN NOT MATCHED THEN INSERT [(<columns>)] VALUES (<values>)

<columns> ::= colname [, colname ...]
<values> ::= value [, value ...]

Table 6.15. Arguments for the MERGE Statement Parameters

Argument Description

target Name of target relation (table or updatable view)

source Data source. It can be a table, a view, a stored procedure or a derived table

target-alias Alias for the target relation (table or updatable view)

source-alias Alias for the source relation or set

join-conditions The (ON) condition[s] for matching the source records with those in the target

colname Name of a column in the target relation

Data Manipulation (DML) Statements

227

Argument Description

value
The value assigned to a column in the target table. It is an expression that may
be a literal value, a PSQL variable, a column from the source or a compatible
context variable

Description

The MERGE statement merges data into a table or updatable view. The source may be a table, view or “anything
you can SELECT from” in general. Each source record will be used to update one or more target records, insert
a new record in the target table, or neither.

The action taken depends on the supplied join condition and the WHEN clause(s). The condition will typically
contain a comparison of fields in the source and target relations.

Notes

Only one of each WHEN clause can be supplied. This will change in the next major version of Firebird, when
compound matching conditions will be supported.

WHEN NOT MATCHED is evaluated from the source viewpoint, that is, the table or set specified in USING.
It has to work this way because, if the source record does not match a target record, INSERT is executed. Of
course, if there is a target record that does not match a source record, nothing is done.

Currently, the ROW_COUNT variable returns the value 1, even if more than one record is modified or inserted.
For details and progress, refer to Tracker ticket CORE-4400.

ALERT :: Another irregularity!

If the WHEN MATCHED clause is present and several records match a single record in the target table, an
UPDATE will be executed on that one target record for each one of the matching source records, with each
successive update overwriting the previous one. This behaviour does not comply with the SQL:2003 standard,
which requires that this situation throw an exception (an error).

Examples:

MERGE INTO books b
 USING purchases p
 ON p.title = b.title and p.type = 'bk'
 WHEN MATCHED THEN
 UPDATE SET b.desc = b.desc || '; ' || p.desc
 WHEN NOT MATCHED THEN
 INSERT (title, desc, bought) values (p.title, p.desc, p.bought)

MERGE INTO customers c
 USING (SELECT * from customers_delta WHERE id > 10) cd
 ON (c.id = cd.id)
 WHEN MATCHED THEN
 UPDATE SET name = cd.name
 WHEN NOT MATCHED THEN
 INSERT (id, name) values (cd.id, cd.name)

http://tracker.firebirdsql.org/browse/CORE-4400

Data Manipulation (DML) Statements

228

MERGE INTO numbers
USING (
 WITH RECURSIVE r(n) AS (
 SELECT 1 FROM rdb$database
 UNION ALL
 SELECT n+1 FROM r WHERE n < 200
)
 SELECT n FROM r
) t
ON numbers.num = t.n
WHEN NOT MATCHED THEN
 INSERT(num) VALUES(t.n);

The “Unstable Cursor” Problem

Because of the way the execution of data-changing DML is implemented in Firebird, up to and including this
version, the sets targeted for merging sometimes produce unexpected results. For more information, refer to
The “Unstable Cursor” Problem in the UPDATE section.

EXECUTE PROCEDURE

Used for: Executing a stored procedure

Available in: DSQL, ESQL, PSQL

Syntax:

EXECUTE PROCEDURE procname
 [<inparam> [, <inparam> ...]] | [(<inparam> [, <inparam> ...])]
 [RETURNING_VALUES <outvar> [, <outvar> ...] | (<outvar> [, <outvar> ...])]

<outvar> ::= [:]varname

Table 6.16. Arguments for the EXECUTE PROCEDURE Statement Parameters

Argument Description

procname Name of the stored procedure

inparam An expression evaluating to the declared data type of an input parameter

varname A PSQL variable to receive the return value

Description: Executes an executable stored procedure, taking a list of one or more input parameters, if they are
defined for the procedure, and returning a one-row set of output values, if they are defined for the procedure.

Data Manipulation (DML) Statements

229

“Executable” Stored Procedure

The EXECUTE PROCEDURE statement is most commonly used to invoke the style of stored procedure that
is written to perform some data-modifying task at the server side—those that do not contain any SUSPEND
statements in their code. They can be designed to return a result set, consisting of only one row, which is usually
passed, via a set of RETURNING_VALUES() variables, to another stored procedure that calls it. Client interfaces
usually have an API wrapper that can retrieve the output values into a single-row buffer when calling EXECUTE
PROCEDURE in DSQL.

Invoking the other style of stored procedure—a “selectable” one—is possible with EXECUTE PROCEDURE but
it returns only the first row of an output set which is almost surely designed to be multi-row. Selectable stored
procedures are designed to be invoked by a SELECT statement, producing output that behaves like a virtual table.

Notes

• In PSQL and DSQL, input parameters may be any expression that resolves to the expected type.

• Although parentheses are not required after the name of the stored procedure to enclose the input parameters,
their use is recommended for the sake of good housekeeping.

• Where output parameters have been defined in a procedure, the RETURNING_VALUES clause can be used
in PSQL to retrieve them into a list of previously declared variables that conforms in sequence, data type
and number with the defined output parameters.

• The list of RETURNING_VALUES may be optionally enclosed in parentheses and their use is recommended.

• When DSQL applications call EXECUTE PROCEDURE using the Firebird API or some form of wrapper for
it, a buffer is prepared to receive the output row and the RETURNING_VALUES clause is not used.

Examples:

In PSQL, with optional colons and without optional parentheses:

EXECUTE PROCEDURE MakeFullName
 :FirstName, :MiddleName, :LastName
 RETURNING_VALUES :FullName;

In Firebird's command-line utility isql, with literal parameters and optional parentheses:

EXECUTE PROCEDURE MakeFullName ('J', 'Edgar', 'Hoover');

Note: In isql, RETURNING_VALUES is not used. Any output values are captured by the application
and displayed automatically.

A PSQL example with expression parameters and optional parentheses:

EXECUTE PROCEDURE MakeFullName
 ('Mr./Mrs. ' || FirstName, MiddleName, upper(LastName))
 RETURNING_VALUES (FullName);

Data Manipulation (DML) Statements

230

EXECUTE BLOCK

Used for: Creating an “anonymous” block of PSQL code in DSQL for immediate execution

Available in: DSQL

Syntax:

EXECUTE BLOCK [(<inparams>)]
 [RETURNS (<outparams>)]
AS
 [<declarations>]
BEGIN
 [<PSQL statements>]
END

<inparams> ::= <param_decl> = ? [, <inparams>]
<outparams> ::= <param_decl> [, <outparams>]
<param_decl> ::= paramname <type> [NOT NULL] [COLLATE collation]
<type> ::= datatype | [TYPE OF] domain | TYPE OF COLUMN rel.col

datatype ::=
 {SMALLINT | INTEGER | BIGINT}
 | {FLOAT | DOUBLE PRECISION}
 | {DATE | TIME | TIMESTAMP}
 | {DECIMAL | NUMERIC} [(precision [, scale])]
 | {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(size)]
 [CHARACTER SET charset]
 | {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(size)]
 | BLOB [SUB_TYPE {subtype_num | subtype_name}]
 [SEGMENT SIZE seglen] [CHARACTER SET charset]
 | BLOB [(seglen [, subtype_num])]

<declarations> ::= declare_item [declare_item ...]
declare_item ::= declare_var; | declare_cursor

Table 6.17. Arguments for the EXECUTE BLOCK Statement Parameters

Argument Description

param_decl Name and description of an input or output parameter

declarations A section for declaring local variables and named cursors

declare_var Local variable declaration

declare_cursor Declaration of a named cursor

paramname
The name of an input or output parameter of the procedural block, up to 31 char-
acters long. The name must be unique among input and output parameters and
local variables in the block

Data Manipulation (DML) Statements

231

Argument Description

datatype SQL data type

collation Collation sequence

domain Domain

rel Name of a table or view

col Name of a column in a table or view

precision Precision. From 1 to 18

scale Scale. From 0 to 18. It must be less than or equal to precision

size The maximum size of a string, in characters

charset Character set

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size, it cannot be greater than 65,535

Description: Executes a block of PSQL code as if it were a stored procedure, optionally with input and output
parameters and variable declarations. This allows the user to perform “on-the-fly” PSQL within a DSQL context.

Examples:

This example injects the numbers 0 through 127 and their
 corresponding ASCII characters into the table
 ASCIITABLE:

EXECUTE BLOCK
AS
declare i INT = 0;
BEGIN
 WHILE (i < 128) DO
 BEGIN
 INSERT INTO AsciiTable VALUES (:i, ascii_char(:i));
 i = i + 1;
 END
END

The next example calculates the geometric mean of two numbers and returns it to the user:

EXECUTE BLOCK (x DOUBLE PRECISION = ?, y DOUBLE PRECISION = ?)
RETURNS (gmean DOUBLE PRECISION)
AS
BEGIN
 gmean = SQRT(x*y);

Data Manipulation (DML) Statements

232

 SUSPEND;
END

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all—see the notes below.

Our last example takes two integer values, smallest and largest. For all the numbers in the range
smallest .. largest, the block outputs the number itself, its square, its cube and its fourth power.

EXECUTE BLOCK (smallest INT = ?, largest INT = ?)
RETURNS (number INT, square BIGINT, cube BIGINT, fourth BIGINT)
AS
BEGIN
 number = smallest;
 WHILE (number <= largest) DO
 BEGIN
 square = number * number;
 cube = number * square;
 fourth = number * cube;
 SUSPEND;
 number = number + 1;
 END
END

Again, it depends on the client software if and how you can set the parameter values.

Input and output parameters

Executing a block without input parameters should be possible with every Firebird client that allows the user to
enter his or her own DSQL statements. If there are input parameters, things get trickier: these parameters must
get their values after the statement is prepared but before it is executed. This requires special provisions, which
not every client application offers. (Firebird's own isql, for one, doesn't.)

The server only accepts question marks (“?”) as placeholders for the input values, not “:a”, “:MyParam” etc.,
or literal values. Client software may support the “:xxx” form though, and will preprocess it before sending
it to the server.

If the block has output parameters, you must use SUSPEND or nothing will be returned.

Output is always returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there is only one result row.

PSQL Links

For more information about parameter and variable declarations, and <PSQL statements> consult
Chapter 7, Procedural SQL (PSQL) Statements.

For <declarations> in particular, see DECLARE [VARIABLE] and DECLARE CURSOR for the exact
syntax.

Data Manipulation (DML) Statements

233

Statement Terminators

Some SQL statement editors—specifically the isql utility that comes with Firebird and possibly some third-
party editors—employ an internal convention that requires all statements to be terminated with a semi-colon.
This creates a conflict with PSQL syntax when coding in these environments. If you are unacquainted with
this problem and its solution, please study the details in the PSQL chapter in the section entitled Switching the
Terminator in isql.

234

Chapter 7

Procedural SQL
(PSQL) Statements

Procedural SQL (PSQL) is a procedural extension of SQL. This language subset is used for writing stored
procedures, triggers, and PSQL blocks.

PSQL provides all the basic constructs of traditional structured programming languages, and also includes DML
statements (SELECT, INSERT, UPDATE, DELETE, etc.), with slight modifications to syntax in some cases.

Elements of PSQL
A procedural extension may contain declarations of local variables and cursors, assignments, conditional state-
ments, loops, statements for raising custom exceptions, error handling and sending messages (events) to client
applications. Triggers have access to special context variables, two arrays that store, respectively, the NEW
values for all columns during insert and update activity and the OLD values during update and delete work.

Statements that modify metadata (DDL) are not available in PSQL.

DML Statements with Parameters

If DML statements (SELECT, INSERT, UPDATE, DELETE, etc.) in the body of the module (procedure, trigger
or block) use parameters, only named parameters can be used and they must “exist” before the statements can
use them. They can be made available by being declared either as input or output parameters in the module's
header or as local variables, in DECLARE [VARIABLE] statements at the bottom of the header.

When a DML statement with parameters is included in PSQL code, the parameter name must be prefixed by
a colon (“:”) in most situations. The colon is optional in statement syntax that is specific to PSQL, such as
assignments and conditionals. The colon prefix on parameters is not required when calling stored procedures
from within another PSQL module or in DSQL.

Transactions

Stored procedures are executed in the context of the transaction in which they are called. Triggers are executed
as an intrinsic part of the operation of the DML statement: thus, their execution is within the same transaction
context as the statement itself. Individual transactions are launched for database event triggers.

Statements that start and end transactions are not available in PSQL, but it is possible to run a statement or a
block of statements in an autonomous transaction.

Procedural SQL (PSQL) Statements

235

Module Structure

PSQL code modules consist of a header and a body. The DDL statements for defining them are complex state-
ments; that is, the consist of a single statement that encloses blocks of multiple statements. These statements
begin with a verb (CREATE, ALTER, DROP, RECREATE, CREATE OR ALTER) and end with the last END
statement of the body.

The Module Header

The header provides the module name and defines any parameters and variables that are used in the body. Stored
procedures and PSQL blocks may have input and output parameters. Triggers do not have either input or output
parameters.

The header of a trigger indicates the database event (insert, update or delete, or a combination) and the phase of
operation (BEFORE or AFTER that event) that will cause it to “fire”.

The Module Body

The body of a PSQL module is a block of statements that run in a logical sequence, like a program. A block
of statements is contained within a BEGIN and an END statement. The main BEGIN...END block may contain
any number of other BEGIN...END blocks, both embedded and sequential. All statements except BEGIN and
END are terminated by semicolons (;). No other character is valid for use as a terminator for PSQL statements.

Procedural SQL (PSQL) Statements

236

Switching the Terminator in isql

Here we digress a little, to explain how to switch the terminator character in the isql utility to make it
possible to define PSQL modules in that environment without conflicting with isql itself, which uses the
same character, semicolon (;), as its own statement terminator.

isql Command SET TERM:

Used for: Changing the terminator character[s] to avoid conflict with the terminator character in PSQL
statements

Available in: ISQL only

Syntax:

SET TERM <new_terminator> <old_terminator>

Table 7.1. SET TERM Parameters

Argument Description

new_terminator New terminator

old_terminator Old terminator

When you write your triggers and stored procedures in isql, either in the interactive interface or in scripts,
running a SET TERM statement is needed to switch the normal isql statement terminator from the semicolon
to some other character or short string, to avoid conflict with the non-changeable semicolon terminator in
PSQL. The switch to an alternative terminator needs to be done before you begin defining PSQL objects
or running your scripts.

The alternative terminator can be any string of characters except for a space, an apostrophe or the current
terminator character[s]. Any letter character[s] used will be case-sensitive.

Example: Changing the default semicolon to '^' (caret) and using it to submit a stored procedure definition:
character as an alternative terminator character:

SET TERM ^;

CREATE OR ALTER PROCEDURE SHIP_ORDER (
 PO_NUM CHAR(8))
AS
BEGIN
 /* Stored procedure body */
END^

/* Other stored procedures and triggers */

SET TERM ;^

/* Other DDL statements */

Procedural SQL (PSQL) Statements

237

Stored Procedures

A stored procedure is a program stored in the database metadata for execution on the server. A stored procedure
can be called by stored procedures (including itself), triggers and client applications. A procedure that calls itself
is known as recursive.

Benefits of Stored Procedures

Stored procedures have the following advantages:

1. Modularity—applications working with the database can use the same stored procedure, thereby reducing
the size of the application code and avoiding code duplication.

2. Simpler Application Support—when a stored procedure is modified, changes appear immediately to all
host applications, without the need to recompile them if the parameters were unchanged.

3. Enhanced Performance—since stored procedures are executed on a server instead of at the client, network
traffic is reduced, which improves performance.

Types of Stored Procedures

Firebird supports two types of stored procedures: executable and selectable.

Executable Procedures

Executable procedures usually modify data in a database. They can receive input parameters and return a single
set of output (RETURNS) parameters. They are called using the EXECUTE PROCEDURE statement. See an
example of an executable stored procedure at the end of the CREATE PROCEDURE section of Chapter 5.

Selectable Procedures

Selectable stored procedures usually retrieve data from a database, returning an arbitrary number of rows to the
caller. The caller receives the output one row at a time from a row buffer that the database engine prepares for it.

Selectable procedures can be useful for obtaining complex sets of data that are often impossible or too difficult
or too slow to retrieve using regular DSQL SELECT queries. Typically, this style of procedure iterates through
a looping process of extracting data, perhaps transforming it before filling the output variables (parameters) with
fresh data at each iteration of the loop. A SUSPEND statement at the end of the iteration fills the buffer and waits
for the caller to fetch the row. Execution of the next iteration of the loop begins when the buffer has been cleared.

Selectable procedures may have input parameters and the output set is specified by the RETURNS clause in the
header.

Procedural SQL (PSQL) Statements

238

A selectable stored procedure is called with a SELECT statement. See an example of a selectable stored proce-
dure at the end of the CREATE PROCEDURE section of Chapter 5.

Creating a Stored Procedure

The syntax for creating executable stored procedures and selectable stored procedures is exactly the same. The
difference comes in the logic of the program code.

Syntax (partial):

CREATE PROCEDURE procname
[(<inparam> [, <inparam> ...])]
[RETURNS (<outparam> [, <outparam> ...])]
AS
[<declarations>]
BEGIN
[<PSQL_statements>]
END

The header of a stored procedure must contain the procedure name, and it must be unique among the names of
stored procedures, tables, and views. It may also define some input and output parameters. Input parameters are
listed after the procedure name inside a pair of brackets. Output parameters, which are mandatory for selectable
procedures, are bracketed inside one RETURNS clause.

The final item in the header (or the first item in the body, depending on your opinion of where the border lies)
is one or more declarations of any local variables and/or named cursors that your procedure might require.

Following the declarations is the main BEGIN...END block that delineates the procedure's PSQL code. With-
in that block could be PSQL and DML statements, flow-of-control blocks, sequences of other BEGIN...END
blocks, including embedded blocks. Blocks, including the main block, may be empty and the procedure will still
compile. It is not unusual to develop a procedure in stages, from an outline.

For more information about creating stored procedures: See CREATE PROCEDURE in Chapter 5, Data
Definition (DDL) Statements.

Modifying a Stored Procedure

An existing stored procedure can be altered, to change the sets of input and output parameters and anything in
the procedure body.

Syntax (partial):

ALTER PROCEDURE procname
[(<inparam> [, <inparam> ...])]
[RETURNS (<outparam> [, <outparam> ...])]
AS
[<declarations>]
BEGIN

Procedural SQL (PSQL) Statements

239

[<PSQL_statements>]
END

For more information about modifying stored procedures: See ALTER PROCEDURE, CREATE OR ALTER
PROCEDURE, RECREATE PROCEDURE, in Chapter 5, Data Definition (DDL) Statements.

Deleting a Stored Procedure

The DROP PROCEDURE statement is used to delete stored procedures.

Syntax (complete):

DROP PROCEDURE procname;

For more information about deleting stored procedures: See DROP PROCEDURE in Chapter 5, Data Defi-
nition (DDL) Statements.

Stored Functions
Stored PSQL scalar functions are not supported in this version but they are coming in Firebird 3. In Firebird
2.5 and below, you can instead write a selectable stored procedure that returns a scalar result and SELECT it
from your DML query or subquery.

Example:

SELECT
 PSQL_FUNC(T.col1, T.col2) AS col3,
 col3
FROM T

can be replaced with

SELECT
 (SELECT output_column FROM PSQL_PROC(T.col1)) AS col3,
 col2
FROM T

or

SELECT
 output_column AS col3,
 col2,
FROM T
LEFT JOIN PSQL_PROC(T.col1)

Procedural SQL (PSQL) Statements

240

PSQL Blocks
A self-contained, unnamed (“anonymous”) block of PSQL code can be executed dynamically in DSQL, using
the EXECUTE BLOCK syntax. The header of an anonymous PSQL block may optionally contain input and
output parameters. The body may contain local variable and cursor declarations; and a block of PSQL statements
follows.

An anonymous PSQL block is not defined and stored as an object, unlike stored procedures and triggers. It
executes in run-time and cannot reference itself.

Just like stored procedures, anonymous PSQL blocks can be used to process data and to retrieve data from the
database.

Syntax (incomplete):

EXECUTE BLOCK
[(<inparam> = ? [, <inparam> = ? ...])]
[RETURNS (<outparam> [, <outparam> ...])]
AS
[<declarations>]
BEGIN
[<PSQL_statements>]
END

Table 7.2. PSQL Block Parameters

Argument Description

inparam Input parameter description

outparam Output parameter description

declarations A section for declaring local variables and named cursors

PSQL statements PSQL and DML statements

Read more: See EXECUTE BLOCK for details.

Triggers
A trigger is another form of executable code that is stored in the metadata of the database for execution by
the server. A trigger cannot be called directly. It is called automatically (“fired”) when data-changing events
involving one particular table or view occur.

Procedural SQL (PSQL) Statements

241

One trigger applies to exactly one table or view and only one phase in an event (BEFORE or AFTER the event).
A single trigger might be written to fire only when one specific data-changing event occurs (INSERT/UP-
DATE/DELETE) or it might be written to apply to more than one of those.

A DML trigger is executed in the context of the transaction in which the data-changing DML statement is
running. For triggers that respond to database events, the rule is different: for some of them, a default transaction
is started.

Firing Order (Order of Execution)

More than one trigger can be defined for each phase-event combination. The order in which they are executed
(known as “firing order” can be specified explicitly with the optional POSITION argument in the trigger defini-
tion. You have 32,767 numbers to choose from. Triggers with the lowest position numbers fire first.

If a POSITION clause is omitted, or if several matching event-phase triggers have the same position number,
then the triggers will fire in alphabetical order.

DML Triggers

DML triggers are those that fire when a DML operation changes the state of data: modifies rows in tables, inserts
new rows or deletes rows. They can be defined for both tables and views.

Trigger Options

Six base options are available for the event-phase combination for tables and views:

Before a new row is inserted (BEFORE INSERT)

After a new row is inserted (AFTER INSERT)

Before a row is updated (BEFORE UPDATE)

After a row is updated (AFTER UPDATE)

Before a row is deleted (BEFORE DELETE)

After a row is deleted (AFTER DELETE)

These base forms are for creating single phase/single-event triggers. Firebird also supports forms for creating
triggers for one phase and multiple-events, BEFORE INSERT OR UPDATE OR DELETE, for example, or AFTER
UPDATE OR DELETE: the combinations are your choice.

Note

“Multi-phase” triggers, such as BEFORE OR AFTER..., are not possible.

Procedural SQL (PSQL) Statements

242

OLD and NEW Context Variables

For DML triggers, the Firebird engine provides access to sets of OLD and NEW context variables. Each is an
array of the values of the entire row: one for the values as they are before the data-changing event (the BEFORE
phase) and one for the values as they will be after the event (the AFTER phase). They are referenced in statements
using the form NEW.column_name and OLD.column_name, respectively. The column_name can be any column in
the table's definition, not just those that are being updated.

The NEW and OLD variables are subject to some rules:

• In all triggers, the OLD value is read-only
• In BEFORE UPDATE and BEFORE INSERT code, the NEW value is read/write, unless it is a COMPUTED

BY column
• In INSERT triggers, references to the OLD variables are invalid and will throw an exception
• In DELETE triggers, references to the NEW variables are invalid and will throw an exception
• In all AFTER trigger code, the NEW variables are read-only

Database Triggers

A trigger associated with a database or transaction event can be defined for the following events:

Connecting to a database (ON CONNECT)
Before the trigger is executed, a default
transaction is automatically started

Disconnecting from a database (ON DISCONNECT)
Before the trigger is executed, a default
transaction is automatically started

When a transaction is started
(ON TRANSAC-
TION START)

The trigger is executed in the current trans-
action context

When a transaction is committed
(ON TRANSAC-
TION COMMIT)

The trigger is executed in the current trans-
action context

When a transaction is cancelled
(ON TRANSAC-

TION ROLLBACK)
The trigger is executed in the current trans-
action context

Creating Triggers

Syntax:

CREATE TRIGGER trigname {
 <relation_trigger_legacy>
 | <relation_trigger_sql2003>
 | <database_trigger> }

Procedural SQL (PSQL) Statements

243

AS
[<declarations>]
BEGIN
[<PSQL_statements>]
END

<relation_trigger_legacy> ::= FOR {tablename | viewname}
[ACTIVE | INACTIVE]
{BEFORE | AFTER} <mutation_list>
[POSITION number]

<relation_trigger_sql2003> ::= [ACTIVE | INACTIVE]
{BEFORE | AFTER} <mutation_list>
[POSITION number]
ON {tablename | viewname}

<database_trigger> ::= [ACTIVE | INACTIVE]
ON db_event
[POSITION number]

<mutation_list> ::= <mutation> [OR <mutation>
 [OR <mutation>]]

<mutation> ::= { INSERT | UPDATE | DELETE }

<db_event> ::=
 CONNECT
 | DISCONNECT
 | TRANSACTION START
 | TRANSACTION COMMIT
 | TRANSACTION ROLLBACK

The header must contain a name for the trigger that is unique among trigger names. It must include the event
or events that will fire the trigger. Also, for a DML trigger it is mandatory to specify the event phase and the
name of the table or view that is to “own” the trigger.

The body of the trigger can be headed by the declarations of local variables and cursors, if any. Within the
enclosing main BEGIN...END wrapper will be one or more blocks of PSQL statements, which may be empty.

For more information about creating triggers: See ">CREATE TRIGGER in Chapter 5, Data Definition (DDL)
Statements.

Modifying Triggers

Altering the status, phase, table or view event(s), firing position and code in the body of a DML trigger are all
possible. However, you cannot modify a DML trigger to convert it to a database trigger, nor vice versa. Any
element not specified is left unchanged by ALTER TRIGGER. The alternative statements CREATE OR ALTER
TRIGGER and RECREATE TRIGGER will replace the original trigger definition entirely.

Syntax:

ALTER TRIGGER trigname
[ACTIVE | INACTIVE]

Procedural SQL (PSQL) Statements

244

[{BEFORE | AFTER} <mutation_list>]
[POSITION number]
[
 AS
 [<declarations>]
 BEGIN
 [<PSQL_statements>]
 END
]

<mutation_list> ::=
 <mutation> [OR <mutation> [OR <mutation>]]

<mutation> ::= { INSERT | UPDATE | DELETE }

<db_event> ::=
 CONNECT
 | DISCONNECT
 | TRANSACTION START
 | TRANSACTION COMMIT
 | TRANSACTION ROLLBACK

For more information about modifying triggers: See ALTER TRIGGER, CREATE OR ALTER TRIGGER,
RECREATE TRIGGER in Chapter 5, Data Definition (DDL) Statements.

Deleting a Trigger

The DROP TRIGGER statement is used to delete triggers.

Syntax (complete):

DROP TRIGGER trigname;

For more information about deleting triggers: See DROP TRIGGER in Chapter 5, Data Definition (DDL)
Statements.

Writing the Body Code
This section takes a closer look at the procedural SQL language constructs and statements that are available for
coding the body of a stored procedure, trigger or anonymous PSQL block.

Colon Marker (:)

The colon marker prefix (:) is used in PSQL to mark a reference to a variable in a DML statement. The
colon marker is not required before variable names in other code and it should never be applied to context
variables.

Procedural SQL (PSQL) Statements

245

Assignment Statements

Used for: Assigning a value to a variable

Available in: PSQL

Syntax:

varname = <value_expr>

Table 7.3. Assignment Statement Parameters

Argument Description

varname Name of a parameter or local variable

value_expr
An expression, constant or variable whose value resolves to the same data type
as <varname>

PSQL uses the equivalence symbol (=) as its assignment operator. The assignment statement assigns an SQL
expression value on the right to the variable on the left of the operator. The expression can be any valid SQL
expression: it may contain literals, internal variable names, arithmetic, logical and string operations, calls to
internal functions or to external functions (UDFs).

Example using assignment statements:

CREATE PROCEDURE MYPROC (
 a INTEGER,
 b INTEGER,
 name VARCHAR (30)
)
RETURNS (
 c INTEGER,
 str VARCHAR(100))
AS
BEGIN
 -- assigning a constant
 c = 0;
 str = '';
 SUSPEND;
 -- assigning expression values
 c = a + b;
 str = name || CAST(b AS VARCHAR(10));
 SUSPEND;
 -- assigning expression value
 -- built by a query
 c = (SELECT 1 FROM rdb$database);

Procedural SQL (PSQL) Statements

246

 -- assigning a value from a context variable
 str = CURRENT_USER;
 SUSPEND;
END

See also: DECLARE VARIABLE

DECLARE CURSOR

Used for: Declaring a named cursor

Available in: PSQL

Syntax:

DECLARE [VARIABLE] cursorname CURSOR FOR (<select>) [FOR UPDATE]

Table 7.4. DECLARE CURSOR Statement Parameters

Argument Description

cursorname Cursor name

select SELECT statement

The DECLARE CURSOR ... FOR statement binds a named cursor to the result set obtained in the SELECT state-
ment specified in the FOR clause. In the body code, the cursor can be opened, used to walk row-by-row through
the result set and closed. While the cursor is open, the code can perform positioned updates and deletes using
the WHERE CURRENT OF in the UPDATE or DELETE statement.

Cursor Idiosyncrasies

• The optional FOR UPDATE clause can be included in the SELECT statement but its absence does not prevent
successful execution of a positioned update or delete

• Care should be taken to ensure that the names of declared cursors do not conflict with any names used
subsequently in statements for AS CURSOR clauses

• If the cursor is needed only to walk the result set, it is nearly always easier and less error-prone to use a FOR
SELECT statement with the AS CURSOR clause. Declared cursors must be explicitly opened, used to fetch
data and closed. The context variable ROW_COUNT has to be checked after each fetch and, if its value is
zero, the loop has to be terminated. A FOR SELECT statement checks it automatically.

Nevertheless, declared cursors provide a high level of control over sequential events and allow several cursors
to be managed in parallel.

Procedural SQL (PSQL) Statements

247

• The SELECT statement may contain parameters. For instance:

SELECT NAME || :SFX FROM NAMES WHERE NUMBER = :NUM

Each parameter has to have been declared beforehand as a PSQL variable, even if they originate as input and
output parameters. When the cursor is opened, the parameter is assigned the current value of the variable.

Attention!

If the value of a PSQL variable used in the SELECT statement changes during the loop, its new value may (but
not always) be used for the remaining rows. It is better to avoid having such situations arise unintentionally.
If you really need this behaviour, you should test your code carefully to be certain that you know exactly how
changes in the variable affect the result.

Note particularly that the behaviour may depend on the query plan, specifically on the indexes being used. No
strict rules are in place for situations like this currently, but that could change in future versions of Firebird.

Examples Using Named Cursors

1. Declaring a named cursor in the trigger.

CREATE OR ALTER TRIGGER TBU_STOCK
BEFORE UPDATE ON STOCK
AS
 DECLARE C_COUNTRY CURSOR FOR (
 SELECT
 COUNTRY,
 CAPITAL
 FROM COUNTRY
);
BEGIN
 /* PSQL statements */
END

2. A collection of scripts for creating views with a PSQL block using named cursors.

EXECUTE BLOCK
RETURNS (
 SCRIPT BLOB SUB_TYPE TEXT)
AS
DECLARE VARIABLE FIELDS VARCHAR(8191);
DECLARE VARIABLE FIELD_NAME TYPE OF RDB$FIELD_NAME;
DECLARE VARIABLE RELATION RDB$RELATION_NAME;
DECLARE VARIABLE SOURCE TYPE OF COLUMN RDB$RELATIONS.RDB$VIEW_SOURCE;
DECLARE VARIABLE CUR_R CURSOR FOR (
 SELECT
 RDB$RELATION_NAME,
 RDB$VIEW_SOURCE
 FROM
 RDB$RELATIONS
 WHERE

Procedural SQL (PSQL) Statements

248

 RDB$VIEW_SOURCE IS NOT NULL);
-- Declaring a named cursor where
-- a local variable is used
DECLARE CUR_F CURSOR FOR (
 SELECT
 RDB$FIELD_NAME
 FROM
 RDB$RELATION_FIELDS
 WHERE
 -- It is important that the variable must be declared earlier
 RDB$RELATION_NAME = :RELATION);
BEGIN
 OPEN CUR_R;
 WHILE (1 = 1) DO
 BEGIN
 FETCH CUR_R
 INTO :RELATION, :SOURCE;
 IF (ROW_COUNT = 0) THEN
 LEAVE;

 FIELDS = NULL;
 -- The CUR_F cursor will use the value
 -- of the RELATION variable initiated above
 OPEN CUR_F;
 WHILE (1 = 1) DO
 BEGIN
 FETCH CUR_F
 INTO :FIELD_NAME;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 IF (FIELDS IS NULL) THEN
 FIELDS = TRIM(FIELD_NAME);
 ELSE
 FIELDS = FIELDS || ', ' || TRIM(FIELD_NAME);
 END
 CLOSE CUR_F;

 SCRIPT = 'CREATE VIEW ' || RELATION;

 IF (FIELDS IS NOT NULL) THEN
 SCRIPT = SCRIPT || ' (' || FIELDS || ')';

 SCRIPT = SCRIPT || ' AS ' || ASCII_CHAR(13);
 SCRIPT = SCRIPT || SOURCE;

 SUSPEND;
 END
 CLOSE CUR_R;
END

See also: OPEN, FETCH, CLOSE

DECLARE VARIABLE

Used for: Declaring a local variable

Procedural SQL (PSQL) Statements

249

Available in: PSQL

Syntax:

DECLARE [VARIABLE] <varname>
 {<datatype> | <domain> | TYPE OF {<domain> | COLUMN <rel.col>}
 [NOT NULL] [CHARACTER SET <charset>] [COLLATE <collation>]
 [{DEFAULT | = } <initvalue>];

<datatype> ::=
 {SMALLINT | INTEGER | BIGINT}
 | {FLOAT | DOUBLE PRECISION}
 | {DATE | TIME | TIMESTAMP}
 | {DECIMAL | NUMERIC} [(precision [, scale])]
 | {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(size)]
 [CHARACTER SET charset]
 | {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING]
 [(size)]
 | BLOB [SUB_TYPE {subtype_num | subtype_name}]
 [SEGMENT SIZE seglen] [CHARACTER SET charset]
 | BLOB [(seglen [, subtype_num])]

<initvalue> ::= <literal> | <context_var>

Table 7.5. DECLARE VARIABLE Statement Parameters

Argument Description

varname Name of the local variable

datatype An SQL data type

domain The name of an existing domain in this database

rel.col
Relation name (table or view) in this database and the name of a column in that
relation

precision Precision. From 1 to 18

scale Scale. From 0 to 18, it must be less than or equal to precision

size The maximum size of a string in characters

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size, not greater than 65,535

initvalue Initial value for this variable

literal Literal of a type compatible with the type of the local variable

context_var Any context variable whose type is compatible with the type of the local variable

charset Character set

collation Collation sequence

Procedural SQL (PSQL) Statements

250

The statement DECLARE [VARIABLE] is used for declaring a local variable. The keyword VARIABLE can be
omitted. One DECLARE [VARIABLE] statement is required for each local variable. Any number of DECLARE
[VARIABLE] statements can be included and in any order. The name of a local variable must be unique among
the names of local variables and input and output parameters declared for the module.

Data Type for Variables

A local variable can be of any SQL type other than an array.

• A domain name can be specified as the type and the variable will inherit all of its attributes.
• If the TYPE OF <domain> clause is used instead, the variable will inherit only the domain's data type, and,

if applicable, its character set and collation attributes. Any default value or constraints such as NOT NULL
or CHECK constraints are not inherited.

• If the TYPE OF COLUMN <relation.column> option is used to “borrow” from a column in a table or view,
the variable will inherit only the column's data type, and, if applicable, its character set and collation attributes.
Any other attributes are ignored.

NOT NULL Constraint: The variable can be constrained NOT NULL if required. If a domain has been spec-
ified as the data type and already carries the NOT NULL constraint, it will not be necessary. With the other
forms, including use of a domain that is nullable, the NOT NULL attribute should be included if needed.

CHARACTER SET and COLLATE clauses: Unless specified, the character set and collation sequence of a
string variable will be the database defaults. A CHARACTER SET clause can be included, if required, to handle
string data that is going to be in a different character set. A valid collation sequence (COLLATE clause) can also
be included, with or without the character set clause.

Initializing a Variable: Local variables are NULL when execution of the module begins. They can be initialized
so that a starting or default value is available when they are first referenced. The DEFAULT <initvalue> form
can be used, or just the assignment operator, "=": = <initvalue>. The value can be any type-compatible literal
or context variable.

Important

Be sure to use this clause for any variables that are constrained to be NOT NULL and do not otherwise have
a default value available.

Examples of various ways to declare local variables:

CREATE OR ALTER PROCEDURE SOME_PROC
AS
 -- Declaring a variable of the INT type
 DECLARE I INT;
 -- Declaring a variable of the INT type that does not allow NULL
 DECLARE VARIABLE J INT NOT NULL;
 -- Declaring a variable of the INT type with the default value of 0
 DECLARE VARIABLE K INT DEFAULT 0;
 -- Declaring a variable of the INT type with the default value of 1
 DECLARE VARIABLE L INT = 1;
 -- Declaring a variable based on the COUNTRYNAME domain
 DECLARE FARM_COUNTRY COUNTRYNAME;
 -- Declaring a variable of the type equal to the COUNTRYNAME domain

Procedural SQL (PSQL) Statements

251

 DECLARE FROM_COUNTRY TYPE OF COUNTRYNAME;
 -- Declaring a variable with the type of the CAPITAL column in the COUNTRY table
 DECLARE CAPITAL TYPE OF COLUMN COUNTRY.CAPITAL;
BEGIN
 /* PSQL statements */
END

See also: Data Types and Subtypes, Custom Data Types—Domains, CREATE DOMAIN

BEGIN ... END

Used for: Delineating a block of statements

Available in: PSQL

Syntax:

<block> ::=
BEGIN
 <compound_statement>
 [<compound_statement>
 …]
END

<compound_statement> ::= {<block> | <statement>;}

The BEGIN ... END construct is a two-part statement that wraps a block of statements that are executed as one unit
of code. Each block starts with the half-statement BEGIN and ends with the other half-statement END. Blocks
can be nested to unlimited depth. They may be empty, allowing them to act as stubs, without the need to write
dummy statements.

The BEGIN and END statements have no line terminators. However, when defining or altering a PSQL module
in the isql utility, that application requires that the last END statement be followed by its own terminator character,
that was previously switched, using SET TERM, to some string other than a semicolon. That terminator is not
part of the PSQL syntax.

The final, or outermost, END statement in a trigger terminates the trigger. What the final END statement does
in a stored procedure depends on the type of procedure:

• In a selectable procedure, the final END statement returns control to the caller, returning SQLCODE 100,
indicating that there are no more rows to retrieve

• In an executable procedure, the final END statement returns control to the caller, along with the current values
of any output parameters defined.

Example: A sample procedure from the employee.fdb database, showing simple usage of BEGIN...END
blocks:

SET TERM ^;
CREATE OR ALTER PROCEDURE DEPT_BUDGET (

Procedural SQL (PSQL) Statements

252

 DNO CHAR(3))
RETURNS (
 TOT DECIMAL(12,2))
AS
 DECLARE VARIABLE SUMB DECIMAL(12,2);
 DECLARE VARIABLE RDNO CHAR(3);
 DECLARE VARIABLE CNT INTEGER;
BEGIN
 TOT = 0;

 SELECT
 BUDGET
 FROM
 DEPARTMENT
 WHERE DEPT_NO = :DNO
 INTO :TOT;

 SELECT
 COUNT(BUDGET)
 FROM
 DEPARTMENT
 WHERE HEAD_DEPT = :DNO
 INTO :CNT;

 IF (CNT = 0) THEN
 SUSPEND;

 FOR
 SELECT
 DEPT_NO
 FROM
 DEPARTMENT
 WHERE HEAD_DEPT = :DNO
 INTO :RDNO
 DO
 BEGIN
 EXECUTE PROCEDURE DEPT_BUDGET(:RDNO)
 RETURNING_VALUES :SUMB;
 TOT = TOT + SUMB;
 END

 SUSPEND;
END^
SET TERM ;^

See also: EXIT, LEAVE, SET TERM

IF ... THEN ... ELSE

Used for: Conditional jumps

Available in: PSQL

Syntax:

Procedural SQL (PSQL) Statements

253

IF (<condition>)
 THEN <single_statement> ; | BEGIN <compound_statement> END
[ELSE <single_statement> ; | BEGIN <compound_statement> END]

Table 7.6. IF ... THEN ... ELSE Parameters

Argument Description

condition A logical condition returning TRUE, FALSE or UNKNOWN

single_statement A single statement terminated with a semicolon

compound_statement Two or more statements wrapped in BEGIN ... END

The conditional jump statement IF ... THEN is used to branch the execution process in a PSQL module. The
condition is always enclosed in parentheses. If it returns the value TRUE, execution branches to the statement
or the block of statements after the keyword THEN. If an ELSE is present and the condition returns FALSE or
UNKNOWN, execution branches to the statement or the block of statements after it.

Multi-branch Jumps

PSQL does not provide multi-branch jumps, such as CASE or SWITCH. Nevertheless, the CASE search
statement from DSQL is available in PSQL and is able to satisfy at least some use cases in the manner
of a switch:

CASE <test_expr>
 WHEN <expr> THEN result
 [WHEN <expr> THEN result ...]
 [ELSE defaultresult]
END

CASE
 WHEN <bool_expr> THEN result
 [WHEN <bool_expr> THEN result ...]
 [ELSE defaultresult]
END

Example in PSQL:

...
C = CASE
 WHEN A=2 THEN 1
 WHEN A=1 THEN 3
 ELSE 0
 END;
...

Procedural SQL (PSQL) Statements

254

Example: An example using the IF statement. Assume that the FIRST, LINE2 and LAST variables were de-
clared earlier.

...
IF (FIRST IS NOT NULL) THEN
 LINE2 = FIRST || ' ' || LAST;
ELSE
 LINE2 = LAST;
...

See also: WHILE ... DO, CASE

WHILE ... DO

Used for: Looping constructs

Available in: PSQL

Syntax:

WHILE <condition> DO
<single_statement> ; | BEGIN <compound_statement> END

Table 7.7. WHILE ... DO Parameters

Argument Description

condition A logical condition returning TRUE, FALSE or UNKNOWN

single_statement A single statement terminated with a semicolon

compound_statement Two or more statements wrapped in BEGIN ... END

A WHILE statement implements the looping construct in PSQL. The statement or the block of statements will
be executed until the condition returns TRUE. Loops can be nested to any depth.

Example: A procedure calculating the sum of numbers from 1 to I shows how the looping construct is used.

CREATE PROCEDURE SUM_INT (I INTEGER)
RETURNS (S INTEGER)
AS
BEGIN
 s = 0;
 WHILE (i > 0) DO
 BEGIN
 s = s + i;

Procedural SQL (PSQL) Statements

255

 i = i - 1;
 END
END

Executing the procedure in isql:

EXECUTE PROCEDURE SUM_INT(4);

the result is:

S
==========
10

See also: IF ... THEN ... ELSE, LEAVE, EXIT, FOR SELECT, FOR EXECUTE STATEMENT

LEAVE

Used for: Terminating a loop

Available in: PSQL

Syntax:

[label:]
<loop>
BEGIN
 ...
 LEAVE [label];
 ...
END
<loop_stmt> ::=
 FOR <select_stmt> INTO <var_list> DO
 | FOR EXECUTE STATEMENT ... INTO <var_list> DO
 | WHILE (<condition>)} DO

Table 7.8. LEAVE Statement Parameters

Argument Description

label Label

select_stmt SELECT statement

condition A logical condition returning TRUE, FALSE or UNKNOWN

Procedural SQL (PSQL) Statements

256

A LEAVE statement immediately terminates the inner loop of a WHILE or FOR looping statement. The LABEL
parameter is optional.

LEAVE can cause an exit from outer loops as well. Code continues to be executed from the first statement after
the termination of the outer loop block.

Examples:

1. Leaving a loop if an error occurs on an insert into the NUMBERS table. The code continues to be executed
from the line C = 0.

...
WHILE (B < 10) DO
BEGIN
 INSERT INTO NUMBERS(B)
 VALUES (:B);
 B = B + 1;
 WHEN ANY DO
 BEGIN
 EXECUTE PROCEDURE LOG_ERROR (
 CURRENT_TIMESTAMP,
 'ERROR IN B LOOP');
 LEAVE;
 END
END
C = 0;
...

2. A example using labels in the LEAVE statement. LEAVE LOOPA terminates the outer loop and LEAVE
LOOPB terminates the inner loop. Note that the plain LEAVE statement would be enough to terminate the
inner loop.

...
STMT1 = 'SELECT NAME FROM FARMS';
LOOPA:
FOR EXECUTE STATEMENT :STMT1
INTO :FARM DO
BEGIN
 STMT2 = 'SELECT NAME ' || 'FROM ANIMALS WHERE FARM = ''';
 LOOPB:
 FOR EXECUTE STATEMENT :STMT2 || :FARM || ''''
 INTO :ANIMAL DO
 BEGIN
 IF (ANIMAL = 'FLUFFY') THEN
 LEAVE LOOPB;
 ELSE IF (ANIMAL = FARM) THEN
 LEAVE LOOPA;
 ELSE
 SUSPEND;
 END
END
...

See also: EXIT

Procedural SQL (PSQL) Statements

257

EXIT

Used for: Terminating module execution

Available in: PSQL

Syntax:

EXIT;

The EXIT statement causes execution of the procedure or trigger to jump to the final END statement from any
point in the code, thus terminating the program.

Example: Using the EXIT statement in a selectable procedure:

CREATE PROCEDURE GEN_100
RETURNS (
 I INTEGER
)
AS
BEGIN
 I = 1;
 WHILE (1=1) DO
 BEGIN
 SUSPEND;
 IF (I=100) THEN
 EXIT;
 I = I + 1;
 END
END

See also: LEAVE, SUSPEND

SUSPEND

Used for: Passing output to the buffer and suspending execution while waiting for caller to fetch it

Available in: PSQL

Syntax:

SUSPEND;

The SUSPEND statement is used in a selectable stored procedure to pass the values of output parameters to a
buffer and suspend execution. Execution remains suspended until the calling application fetches the contents
of the buffer. Execution resumes from the statement directly after the SUSPEND statement. In practice, this is
likely to be a new iteration of a looping process.

Procedural SQL (PSQL) Statements

258

Important Notes

1. Applications using interfaces that wrap the API perform the fetches from selectable procedures transpar-
ently.

2. When a SUSPEND statement is executed in an executable stored procedure, it is the same as executing the
EXIT statement, resulting in immediate termination of the procedure.

3. SUSPEND “breaks” the atomicity of the block in which it is located. If an error occurs in a selectable
procedure, statements executed after the final SUSPEND statement will be rolled back. Statements that
executed before the final SUSPEND statement will not be rolled back unless the transaction is rolled back.

Example: Using the SUSPEND statement in a selectable procedure:

CREATE PROCEDURE GEN_100
RETURNS (
 I INTEGER
)
AS
BEGIN
 I = 1;
 WHILE (1=1) DO
 BEGIN
 SUSPEND;
 IF (I=100) THEN
 EXIT;
 I = I + 1;
 END
END

See also: EXIT

EXECUTE STATEMENT

Used for: Executing dynamically created SQL statements

Available in: PSQL

Syntax:

<execute_statement> ::= EXECUTE STATEMENT <argument>
 [<option> …]
 [INTO <variables>]

<argument> ::= paramless_stmt
 | (paramless_stmt)
 | (<stmt_with_params>) (<param_values>)

<param_values> ::= <named_values> | <positional_values>

<named_values> ::= paramname := value_expr
 [, paramname := value_expr ...]

Procedural SQL (PSQL) Statements

259

<positional_values> ::= value_expr [, value_expr ...]

<option> ::= WITH {AUTONOMOUS | COMMON} TRANSACTION
 | WITH CALLER PRIVILEGES
 | AS USER user
 | PASSWORD password
 | ROLE role
 | ON EXTERNAL [DATA SOURCE] <connect_string>

<connect_string> ::= [<hostspec>] {filepath | db_alias}

<hostspec> ::= <tcpip_hostspec> | <NamedPipes_hostspec>

<tcpip_hostspec> ::= hostname:

<NamePipes_hostspec> ::= \\hostname\

<variables> ::= [:]varname [, [:]varname ...]

Table 7.9. EXECUTE STATEMENT Statement Parameters

Argument Description

paramless_stmt Literal string or variable containing a non-parameterized SQL query

stmt_with_params Literal string or variable containing a parameterized SQL query

paramname SQL query parameter name

value_expr SQL expression resolving to a value

user User name. It can be a string, CURRENT_USER or a string variable

password Password. It can be a string or a string variable

role Role. It can be a string, CURRENT_ROLE or a string variable

connection_string Connection string. It can be a string or a string variable

filepath Path to the primary database file

db_alias Database alias

hostname Computer name or IP address

varname Variable

The statement EXECUTE STATEMENT takes a string parameter and executes it as if it were a DSQL statement.
If the statement returns data, it can be passed to local variables by way of an INTO clause.

Parameterized Statements

You can use parameters—either named or positional— in the DSQL statement string. Each parameter must be
assigned a value.

Procedural SQL (PSQL) Statements

260

Special Rules for Parameterized Statements

1. Named and positional parameters cannot be mixed in one query

2. If the statement has parameters, they must be enclosed in parentheses when EXECUTE STATEMENT is
called, regardless of whether they come directly as strings, as variable names or as expressions

3. Each named parameter must be prefixed by a colon (:) in the statement string itself, but not when the
parameter is assigned a value

4. Positional parameters must be assigned their values in the same order as they appear in the query text

5. The assignment operator for parameters is the special operator ":=", similar to the assignment operator in
Pascal

6. Each named parameter can be used in the statement more than once, but its value must be assigned only once

7. With positional parameters, the number of assigned values must match the number of parameter placehold-
ers (question marks) in the statement exactly

Examples: With named parameters:

...
DECLARE license_num VARCHAR(15);
DECLARE connect_string VARCHAR (100);
DECLARE stmt VARCHAR (100) =
 'SELECT license
 FROM cars
 WHERE driver = :driver AND location = :loc';
BEGIN
 ...
 SELECT connstr
 FROM databases
 WHERE cust_id = :id
 INTO connect_string;
 ...
 FOR
 SELECT id
 FROM drivers
 INTO current_driver
 DO
 BEGIN
 FOR
 SELECT location
 FROM driver_locations
 WHERE driver_id = :current_driver
 INTO current_location
 DO
 BEGIN
 ...
 EXECUTE STATEMENT (stmt)
 (driver := current_driver,
 loc := current_location)
 ON EXTERNAL connect_string
 INTO license_num;

Procedural SQL (PSQL) Statements

261

 ...

The same code with positional parameters:

DECLARE license_num VARCHAR (15);
DECLARE connect_string VARCHAR (100);
DECLARE stmt VARCHAR (100) =
 'SELECT license
 FROM cars
 WHERE driver = ? AND location = ?';
BEGIN
 ...
 SELECT connstr
 FROM databases
 WHERE cust_id = :id
 into connect_string;
 ...
 FOR SELECT id
 FROM drivers
 INTO current_driver
 DO
 BEGIN
 FOR
 SELECT location
 FROM driver_locations
 WHERE driver_id = :current_driver
 INTO current_location
 DO
 BEGIN
 ...
 EXECUTE STATEMENT (stmt)
 (current_driver, current_location)
 ON EXTERNAL connect_string
 INTO license_num;
 ...

WITH {AUTONOMOUS | COMMON} TRANSACTION

Traditionally, the executed SQL statement always ran within the current transaction, and this is still the default.
WITH AUTONOMOUS TRANSACTION causes a separate transaction to be started, with the same parameters as
the current transaction. It will be committed if the statement runs to completion without errors and rolled back
otherwise. WITH COMMON TRANSACTION uses the current transaction if possible.

If the statement must run in a separate connection, an already started transaction within that connection is used,
if available. Otherwise, a new transaction is started with the same parameters as the current transaction. Any new
transactions started under the “COMMON” regime are committed or rolled back with the current transaction.

WITH CALLER PRIVILEGES

By default, the SQL statement is executed with the privileges of the current user. Specifying WITH CALLER
PRIVILEGES adds to this the privileges of the calling procedure or trigger, just as if the statement were executed

Procedural SQL (PSQL) Statements

262

directly by the routine. WITH WITH CALLER PRIVILEGES has no effect if the ON EXTERNAL clause is also
present.

ON EXTERNAL [DATA SOURCE]

With ON EXTERNAL [DATA SOURCE], the SQL statement is executed in a separate connection to the same or
another database, possibly even on another server. If the connect string is NULL or '' (empty string), the entire
ON EXTERNAL [DATA SOURCE] clause is considered absent and the statement is executed against the current
database.

Connection Pooling

• External connections made by statements WITH COMMON TRANSACTION (the default) will remain open
until the current transaction ends. They can be reused by subsequent calls to EXECUTE STATEMENT, but
only if the connect string is exactly the same, including case

• External connections made by statements WITH AUTONOMOUS TRANSACTION are closed as soon as the
statement has been executed

• Notice that statements WITH AUTONOMOUS TRANSACTION can and will re-use connections that were
opened earlier by statements WITH COMMON TRANSACTION. If this happens, the reused connection will
be left open after the statement has been executed. (It must be, because it has at least one un-committed
transaction!)

Transaction Pooling

• If WITH COMMON TRANSACTION is in effect, transactions will be reused as much as possible. They will be
committed or rolled back together with the current transaction

• If WITH AUTONOMOUS TRANSACTION is specified, a fresh transaction will always be started for the state-
ment. This transaction will be committed or rolled back immediately after the statement's execution

Exception Handling

Exception handling: When ON EXTERNAL is used, the extra connection is always made via a so-called external
provider, even if the connection is to the current database. One of the consequences is that exceptions cannot be
caught in the usual way. Every exception caused by the statement is wrapped in either an eds_connection
or an eds_statement error. In order to catch them in your PSQL code, you have to use WHEN GDSCODE
eds_connection, WHEN GDSCODE eds_statement or WHEN ANY.

Note

Without ON EXTERNAL, exceptions are caught in the usual way, even if an extra connection is made to the
current database.

Miscellaneous Notes

• The character set used for the external connection is the same as that for the current connection

• Two-phase commits are not supported

Procedural SQL (PSQL) Statements

263

AS USER, PASSWORD and ROLE

The optional AS USER, PASSWORD and ROLE clauses allow specificaton of which user will execute the SQL
statement and with which role. The method of user log-in and whether a separate connection is open depend on
the presence and values of the ON EXTERNAL [DATA SOURCE], AS USER, PASSWORD and ROLE clauses:

• If ON EXTERNAL is present, a new connection is always opened, and:

- If at least one of AS USER, PASSWORD and ROLE is present, native authentication is attempted with the
given parameter values (locally or remotely, depending on the connect string). No defaults are used for
missing parameters

- If all three are absent and the connect string contains no hostname, then the new connection is established
on the local host with the same user and role as the current connection. The term 'local' means 'on the same
machine as the server' here. This is not necessarily the location of the client

- If all three are absent and the connect string contains a hostname, then trusted authentication is attempted
on the remote host (again, 'remote' from the perspective of the server). If this succeeds, the remote operating
system will provide the user name (usually the operating system account under which the Firebird process
runs)

• If ON EXTERNAL is absent:

- If at least one of AS USER, PASSWORD and ROLE is present, a new connection to the current database is
opened with the suppled parameter values. No defaults are used for missing parameters

- If all three are absent, the statement is executed within the current connection

Notice

If a parameter value is NULL or '' (empty string), the entire parameter is considered absent. Additionally, AS US-
ER is considered absent if its value is equal to CURRENT_USER, and ROLE if it is the same as CURRENT_ROLE.

Caveats with EXECUTE STATEMENT

1. There is no way to validate the syntax of the enclosed statement

2. There are no dependency checks to discover whether tables or columns have been dropped

3. Even though the performance in loops has been significantly improved in Firebird 2.5, execution is still
considerably slower than when the same statements are launched directly

4. Return values are strictly checked for data type in order to avoid unpredictable type-casting exceptions.
For example, the string '1234' would convert to an integer, 1234, but 'abc' would give a conversion error

All in all, this feature is meant to be used very cautiously and you should always take the caveats into account.
If you can achieve the same result with PSQL and/or DSQL, it will almost always be preferable.

See also: FOR EXECUTE STATEMENT

FOR SELECT

Used for: Looping row-by-row through a selected result set

Procedural SQL (PSQL) Statements

264

Available in: PSQL

Syntax:

FOR <select_stmt> [AS CURSOR cursorname]
DO {<single_statement> | BEGIN <compound_statement> END}

Table 7.10. FOR SELECT Statement Parameters

Argument Description

select_stmt SELECT statement

cursorname
Cursor name. It must be unique among cursor names in the PSQL module
(stored procedure, trigger or PSQL block)

single_statement
A single statement, terminated with a colon, that performs all the processing for
this FOR loop

compound_statement
A block of statements wrapped in BEGIN...END, that performs all the process-
ing for this FOR loop

A FOR SELECT statement

• retrieves each row sequentially from the result set and executes the statement or block of statements on the
row. In each iteration of the loop, the field values of the current row are copied into pre-declared variables.

Including the AS CURSOR clause enables positioned deletes and updates to be performed—see notes below

• can embed other FOR SELECT statements

• can carry named parameters that must be previously declared in the DECLARE VARIABLE statement or exist
as input or output parameters of the procedure

• requires an INTO clause that is located at the end of the SELECT ... FROM ... specification. In each iteration
of the loop, the field values in the current row are copied to the list of variables specified in the INTO clause.
The loop repeats until all rows are retrieved, after which it terminates

• can be terminated before all rows are retrieved by using a LEAVE statement

The Undeclared Cursor

The optional AS CURSOR clause surfaces the set in the FOR SELECT structure as an undeclared, named cursor
that can be operated on using the WHERE CURRENT OF clause inside the statement or block following the DO
command, in order to delete or update the current row before execution moves to the next iteration.

Other points to take into account regarding undeclared cursors:

1. the OPEN, FETCH and CLOSE statements cannot be applied to a cursor surfaced by the AS CURSOR clause

2. the cursor name argument associated with an AS CURSOR clause must not clash with any names created
by DECLARE VARIABLE or DECLARE CURSOR statements at the top of the body code, nor with any other
cursors surfaced by an AS CURSOR clause

Procedural SQL (PSQL) Statements

265

3. The optional FOR UPDATE clause in the SELECT statement is not required for a positioned update

Examples using FOR SELECT:

1. A simple loop through query results:

CREATE PROCEDURE SHOWNUMS
RETURNS (
 AA INTEGER,
 BB INTEGER,
 SM INTEGER,
 DF INTEGER)
AS
BEGIN
 FOR SELECT DISTINCT A, B
 FROM NUMBERS
 ORDER BY A, B
 INTO AA, BB
 DO
 BEGIN
 SM = AA + BB;
 DF = AA - BB;
 SUSPEND;
 END
END

2. Nested FOR SELECT loop:

CREATE PROCEDURE RELFIELDS
RETURNS (
 RELATION CHAR(32),
 POS INTEGER,
 FIELD CHAR(32))
AS
BEGIN
 FOR SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS
 ORDER BY 1
 INTO :RELATION
 DO
 BEGIN
 FOR SELECT
 RDB$FIELD_POSITION + 1,
 RDB$FIELD_NAME
 FROM RDB$RELATION_FIELDS
 WHERE
 RDB$RELATION_NAME = :RELATION
 ORDER BY RDB$FIELD_POSITION
 INTO :POS, :FIELD
 DO
 BEGIN
 IF (POS = 2) THEN
 RELATION = ' "';

Procedural SQL (PSQL) Statements

266

 SUSPEND;
 END
 END
END

3. Using the AS CURSOR clause to surface a cursor for the positioned delete of a record:

CREATE PROCEDURE DELTOWN (
 TOWNTODELETE VARCHAR(24))
RETURNS (
 TOWN VARCHAR(24),
 POP INTEGER)
AS
BEGIN
 FOR SELECT TOWN, POP
 FROM TOWNS
 INTO :TOWN, :POP AS CURSOR TCUR
 DO
 BEGIN
 IF (:TOWN = :TOWNTODELETE) THEN
 -- Positional delete
 DELETE FROM TOWNS
 WHERE CURRENT OF TCUR;
 ELSE
 SUSPEND;
 END
END

See also: DECLARE CURSOR, LEAVE, SELECT, UPDATE, DELETE

FOR EXECUTE STATEMENT

Used for: Executing dynamically created SQL statements that return a row set

Available in: PSQL

Syntax:

FOR <execute_statement> DO {<single_statement> | BEGIN <compound_statement> END}

Table 7.11. FOR EXECUTE STATEMENT Statement Parameters

Argument Description

execute_stmt An EXECUTE STATEMENT string

single_statement
A single statement, terminated with a colon, that performs all the processing for
this FOR loop

compound_statement
A block of statements wrapped in BEGIN...END, that performs all the process-
ing for this FOR loop

Procedural SQL (PSQL) Statements

267

The statement FOR EXECUTE STATEMENT is used, in a manner analogous to FOR SELECT, to loop through the
result set of a dynamically executed query that returns multiple rows.

Example: Executing a dynamically constructed SELECT query that returns a data set:

CREATE PROCEDURE DynamicSampleThree (
 Q_FIELD_NAME VARCHAR(100),
 Q_TABLE_NAME VARCHAR(100)
) RETURNS(
 LINE VARCHAR(32000)
)
AS
 DECLARE VARIABLE P_ONE_LINE VARCHAR(100);
BEGIN
 LINE = '';
 FOR
 EXECUTE STATEMENT
 'SELECT T1.' || :Q_FIELD_NAME ||
 ' FROM ' || :Q_TABLE_NAME || ' T1 '
 INTO :P_ONE_LINE
 DO
 IF (:P_ONE_LINE IS NOT NULL) THEN
 LINE = :LINE || :P_ONE_LINE || ' ';
 SUSPEND;
END

See also: EXECUTE STATEMENT

OPEN

Used for: Opening a declared cursor

Available in: PSQL

Syntax:

OPEN cursorname;

Table 7.12. OPEN Statement Parameter

Argument Description

cursorname
Cursor name. A cursor with this name must be previously declared with a DE-
CLARE CURSOR statement

An OPEN statement opens a previously declared cursor, executes the SELECT statement declared for it and makes
the first record the result data set ready to fetch. OPEN can be applied only to cursors previously declared in a
DECLARE VARIABLE statement.

Procedural SQL (PSQL) Statements

268

Note

If the SELECT statement declared for the cursor has parameters, they must be declared as local variables or
exist as input or output parameters before the cursor is declared. When the cursor is opened, the parameter is
assigned the current value of the variable.

Examples:

1. Using the OPEN statement:

SET TERM ^;

CREATE OR ALTER PROCEDURE GET_RELATIONS_NAMES
RETURNS (
 RNAME CHAR(31)
)
AS
 DECLARE C CURSOR FOR (
 SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS);
BEGIN
 OPEN C;
 WHILE (1 = 1) DO
 BEGIN
 FETCH C INTO :RNAME;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 SUSPEND;
 END
 CLOSE C;
END^

SET TERM ;^

2. A collection of scripts for creating views using a PSQL block with named cursors:

EXECUTE BLOCK
RETURNS (
 SCRIPT BLOB SUB_TYPE TEXT)
AS
DECLARE VARIABLE FIELDS VARCHAR(8191);
DECLARE VARIABLE FIELD_NAME TYPE OF RDB$FIELD_NAME;
DECLARE VARIABLE RELATION RDB$RELATION_NAME;
DECLARE VARIABLE SOURCE TYPE OF COLUMN RDB$RELATIONS.RDB$VIEW_SOURCE;
-- named cursor
DECLARE VARIABLE CUR_R CURSOR FOR (
 SELECT
 RDB$RELATION_NAME,
 RDB$VIEW_SOURCE
 FROM
 RDB$RELATIONS
 WHERE
 RDB$VIEW_SOURCE IS NOT NULL);
-- named cursor with local variable

Procedural SQL (PSQL) Statements

269

DECLARE CUR_F CURSOR FOR (
 SELECT
 RDB$FIELD_NAME
 FROM
 RDB$RELATION_FIELDS
 WHERE
 -- Important! The variable shall be declared earlier
 RDB$RELATION_NAME = :RELATION);
BEGIN
 OPEN CUR_R;
 WHILE (1 = 1) DO
 BEGIN
 FETCH CUR_R
 INTO :RELATION, :SOURCE;
 IF (ROW_COUNT = 0) THEN
 LEAVE;

 FIELDS = NULL;
 -- The CUR_F cursor will use
 -- variable value of RELATION initialized above
 OPEN CUR_F;
 WHILE (1 = 1) DO
 BEGIN
 FETCH CUR_F
 INTO :FIELD_NAME;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 IF (FIELDS IS NULL) THEN
 FIELDS = TRIM(FIELD_NAME);
 ELSE
 FIELDS = FIELDS || ', ' || TRIM(FIELD_NAME);
 END
 CLOSE CUR_F;

 SCRIPT = 'CREATE VIEW ' || RELATION;

 IF (FIELDS IS NOT NULL) THEN
 SCRIPT = SCRIPT || ' (' || FIELDS || ')';

 SCRIPT = SCRIPT || ' AS ' || ASCII_CHAR(13);
 SCRIPT = SCRIPT || SOURCE;

 SUSPEND;
 END
 CLOSE CUR_R;
END

See also: DECLARE CURSOR, FETCH, CLOSE

FETCH

Used for: Fetching successive records from a data set retrieved by a cursor

Available in: PSQL

Syntax:

Procedural SQL (PSQL) Statements

270

FETCH cursorname INTO [:]varname [, [:]varname ...];

Table 7.13. FETCH Statement Parameters

Argument Description

cursorname
Cursor name. A cursor with this name must be previously declared with a DE-
CLARE CURSOR statement and opened by an OPEN statement.

varname Variable name

A FETCH statement fetches the first and successive rows from the result set of the cursor and assigns the column
values to PSQL variables. The FETCH statement can be used only with a cursor declared with the DECLARE
CURSOR statement.

The INTO clause gets data from the current row of the cursor and loads them into PSQL variables.

For checking whether all of the the data set rows have been fetched, the context variable ROW_COUNT returns
the number of rows fetched by the statement. It is positive until all rows have been checked. A ROW_COUNT
of 1 indicates that the next fetch will be the last.

Example: Using the FETCH statement:

SET TERM ^;

CREATE OR ALTER PROCEDURE GET_RELATIONS_NAMES
RETURNS (
 RNAME CHAR(31)
)
AS
 DECLARE C CURSOR FOR (
 SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS);
BEGIN
 OPEN C;
 WHILE (1 = 1) DO
 BEGIN
 FETCH C INTO :RNAME;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 SUSPEND;
 END
 CLOSE C;
END^

SET TERM ;^

See also: DECLARE CURSOR, OPEN, CLOSE

CLOSE

Used for: Closing a declared cursor

Procedural SQL (PSQL) Statements

271

Available in: PSQL

Syntax:

CLOSE cursorname;

Table 7.14. CLOSE Statement Parameter

Argument Description

cursorname
Cursor name. A cursor with this name must be previously declared with a DE-
CLARE CURSOR statement and opened by an OPEN statement

A CLOSE statement closes an open cursor. Any cursors that are still open will be automatically closed after the
module code completes execution. Only a cursor that was declared with DECLARE CURSOR can be closed with
a CLOSE statement.

Example: Using the CLOSE statement:

SET TERM ^;

CREATE OR ALTER PROCEDURE GET_RELATIONS_NAMES
RETURNS (
 RNAME CHAR(31)
)
AS
 DECLARE C CURSOR FOR (
 SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS);
BEGIN
 OPEN C;
 WHILE (1 = 1) DO
 BEGIN
 FETCH C INTO :RNAME;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 SUSPEND;
 END
 CLOSE C;
END^

See also: DECLARE CURSOR, OPEN, FETCH

IN AUTONOMOUS TRANSACTION

Used for: Executing a statement or a block of statements in an autonomous transaction

Available in: PSQL

Syntax:

Procedural SQL (PSQL) Statements

272

IN AUTONOMOUS TRANSACTION DO <compound_statement>

Table 7.15. IN AUTONOMOUS TRANSACTION Statement Parameter

Argument Description

compound_statement A statement or a block of statements

An IN AUTONOMOUS TRANSACTION statement enables execution of a statement or a block of statements in an
autonomous transaction. Code running in an autonomous transaction will be committed right after its successful
execution, regardless of the status of its parent transaction. It might be needed when certain operations must not
be rolled back, even if an error occurs in the parent transaction.

An autonomous transaction has the same isolation level as its parent transaction. Any exception that is thrown in
the block of the autonomous transaction code will result in the autonomous transaction being rolled back and all
made changes being cancelled. If the code executes successfully, the autonomous transaction will be committed.

Example: Using an autonomous transaction in a trigger for the database ON CONNECT event, in order to log
all connection attempts, including those that failed:

CREATE TRIGGER TR_CONNECT ON CONNECT
AS
BEGIN
 -- Logging all attempts to connect to the database
 IN AUTONOMOUS TRANSACTION DO
 INSERT INTO LOG(MSG)
 VALUES ('USER ' || CURRENT_USER || ' CONNECTS.');
 IF (CURRENT_USER IN (SELECT
 USERNAME
 FROM
 BLOCKED_USERS)) THEN
 BEGIN
 -- Logging that the attempt to connect
 -- to the database failed and sending
 -- a message about the event
 IN AUTONOMOUS TRANSACTION DO
 BEGIN
 INSERT INTO LOG(MSG)
 VALUES ('USER ' || CURRENT_USER || ' REFUSED.');
 POST_EVENT 'CONNECTION ATTEMPT' || ' BY BLOCKED USER!';
 END
 -- now calling an exception
 EXCEPTION EX_BADUSER;
 END
END

See also: Transsaction Control

POST_EVENT

Used for: Notifying listening clients about database events in a module

Procedural SQL (PSQL) Statements

273

Available in: PSQL

Syntax:

POST_EVENT event_name;

Table 7.16. POST_EVENT Statement Parameter

Argument Description

event_name Event name (message) limited to 127 bytes

The POST_EVENT statement notifies the event manager about the event, which saves it to an event table. When
the transaction is committed, the event manager notifies applications that are signalling their interest in the event.

The event name can be some sort of code or a short message: the choice is open as it is just a string up to 127 bytes.

The content of the string can be a string literal, a variable or any valid SQL expression that resolves to a string.

Example: Notifying the listening applications about inserting a record into the SALES table:

SET TERM ^;
CREATE TRIGGER POST_NEW_ORDER FOR SALES
ACTIVE AFTER INSERT POSITION 0
AS
BEGIN
 POST_EVENT 'new_order';
END^
SET TERM ;^

Trapping and Handling Errors
Firebird has a useful lexicon of PSQL statements and resources for trapping errors in modules and for handling
them. Internally-implemented exceptions exist for stalling execution when every sort of standard error occurs
in DDL, DSQL and the physical environment.

System Exceptions

An exception is a message that is generated when an error occurs.

All exceptions handled by Firebird have predefined numeric values for context variables (symbols) and text
messages associated with them. Error messages are output in English by default. Localized Firebird builds are
available, where error messages are translated into other languages.

Complete listings of the system exceptions can be found in Appendix B: Exception Codes and Messages:

Procedural SQL (PSQL) Statements

274

• SQLSTATE Error Codes and Descriptions

• GDSCODE Error Codes, SQLCODEs and Descriptions

Custom Exceptions

Custom exceptions can be declared in the database as persistent objects and called in the PSQL code to signal
specific errors; for instance, to enforce certain business rules. A custom exception consists of an identifier and
a default message of approximately 1000 bytes. For details, see CREATE EXCEPTION.

In PSQL code, exceptions are handled by means of the WHEN statement. Handling an exception in the code
involves either fixing the problem in situ, or stepping past it; either solution allows execution to continue without
returning an exception message to the client.

An exception results in execution being terminated in the block. Instead of passing the execution to the END
statement, the procedure moves outward through levels of nested blocks, starting from the block where the
exception is caught, searching for the code of the handler that “knows” about this exception. It stops searching
when it finds the first WHEN statement that can handle this exception.

EXCEPTION

Used for: Throwing a user-defined exception or re-throwing an exception

Available in: PSQL

Syntax:

EXCEPTION [exception_name [custom_message]]

Table 7.17. EXCEPTION Statement Parameters

Argument Description

exception_name Exception name

custom_message
Alternative message text to be returned to the caller interface when an exception
is thrown. Maximum length of the text message is 1,021 bytes

An EXCEPTION statement throws the user-defined exception with the specified name. An alternative message
text of up to 1,021 bytes can optionally override the exception's default message text.

The exception can be handled in the statement, by just leaving it with no specific WHEN ... DO handler and
allowing the trigger or stored procedure to terminate and roll back all operations. The calling application ap-
plication gets the alternative message text, if any was specified; otherwise, it receives the message originally
defined for that exception.

Within the exception-handling block—and only within it—the caught exception can be re-thrown by executing
the EXCEPTION statement without parameters. If located outside the block, the re-thrown EXCEPTION call has
no effect.

Procedural SQL (PSQL) Statements

275

Note

Custom exceptions are stored in the system table RDB$EXCEPTIONS.

Examples:

1. Throwing an exception with dynamically generated text:

…
EXCEPTION EX_BAD_TYPE
 'Incorrect record type with id ' || new.id;
…

2. Throwing an exception upon a condition in the SHIP_ORDER stored procedure:

CREATE OR ALTER PROCEDURE SHIP_ORDER (
 PO_NUM CHAR(8))
AS
DECLARE VARIABLE ord_stat CHAR(7);
DECLARE VARIABLE hold_stat CHAR(1);
DECLARE VARIABLE cust_no INTEGER;
DECLARE VARIABLE any_po CHAR(8);
BEGIN
 SELECT
 s.order_status,
 c.on_hold,
 c.cust_no
 FROM
 sales s, customer c
 WHERE
 po_number = :po_num AND
 s.cust_no = c.cust_no
 INTO :ord_stat,
 :hold_stat,
 :cust_no;

 IF (ord_stat = 'shipped') THEN
 EXCEPTION order_already_shipped;
 /* Other statements */
END

3. Throwing an exception upon a condition and replacing the original message with an alternative message:

CREATE OR ALTER PROCEDURE SHIP_ORDER (
 PO_NUM CHAR(8))
AS
DECLARE VARIABLE ord_stat CHAR(7);
DECLARE VARIABLE hold_stat CHAR(1);
DECLARE VARIABLE cust_no INTEGER;
DECLARE VARIABLE any_po CHAR(8);
BEGIN
 SELECT

Procedural SQL (PSQL) Statements

276

 s.order_status,
 c.on_hold,
 c.cust_no
 FROM
 sales s, customer c
 WHERE
 po_number = :po_num AND
 s.cust_no = c.cust_no
 INTO :ord_stat,
 :hold_stat,
 :cust_no;

 IF (ord_stat = 'shipped') THEN
 EXCEPTION order_already_shipped
 'Order status is "' || ord_stat || '"';
 /* Other statements */
END

4. Logging an error and re-throwing it in the WHEN block:

CREATE PROCEDURE ADD_COUNTRY (
 ACountryName COUNTRYNAME,
 ACurrency VARCHAR(10))
AS
BEGIN
 INSERT INTO country (country,
 currency)
 VALUES (:ACountryName,
 :ACurrency);
 WHEN ANY DO
 BEGIN
 -- write an error in log
 IN AUTONOMOUS TRANSACTION DO
 INSERT INTO ERROR_LOG (PSQL_MODULE,
 GDS_CODE,
 SQL_CODE,
 SQL_STATE)
 VALUES ('ADD_COUNTRY',
 GDSCODE,
 SQLCODE,
 SQLSTATE);
 -- Re-throw exception
 EXCEPTION;
 END
END

See also: CREATE EXCEPTION, WHEN ... DO

WHEN ... DO

Used for: Catching an exception and handling the error

Available in: PSQL

Procedural SQL (PSQL) Statements

277

Syntax:

WHEN {<error> [, <error> …] | ANY}
DO <compound_statement>

<error> ::= {
 EXCEPTION exception_name
 | SQLCODE number
 | GDSCODE errcode
}

Table 7.18. WHEN ... DO Statement Parameters

Argument Description

exception_name Exception name

number SQLCODE error code

errcode Symbolic GDSCODE error name

compound_statement A statement or a block of statements

The WHEN ... DO statement is used to handle errors and user-defined exceptions. The statement catches all errors
and user-defined exceptions listed after the keyword WHEN keyword. If WHEN is followed by the keyword
ANY, the statement catches any error or user-defined exception, even if they have already been handled in a
WHEN block located higher up.

The WHEN ... DO block must be located at the very end of a block of statements, before the block's END statement.

The keyword DOis followed by a statement, or a block of statements inside a BEGIN ... END wrapper, that
handle the exception. The SQLCODE, GDSCODE, and SQLSTATE context variables are available in the context
of this statement or block. The EXCEPTION statement, with no parameters, can also be used in this context to
re-throw the error or exception.

Targeting GDSCODE

The argument for the WHEN GDSCODE clause is the symbolic name associated with the internally-defined
exception, such as grant_obj_notfound for GDS error 335544551.

After the DO clause, another GDSCODE context variable, containing the numeric code, becomes available for
use in the statement or the block of statements that code the error handler. That numeric code is required if you
want to compare a GDSCODE exception with a targeted error.

The WHEN ... DO statement or block is never executed unless one of the events targeted by its conditions occurs
in run-time. If the statement is executed, even if it actually does nothing, execution will continue as if no error
occurred: the error or user-defined exception neither terminates nor rolls back the operations of the trigger or
stored procedure.

However, if the WHEN ... DO statement or block does nothing to handle or resolve the error, the DML statement
(SELECT, INSERT, UPDATE, DELETE, MERGE) that caused the error will be rolled back and none of the state-
ments below it in the same block of statements are executed.

Procedural SQL (PSQL) Statements

278

Important

1. If the error is not caused by one of the DML statements (SELECT, INSERT, UPDATE, DELETE, MERGE),
the entire block of statements will be rolled back, not just the one that caused an error. Any operations
in the WHEN ... DO statement will be rolled back as well. The same limitation applies to the EXECUTE
PROCEDURE statement. Read an interesting discussion of the phenomenon in Firebird Tracker ticket
CORE-4483.

2. In selectable stored procedures, output rows that were already passed to the client in previous iterations of a
FOR SELECT … DO … SUSPEND loop remain available to the client if an exception is thrown subsequently
in the process of retrieving rows.

Scope of a WHEN ... DO Statement

A WHEN ... DO statement catches errors and exceptions in the current block of statements. It also catches similar
exceptions in nested blocks, if those exceptions have not been handled in them.

All changes made before the statement that caused the error are visible to a WHEN ... DO statement. However, if
you try to log them in an autonomous transaction, those changes are unavailable, because the transaction where
the changes took place is not committed at the point when the autonomous transaction is started. Example 4,
below, demonstrates this behaviour.

Tip

When handling exceptions, it is sometimes desirable to handle the exception by writing a log message to mark
the fault and having execution continue past the faulty record. Logs can be written to regular tables but there is
a problem with that: the log records will “disappear” if an unhandled error causes the module to stop executing
and a rollback ensues. Use of external tables can be useful here, as data written to them is transaction-indepen-
dent. The linked external file will still be there, regardless of whether the overall process succeeds or not.

Examples using WHEN...DO:

1. Replacing the standard error with a custom one:

CREATE EXCEPTION COUNTRY_EXIST '';
SET TERM ^;
CREATE PROCEDURE ADD_COUNTRY (
 ACountryName COUNTRYNAME,
 ACurrency VARCHAR(10))
AS
BEGIN
 INSERT INTO country (country, currency)
 VALUES (:ACountryName, :ACurrency);

 WHEN SQLCODE -803 DO
 EXCEPTION COUNTRY_EXIST 'Country already exists!';
END^
SET TERM ^;

2. Logging an error and re-throwing it in the WHEN block:

http://tracker.firebirdsql.org/browse/CORE-4483

Procedural SQL (PSQL) Statements

279

CREATE PROCEDURE ADD_COUNTRY (
 ACountryName COUNTRYNAME,
 ACurrency VARCHAR(10))
AS
BEGIN
 INSERT INTO country (country,
 currency)
 VALUES (:ACountryName,
 :ACurrency);
 WHEN ANY DO
 BEGIN
 -- write an error in log
 IN AUTONOMOUS TRANSACTION DO
 INSERT INTO ERROR_LOG (PSQL_MODULE,
 GDS_CODE,
 SQL_CODE,
 SQL_STATE)
 VALUES ('ADD_COUNTRY',
 GDSCODE,
 SQLCODE,
 SQLSTATE);
 -- Re-throw exception
 EXCEPTION;
 END
END

3. Handling several errors in one WHEN block

...
WHEN GDSCODE GRANT_OBJ_NOTFOUND,
 GDSCODE GRANT_FLD_NOTFOUND,
 GDSCODE GRANT_NOPRIV,
 GDSCODE GRANT_NOPRIV_ON_BASE
DO
BEGIN
 EXECUTE PROCEDURE LOG_GRANT_ERROR(GDSCODE);
 EXIT;
END
...

See also: EXCEPTION, CREATE EXCEPTION, SQLCODE and GDSCODE Error Codes and Message Texts and
SQLSTATE Codes and Message Texts

280

Chapter 8

Built-in functions
and Variables

Here, the large collection of context variables, scalar functions and aggregate functions are described.

Context variables

CURRENT_CONNECTION

Available in: DSQL, PSQL

Description: CURRENT_CONNECTION contains the unique identifier of the current connection.

Type: INTEGER

Examples:

select current_connection from rdb$database

execute procedure P_Login(current_connection)

The value of CURRENT_CONNECTION is stored on the database header page and reset to 0 upon restore. Since
version 2.1, it is incremented upon every new connection. (In previous versions, it was only incremented if the
client read it during a session.) As a result, CURRENT_CONNECTION now indicates the number of connections
since the creation —or most recent restoration—of the database.

CURRENT_DATE

Available in: DSQL, PSQL, ESQL

Description: CURRENT_DATE returns the current server date.

Type: DATE

Syntax:

CURRENT_DATE

Examples:

select current_date from rdb$database

Built-in functions and Variables

281

-- returns e.g. 2011-10-03

Notes:

• Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_DATE will remain
constant every time it is read. If multiple modules call or trigger each other, the value will remain constant
throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to measure
time intervals), use 'TODAY'.

CURRENT_ROLE

Available in: DSQL, PSQL

Description: CURRENT_ROLE is a context variable containing the role of the currently connected user. If there
is no active role, CURRENT_ROLE is NONE.

Type: VARCHAR(31)

Example:

if (current_role <> 'MANAGER')
 then exception only_managers_may_delete;
else
 delete from Customers where custno = :custno;

CURRENT_ROLE always represents a valid role or NONE. If a user connects with a non-existing role, the engine
silently resets it to NONE without returning an error.

CURRENT_TIME

Available in: DSQL, PSQL, ESQL

Description: CURRENT_TIME returns the current server time. In versions prior to 2.0, the fractional part used
to be always “.0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward you can specify
a precision when polling this variable. The default is still 0 decimals, i.e. seconds precision.

Type: TIME

Syntax:

CURRENT_TIME [(precision)]

precision ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Table 8.1. CURRENT_TIME Parameter

Parameter Description

precision Precision. The default value is 0. Not supported in ESQL

Built-in functions and Variables

282

Examples:

select current_time from rdb$database
-- returns e.g. 14:20:19.6170

select current_time(2) from rdb$database
-- returns e.g. 14:20:23.1200

Notes:

• Unlike CURRENT_TIME, the default precision of CURRENT_TIMESTAMP has changed to 3 decimals. As a
result, CURRENT_TIMESTAMP is no longer the exact sum of CURRENT_DATE and CURRENT_TIME, unless
you explicitly specify a precision.

• Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TIME will remain
constant every time it is read. If multiple modules call or trigger each other, the value will remain constant
throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to measure
time intervals), use 'NOW'.

CURRENT_TIMESTAMP

Available in: DSQL, PSQL, ESQL

Description: CURRENT_TIMESTAMP returns the current server date and time. In versions prior to 2.0, the
fractional part used to be always “.0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward
you can specify a precision when polling this variable. The default is 3 decimals, i.e. milliseconds precision.

Type: TIMESTAMP

Syntax:

CURRENT_TIMESTAMP [(precision)]

precision ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Table 8.2. CURRENT_TIMESTAMP Parameter

Parameter Description

precision Precision. The default value is 0. Not supported in ESQL

Examples:

select current_timestamp from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

select current_timestamp(2) from rdb$database
-- returns e.g. 2008-08-13 14:20:23.1200

Built-in functions and Variables

283

Notes:

• The default precision of CURRENT_TIME is still 0 decimals, so in Firebird 2.0 and up CURRENT_TIMESTAMP
is no longer the exact sum of CURRENT_DATE and CURRENT_TIME, unless you explicitly specify a preci-
sion.

• Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TIMESTAMP will
remain constant every time it is read. If multiple modules call or trigger each other, the value will remain
constant throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to
measure time intervals), use 'NOW'.

CURRENT_TRANSACTION

Available in: DSQL, PSQL

Description: CURRENT_TRANSACTION contains the unique identifier of the current transaction.

Type: INTEGER

Examples:

select current_transaction from rdb$database

New.Txn_ID = current_transaction;

The value of CURRENT_TRANSACTION is stored on the database header page and reset to 0 upon restore. It
is incremented with every new transaction.

CURRENT_USER

Available in: DSQL, PSQL

Description: CURRENT_USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)

Example:

create trigger bi_customers for customers before insert as
begin
 New.added_by = CURRENT_USER;
 New.purchases = 0;
end

DELETING

Available in: PSQL

Built-in functions and Variables

284

Description: Available in triggers only, DELETING indicates if the trigger fired because of a DELETE operation.
Intended for use in multi-action triggers.

Type: boolean

Example:

if (deleting) then
begin
 insert into Removed_Cars (id, make, model, removed)
 values (old.id, old.make, old.model, current_timestamp);
end

GDSCODE

Available in: PSQL

Description: In a “WHEN ... DO” error handling block, the GDSCODE context variable contains the numeri-
cal representation of the current Firebird error code. Prior to Firebird 2.0, GDSCODE was only set in WHEN
GDSCODE handlers. Now it may also be non-zero in WHEN ANY, WHEN SQLCODE and WHEN EXCEPTION
blocks, provided that the condition raising the error corresponds with a Firebird error code. Outside error han-
dlers, GDSCODE is always 0. Outside PSQL it doesn't exist at all.

Type: INTEGER

Example:

when gdscode grant_obj_notfound, gdscode grant_fld_notfound,
 gdscode grant_nopriv, gdscode grant_nopriv_on_base
do
begin
 execute procedure log_grant_error(gdscode);
 exit;
end

Notice

After WHEN GDSCODE, you must use symbolic names like grant_obj_notfound etc. But the GDSCODE context
variable is an INTEGER. If you want to compare it against a specific error, the numeric value must be used,
e.g. 335544551 for grant_obj_notfound.

INSERTING

Available in: PSQL

Description: Available in triggers only, INSERTING indicates if the trigger fired because of an INSERT opera-
tion. Intended for use in multi-action triggers.

Type: boolean

Built-in functions and Variables

285

Example:

if (inserting or updating) then
begin
 if (new.serial_num is null) then
 new.serial_num = gen_id(gen_serials, 1);
end

NEW

Available in: PSQL, triggers only

Description: NEW contains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it is read-only in AFTER triggers.

Type: Data row

Note

In multi-action triggers—introduced in Firebird 1.5—NEW is always available. But if the trigger is fired by a
DELETE, there will be no new version of the record. In that situation, reading from NEW will always return
NULL; writing to it will cause a runtime exception.

'NOW'

Available in: DSQL, PSQL, ESQL

Changed in: 2.0

Description: 'NOW' is not a variable but a string literal. It is, however, special in the sense that when you CAST()
it to a date/time type, you will get the current date and/or time. The fractional part of the time used to be always
“.0000”, giving an effective seconds precision. Since Firebird 2.0 the precision is 3 decimals, i.e. milliseconds.
'NOW' is case-insensitive, and the engine ignores leading or trailing spaces when casting.

Note: Please be advised that these shorthand expressions are evaluated immediately at parse time and stay the
same as long as the statement remains prepared. Thus, even if a query is executed multiple times, the value for
e.g. “timestamp 'now'” won't change, no matter how much time passes. If you need the value to progress (i.e.
be evaluated upon every call), use a full cast.

Type: CHAR(3)

Examples:

select 'Now' from rdb$database
-- returns 'Now'

select cast('Now' as date) from rdb$database
-- returns e.g. 2008-08-13

select cast('now' as time) from rdb$database

Built-in functions and Variables

286

-- returns e.g. 14:20:19.6170

select cast('NOW' as timestamp) from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

select date 'Now' from rdb$database
select time 'now' from rdb$database
select timestamp 'NOW' from rdb$database

Notes:

• 'NOW' always returns the actual date/time, even in PSQL modules, where CURRENT_DATE, CURRENT_TIME
and CURRENT_TIMESTAMP return the same value throughout the duration of the outermost routine. This
makes 'NOW' useful for measuring time intervals in triggers, procedures and executable blocks.

• Except in the situation mentioned above, reading CURRENT_DATE, CURRENT_TIME and
CURRENT_TIMESTAMP is generally preferable to casting 'NOW'. Be aware though that CURRENT_TIME
defaults to seconds precision; to get milliseconds precision, use CURRENT_TIME(3).

OLD

Available in: PSQL, triggers only

Description: OLD contains the existing version of a database record just before a deletion or update. Starting
with Firebird 2.0 it is read-only.

Type: Data row

Note

In multi-action triggers —introduced in Firebird 1.5—OLD is always available. But if the trigger is fired by
an INSERT, there is obviously no pre-existing version of the record. In that situation, reading from OLD will
always return NULL; writing to it will cause a runtime exception.

ROW_COUNT

Available in: PSQL

Changed in: 2.0

Description: The ROW_COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) in the current trigger, stored procedure or executable
block.

Type: INTEGER

Example:

update Figures set Number = 0 where id = :id;

Built-in functions and Variables

287

if (row_count = 0) then
 insert into Figures (id, Number) values (:id, 0);

Behaviour with SELECT and FETCH:

• After a singleton SELECT, ROW_COUNT is 1 if a data row was retrieved and 0 otherwise.

• In a FOR SELECT loop, ROW_COUNT is incremented with every iteration (starting at 0 before the first).

• After a FETCH from a cursor, ROW_COUNT is 1 if a data row was retrieved and 0 otherwise. Fetching more
records from the same cursor does not increment ROW_COUNT beyond 1.

• In Firebird 1.5.x, ROW_COUNT is 0 after any type of SELECT statement.

Note

ROW_COUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or
EXECUTE PROCEDURE command.

SQLCODE

Available in: PSQL

Deprecated in: 2.5.1

Description: In a “WHEN ... DO” error handling block, the SQLCODE context variable contains the current SQL
error code. Prior to Firebird 2.0, SQLCODE was only set in WHEN SQLCODE and WHEN ANY handlers. Now it
may also be non-zero in WHEN GDSCODE and WHEN EXCEPTION blocks, provided that the condition raising
the error corresponds with an SQL error code. Outside error handlers, SQLCODE is always 0. Outside PSQL
it doesn't exist at all.

Type: INTEGER

Example:

when any
do
begin
 if (sqlcode <> 0) then
 Msg = 'An SQL error occurred!';
 else
 Msg = 'Something bad happened!';
 exception ex_custom Msg;
end

Important notice: SQLCODE is now deprecated in favour of the SQL-2003-compliant SQLSTATE status code.
Support for SQLCODE and WHEN SQLCODE will be discontinued in some future version of Firebird.

SQLSTATE

Available in: PSQL

Built-in functions and Variables

288

Added in: 2.5.1

Description: In a “WHEN ... DO” error handler, the SQLSTATE context variable contains the 5-character,
SQL-2003-compliant status code resulting from the statement that raised the error. Outside error handlers, SQL-
STATE is always '00000'. Outside PSQL it is not available at all.

Type: CHAR(5)

Example:

when any
do
begin
 Msg = case sqlstate
 when '22003' then 'Numeric value out of range.'
 when '22012' then 'Division by zero.'
 when '23000' then 'Integrity constraint violation.'
 else 'Something bad happened! SQLSTATE = ' || sqlstate
 end;
 exception ex_custom Msg;
end

Notes:

• SQLSTATE is destined to replace SQLCODE. The latter is now deprecated in Firebird and will disappear in
some future version.

• Firebird does not (yet) support the syntax “WHEN SQLSTATE ... DO”. You have to use WHEN ANY and test
the SQLSTATE variable within the handler.

• Each SQLSTATE code is the concatenation of a 2-character class and a 3-character subclass. Classes 00
(successful completion), 01 (warning) and 02 (no data) represent completion conditions. Every status code
outside these classes is an exception. Because classes 00, 01 and 02 don't raise an error, they won't ever show
up in the SQLSTATE variable.

• For a complete listing of SQLSTATE codes, consult the SQLSTATE Codes and Message Texts section in
Appendix B: Exception Handling, Codes and Messages.

'TODAY'

Available in: DSQL, PSQL, ESQL

Description: 'TODAY' is not a variable but a string literal. It is, however, special in the sense that when you
CAST() it to a date/time type, you will get the current date. 'TODAY' is case-insensitive, and the engine ignores
leading or trailing spaces when casting.

Type: CHAR(5)

Examples:

select 'Today' from rdb$database
 -- returns 'Today'

select cast('Today' as date) from rdb$database

Built-in functions and Variables

289

 -- returns e.g. 2011-10-03

select cast('TODAY' as timestamp) from rdb$database
 -- returns e.g. 2011-10-03 00:00:00.0000

Shorthand syntax for the last two statements:

select date 'Today' from rdb$database
 select timestamp 'TODAY' from rdb$database

Notes:

• 'TODAY' always returns the actual date, even in PSQL modules, where CURRENT_DATE, CURRENT_TIME
and CURRENT_TIMESTAMP return the same value throughout the duration of the outermost routine. This
makes 'TODAY' useful for measuring time intervals in triggers, procedures and executable blocks (at least if
your procedures are running for days).

• Except in the situation mentioned above, reading CURRENT_DATE, is generally preferable to casting 'NOW'.

'TOMORROW'

Available in: DSQL, PSQL, ESQL

Description: 'TOMORROW' is not a variable but a string literal. It is, however, special in the sense that when
you CAST() it to a date/time type, you will get the date of the next day. See also 'TODAY'.

Type: CHAR(8)

Examples:

select 'Tomorrow' from rdb$database
 -- returns 'Tomorrow'

select cast('Tomorrow' as date) from rdb$database
 -- returns e.g. 2011-10-04

select cast('TOMORROW' as timestamp) from rdb$database
 -- returns e.g. 2011-10-04 00:00:00.0000

Shorthand syntax for the last two statements:

select date 'Tomorrow' from rdb$database
 select timestamp 'TOMORROW' from rdb$database

UPDATING

Available in: PSQL

Description: Available in triggers only, UPDATING indicates if the trigger fired because of an UPDATE opera-
tion. Intended for use in multi-action triggers.

Built-in functions and Variables

290

Type: boolean

Example:

if (inserting or updating) then
begin
 if (new.serial_num is null) then
 new.serial_num = gen_id(gen_serials, 1);
end

'YESTERDAY'

Available in: DSQL, PSQL, ESQL

Description: 'YESTERDAY' is not a variable but a string literal. It is, however, special in the sense that when
you CAST() it to a date/time type, you will get the date of the day before. See also 'TODAY'.

Type: CHAR(9)

Examples:

select 'Yesterday' from rdb$database
 -- returns 'Tomorrow'

select cast('Yesterday as date) from rdb$database
 -- returns e.g. 2011-10-02

select cast('YESTERDAY' as timestamp) from rdb$database
 -- returns e.g. 2011-10-02 00:00:00.0000

Shorthand syntax for the last two statements:

select date 'Yesterday' from rdb$database
 select timestamp 'YESTERDAY' from rdb$database

USER

Available in: DSQL, PSQL

Description: USER is a context variable containing the name of the currently connected user. It is fully equivalent
to CURRENT_USER.

Type: VARCHAR(31)

Example:

create trigger bi_customers for customers before insert as
begin
 New.added_by = USER;
 New.purchases = 0;
end

Built-in functions and Variables

291

Scalar Functions

Upgraders: PLEASE READ!

A large number of functions that were implemented as external functions (UDFs) in earlier versions of
Firebird have been progressively re-implemented as internal (built-in) functions. If some external function
of the same name as a built-in one is declared in your database, it will remain there and it will override
any internal function of the same name.

To make the internal function available, you need either to DROP the UDF, or to use ALTER EXTERNAL
FUNCTION the to change the declared name of the UDF.

Functions for Working with Context Variables

RDB$GET_CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDB$SET_CONTEXT are actually predeclared UDFs. They are listed
here as internal functions because they are always present—the user doesn't have to do anything to make them
available.

Available in: DSQL, PSQL * As a declared UDF it should be available in ESQL

Description: Retrieves the value of a context variable from one of the namespaces SYSTEM, USER_SESSION
and USER_TRANSACTION.

Syntax:

RDB$GET_CONTEXT ('<namespace>', '<varname>')

 <namespace> ::= SYSTEM | USER_SESSION | USER_TRANSACTION
 <varname> ::= A case-sensitive string of max. 80 characters

Table 8.3. RDB$GET_CONTEXT Function Parameters

Parameter Description

namespace Namespace

varname Variable name. Case-sensitive. Maximum length is 80 characters

Result type: VARCHAR(255)

Built-in functions and Variables

292

The namespaces: The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user
can create and set variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT().
The SYSTEM namespace is read-only. It contains a number of predefined variables, shown in the table below.

Table 8.4. Context variables in the SYSTEM namespace

DB_NAME Either the full path to the database or—if connecting via the path is disallowed—
its alias.

NETWORK_PROTOCOL The protocol used for the connection: 'TCPv4', 'WNET', 'XNET' or NULL.

CLIENT_ADDRESS For TCPv4, this is the IP address. For XNET, the local process ID. For all other
protocols this variable is NULL.

CURRENT_USER Same as global CURRENT_USER variable.

CURRENT_ROLE Same as global CURRENT_ROLE variable.

SESSION_ID Same as global CURRENT_CONNECTION variable.

TRANSACTION_ID Same as global CURRENT_TRANSACTION variable.

ISOLATION_LEVEL The isolation level of the current transaction: 'READ COMMITTED', 'SNAPSHOT'
or 'CONSISTENCY'.

ENGINE_VERSION The Firebird engine (server) version. Added in 2.1.

Return values and error behaviour: If the polled variable exists in the given namespace, its value will be
returned as a string of max. 255 characters. If the namespace doesn't exist or if you try to access a non-existing
variable in the SYSTEM namespace, an error is raised. If you poll a non-existing variable in one of the other
namespaces, NULL is returned. Both namespace and variable names must be given as single-quoted, case-sen-
sitive, non-NULL strings.

Examples:

select rdb$get_context('SYSTEM', 'DB_NAME') from rdb$database

New.UserAddr = rdb$get_context('SYSTEM', 'CLIENT_ADDRESS');

insert into MyTable (TestField)
 values (rdb$get_context('USER_SESSION', 'MyVar'))

See also: RDB$SET_CONTEXT()

RDB$SET_CONTEXT()

Note

RDB$SET_CONTEXT and its counterpart RDB$GET_CONTEXT are actually predeclared UDFs. They are listed
here as internal functions because they are always present—the user doesn't have to do anything to make them
available.

Available in: DSQL, PSQL * As a declared UDF it should be available in ESQL

Built-in functions and Variables

293

Description: Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

Syntax:

RDB$SET_CONTEXT ('<namespace>', '<varname>', <value> | NULL)

 <namespace> ::= USER_SESSION | USER_TRANSACTION
 <varname> ::= A case-sensitive string of max. 80 characters
 <value> ::= A value of any type, as long as it's castable
 to a VARCHAR(255)

Table 8.5. RDB$SET_CONTEXT Function Parameters

Parameter Description

namespace Namespace

varname Variable name. Case-sensitive. Maximum length is 80 characters

value Data of any type provided it can be cast to VARCHAR(255)

Result type: INTEGER

The namespaces: The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can
create and set variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT(). The
USER_SESSION context is bound to the current connection. Variables in USER_TRANSACTION only exist in the
transaction in which they have been set. When the transaction ends, the context and all the variables defined
in it are destroyed.

Return values and error behaviour: The function returns 1 if the variable already existed before the call and 0
if it didn't. To remove a variable from a context, set it to NULL. If the given namespace doesn't exist, an error is
raised. Both namespace and variable names must be entered as single-quoted, case-sensitive, non-NULL strings.

Examples:

select rdb$set_context('USER_SESSION', 'MyVar', 493) from rdb$database

rdb$set_context('USER_SESSION', 'RecordsFound', RecCounter);

select rdb$set_context('USER_TRANSACTION', 'Savepoints', 'Yes')
 from rdb$database

Notes:

• The maximum number of variables in any single context is 1000.

• All USER_TRANSACTION variables will survive a ROLLBACK RETAIN (see ROLLBACK Options) or ROLL-
BACK TO SAVEPOINT unaltered, no matter at which point during the transaction they were set.

• Due to its UDF-like nature, RDB$SET_CONTEXT can—in PSQL only—be called like a void function, without
assigning the result, as in the second example above. Regular internal functions don't allow this type of use.

See also: RDB$GET_CONTEXT()

Built-in functions and Variables

294

Mathematical Functions

ABS()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

ABS (number)

Table 8.6. ABS Function Parameter

Parameter Description

value An expression of a numeric type

Result type: Numerical

Description: Returns the absolute value of the argument.

ACOS()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

ACOS (number)

Table 8.7. ACOS Function Parameter

Parameter Description

value An expression of a numeric type within the range [-1; 1]

Result type: DOUBLE PRECISION

Description: Returns the arc cosine of the argument.

• The result is an angle in the range [0, pi].

• If the argument is outside the range [-1, 1], NaN is returned.

Built-in functions and Variables

295

ASIN()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

ASIN (number)

Table 8.8. ASIN Function Parameter

Parameter Description

value An expression of a numeric type within the range [-1; 1]

Result type: DOUBLE PRECISION

Description: Returns the arc sine of the argument.

• The result is an angle in the range [-pi/2, pi/2].

• If the argument is outside the range [-1, 1], NaN is returned.

ATAN()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

ATAN (number)

Table 8.9. ATAN Function Parameter

Parameter Description

value An expression of a numeric type

Result type: DOUBLE PRECISION

Description: The function ATAN returns the arc tangent of the argument. The result is an angle in the range
<-pi/2, pi/2>.

ATAN2()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Built-in functions and Variables

296

Syntax:

ATAN2 (y, x)

Table 8.10. ATAN2 Function Parameters

Parameter Description

x An expression of a numeric type

y An expression of a numeric type

Result type: DOUBLE PRECISION

Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -pi/2 and pi/2.

• The result is an angle in the range [-pi, pi].

• If x is negative, the result is pi if y is 0, and -pi if y is -0.

• If both y and x are 0, the result is meaningless. Starting with Firebird 3, an error will be raised if both argu-
ments are 0. At v.2.5.4, it is still not fixed in lower versions. For more details, visit Tracker ticket CORE-3201.

Notes:

• A fully equivalent description of this function is the following: ATAN2(y, x) is the angle between the pos-
itive X-axis and the line from the origin to the point (x, y). This also makes it obvious that ATAN2(0, 0)
is undefined.

• If x is greater than 0, ATAN2(y, x) is the same as ATAN(y/x).

• If both sine and cosine of the angle are already known, ATAN2(sin, cos) gives the angle.

CEIL(), CEILING()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details (Affects CEILING only)

Syntax:

CEIL[ING] (number)

Table 8.11. CEIL[ING] Function Parameters

Parameter Description

number An expression of a numeric type

Result type: BIGINT or DOUBLE PRECISION

http://tracker.firebirdsql.org/browse/CORE-3201

Built-in functions and Variables

297

Description: Returns the smallest whole number greater than or equal to the argument.

See also: FLOOR()

COS()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

COS (angle)

Table 8.12. COS Function Parameter

Parameter Description

angle An angle in radians

Result type: DOUBLE PRECISION

Description: Returns an angle's cosine. The argument must be given in radians.

• Any non-NULL result is—obviously—in the range [-1, 1].

COSH()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

COSH (number)

Table 8.13. COSH Function Parameter

Parameter Description

number A number of a numeric type

Result type: DOUBLE PRECISION

Description: Returns the hyperbolic cosine of the argument.

• Any non-NULL result is in the range [1, INF].

COT()

Available in: DSQL, PSQL

Built-in functions and Variables

298

Possible name conflict: YES—>Read details

Syntax:

COT (angle)

Table 8.14. COT Function Parameter

Parameter Description

angle An angle in radians

Result type: DOUBLE PRECISION

Description: Returns an angle's cotangent. The argument must be given in radians.

EXP()

Available in: DSQL, PSQL

Syntax:

EXP (number)

Table 8.15. EXP Function Parameter

Parameter Description

number A number of a numeric type

Result type: DOUBLE PRECISION

Description: Returns the natural exponential, enumber

See also: LN()

FLOOR()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

FLOOR (number)

Table 8.16. FLOOR Function Parameter

Parameter Description

number An expression of a numeric type

Built-in functions and Variables

299

Result type: BIGINT or DOUBLE PRECISION

Description: Returns the largest whole number smaller than or equal to the argument.

See also: CEIL() / CEILING()

LN()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

LN (number)

Table 8.17. LN Function Parameter

Parameter Description

number An expression of a numeric type

Description: Returns the natural logarithm of the argument.

• An error is raised if the argument is negative or 0.

Result type: DOUBLE PRECISION

See also: EXP()

LOG()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

LOG (x, y)

Table 8.18. LOG Function Parameters

Parameter Description

x Base. An expression of a numeric type

y An expression of a numeric type

Result type: DOUBLE PRECISION

Description: Returns the x-based logarithm of y.

Built-in functions and Variables

300

• If either argument is 0 or below, an error is raised. (Before 2.5, this would result in NaN, ±INF or 0, depending
on the exact values of the arguments.)

• If both arguments are 1, NaN is returned.

• If x = 1 and y < 1, -INF is returned.

• If x = 1 and y > 1, INF is returned.

LOG10()

Available in: DSQL, PSQL

Changed in: 2.5

Possible name conflict: YES—>Read details

Syntax:

LOG10 (number)

Table 8.19. LOG10 Function Parameter

Parameter Description

number An expression of a numeric type

Result type: DOUBLE PRECISION

Description: Returns the 10-based logarithm of the argument.

• An error is raised if the argument is negative or 0. (In versions prior to 2.5, such values would result in NaN
and -INF, respectively.)

MOD()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

MOD (a, b)

Table 8.20. MOD Function Parameters

Parameter Description

a An expression of a numeric type

b An expression of a numeric type

Built-in functions and Variables

301

Result type: INTEGER or BIGINT

Description: Returns the remainder of an integer division.

• Non-integer arguments are rounded before the division takes place. So, “7.5 mod 2.5” gives 2 (8 mod 3), not 0.

PI()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

PI ()

Result type: DOUBLE PRECISION

Description: Returns an approximation of the value of pi.

POWER()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

POWER (x, y)

Table 8.21. POWER Function Parameters

Parameter Description

x An expression of a numeric type

y An expression of a numeric type

Result type: DOUBLE PRECISION

Description: Returns x to the power of y.

• If x negative, an error is raised.

RAND()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Built-in functions and Variables

302

Syntax:

RAND ()

Result type: DOUBLE PRECISION

Description: Returns a random number between 0 and 1.

ROUND()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

ROUND (<number> [, <scale>])

Table 8.22. ROUND Function Parameters

Parameter Description

number An expression of a numeric type

scale

An integer specifying the number of decimal places toward which rounding is to
be performed, e.g.:

 2 for rounding to the nearest multiple of 0.01
 1 for rounding to the nearest multiple of 0.1
 0 for rounding to the nearest whole number
-1 for rounding to the nearest multiple of 10
-2 for rounding to the nearest multiple of 100

Result type: INTEGER, (scaled) BIGINT or DOUBLE PRECISION

Description: Rounds a number to the nearest integer. If the fractional part is exactly 0.5, rounding is upward
for positive numbers and downward for negative numbers. With the optional scale argument, the number can
be rounded to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Important

• If you are used to the behaviour of the external function ROUND, please notice that the internal function
always rounds halves away from zero, i.e. downward for negative numbers.

Examples: If the scale argument is present, the result usually has the same scale as the first argument:

ROUND(123.654, 1) -- returns 123.700 (not 123.7)
ROUND(8341.7, -3) -- returns 8000.0 (not 8000)
ROUND(45.1212, 0) -- returns 45.0000 (not 45)

Otherwise, the result scale is 0:

Built-in functions and Variables

303

ROUND(45.1212) -- returns 45

SIGN()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

SIGN (number)

Table 8.23. SIGN Function Parameter

Parameter Description

number An expression of a numeric type

Result type: SMALLINT

Description: Returns the sign of the argument: -1, 0 or 1.

SIN()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

SIN (angle)

Table 8.24. SIN Function Parameter

Parameter Description

angle An angle, in radians

Result type: DOUBLE PRECISION

Description: Returns an angle's sine. The argument must be given in radians.

• Any non-NULL result is—obviously—in the range [-1, 1].

SINH()

Available in: DSQL, PSQL

Built-in functions and Variables

304

Possible name conflict: YES—>Read details

Syntax:

SINH (number)

Table 8.25. SINH Function Parameter

Parameter Description

number An expression of a numeric type

Result type: DOUBLE PRECISION

Description: Returns the hyperbolic sine of the argument.

SQRT()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

SQRT (number)

Table 8.26. SQRT Function Parameter

Parameter Description

number An expression of a numeric type

Result type: DOUBLE PRECISION

Description: Returns the square root of the argument.

TAN()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

TAN (angle)

Table 8.27. TAN Function Parameter

Parameter Description

angle An angle, in radians

Built-in functions and Variables

305

Result type: DOUBLE PRECISION

Description: Returns an angle's tangent. The argument must be given in radians.

TANH()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

TANH (number)

Table 8.28. TANH Function Parameters

Parameter Description

number An expression of a numeric type

Result type: DOUBLE PRECISION

Description: Returns the hyperbolic tangent of the argument.

• Due to rounding, any non-NULL result is in the range [-1, 1] (mathematically, it's <-1, 1>).

TRUNC()

Available in: DSQL, PSQL

Syntax:

TRUNC (<number> [, <scale>])

Table 8.29. TRUNC Function Parameters

Parameter Description

number An expression of a numeric type

An integer specifying the number of decimal places toward which truncating is
to be performed, e.g.:

 2 for truncating to the nearest multiple of 0.01
 1 for truncating to the nearest multiple of 0.1
 0 for truncating to the nearest whole number
-1 for truncating to the nearest multiple of 10

Built-in functions and Variables

306

Parameter Description

-2 for truncating to the nearest multiple of 100

Result type: INTEGER, (scaled) BIGINT or DOUBLE PRECISION

Description: Returns the integer part of a number. With the optional scale argument, the number can be
truncated to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Notes:

• If the scale argument is present, the result usually has the same scale as the first argument, e.g.

- TRUNC(789.2225, 2) returns 789.2200 (not 789.22)
- TRUNC(345.4, -2) returns 300.0 (not 300)
- TRUNC(-163.41, 0) returns -163.00 (not -163)

Otherwise, the result scale is 0:

- TRUNC(-163.41) returns -163

Important

If you are used to the behaviour of the external function TRUNCATE, please notice that the internal function
TRUNC always truncates toward zero, i.e. upward for negative numbers.

Functions for Working with Strings

ASCII_CHAR()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

ASCII_CHAR (<code>)

Table 8.30. ASCII_CHAR Function Parameter

Parameter Description

code An integer within the range from 0 to 255

Result type: [VAR]CHAR(1) CHARACTER SET NONE

Description: Returns the ASCII character corresponding to the number passed in the argument.

http://www.firebirdsql.org/file/documentation/reference_manuals/reference_material/html/langrefupd25-udf-truncate.html

Built-in functions and Variables

307

Important

• If you are used to the behaviour of the ASCII_CHAR UDF, which returns an empty string if the argument
is 0, please notice that the internal function correctly returns a character with ASCII code 0 here.

ASCII_VAL()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

ASCII_VAL (ch)

Table 8.31. ASCII_VAL Function Parameter

Parameter Description

ch
A string of the [VAR]CHAR data type or a text BLOB with the maximum size
of 32,767 bytes

Result type: SMALLINT

Description: Returns the ASCII code of the character passed in.

• If the argument is a string with more than one character, the ASCII code of the first character is returned.

• If the argument is an empty string, 0 is returned.

• If the argument is NULL, NULL is returned.

• If the first character of the argument string is multi-byte, an error is raised. (A bug in Firebird 2.1—2.1.3
and 2.5 causes an error to be raised if any character in the string is multi-byte. This is fixed in versions 2.1.4
and 2.5.1.)

BIT_LENGTH()

Available in: DSQL, PSQL

Syntax:

BIT_LENGTH (string)

Table 8.32. BIT_LENGTH Function Parameter

Parameter Description

string An expression of a string type

Built-in functions and Variables

308

Result type: INTEGER

Description: Gives the length in bits of the input string. For multi-byte character sets, this may be less
than the number of characters times 8 times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” bit length, not counting the trailing spaces,
right-TRIM the argument before passing it to BIT_LENGTH.

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

select bit_length('Hello!') from rdb$database
 -- returns 48

select bit_length(_iso8859_1 'Grüß di!') from rdb$database
 -- returns 64: ü and ß take up one byte each in ISO8859_1

select bit_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
 from rdb$database
 -- returns 80: ü and ß take up two bytes each in UTF8

select bit_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
 from rdb$database
 -- returns 208: all 24 CHAR positions count, and two of them are 16-bit

See also: OCTET_LENGTH(), CHARACTER_LENGTH()

CHAR_LENGTH(), CHARACTER_LENGTH()

Available in: DSQL, PSQL

Syntax:

CHAR_LENGTH (str)
 CHARACTER_LENGTH (string)

Table 8.33. CHAR[ACTER]_LENGTH Function Parameter

Parameter Description

string An expression of a string type

Result type: INTEGER

Description: Gives the length in characters of the input string.

Built-in functions and Variables

309

Notes

• With arguments of type CHAR, this function returns the formal string length (i.e. the declared length of a
field or variable). If you want to obtain the “logical” length, not counting the trailing spaces, right-TRIM the
argument before passing it to CHAR[ACTER]_LENGTH.

• >BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

select char_length('Hello!') from rdb$database
 -- returns 6

select char_length(_iso8859_1 'Grüß di!') from rdb$database
 -- returns 8

select char_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
 from rdb$database
 -- returns 8; the fact that ü and ß take up two bytes each is irrelevant

select char_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
 from rdb$database
 -- returns 24: all 24 CHAR positions count

See also: BIT_LENGTH(), OCTET_LENGTH()

HASH()

Available in: DSQL, PSQL

Syntax:

HASH (string)

Table 8.34. HASH Function Parameter

Parameter Description

string An expression of a string type

Description: Returns a hash value for the input string. This function fully supports text BLOBs of any length
and character set.

Result type: BIGINT

LEFT()

Available in: DSQL, PSQL

Built-in functions and Variables

310

Syntax:

LEFT (string, length)

Table 8.35. LEFT Function Parameters

Parameter Description

string An expression of a string type

number Integer. Defines the number of characters to return

Result type: VARCHAR or BLOB

Description: Returns the leftmost part of the argument string. The number of characters is given in the second
argument.

• This function fully supports text BLOBs of any length, including those with a multi-byte character set.

• If string is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n the length of
the input string.

• If the length argument exceeds the string length, the input string is returned unchanged.

• If the length argument is not a whole number, bankers' rounding (round-to-even) is applied, i.e. 0.5 becomes
0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

See also: RIGHT()

LOWER()

Available in: DSQL, ESQL, PSQL

Possible name conflict: YES—>Read details below

Syntax:

LOWER (string)

Table 8.36. LOWER Function ParameterS

Parameter Description

string An expression of a string type

Result type: (VAR)CHAR or BLOB

Description: Returns the lower-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
set.

Built-in functions and Variables

311

Name Clash

Because LOWER is a reserved word, the internal function will take precedence even if the external function
by that name has also been declared. To call the (inferior!) external function, use double-quotes and the exact
capitalisation, as in "LOWER"(str).

Example:

select Sheriff from Towns
 where lower(Name) = 'cooper''s valley'

See also: UPPER

LPAD()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

LPAD (str, endlen [, padstr])

Table 8.37. LPAD Function Parameters

Parameter Description

str An expression of a string type

endlen Output string length

padstr
The character or string to be used to pad the source string up to the specified
length. Default is space (' ')

Result type: VARCHAR or BLOB

Description: Left-pads a string with spaces or with a user-supplied string until a given length is reached.

• This function fully supports text BLOBs of any length and character set.

• If str is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(endlen).

• If padstr is given and equals '' (empty string), no padding takes place.

• If endlen is less than the current string length, the string is truncated to endlen, even if padstr is the
empty string.

Note

In Firebird 2.1—2.1.3, all non-BLOB results were of type VARCHAR(32765), which made it advisable to cast
them to a more modest size. This is no longer the case.

Built-in functions and Variables

312

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

Examples:

 lpad ('Hello', 12) -- returns ' Hello'
 lpad ('Hello', 12, '-') -- returns '-------Hello'
 lpad ('Hello', 12, '') -- returns 'Hello'
 lpad ('Hello', 12, 'abc') -- returns 'abcabcaHello'
 lpad ('Hello', 12, 'abcdefghij') -- returns 'abcdefgHello'
 lpad ('Hello', 2) -- returns 'He'
 lpad ('Hello', 2, '-') -- returns 'He'
 lpad ('Hello', 2, '') -- returns 'He'

See also: RPAD()

OCTET_LENGTH()

Available in: DSQL, PSQL

Syntax:

OCTET_LENGTH (string)

Table 8.38. OCTET_LENGTH Function Parameter

Parameter Description

string An expression of a string type

Result type: INTEGER

Description: Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may
be less than the number of characters times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” byte length, not counting the trailing spaces,
right-TRIM the argument before passing it to OCTET_LENGTH.

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

select octet_length('Hello!') from rdb$database
 -- returns 6

select octet_length(_iso8859_1 'Grüß di!') from rdb$database

Built-in functions and Variables

313

 -- returns 8: ü and ß take up one byte each in ISO8859_1

select octet_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
 from rdb$database
 -- returns 10: ü and ß take up two bytes each in UTF8

select octet_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
 from rdb$database
 -- returns 26: all 24 CHAR positions count, and two of them are 2-byte

See also: BIT_LENGTH(), CHARACTER_LENGTH()

OVERLAY()

Available in: DSQL, PSQL

Syntax:

OVERLAY (string PLACING replacement FROM pos [FOR length])

Table 8.39. OVERLAY Function Parameters

Parameter Description

string The string into which the replacement takes place

replacement Replacement string

pos The position from which replacement takes place (starting position)

length The number of characters that are to be overwritten

Result type: VARCHAR or BLOB

Description: OVERLAY() overwrites part of a string with another string. By default, the number of characters
removed from (overwritten in) the host string equals the length of the replacement string. With the optional
fourth argument, a different number of characters can be specified for removal.

• This function supports BLOBs of any length.

• If string or replacement is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with
n the sum of the lengths of string and replacement.

• As usual in SQL string functions, pos is 1-based.

• If pos is beyond the end of string, replacement is placed directly after string.

• If the number of characters from pos to the end of string is smaller than the length of replacement (or
than the length argument, if present), string is truncated at pos and replacement placed after it.

• The effect of a “FOR 0” clause is that replacement is simply inserted into string.

Built-in functions and Variables

314

• If any argument is NULL, the result is NULL.

• If pos or length is not a whole number, bankers' rounding (round-to-even) is applied, i.e. 0.5 becomes 0,
1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Examples:

 overlay ('Goodbye' placing 'Hello' from 2) -- returns 'GHelloe'
 overlay ('Goodbye' placing 'Hello' from 5) -- returns 'GoodHello'
 overlay ('Goodbye' placing 'Hello' from 8) -- returns 'GoodbyeHello'
 overlay ('Goodbye' placing 'Hello' from 20) -- returns 'GoodbyeHello'

 overlay ('Goodbye' placing 'Hello' from 2 for 0) -- r. 'GHellooodbye'
 overlay ('Goodbye' placing 'Hello' from 2 for 3) -- r. 'GHellobye'
 overlay ('Goodbye' placing 'Hello' from 2 for 6) -- r. 'GHello'
 overlay ('Goodbye' placing 'Hello' from 2 for 9) -- r. 'GHello'

 overlay ('Goodbye' placing '' from 4) -- returns 'Goodbye'
 overlay ('Goodbye' placing '' from 4 for 3) -- returns 'Gooe'
 overlay ('Goodbye' placing '' from 4 for 20) -- returns 'Goo'

 overlay ('' placing 'Hello' from 4) -- returns 'Hello'
 overlay ('' placing 'Hello' from 4 for 0) -- returns 'Hello'
 overlay ('' placing 'Hello' from 4 for 20) -- returns 'Hello'

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

See also: REPLACE()

POSITION()

Available in: DSQL, PSQL

Syntax:

POSITION (substr IN string)
| POSITION (substr, string [, startpos])

Table 8.40. POSITION Function Parameters

Parameter Description

substr The substring whose position is to be searched for

string The string which is to be searched

startpos The position in string where the search is to start

Built-in functions and Variables

315

Result type: INTEGER

Description: Returns the (1-based) position of the first occurrence of a substring in a host string. With the
optional third argument, the search starts at a given offset, disregarding any matches that may occur earlier in
the string. If no match is found, the result is 0.

Notes:

• The optional third argument is only supported in the second syntax (comma syntax).

• The empty string is considered a substring of every string. Therefore, if substr is '' (empty string) and
string is not NULL, the result is:

- 1 if startpos is not given;
- startpos if startpos lies within string;
- 0 if startpos lies beyond the end of string.

Notice: A bug in Firebird 2.1—2.1.3 and 2.5 causes POSITION to always return 1 if substr is the empty
string. This is fixed in 2.1.4 and 2.5.1.

• This function fully supports text BLOBs of any size and character set.

Examples:

 position ('be' in 'To be or not to be') -- returns 4
 position ('be', 'To be or not to be') -- returns 4
 position ('be', 'To be or not to be', 4) -- returns 4
 position ('be', 'To be or not to be', 8) -- returns 17
 position ('be', 'To be or not to be', 18) -- returns 0
 position ('be' in 'Alas, poor Yorick!') -- returns 0

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

See also: SUBSTRING

REPLACE()

Available in: DSQL, PSQL

Syntax:

REPLACE (str, find, repl)

Table 8.41. REPLACE Function Parameters

Parameter Description

str The string in which the replacement is to take place

find The string to search for

Built-in functions and Variables

316

Parameter Description

repl The replacement string

Result type: VARCHAR or BLOB

Description: Replaces all occurrences of a substring in a string.

• This function fully supports text BLOBs of any length and character set.

• If any argument is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n calculated
from the lengths of str, find and repl in such a way that even the maximum possible number of replacements won't
overflow the field.

• If find is the empty string, str is returned unchanged.

• If repl is the empty string, all occurrences of find are deleted from str.

• If any argument is NULL, the result is always NULL, even if nothing would have been replaced.

Examples:

 replace ('Billy Wilder', 'il', 'oog') -- returns 'Boogly Woogder'
 replace ('Billy Wilder', 'il', '') -- returns 'Bly Wder'
 replace ('Billy Wilder', null, 'oog') -- returns NULL
 replace ('Billy Wilder', 'il', null) -- returns NULL
 replace ('Billy Wilder', 'xyz', null) -- returns NULL (!)
 replace ('Billy Wilder', 'xyz', 'abc') -- returns 'Billy Wilder'
 replace ('Billy Wilder', '', 'abc') -- returns 'Billy Wilder'

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

See also: OVERLAY(), SUBSTRING(), POSITION(), CHAR[ACTER]_LENGTH()

REVERSE()

Available in: DSQL, PSQL

Syntax:

REVERSE (str)

Table 8.42. REVERSE Function Parameter

Parameter Description

string An expression of a string type

Result type: VARCHAR

Built-in functions and Variables

317

Description: Returns a string backwards.

Examples:

 reverse ('spoonful') -- returns 'lufnoops'
 reverse ('Was it a cat I saw?') -- returns '?was I tac a ti saW'

Tip

This function comes in very handy if you want to group, search or order on string endings, e.g. when dealing
with domain names or email addresses:

create index ix_people_email on people
 computed by (reverse(email));

select * from people
 where reverse(email) starting with reverse('.br');

RIGHT()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

RIGHT (string, length)

Table 8.43. RIGHT Function Parameters

Parameter Description

string An expression of a string type

length Integer. Defines the number of characters to return

Result type: VARCHAR or BLOB

Description: Returns the rightmost part of the argument string. The number of characters is given in the second
argument.

• This function supports text BLOBs of any length, but has a bug in versions 2.1—2.1.3 and 2.5 that makes
it fail with text BLOBs larger than 1024 bytes that have a multi-byte character set. This has been fixed in
versions 2.1.4 and 2.5.1.

• If string is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n the length of
the input string.

• If the length argument exceeds the string length, the input string is returned unchanged.

• If the length argument is not a whole number, bankers' rounding (round-to-even) is applied, i.e. 0.5 becomes
0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Built-in functions and Variables

318

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

See also: LEFT(), SUBSTRING()

RPAD()

Available in: DSQL, PSQL

Changed in: 2.5 (backported to 2.1.4)

Possible name conflict: YES—>Read details

Syntax:

RPAD (str, endlen [, padstr])

Table 8.44. RPAD Function Parameters

Parameter Description

str An expression of a string type

endlen Output string length

endlen
The character or string to be used to pad the source string up to the specified
length. Default is space (' ')

Result type: VARCHAR or BLOB

Description: Right-pads a string with spaces or with a user-supplied string until a given length is reached.

• This function fully supports text BLOBs of any length and character set.

• If str is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(endlen).

• If padstr is given and equals '' (empty string), no padding takes place.

• If endlen is less than the current string length, the string is truncated to endlen, even if padstr is the
empty string.

Note

In Firebird 2.1—2.1.3, all non-BLOB results were of type VARCHAR(32765), which made it advisable to cast
them to a more modest size. This is no longer the case.

Examples:

 rpad ('Hello', 12) -- returns 'Hello '
 rpad ('Hello', 12, '-') -- returns 'Hello-------'
 rpad ('Hello', 12, '') -- returns 'Hello'

Built-in functions and Variables

319

 rpad ('Hello', 12, 'abc') -- returns 'Helloabcabca'
 rpad ('Hello', 12, 'abcdefghij') -- returns 'Helloabcdefg'
 rpad ('Hello', 2) -- returns 'He'
 rpad ('Hello', 2, '-') -- returns 'He'
 rpad ('Hello', 2, '') -- returns 'He'

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

See also: LPAD()

SUBSTRING()

Available in: DSQL, PSQL

Changed in: 2.5.1

Syntax:

SUBSTRING (str FROM startpos [FOR length])

Table 8.45. SUBSTRING Function Parameters

Parameter Description

str An expression of a string type

startpos Integer expression, the position from which to start retrieving the substring

length The number of characters to retrieve after the <startpos>

Result types: VARCHAR(n) or BLOB

Description: Returns a string's substring starting at the given position, either to the end of the string or with
a given length.

This function returns the substring starting at character position startpos (the first position being 1). Without
the FOR argument, it returns all the remaining characters in the string. With FOR, it returns length characters
or the remainder of the string, whichever is shorter.

In Firebird 1.x, startpos and length must be integer literals. In 2.0 and above they can be any valid integer
expression.

Starting with Firebird 2.1, this function fully supports binary and text BLOBs of any length and character set. If
str is a BLOB, the result is also a BLOB. For any other argument type, the result is a VARCHAR(n). Previously,
the result type used to be CHAR(n) if the argument was a CHAR(n) or a string literal.

For non-BLOB arguments, the width of the result field is always equal to the length of str, regardless of start-
pos and length. So, substring('pinhead' from 4 for 2) will return a VARCHAR(7) containing
the string 'he'.

If any argument is NULL, the result is NULL.

Built-in functions and Variables

320

Bugs

• If str is a BLOB and the length argument is not present, the output is limited to 32767 characters.
Workaround: with long BLOBs, always specify char_length(str)—or a sufficiently high integer—as the
third argument, unless you are sure that the requested substring fits within 32767 characters.

This bug has been fixed in version 2.5.1; the fix was also backported to 2.1.5.

• An older bug in Firebird 2.0, which caused the function to return “false emptystrings” if startpos or
length was NULL, was fixed.

Example:

insert into AbbrNames(AbbrName)
 select substring(LongName from 1 for 3) from LongNames

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

See also: POSITION, LEFT, RIGHT, CHAR[ACTER]_LENGTH

TRIM()

Available in: DSQL, PSQL

Syntax:

TRIM ([<adjust>] str)

<adjust> ::= {[<where>] [what]} FROM

<where> ::= BOTH | LEADING | TRAILING

Table 8.46. TRIM Function Parameters

Parameter Description

str An expression of a string type

where
The position the substring is to be removed from—BOTH | LEADING | TRAIL-
ING. BOTH is the default

what
The substring that should be removed (multiple times if there are several match-
es) from the beginning | the end | both sides of the input string <str>. By default
it is space (' ')

Result type: VARCHAR(n) or BLOB

Description: Removes leading and/or trailing spaces (or optionally other strings) from the input string. Since
Firebird 2.1 this function fully supports text BLOBs of any length and character set.

Built-in functions and Variables

321

Examples:

select trim (' Waste no space ') from rdb$database
 -- returns 'Waste no space'

select trim (leading from ' Waste no space ') from rdb$database
 -- returns 'Waste no space '

select trim (leading '.' from ' Waste no space ') from rdb$database
 -- returns ' Waste no space '

select trim (trailing '!' from 'Help!!!!') from rdb$database
 -- returns 'Help'

select trim ('la' from 'lalala I love you Ella') from rdb$database
 -- returns ' I love you El'

select trim ('la' from 'Lalala I love you Ella') from rdb$database
 -- returns 'Lalala I love you El'

Notes:

• If str is a BLOB, the result is a BLOB. Otherwise, it is a VARCHAR(n) with n the formal length of str.

• The substring to be removed, if specified, may not be bigger than 32767 bytes. However, if this substring is
repeated at str's head or tail, the total number of bytes removed may be far greater. (The restriction on the
size of the substring will be lifted in Firebird 3.)

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

UPPER()

Available in: DSQL, ESQL, PSQL

Syntax:

UPPER (str)

Table 8.47. UPPER Function Parameter

Parameter Description

str An expression of a string type

Result type: (VAR)CHAR or BLOB

Description: Returns the upper-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
set.

Built-in functions and Variables

322

Examples:

select upper(_iso8859_1 'Débâcle')
 from rdb$database
 -- returns 'DÉBÂCLE' (before Firebird 2.0: 'DéBâCLE')

select upper(_iso8859_1 'Débâcle' collate fr_fr)
 from rdb$database
 -- returns 'DEBACLE', following French uppercasing rules

See also: LOWER

Date and Time Functions

DATEADD()

Available in: DSQL, PSQL

Changed in: 2.5

Syntax:

DATEADD (<args>)

 <args> ::= <amount> <unit> TO <datetime>
 | <unit>, <amount>, <datetime>

 <amount> ::= an integer expression (negative to subtract)
 <unit> ::= YEAR | MONTH | WEEK | DAY
 | HOUR | MINUTE | SECOND | MILLISECOND
 <datetime> ::= a DATE, TIME or TIMESTAMP expression

Table 8.48. DATEADD Function Parameters

Parameter Description

amount
An integer expression of the SMALLINT, INTEGER or BIGINT type. A nega-
tive value is subtracted

unit Date/time unit

datetime An expression of the DATE, TIME or TIMESTAMP type

Result type: DATE, TIME or TIMESTAMP

Description: Adds the specified number of years, months, weeks, days, hours, minutes, seconds or milliseconds
to a date/time value. (The WEEK unit is new in 2.5.)

• The result type is determined by the third argument.

• With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird 2.5, units smaller than DAY
were disallowed for DATEs.)

Built-in functions and Variables

323

• With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.

Examples:

 dateadd (28 day to current_date)
 dateadd (-6 hour to current_time)
 dateadd (month, 9, DateOfConception)
 dateadd (-38 week to DateOfBirth)
 dateadd (minute, 90, time 'now')
 dateadd (? year to date '11-Sep-1973')

See also: DATEDIFF, Operations Using Date and Time Values

DATEDIFF()

Available in: DSQL, PSQL

Changed in: 2.5

Syntax:

DATEDIFF (<args>)

 <args> ::= <unit> FROM <moment1> TO <moment2>
 | <unit>, <moment1>, <moment2>

 <unit> ::= YEAR | MONTH | WEEK | DAY
 | HOUR | MINUTE | SECOND | MILLISECOND
 <momentN> ::= a DATE, TIME or TIMESTAMP expression

Table 8.49. DATEDIFF Function Parameters

Parameter Description

unit Date/time unit

moment1 An expression of the DATE, TIME or TIMESTAMP type

moment2 An expression of the DATE, TIME or TIMESTAMP type

Result type: BIGINT

Description: Returns the number of years, months, weeks, days, hours, minutes, seconds or milliseconds elapsed
between two date/time values. (The WEEK unit is new in 2.5.)

• DATE and TIMESTAMP arguments can be combined. No other mixes are allowed.

• With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird 2.5, units smaller than DAY
were disallowed for DATEs.)

• With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.

Built-in functions and Variables

324

Computation:

• DATEDIFF doesn't look at any smaller units than the one specified in the first argument. As a result,

- “datediff (year, date '1-Jan-2009', date '31-Dec-2009')” returns 0, but
- “datediff (year, date '31-Dec-2009', date '1-Jan-2010')” returns 1

• It does, however, look at all the bigger units. So:

- “datediff (day, date '26-Jun-1908', date '11-Sep-1973')” returns 23818

• A negative result value indicates that moment2 lies before moment1.

Examples:

 datediff (hour from current_timestamp to timestamp '12-Jun-2059 06:00')
 datediff (minute from time '0:00' to current_time)
 datediff (month, current_date, date '1-1-1900')
 datediff (day from current_date to cast(? as date))

See also: DATEADD, Operations Using Date and Time Values

EXTRACT()

Available in: DSQL, ESQL, PSQL

Syntax:

EXTRACT (<part> FROM <datetime>)

 <part> ::= YEAR | MONTH | WEEK
 | DAY | WEEKDAY | YEARDAY
 | HOUR | MINUTE | SECOND | MILLISECOND
 <datetime> ::= a DATE, TIME or TIMESTAMP expression

Table 8.50. EXTRACT Function Parameters

Parameter Description

part Date/time unit

datetime An expression of the DATE, TIME or TIMESTAMP type

Result type: SMALLINT or NUMERIC

Description: Extracts and returns an element from a DATE, TIME or TIMESTAMP expression. This function
was already added in InterBase 6, but not documented in the Language Reference at the time.

Returned Data Types and Ranges

The returned data types and possible ranges are shown in the table below. If you try to extract a part that isn't
present in the date/time argument (e.g. SECOND from a DATE or YEAR from a TIME), an error occurs.

Built-in functions and Variables

325

Table 8.51. Types and ranges of EXTRACT results

Part Type Range Comment

YEAR SMALLINT 1—9999

MONTH SMALLINT 1—12

WEEK SMALLINT 1—53

DAY SMALLINT 1—31

WEEKDAY SMALLINT 0—6 0 = Sunday

YEARDAY SMALLINT 0—365 0 = January 1

HOUR SMALLINT 0—23

MINUTE SMALLINT 0—59

SECOND NUMERIC(9,4) 0.0000—59.9999 includes millisecond as
fraction

MILLISECOND NUMERIC(9,1) 0.0—999.9 broken in 2.1, 2.1.1

MILLISECOND

Description: Firebird 2.1 and up support extraction of the millisecond from a TIME or TIMESTAMP. The
datatype returned is NUMERIC(9,1).

Note

If you extract the millisecond from CURRENT_TIME, be aware that this variable defaults to seconds precision,
so the result will always be 0. Extract from CURRENT_TIME(3) or CURRENT_TIMESTAMP to get milliseconds
precision.

WEEK

Description: Firebird 2.1 and up support extraction of the ISO-8601 week number from a DATE or TIMESTAMP.
ISO-8601 weeks start on a Monday and always have the full seven days. Week 1 is the first week that has a
majority (at least 4) of its days in the new year. The first 1—3 days of the year may belong to the last week (52
or 53) of the previous year. Likewise, a year's final 1—3 days may belong to week 1 of the following year.

Caution

Be careful when combining WEEK and YEAR results. For instance, 30 December 2008 lies in week 1 of 2009,
so “extract (week from date '30 Dec 2008')” returns 1. However, extracting YEAR always gives
the calendar year, which is 2008. In this case, WEEK and YEAR are at odds with each other. The same happens
when the first days of January belong to the last week of the previous year.

Please also notice that WEEKDAY is not ISO-8601 compliant: it returns 0 for Sunday, whereas ISO-8601
specifies 7.

Built-in functions and Variables

326

See also: Data Types for Dates and Times

Type Casting Functions

CAST()

Available in: DSQL, ESQL, PSQL

Changed in: 2.5

Syntax:

CAST (expression AS <target_type>)

 <target_type> ::= sql_datatype
 | [TYPE OF] domain
 | TYPE OF COLUMN relname.colname

Table 8.52. CAST Function Parameters

Parameter Description

value SQL expression

datatype SQL data type

domain

colname Table or view column name

precision Precision. From 1 to 18

scale Scale. From 0 to 18—it must be less than or equal to precision

size The maximum size of a string in characters

charset Character set

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size—it cannot be greater than 65,535

Result type: User-chosen.

Description: CAST converts an expression to the desired datatype or domain. If the conversion is not possible,
an error is raised.

“Shorthand” Syntax

Alternative syntax, supported only when casting a string literal to a DATE, TIME or TIMESTAMP:

datatype 'date/timestring'

Built-in functions and Variables

327

This syntax was already available in InterBase, but was never properly documented.

Note

The short syntax is evaluated immediately at parse time, causing the value to stay the same until the statement
is unprepared. For datetime literals like '12-Oct-2012' this makes no difference. For the pseudo-variables
'NOW', 'YESTERDAY', 'TODAY' and 'TOMORROW', this may not be what you want. If you need the value to
be evaluated at every call, use the full CAST() syntax.

Examples:

A full-syntax cast:

select cast ('12' || '-June-' || '1959' as date) from rdb$database

A shorthand string-to-date cast:

update People set AgeCat = 'Old'
 where BirthDate < date '1-Jan-1943'

Notice that you can drop even the shorthand cast from the example above, as the engine will under-
stand from the context (comparison to a DATE field) how to interpret the string:

update People set AgeCat = 'Old'
 where BirthDate < '1-Jan-1943'

But this is not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

select date 'today' - 7 from rdb$database

The following table shows the type conversions possible with CAST.

Table 8.53. Possible Type-castings with CAST

From To

Numeric types Numeric types
[VAR]CHAR
BLOB

[VAR]CHAR
BLOB

[VAR]CHAR
BLOB
Numeric types
DATE
TIME
TIMESTAMP

DATE
TIME

[VAR]CHAR
BLOB
TIMESTAMP

TIMESTAMP [VAR]CHAR
BLOB
DATE

Built-in functions and Variables

328

From To

TIME

Keep in mind that sometimes information is lost, for instance when you cast a TIMESTAMP to a DATE. Also, the
fact that types are CAST-compatible is in itself no guarantee that a conversion will succeed. “CAST(123456789
as SMALLINT)” will definitely result in an error, as will “CAST('Judgement Day' as DATE)”.

Casting input fields: Since Firebird 2.0, you can cast statement parameters to a datatype:

cast (? as integer)

This gives you control over the type of input field set up by the engine. Please notice that with statement param-
eters, you always need a full-syntax cast—shorthand casts are not supported.

Casting to a domain or its type: Firebird 2.1 and above support casting to a domain or its base type. When
casting to a domain, any constraints (NOT NULL and/or CHECK) declared for the domain must be satisfied or
the cast will fail. Please be aware that a CHECK passes if it evaluates to TRUE or NULL! So, given the following
statements:

create domain quint as int check (value >= 5000)
 select cast (2000 as quint) from rdb$database -- (1)
 select cast (8000 as quint) from rdb$database -- (2)
 select cast (null as quint) from rdb$database -- (3)

only cast number (1) will result in an error.

When the TYPE OF modifier is used, the expression is cast to the base type of the domain, ignoring any con-
straints. With domain quint defined as above, the following two casts are equivalent and will both succeed:

select cast (2000 as type of quint) from rdb$database
 select cast (2000 as int) from rdb$database

If TYPE OF is used with a (VAR)CHAR type, its character set and collation are retained:

create domain iso20 varchar(20) character set iso8859_1;
 create domain dunl20 varchar(20) character set iso8859_1 collate du_nl;
 create table zinnen (zin varchar(20));
 commit;
 insert into zinnen values ('Deze');
 insert into zinnen values ('Die');
 insert into zinnen values ('die');
 insert into zinnen values ('deze');

 select cast(zin as type of iso20) from zinnen order by 1;
 -- returns Deze -> Die -> deze -> die

 select cast(zin as type of dunl20) from zinnen order by 1;
 -- returns deze -> Deze -> die -> Die

Warning

If a domain's definition is changed, existing CASTs to that domain or its type may become invalid. If these
CASTs occur in PSQL modules, their invalidation may be detected. See the note The RDB$VALID_BLR field,
in Appendix A.

Built-in functions and Variables

329

Casting to a column's type: In Firebird 2.5 and above, it is possible to cast expressions to the type of an existing
table or view column. Only the type itself is used; in the case of string types, this includes the character set but
not the collation. Constraints and default values of the source column are not applied.

create table ttt (
 s varchar(40) character set utf8 collate unicode_ci_ai
);
 commit;

 select cast ('Jag har många vänner' as type of column ttt.s) from rdb$database;

Warnings

• For text types, character set and collation are preserved by the cast—just as when casting to a domain.
However, due to a bug, the collation is not always taken into consideration when comparisons (e.g. equality
tests) are made. In cases where the collation is of importance, test your code thoroughly before deploying!
This bug is fixed for Firebird 3.

• If a column's definition is altered, existing CASTs to that column's type may become invalid. If these CASTs
occur in PSQL modules, their invalidation may be detected. See the note The RDB$VALID_BLR field, in
Appendix A.

Casting BLOBs: Successful casting to and from BLOBs is possible since Firebird 2.1.

Functions for Bitwise Operations

BIN_AND()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

BIN_AND (number, number [, number ...])

Table 8.54. BIN_AND Function Parameters

Parameter Description

number
Any integer number (literal, smallint/integer/bigint, numeric/decimal with scale
0)

Result type: SMALLINT, INTEGER or BIGINT

Note

SMALLINT result is returned only if all the arguments are explicit SMALLINTs or NUMERIC(n, 0) with n
<= 4; otherwise small integers return an INTEGER result.

Built-in functions and Variables

330

Description: Returns the result of the bitwise AND operation on the argument(s).

See also: BIN_OR, BIN_XOR

BIN_NOT()

Available in: DSQL, PSQL

Possible name conflict: NO

Syntax:

BIN_NOT (number)

Table 8.55. BIN_NOT Function Parameter

Parameter Description

number
Any integer number (literal, smallint/integer/bigint, numeric/decimal with scale
0)

Result type: SMALLINT, INTEGER or BIGINT

Note

SMALLINT result is returned only if all the arguments are explicit SMALLINTs or NUMERIC(n, 0) with n
<= 4; otherwise small integers return an INTEGER result.

Description: Returns the result of the bitwise NOT operation on the argument, i.e., ones complement.

See also: BIN_OR, BIN_XOR and others in this set.

BIN_OR()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

BIN_OR (number, number [, number ...])

Table 8.56. BIN_OR Function Parameters

Parameter Description

number
Any integer number (literal, smallint/integer/bigint, numeric/decimal with scale
0)

Built-in functions and Variables

331

Result type: SMALLINT, INTEGER or BIGINT

Note

SMALLINT result is returned only if all the arguments are explicit SMALLINTs or NUMERIC(n, 0) with n
<= 4; otherwise small integers return an INTEGER result.

Description: Returns the result of the bitwise OR operation on the argument(s).

See also: BIN_AND, BIN_XOR

BIN_SHL()

Available in: DSQL, PSQL

Syntax:

BIN_SHL (number, shift)

Table 8.57. BIN_SHL Function Parameters

Parameter Description

number A number of an integer type

shift The number of bits the number value is shifted by

Result type: BIGINT

Description: Returns the first argument bitwise left-shifted by the second argument, i.e. a << b or a·2^b.

See also: BIN_SHR

BIN_SHR()

Available in: DSQL, PSQL

Syntax:

BIN_SHR (number, shift)

Table 8.58. BIN_SHR Function Parameters

Parameter Description

number A number of an integer type

shift The number of bits the number value is shifted by

Built-in functions and Variables

332

Description: Returns the first argument bitwise right-shifted by the second argument, i.e. a >> b or a/2^b.

• The operation performed is an arithmetic right shift (SAR), meaning that the sign of the first operand is
always preserved.

Result type: BIGINT

See also: BIN_SHL

BIN_XOR()

Available in: DSQL, PSQL

Possible name conflict: YES—>Read details

Syntax:

BIN_XOR (number, number [, number ...])

Table 8.59. BIN_XOR Function Parameters

Parameter Description

number
Any integer number (literal, smallint/integer/bigint, numeric/decimal with scale
0)

Description: Returns the result of the bitwise XOR operation on the argument(s).

Result type: SMALLINT, INTEGER or BIGINT

Note

SMALLINT result is returned only if all the arguments are explicit SMALLINTs or NUMERIC(n, 0) with n
<= 4; otherwise small integers return an INTEGER result.

See also: BIN_AND, BIN_OR

Functions for Working with UUID

CHAR_TO_UUID()

Available in: DSQL, PSQL

Added in: 2.5

Syntax:

CHAR_TO_UUID (ascii_uuid)

Built-in functions and Variables

333

Table 8.60. CHAR_TO_UUID Function Parameter

Parameter Description

ascii_uuid
A 36-character representation of UUID. '-' (hyphen) in positions 9, 14, 19 and
24; valid hexadecimal digits in any other positions, e.g. 'A0bF4E45-3029-2a44-
D493-4998c9b439A3'

Result type: CHAR(16) CHARACTER SET OCTETS

Description: Converts a human-readable 36-char UUID string to the corresponding 16-byte UUID.

Examples:

select char_to_uuid('A0bF4E45-3029-2a44-D493-4998c9b439A3') from rdb$database
 -- returns A0BF4E4530292A44D4934998C9B439A3 (16-byte string)

 select char_to_uuid('A0bF4E45-3029-2A44-X493-4998c9b439A3') from rdb$database
 -- error: -Human readable UUID argument for CHAR_TO_UUID must
 -- have hex digit at position 20 instead of "X (ASCII 88)"

See also: UUID_TO_CHAR(), GEN_UUID()

GEN_UUID()

Available in: DSQL, PSQL

Syntax:

GEN_UUID ()

Result type: CHAR(16) CHARACTER SET OCTETS

Description: Returns a universally unique ID as a 16-byte character string.

Example:

select gen_uuid() from rdb$database
 -- returns e.g. 017347BFE212B2479C00FA4323B36320 (16-byte string)

See also: UUID_TO_CHAR(), CHAR_TO_UUID()

UUID_TO_CHAR()

Available in: DSQL, PSQL

Added in: 2.5

Syntax:

UUID_TO_CHAR (uuid)

Built-in functions and Variables

334

 uuid ::= a string consisting of 16 single-byte characters

Table 8.61. UUID_TO_CHAR Function Parameters

Parameter Description

uuid 16-byte UUID

Result type: CHAR(36)

Description: Converts a 16-byte UUID to its 36-character, human-readable ASCII representation.

Examples:

select uuid_to_char(x'876C45F4569B320DBCB4735AC3509E5F') from rdb$database
 -- returns '876C45F4-569B-320D-BCB4-735AC3509E5F'

 select uuid_to_char(gen_uuid()) from rdb$database
 -- returns e.g. '680D946B-45FF-DB4E-B103-BB5711529B86'

 select uuid_to_char('Firebird swings!') from rdb$database
 -- returns '46697265-6269-7264-2073-77696E677321'

See also: CHAR_TO_UUID(), GEN_UUID()

Functions for Working with Generators (Sequences)

GEN_ID()

Available in: DSQL, ESQL, PSQL

Description: Increments a generator or sequence and returns its new value. From Firebird 2.0 onward, the SQL-
compliant NEXT VALUE FOR syntax is preferred, except when an increment other than 1 is needed.

Result type: BIGINT

Syntax:

GEN_ID (generator-name, <step>)

Table 8.62. GEN_ID Function Parameters

Parameter Description

generator-name
Name of a generator (sequence) that exists. If it has been defined in double
quotes with a case-sensitive identifier, it must be used in the same form unless
the name is all upper-case.

Built-in functions and Variables

335

Parameter Description

step An integer expression

Result type: BIGINT

Description: Increments a generator or sequence and returns its new value. If step equals 0, the function will
leave the value of the generator unchanged and return its current value.

• From Firebird 2.0 onward, the SQL-compliant NEXT VALUE FOR syntax is preferred, except when an incre-
ment other than 1 is needed.

Example:

new.rec_id = gen_id(gen_recnum, 1);

Warning

If the value of the step parameter is less than zero, it will decrease the value of the generator. Attention! You
should be extremely cautious with such manipulations in the database, as they could compromise data integrity.

See also: NEXT VALUE FOR, CREATE SEQUENCE (GENERATOR)

Conditional Functions

COALESCE()

Available in: DSQL, PSQL

Syntax:

COALESCE (<exp1>, <exp2> [, <expN> ...])

Table 8.63. COALESCE Function Parameters

Parameter Description

exp1, exp2 … expN A list of expressions of any compatible types

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result is NULL.

Result type: Depends on input.

Example: This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to
FirstName. If that too is NULL, “Mr./Mrs.” is used. Finally, it adds the family name. All in all, it tries to use
the available data to compose a full name that is as informal as possible. Notice that this scheme only works if

Built-in functions and Variables

336

absent nicknames and first names are really NULL: if one of them is an empty string instead, COALESCE will
happily return that to the caller.

select
 coalesce (Nickname, FirstName, 'Mr./Mrs.') || ' ' || LastName
 as FullName
 from Persons

See also: IIF, NULLIF, CASE

DECODE()

Available in: DSQL, PSQL

Syntax:

DECODE(testexpr,
 expr1, result1
 expr2, result2 …]
 [, defaultresult])

The equivalent CASE construct:

CASE testexpr
 WHEN expr1 THEN result1
 [WHEN expr2 THEN result2 …]
 [ELSE defaultresult]
END

Table 8.64. DECODE Function Parameters

Parameter Description

testexpr
An expression of any compatible type that is compared to the expressions expr1,
expr2 ... exprN

expr1, expr2, … exprN
Expressions of any compatible types, to which the <testexpr> expression is com-
pared

result1, re-
sult2, … resultN

Returned values of any type

defaultresult The expression to be returned if none of the conditions is met

Result type: Varies

Description: DECODE is a shortcut for the so-called “simple CASE” construct, in which a given expression is
compared to a number of other expressions until a match is found. The result is determined by the value listed
after the matching expression. If no match is found, the default result is returned, if present. Otherwise, NULL
is returned.

Built-in functions and Variables

337

Caution

Matching is done with the “=” operator, so if <testexpr> is NULL, it won't match any of the <expr>s, not
even those that are NULL.

Example:

select name,
 age,
 decode(upper(sex),
 'M', 'Male',
 'F', 'Female',
 'Unknown'),
 religion
 from people

See also: CASE, Simple CASE

IIF()

Available in: DSQL, PSQL

Syntax:

IIF (<condition>, ResultT, ResultF)

Table 8.65. IIF Function Parameters

Parameter Description

condition A true|false expression

resultT The value returned if the condition is true

resultF The value returned if the condition is false

Result type: Depends on input.

Description: IIF takes three arguments. If the first evaluates to true, the second argument is returned; otherwise
the third is returned.

• IIF could be likened to the ternary “? :” operator in C-like languages.

Example:

select iif(sex = 'M', 'Sir', 'Madam') from Customers

Note

IIF(Cond, Result1, Result2) is a shortcut for “CASE WHEN Cond THEN Result1 ELSE Result2 END”.

Built-in functions and Variables

338

See also: CASE, DECODE

MAXVALUE()

Available in: DSQL, PSQL

Syntax:

MAXVALUE (expr1 [, ... ,exprN])

Table 8.66. MAXVALUE Function Parameters

Parameter Description

expr1 … exprN List of expressions of compatible types

Result type: Varies according to input—result will be of the same data type as the first expression in the list
(<expr1>).

Description: Returns the maximum value from a list of numerical, string, or date/time expressions. This function
fully supports text BLOBs of any length and character set.

• If one or more expressions resolve to NULL, MAXVALUE returns NULL. This behaviour differs from the
aggregate function MAX.

Example:

SELECT MAXVALUE(PRICE_1, PRICE_2) AS PRICE
 FROM PRICELIST

See also: MINVALUE()

MINVALUE()

Available in: DSQL, PSQL

Syntax:

MINVALUE (expr1 [, ... , exprN])

Table 8.67. MINVALUE Function Parameters

Parameter Description

expr1 … exprN List of expressions of compatible types

Result type: Varies according to input—result will be of the same data type as the first expression in the list
(<expr1>).

Built-in functions and Variables

339

Description: Returns the minimum value from a list of numerical, string, or date/time expressions. This function
fully supports text BLOBs of any length and character set.

• If one or more expressions resolve to NULL, MINVALUE returns NULL. This behaviour differs from the
aggregate function MIN.

Example:

SELECT MINVALUE(PRICE_1, PRICE_2) AS PRICE
 FROM PRICELIST

See also: MAXVALUE()

NULLIF()

Available in: DSQL, PSQL

Syntax:

NULLIF (<exp1>, <exp2>)

Table 8.68. NULLIF Function Parameters

Parameter Description

exp1 An expression

exp2 Another expression of a data type compatible with <exp1>

Description: NULLIF returns the value of the first argument, unless it is equal to the second. In that case, NULL
is returned.

Result type: Depends on input.

Example:

select avg(nullif(Weight, -1)) from FatPeople

This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,
since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

See also: COALESCE, DECODE, IIF, CASE

Aggregate Functions
Aggregate functions operate on groups of records, rather than on individual records or variables. They are often
used in combination with a GROUP BY clause.

Built-in functions and Variables

340

AVG()

Available in: DSQL, ESQL, PSQL

Syntax:

AVG ([ALL | DISTINCT] <expr>)

Table 8.69. AVG Function Parameters

Parameter Description

expr
Expression. It may contain a table column, a constant, a variable, an expression,
a non-aggregate function or a UDF that returns a numeric data type. Aggregate
functions are not allowed as expressions

Description: AVG returns the average argument value in the group. NULL is ignored.

• Parameter ALL (the default) applies the aggregate function to all values.

• Parameter DISTINCT directs the AVG function to consider only one instance of each unique value, no matter
how many times this value occurs.

• If the set of retrieved records is empty or contains only NULL, the result will be NULL.

Result type: A numeric data type, the same as the data type of the argument.

Syntax:

AVG (expression)

• If the group is empty or contains only NULLs, the result is NULL.

Example:

SELECT
 dept_no,
 AVG(salary)
FROM employee
GROUP BY dept_no

See also: SELECT

COUNT()

Available in: DSQL, ESQL, PSQL

Built-in functions and Variables

341

Syntax:

COUNT ([ALL | DISTINCT] <expr> | *)

Table 8.70. COUNT Function Parameters

Parameter Description

expr
Expression. It may contain a table column, a constant, a variable, an expression,
a non-aggregate function or a UDF that returns a numeric data type. Aggregate
functions are not allowed as expressions

Result type: Integer

Description: COUNT returns the number of non-null values in a group.

• ALL is the default: it simply counts all values in the set that are not NULL.

• If DISTINCT is specified, duplicates are exluded from the counted set.

• If COUNT (*) is specified instead of the expression <expr>, all rows will be counted. COUNT (*)—

- does not accept parameters

- cannot be used with the keyword DISTINCT

- does not take an <expr> argument, since its context is column-unspecific by definition

- counts each row separately and returns the number of rows in the specified table or group without omitting
duplicate rows

- counts rows containing NULL

• If the result set is empty or contains only NULL in the specified column[s], the returned count is zero.

Example:

SELECT
 dept_no,
 COUNT(*) AS cnt,
 COUNT(DISTINCT name) AS cnt_name
FROM employee
GROUP BY dept_no

See also: SELECT.

LIST()

Available in: DSQL, PSQL

Changed in: 2.5

Built-in functions and Variables

342

Syntax:

LIST ([ALL | DISTINCT] expression [, separator])

Table 8.71. LIST Function Parameters

Parameter Description

expr

Expression. It may contain a table column, a constant, a variable, an expression,
a non-aggregate function or a UDF that returns the string data type or a BLOB.
Fields of numeric and date/time types are converted to strings. Aggregate func-
tions are not allowed as expressions

separator
Optional alternative separator, a string expression. Comma is the default separa-
tor

Result type: BLOB

Description: LIST returns a string consisting of the non-NULL argument values in the group, separated either
by a comma or by a user-supplied separator. If there are no non-NULL values (this includes the case where the
group is empty), NULL is returned.

• ALL (the default) results in all non-NULL values being listed. With DISTINCT, duplicates are removed, except
if expression is a BLOB.

• In Firebird 2.5 and up, the optional separator argument may be any string expression. This makes it
possible to specify e.g. ascii_char(13) as a separator. (This improvement has also been backported to
2.1.4.)

• The expression and separator arguments support BLOBs of any size and character set.

• Date/time and numeric arguments are implicitly converted to strings before concatenation.

• The result is a text BLOB, except when expression is a BLOB of another subtype.

• The ordering of the list values is undefined—the order in which the strings are concatenated is determined by
read order from the source set which, in tables, is not generally defined. If ordering is important, the source
data can be pre-sorted using a derived table or similar.

Examples:

1. Retrieving the list, order undefined:

SELECT LIST (display_name, '; ') FROM GR_WORK;

2. Retrieving the list in alphabetical order, using a derived table:

SELECT LIST (display_name, '; ')
FROM (SELECT display_name
 FROM GR_WORK
 ORDER BY display_name);

Built-in functions and Variables

343

See also: SELECT

MAX()

Available in: DSQL, ESQL, PSQL

Syntax:

MAX ([ALL | DISTINCT] <expr>)

Table 8.72. MAX Function Parameters

Parameter Description

expr
Expression. It may contain a table column, a constant, a variable, an expression,
a non-aggregate function or a UDF. Aggregate functions are not allowed as ex-
pressions.

Result type: Returns a result of the same data type the input expression.

Description: MAX returns the maximum non-NULL element in the result set.

• If the group is empty or contains only NULLs, the result is NULL.

• If the input argument is a string, the function will return the value that will be sorted last if COLLATE is used.

• This function fully supports text BLOBs of any size and character set.

Note

The DISTINCT parameter makes no sense if used with MAX() and is implemented only for compliance with
the standard.

Example:

SELECT
 dept_no,
 MAX(salary)
FROM employee
GROUP BY dept_no

See also: MIN, SELECT

MIN()

Available in: DSQL, ESQL, PSQL

Syntax:

MIN ([ALL | DISTINCT] <expr>)

Built-in functions and Variables

344

Table 8.73. MIN Function Parameters

Parameter Description

expr
Expression. It may contain a table column, a constant, a variable, an expression,
a non-aggregate function or a UDF. Aggregate functions are not allowed as ex-
pressions.

Result type: Returns a result of the same data type the input expression.

Description: MIN returns the minimum non-NULL element in the result set.

• If the group is empty or contains only NULLs, the result is NULL.

• If the input argument is a string, the function will return the value that will be sorted first if COLLATE is used.

• This function fully supports text BLOBs of any size and character set.

Note

The DISTINCT parameter makes no sense if used with MIN() and is implemented only for compliance with
the standard.

Example:

SELECT
 dept_no,
 MIN(salary)
FROM employee
GROUP BY dept_no

See also: MAX, SELECT

SUM()

Available in: DSQL, ESQL, PSQL

Syntax:

SUM ([ALL | DISTINCT] <expr>)

Table 8.74. SUM Function Parameters

Parameter Description

expr
Numeric expression. It may contain a table column, a constant, a variable, an
expression, a non-aggregate function or a UDF. Aggregate functions are not al-
lowed as expressions.

Built-in functions and Variables

345

Result type: Returns a result of the same numeric data type as the input expression.

Description: SUM calculates and returns the sum of non-null values in the group.

• If the group is empty or contains only NULLs, the result is NULL.

• ALL is the default option—all values in the set that are not NULL are processed. If DISTINCT is specified,
duplicates are removed from the set and the SUM evaluation is done afterwards.

Example: SELECT dept_no, SUM (salary), FROM employee GROUP BY dept_no

See also: SELECT

346

Chapter 9

Transaction Control
Everything in Firebird happens in transactions. Units of work are isolated between a start point and an end point.
Changes to data remain reversible until the moment the client application instructs the server to commit them.

Transaction Statements
Firebird has a small lexicon of SQL statements that are used by client applications to start, manage, commit and
reverse (roll back) the transactions that form the boundaries of all database tasks:

SET TRANSACTION: for configuring and starting a transaction

COMMIT: to signal the end of a unit of work and write changes permanently to the database

ROLLBACK: to reverse the changes performed in the transaction

SAVEPOINT: to mark a position in the log of work done, in case a partial rollback is needed

RELEASE SAVEPOINT: to erase a savepoint

SET TRANSACTION

Used for: Configuring and starting a transaction

Available: DSQL, ESQL

Syntax:

SET TRANSACTION
 [NAME tr_name]
 [READ WRITE | READ ONLY]
 [[ISOLATION LEVEL] {
 SNAPSHOT [TABLE STABILITY]
 | READ COMMITTED [[NO] RECORD_VERSION] }]
 [WAIT | NO WAIT]
 [LOCK TIMEOUT seconds]
 [NO AUTO UNDO]
 [IGNORE LIMBO]
 [RESERVING <tables> | USING <dbhandles>]

 <tables> ::= <table_spec> [, <table_spec> ...]

Transaction Control

347

 <table_spec> ::= tablename [, tablename ...]
 [FOR [SHARED | PROTECTED] {READ | WRITE}]

 <dbhandles> ::= dbhandle [, dbhandle ...]

Table 9.1. SET TRANSACTION Statement Parameters

Parameter Description

tr_name Transaction name. Available only in ESQL

seconds The time in seconds for the statement to wait in case a conflict occurs

tables The list of tables to reserve

dbhandles The list of databases the database can access. Available only in ESQL

table_spec Table reservation specification

tablename The name of the table to reserve

dbhandle The handle of the database the database can access. Available only in ESQL

The SET TRANSACTION statement configures the transaction and starts it. As a rule, only client applications start
transactions. The exceptions are the occasions when the server starts an autonomous transaction or transactions
for certain background system threads/processes, such as sweeping.

A client application can start any number of concurrently running transactions. A limit does exist, for the total
number of running transactions in all client applications working with one particular database from the moment
the database was restored from its backup copy or from the moment the database was created originally. The
limit is 231-1, or 2,147,483,647.

All clauses in the SET TRANSACTION statement are optional. If the statement starting a transaction has no
clauses specified in it, it the transaction will be started with default values for access mode, lock resolution mode
and isolation level, which are:

SET TRANSACTION
 READ WRITE
 WAIT
 ISOLATION LEVEL SNAPSHOT;

The server assigns integer numbers to transactions sequentially. Whenever a client starts any transaction, either
explicitly defined or by default, the server sends the transaction ID to the client. This number can be retrieved
in SQL using the context variable CURRENT_TRANSACTION.

Transaction Parameters

The main parameters of a transaction are:

• data access mode (READ WRITE, READ ONLY)

Transaction Control

348

• lock resolution mode (WAIT, NO WAIT) with an optional LOCK TIMEOUT specification
• isolation level (READ COMMITTED, SNAPSHOT, TABLE STABILITY)
• a mechanism for reserving or releasing tables (the RESERVING clause)

Transaction Name

The optional NAME attribute defines the name of a transaction. Use of this attribute is available only in Embed-
ded SQL. In ESQL applications, named transactions make it possible to have several transactions active simul-
taneously in one application. If named transactions are used, a host-language variable with the same name must
be declared and initialized for each named transaction. This is a limitation that prevents dynamic specification
of transaction names and thus, rules out transaction naming in DSQL.

Access Mode

The two database access modes for transactions are READ WRITE and READ ONLY.

• If the access mode is READ WRITE, operations in the context of this transaction can be both read operations
and data update operations. This is the default mode.

• If the access mode is READ ONLY, only SELECT operations can be executed in the context of this trans-
action. Any attempt to change data in the context of such a transaction will result in database exceptions.
However, it does not apply to global temporary tables (GTT) that are allowed to be changed in READ ONLY
transactions.

Lock Resolution Mode

When several client processes work with the same database, locks may occur when one process makes uncom-
mitted changes in a table row, or deletes a row, and another process tries to update or delete the same row. Such
locks are called update conflicts.

Locks may occur in other situations when multiple transaction isolation levels are used.

The two lock resolution modes are WAIT and NO WAIT.

WAIT Mode

In the WAIT mode (the default mode), if a conflict occurs between two parallel processes executing concurrent
data updates in the same database, a WAIT transaction will wait till the other transaction has finished—by
committing (COMMIT) or rolling back (ROLLBACK). The client application with the WAIT transaction will
be put on hold until the conflict is resolved.

If a LOCK TIMEOUT is specified for the WAIT transaction, waiting will continue only for the number of
seconds specified in this clause. If the lock is unresolved at the end of the specified interval, the error message
“Lock time-out on wait transaction” is returned to the client.

Lock resolution behaviour can vary a little, depending on the transaction isolation level.

NO WAIT Mode

In the NO WAIT mode, a transaction will immediately throw a database exception if a conflict occurs.

Transaction Control

349

Isolation Level

Keeping the work of one database task separated from others is what isolation is about. Changes made by one
statement become visible to all remaining statements executing within the same transaction, regardless of its
isolation level. Changes that are in process within other transactions remain invisible to the current transaction
as long as they remain uncommitted. The isolation level and, sometimes, other attributes, determine how trans-
actions will interact when another transaction wants to commit work.

The ISOLATION LEVEL attribute defines the isolation level for the transaction being started. It is the most
significant transaction parameter for determining its behavior towards other concurrently running transactions.

The three isolation levels supported in Firebird are:

• SNAPSHOT
• SNAPSHOT TABLE STABILITY
• READ COMMITTED with two specifications (NO RECORD_VERSION and RECORD_VERSION)

SNAPSHOT Isolation Level

SNAPSHOT isolation level—the default level—allows the transaction to see only those changes that were com-
mitted before this one was started. Any committed changes made by concurrent transactions will not be seen
in a SNAPSHOT transaction while it is active. The changes will become visible to a new transaction once the
current transaction is either committed or rolled back completely, but not if it is just rolled back to a savepoint.

Autonomous Transactions

Changes made by autonomous transactions are not seen in the context of the SNAPSHOT transaction that
launched it.

SNAPSHOT TABLE STABILITY Isolation Level

The SNAPSHOT TABLE STABILITY isolation level is the most restrictive. As in SNAPSHOT, a transaction
in SNAPSHOT TABLE STABILITY isolation sees only those changes that were committed before the current
transaction was started. After a SNAPSHOT TABLE STABILITY is started, no other transactions can make
any changes to any table in the database that has changes pending. Other transactions are able to read other data,
but any attempt at inserting, updating or deleting by a parallel process will cause conflict exceptions.

The RESERVING clause can be used to allow other transactions to change data in some tables.

If any other transaction has an uncommitted change of data pending in any database table before a transaction
with the SNAPSHOT TABLE STABILITY isolation level is started, trying to start a SNAPSHOT TABLE
STABILITY transaction will result in an exception.

READ COMMITTED Isolation Level

The READ COMMITTED isolation level allows all data changes that other transactions have committed since
it started to be seen immediately by the uncommitted current transaction. Uncommitted changes are not visible
to a READ COMMITTED transaction.

To retrieve the updated list of rows in the table you are interested in—“refresh”—the SELECT statement just
needs to be requested again, whilst still in the uncommitted READ COMMITTED transaction.

Transaction Control

350

RECORD_VERSION

One of two modifying parameters can be specified for READ COMMITTED transactions, depending on the
kind of conflict resolution desired: RECORD_VERSION and NO RECORD_VERSION. As the names suggest,
they are mutually exclusive.

• NO RECORD_VERSION (the default value) is a kind of two-phase locking mechanism: it will make the
transaction unable to write to any row that has an update pending from another transaction.

- if NO WAIT is the lock resolution strategy specified, it will throw a lock conflict error immediately

- with WAIT specified, it will wait until the other transaction either commits or is rolled back. If the other
transaction is rolled back, or if it is committed and its transaction ID is older than the current transaction's
ID, then the current transaction's change is allowed. A lock conflict error is returned if the other transaction
was committed and its ID was newer than that of the current transaction.

• With RECORD_VERSION specified, the transaction reads the latest committed version of the row, regard-
less of other pending versions of the row. The lock resolution strategy (WAIT or NO WAIT) does not affect
the behavior of the transaction at its start in any way.

NO AUTO UNDO

The NO AUTO UNDO option affects the handling of unused record versions (garbage) in the event of rollback.
With NO AUTO UNDO flagged, the ROLLBACK statement just marks the transaction as rolled back without
deleting the unused record versions created in the transaction. They are left to be mopped up later by garbage
collection.

NO AUTO UNDO might be useful when a lot of separate statements are executed that change data in conditions
where the transaction is likely to be committed successfully most of the time.

The NO AUTO UNDO option is ignored for transactions where no changes are made.

IGNORE LIMBO

This flag is used to signal that records created by limbo transactions are to be ignored. Transactions are left “in
limbo” if the second stage of a two-phase commit fails.

Historical Note

IGNORE LIMBO surfaces the TPB parameter isc_tpb_ignore_limbo, available in the API since Inter-
Base times and mainly used by gfix.

RESERVING

The RESERVING clause in the SET TRANSACTION statement reserves tables specified in the table list. Re-
serving a table prevents other transactions from making changes in them or even, with the inclusion of certain
parameters, from reading data from them while this transaction is running.

A RESERVING clause can also be used to specify a list of tables that can be changed by other transactions,
even if the transaction is started with the SNAPSHOT TABLE STABILITY isolation level.

Transaction Control

351

One RESERVING clause is used to specify as many reserved tables as required.

Options for RESERVING Clause

If one of the keywords SHARED or PROTECTED is omitted, SHARED is assumed. If the whole FOR clause is
omitted, FOR SHARED READ is assumed. The names and compatibility of the four access options for reserving
tables are not obvious.

Table 9.2. Compatibility of Access Options for RESERVING

 SHARED READ SHARED WRITE
PROTECT-
ED READ

PROTECT-
ED WRITE

SHARED READ Yes Yes Yes Yes

SHARED WRITE Yes Yes No No

PROTECT-
ED READ

Yes No Yes No

PROTECT-
ED WRITE

Yes No No No

The combinations of these RESERVING clause flags for concurrent access depend on the isolation levels of
the concurrent transactions:

• SNAPSHOT isolation

- Concurrent SNAPSHOT transactions with SHARED READ do not affect one other's access
- A concurrent mix of SNAPSHOT and READ COMMITTED transactions with SHARED WRITE do not

affect one another's access but they block transactions with SNAPSHOT TABLE STABILITY isolation
from either reading from or writing to the specified table[s]

- Concurrent transactions with any isolation level and PROTECTED READ can only read data from the
reserved tables. Any attempt to write to them will cause an exception

- With PROTECTED WRITE, concurrent transactions with SNAPSHOT and READ COMMITTED isola-
tion cannot write to the specified tables. Transactions with SNAPSHOT TABLE STABILITY isolation
cannot read from or write to the reserved tables at all.

• SNAPSHOT TABLE STABILITY isolation

- All concurrent transactions with SHARED READ, regardless of their isolation levels, can read from or
write (if in READ WRITE mode) to the reserved tables

- Concurrent transactions with SNAPSHOT and READ COMMITTED isolation levels and SHARED
WRITE can read data from and write (if in READ WRITE mode) to the specified tables but concurrent
access to those tables from transactions with SNAPSHOT TABLE STABILITY is blocked completely
whilst these transactions are active

- Concurrent transactions with any isolation level and PROTECTED READ can only read from the reserved
tables

- With PROTECTED WRITE, concurrent SNAPSHOT and READ COMMITTED transactions can read
from but not write to the reserved tables. Access by transactions with the SNAPSHOT TABLE STABIL-
ITY isolation level is blocked completely.

• READ COMMITTED isolation

Transaction Control

352

- With SHARED READ, all concurrent transactions with any isolation level can both read from and write
(if in READ WRITE mode) to the reserved tables

- SHARED WRITE allows all transactions in SNAPSHOT and READ COMMITTED isolation to read
from and write (if in READ WRITE mode) to the specified tables and blocks access completely from
transactions with SNAPSHOT TABLE STABILITY isolation

- With PROTECTED READ, concurrent transactions with any isolation level can only read from the re-
served tables

- With PROTECTED WRITE, concurrent transactions in SNAPSHOT and READ COMMITTED isolation
can read from but not write to the specified tables. Access from transactions in SNAPSHOT TABLE
STABILITY isolation is blocked completely.

Tip

In Embedded SQL, the USING clause can be used to conserve system resources by limiting the databases
the transaction can access to an enumerated list (of databases). USING is incompatible with RESERVING. A
USING clause in SET TRANSACTION syntax is not supported in DSQL.

See also: COMMIT, ROLLBACK

COMMIT

Used for: Committing a transaction

Available: DSQL, ESQL

Syntax:

COMMIT [WORK] [TRANSACTION tr_name]
 [RELEASE] [RETAIN [SNAPSHOT]];

Table 9.3. COMMIT Statement Parameter

Parameter Description

tr_name Transaction name. Available only in ESQL

The COMMIT statement commits all work carried out in the context of this transaction (inserts, updates, deletes,
selects, execution of procedures). New record versions become available to other transactions and, unless the
RETAIN clause is employed, all server resources allocated to its work are released.

If any conflicts or other errors occur in the database during the process of committing the transaction, the trans-
action is not committed and the reasons are passed back to the user application for handling and the opportunity
to attempt another commit or to roll the transaction back.

COMMIT Options

• The optional TRANSACTION <tr_name> clause, available only in Embedded SQL, specifies the name of the
transaction to be committed. With no TRANSACTION clause, COMMIT is applied to the default transaction.

Transaction Control

353

Note

In ESQL applications, named transactions make it possible to have several transactions active simultane-
ously in one application. If named transactions are used, a host-language variable with the same name must
be declared and initialized for each named transaction. This is a limitation that prevents dynamic specifica-
tion of transaction names and thus, rules out transaction naming in DSQL.

• The optional keyword WORK is supported just for compatibility with other relational database management
systems that require it.

• The keyword RELEASE is available only in Embedded SQL and enables disconnection from all databases
after the transaction is committed. RELEASE is retained in Firebird only for compatibility with legacy versions
of InterBase. It has been superseded in ESQL by the DISCONNECT statement.

• The RETAIN [SNAPSHOT] clause is used for the “soft”, variously referred to amongst host languages and
their practitioners as COMMIT WITH RETAIN, CommitRetaining, “warm commit”, et al. The transaction is
committed but some server resources are retained and the transaction is restarted transparently with the same
Transaction ID. The state of row caches and cursors is kept as it was before the soft commit.

For soft-committed transactions whose isolation level is SNAPSHOT or SNAPSHOT TABLE STABILITY,
the view of database state is not updated to reflect changes by other transactions and the user of the application
instance continues to have the same view as when the transaction started originally. Changes made during
the life of the retained transaction are visible to that transaction, of course.

Recommendation

Use of the COMMIT statement in preference to ROLLBACK is recommended for ending transactions that only
read data from the database, because COMMIT consumes fewer server resources and helps to optimize the
performance of subsequent transactions.

See also: SET TRANSACTION, ROLLBACK

ROLLBACK

Used for: Rolling back a transaction

Available: DSQL, ESQL

Syntax:

ROLLBACK [WORK] [TRANSACTION tr_name]
[RETAIN [SNAPSHOT] | TO [SAVEPOINT] sp_name | RELEASE]

Table 9.4. ROLLBACK Statement Parameters

Parameter Description

tr_name Transaction name. Available only in ESQL

Transaction Control

354

Parameter Description

sp_name Savepoint name. Available only in DSQL

The ROLLBACK statement rolls back all work carried out in the context of this transaction (inserts, updates,
deletes, selects, execution of procedures). ROLLBACK never fails and, thus, never causes exceptions.Unless
the RETAIN clause is employed, all server resources allocated to the work of the transaction are released.

ROLLBACK Options

• The optional TRANSACTION <tr_name> clause, available only in Embedded SQL, specifies the name of the
transaction to be committed. With no TRANSACTION clause, COMMIT is applied to the default transaction.

Note

In ESQL applications, named transactions make it possible to have several transactions active simultane-
ously in one application. If named transactions are used, a host-language variable with the same name must
be declared and initialized for each named transaction. This is a limitation that prevents dynamic specifica-
tion of transaction names and thus, rules out transaction naming in DSQL.

• The optional keyword WORK is supported just for compatibility with other relational database management
systems that require it.

• The keyword RETAIN keyword specifies that, although all of the work of the transaction is to be rolled back,
the transaction context is to be retained. Some server resources are retained and the transaction is restarted
transparently with the same Transaction ID. The state of row caches and cursors is kept as it was before the
“soft” rollback.

For transactions whose isolation level is SNAPSHOT or SNAPSHOT TABLE STABILITY, the view of
database state is not updated by the soft rollback to reflect changes by other transactions. The user of the
application instance continues to have the same view as when the transaction started originally. Changes that
were made and soft-committed during the life of the retained transaction are visible to that transaction, of
course.

See also: SET TRANSACTION, COMMIT

ROLLBACK TO SAVEPOINT

The optional TO SAVEPOINT clause in the ROLLBACK statement specifies the name of a savepoint to which
changes are to be rolled back. The effect is to roll back all changes made within the transaction, from the created
savepoint forward until the point when ROLLBACK TO SAVEPOINT is requested.

ROLLBACK TO SAVEPOINT performs the following operations:

• Any database mutations performed since the savepoint was created are undone. User variables set with RDB
$SET_CONTEXT() remain unchanged.

• Any savepoints that were created after the one named are destroyed. Savepoints earlier than the one named are
preserved, along with the named savepoint itself. Repeated rollbacks to the same savepoint are thus allowed.

Transaction Control

355

• All implicit and explicit record locks that were acquired since the savepoint are released. Other transactions
that have requested access to rows locked after the savepoint must continue to wait until the transaction is
committed or rolled back. Other transactions that have not already requested the rows can request and access
the unlocked rows immediately.

See also: SAVEPOINT

SAVEPOINT

Used for: Creating a savepoint

Available: DSQL

Syntax:

SAVEPOINT sp_name

Table 9.5. SAVEPOINT Statement Parameter

Parameter Description

sp_name Savepoint name. Available only in DSQL

The SAVEPOINT statement creates an SQL:99-compliant savepoint that acts as a marker in the “stack” of da-
ta activities within a transaction. Subsequently, the tasks performed in the “stack” can be undone back to this
savepoint, leaving the earlier work and older savepoints untouched. Savepoint mechanisms are sometimes char-
acterised as “nested transactions”.

If a savepoint already exists with the same name as the name supplied for the new one, the existing savepoint
is deleted and a new one is created using the supplied name.

To roll changes back to the savepoint, the statement ROLLBACK TO SAVEPOINT is used.

Memory Considerations

The internal mechanism beneath savepoints can consume large amounts of memory, especially if the same
rows receive multiple updates in one transaction. When a savepoint is no longer needed but the transaction still
has work to do, a RELEASE SAVEPOINT statement will erase it and thus free the resources.

Sample DSQL session with savepoints:

 CREATE TABLE TEST (ID INTEGER);
 COMMIT;
 INSERT INTO TEST VALUES (1);
 COMMIT;
 INSERT INTO TEST VALUES (2);
 SAVEPOINT Y;
 DELETE FROM TEST;

Transaction Control

356

 SELECT * FROM TEST; -- returns no rows
 ROLLBACK TO Y;
 SELECT * FROM TEST; -- returns two rows
 ROLLBACK;
 SELECT * FROM TEST; -- returns one row

See also: ROLLBACK TO SAVEPOINT, RELEASE SAVEPOINT

RELEASE SAVEPOINT

Used for: Erasing a savepoint

Available: DSQL

Syntax:

RELEASE SAVEPOINT sp_name [ONLY]

Table 9.6. RELEASE SAVEPOINT Statement Parameter

Parameter Description

sp_name Savepoint name. Available only in DSQL

The statement RELEASE SAVEPOINT erases a named savepoint, freeing up all the resources it encompasses. By
default, all the savepoints created after the named savepoint are released as well. The qualifier ONLY directs
the engine to release only the named savepoint.

See also: SAVEPOINT

Internal Savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When a ROLLBACK statement is issued, all changes performed in this transaction are backed out via a transac-
tion-level savepoint and the transaction is then committed. This logic reduces the amount of garbage collection
caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (~50000 records
affected), the engine releases the transaction-level savepoint and uses the Transaction Inventory Page (TIP) as
a mechanism to roll back the transaction if needed.

Tip

If you expect the volume of changes in your transaction to be large, you can specify the NO AUTO UNDO option
in your SET TRANSACTION statement to block the creation of the transaction-level savepoint. Using the API
instead, you would set the TPB flag isc_tpb_no_auto_undo.

Transaction Control

357

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement
that calls the procedure. However, Firebird does support the raising and handling of exceptions in PSQL, so
that actions performed in stored procedures and triggers can be selectively undone without the entire procedure
failing.

Internally, automatic savepoints are used to:

• undo all actions in the BEGIN...END block where an exception occurs

• undo all actions performed by the procedure or trigger or, in for a selectable procedure, all actions performed
since the last SUSPEND, when execution terminates prematurely because of an uncaught error or exception

Each PSQL exception handling block is also bounded by automatic system savepoints.

Note

A BEGIN...END block does not itself create an automatic savepoint. A savepoint is created only in blocks that
contain the WHEN statement for handling exceptions.

358

Chapter 10

Security
Databases must be secure and so must the data stored in them. Firebird provides two levels of data security
protection: user authentication at the server level and SQL privileges within databases. This chapter tells you
how to manage security at both levels.

User Authentication
The security of the entire database depends on identifying a user on verifying its authority, a procedure known as
authentication. The information about users authorised to access a specific Firebird server is stored in a special
security database named security2.fdb. Each record in security2.fdb is a user account for one user.

A user name, consisting of up to 31 characters, is a case-insensitive system identifier. A user must have a pass-
word, of which the first eight are significant. Whilst it is valid to enter a password longer than eight characters,
any subsequent characters are ignored. Passwords are case-sensitive.

If the user specified during the connection is the SYSDBA, the database owner or a specially privileged user,
that user will have unlimited access to the database.

Specially Privileged Users

In Firebird, the SYSDBA account is a “Superuser” that exists beyond any security restrictions. It has complete
access to all objects in all regular databases on the server, and full read/write access to the accounts in the security
database security2.fdb. No user has access to the metadata of the security database.

The default SYSDBA password on Windows and MacOS is 'masterkey'—or 'masterke', to be exact, because
of the 8-character length limit.

Extremely Important!

The default password 'masterkey' is known across the universe. It should be changed as soon as the Firebird
server installation is complete.

Other users can acquire elevated privileges in several ways, some of which are dependent on the operating
system platform. These are discussed in the sections that follow and are summarised in Administrators.

POSIX Hosts

On POSIX systems, including MacOSX, Firebird will interpret a POSIX user account as though it were a Firebird
user account in its own security database, provided the server sees the client machine as a trusted host and the
system user accounts exist on both the client and the server. To establish a “trusted” relationship with the client

Security

359

host, the corresponding entries must be included in one of the files /etc/hosts.equiv or /etc/gds_
hosts.equiv on Firebird's host server.

• The file hosts.equiv contains trusted relationships at operating system level, encompassing all services
(rlogin, rsh, rcp, and so on)

• The file gds_hosts.equiv contains trusted relationships between Firebird hosts only.
The format is identical for both files and looks like this:

 hostname [username]

The SYSDBA User on POSIX

On POSIX hosts, other than MacOSX, the SYSDBA user does not have a default password. If the full installation
is done using the standard scripts, a one-off password will be created and stored in a text file in the same directory
as security2.fdb, commonly /opt/firebird/. The name of the password file is SYSDBA.password.

Note

In an installation performed by a distribution-specific installer, the location of the security database and the
password file may be different from the standard one.

The root User

The root user can act directly as SYSDBA on POSIX host systems. Firebird interprets root as though it were
SYSDBA and it provides access to all databases on the server.

Windows Hosts

On Windows server-capable operating systems, operating system accounts can be used. Trusted Authentication
must be enabled by setting the Authentication parameter to Trusted or Mixed in the configuration file, fire-
bird.conf.

Even with trusted authentication enabled, Windows operating system Administrators are not automatically
granted SYSDBA privileges when they connect to a database. To make that happen, the internally-created role
RDB$ADMIN must be altered by SYSDBA or the database owner, to enable it. For details, refer to the later
section entitled AUTO ADMIN MAPPING.

The embedded version of Firebird server on Windows does not use server-level authentication. However, be-
cause objects within a database are subject to SQL privileges, a valid user name and, if applicable, a role, may
be required in the connection parameters.

The Database Owner

The “owner” of a database is either the user who was CURRENT_USER at the time of creation or, if the parameters
USER and PASSWORD were supplied in the CREATE DATABASE statement, the user cited there.

“Owner” is not a user name. The user who is the owner of a database has full administrator rights with respect
to that database, including the right to drop it, to restore it from a backup and to enable or disable the AUTO
ADMIN MAPPING capability.

Security

360

Note

Prior to Firebird 2.1, the owner had no automatic privileges over any database objects that were created by
other users.

RDB$ADMIN Role

The internally-created role RDB$ADMIN is present in every database. Assigning the RDB$ADMIN role to a
regular user in a database grants that user the privileges of the SYSDBA, in the current database only.

The elevated privileges take effect when the user is logged in to that regular database under the RDB$ADMIN
role and give full control over all objects in the database.

Being granted the RDB$ADMIN role in the security database confers the authority to create, edit and delete user
accounts.

In both cases, the user with the elevated privileges can assign RDB$ADMIN role to any other user. In other words,
specifying WITH ADMIN OPTION is unnecessary because it is built into the role.

Granting the RDB$ADMIN Role in the Security Database

Since nobody—not even SYSDBA— can connect to the security database, the GRANT and REVOKE statements
are of no use for this task. Instead, the RDB$ADMIN role is granted and revoked using the SQL statements for
user management:

CREATE USER new_user
PASSWORD 'password'
GRANT ADMIN ROLE

ALTER USER existing_user
GRANT ADMIN ROLE

ALTER USER existing_user
REVOKE ADMIN ROLE

Note

GRANT ADMIN ROLE and REVOKE ADMIN ROLE are not statements in the GRANT and REVOKE lexicon.
They are three-word parameters to the statements CREATE USER and ALTER USER.

Table 10.1. Parameters for RDB$ADMIN Role GRANT and REVOKE

Parameter Description

new_user Using CREATE USER, name for the new user

existing_user Using ALTER USER, Name of an existing user

Security

361

Parameter Description

password
Using CREATE USER, password for the new user. Its theoretical limit is 31
bytes but only the first 8 characters are considered.

The grantor must be already logged in as an administrator.

See also: CREATE USER, ALTER USER

Doing the Same Task Using gsec

An alternative is to use gsec with the -admin parameter to store the RDB$ADMIN attribute on the user's record:

gsec -add new_user -pw password -admin yes
gsec -mo existing_user -admin yes
gsec -mo existing_user -admin no

Note

Depending on the adminstrative status of the current user, more parameters may be needed when invoking
gsec, e.g., -user and -pass, or -trusted.

Using the RDB$ADMIN Role in the Security Database

To manage user accounts through SQL, the grantee must specify the RDB$ADMIN role when connecting. No
user can connect to the security database, so the solution is that the user connects to a regular database where
he also has RDB$ADMIN rights, supplying the RDB$ADMIN role in his login parameters. From there, he can
submit any SQL user management command.

The SQL route for the user is blocked for any database in which he has not been the granted the RDB$ADMIN role.

Using gsec with RDB$ADMIN Rights

To perform user management with gsec, the user must provide the extra switch -role rdb$admin.

Granting the RDB$ADMIN Role in a Regular Database

In a regular database, the RDB$ADMIN role is granted and revoked with the usual syntax for granting and
revoking roles:

GRANT [ROLE] RDB$ADMIN TO username

REVOKE [ROLE] RDB$ADMIN FROM username

In order to grant and revoke the RDB$ADMIN role, the grantor must be logged in as an administrator.

See also: GRANT, REVOKE

Security

362

Using the RDB$ADMIN Role in a Regular Database

To exercise his RDB$ADMIN privileges, the grantee simply includes the role in the connection attributes when
connecting to the database.

AUTO ADMIN MAPPING

In Firebird 2.1, Windows Administrators would automatically receive SYSDBA privileges if trusted authenti-
cation was configured for server connections. In Firebird 2.5, it is no longer automatic. The setting of the AU-
TO ADMIN MAPPING switch now determines whether Administrators have automatic SYSDBA rights, on a
database-by-database basis. By default, when a database is created, it is disabled.

If AUTO ADMIN MAPPING is enabled in the database, it will take effect whenever a Windows Administrator
connects

a. using trusted authentication, and
b. without specifying any role

After a successful “auto admin” connection, the current role is set to RDB$ADMIN.

Auto Admin Mapping in Regular Databases

To enable and disable automatic mapping in a regular database:

ALTER ROLE RDB$ADMIN
 SET AUTO ADMIN MAPPING -- enable it

ALTER ROLE RDB$ADMIN
 DROP AUTO ADMIN MAPPING -- disable it

Either statement must be issued by a user with sufficient rights, that is:

• the database owner
• an administrator

In regular databases, the status of AUTO ADMIN MAPPING is checked only at connection time. If an Adminis-
trator has the RDB$ADMIN role because auto-mapping was on when he logged in, he will keep that role for the
duration of the session, even if he or someone else turns off the mapping in the meantime.

Likewise, switching on AUTO ADMIN MAPPING will not change the current role to RDB$ADMIN for Adminis-
trators who were already connected.

Auto Admin Mapping in the Security Database

No SQL statements exist to switch automatic mapping on and off in the security database. Instead, gsec must
be used:

gsec -mapping set

Security

363

gsec -mapping drop

More gsec switches may be needed, depending on what kind of log-in you used to connect, e.g., -user and
-pass, or -trusted.

Only SYSDBA can set the auto-mapping on if it is disabled. Any administrator can drop (disable) it.

Administrators

As a general description, an administrator is a user that has sufficient rights to read, write to, create, alter or delete
any object in a database to which that user's administrator status applies. The table summarises how “Superuser”
privileges are enabled in the various Firebird security contexts.

Table 10.2. Administrator (“Superuser”) Characteristics

User RDB$ADMIN
Role

Comments

SYSDBA Auto Exists automatically at server level. Has full privileges to all ob-
jects in all databases. Can create, alter and drop users but has no
direct access to the security database

root user on
POSIX

Auto Exactly like SYSDBA

Superuser on
POSIX

Auto Exactly like SYSDBA

Windows Adminis-
trator

Set as
CURRENT_ROLE
if login succeeds

Exactly like SYSDBA if all of the following are true:

In firebird.conf file Authentication = mixed / trust-
ed and Firebird is restarted be-
fore proceeding

AUTO ADMIN MAPPING Enabled in all databases in
which the user needs Superuser
privileges

Login Does not include a role

Database owner Auto Like SYSDBA, but only in the database of which he is the own-
er

Regular user Must be previous-
ly granted; must be
supplied at login

Like SYSDBA, but only in the database[s} where the role is
granted

POSIX OS user Must be previous-
ly granted; must be
supplied at login

Like SYSDBA, but only in the database[s} where the role is
granted

Windows user Must be previous-
ly granted; must be
supplied at login

Like SYSDBA, but only in the database[s} where the role is
granted. Not available if config file parameter Authentication =
native

Security

364

SQL Statements for User Management

In Firebird 2.5 and above, user accounts are created, modified and deleted using a series of SQL statements that
can be submitted by a user with full administrator rights in the security database.

Note

For a Windows Administrator, AUTO ADMIN MAPPING enabled only in a regular database is not sufficient
to permit management of other users. For instructions to enable it in the security database, see Auto Admin
Mapping in the Security Database.

Non-privileged users can use only the ALTER USER statement and only to edit some data in their own accounts.

CREATE USER

Used for: Creating a Firebird user account

Available in: DSQL

Syntax:

CREATE USER username PASSWORD 'password'
[FIRSTNAME 'firstname']
[MIDDLENAME 'middlename']
[LASTNAME 'lastname']
[GRANT ADMIN ROLE];

Table 10.3. CREATE USER Statement Parameters

Parameter Description

username
User name. The maximum length is 31 characters, following the rules for Fire-
bird regular identifiers. It is always case-insensitive

password
User password. Its theoretical limit is 31 bytes but only the first 8 characters are
considered. Case-sensitive

firstname Optional: User's first name. Maximum length 31 characters

middlename Optional: User's middle name. Maximum length 31 characters

lastname Optional: User's last name. Maximum length 31 characters

Use a CREATE USER statement to create a new Firebird user account. The user must not already exist in the
Firebird security database, or a primary key violation error message will be returned.

The <username argument must follow the rules for Firebird regular identifiers: see Identifiers in the Structure
chapter. User names are always case-insensitive. Supplying a user name enclosed in double quotes will not cause

Security

365

an exception: the quotes will be ignored. If a space is the only illegal character supplied, the user name will be
truncated back to the first space character. Other illegal characters will cause an exception.

The PASSWORD clause specifies the user's password. A password of more than eight characters is accepted with
a warning but any surplus characters will be ignored.

The optional FIRSTNAME, MIDDLENAME and LASTNAME clauses can be used to specify additional user prop-
erties, such as the person's first name, middle name and last name, respectively. They are just simple VAR-
CHAR(31) fields and can be used to store anything you prefer.

If the GRANT ADMIN ROLE clause is specified, the new user account is created with the privileges of the RDB
$ADMIN role in the security database (security2.fdb). It allows the new user to manage user accounts
from any regular database he logs into, but it does not grant the user any special privileges on objects in those
databases.

To create a user account, the current user must have administrator privileges in the security database. Adminis-
trator privileges only in regular databases are not sufficient.

Note

CREATE / ALTER / DROP USER are DDL statements. Remember to COMMIT your work. In isql, the com-
mand SET AUTO ON will enable autocommit on DDL statements. In third-party tools and other user applica-
tions, this may not be the case.

Examples:

1. Creating a user with the username bigshot:

CREATE USER bigshot PASSWORD 'buckshot';

2. Creating the user john with additional properties (first and last names):

CREATE USER john PASSWORD 'fYe_3Ksw'
FIRSTNAME 'John'
LASTNAME 'Doe';

3. Creating the user superuser with user management privileges:

CREATE USER superuser PASSWORD 'kMn8Kjh'
GRANT ADMIN ROLE;

See also: ALTER USER, DROP USER

ALTER USER

Used for: Modifying a Firebird user account

Available in: DSQL

Security

366

Syntax:

ALTER USER username
{
 [SET]
 [PASSWORD 'password']
 [FIRSTNAME 'firstname']
 [MIDDLENAME 'middlename']
 [LASTNAME 'lastname']
}
[{GRANT | REVOKE} ADMIN ROLE];

Table 10.4. ALTER USER Statement Parameters

Parameter Description

username User name. Cannot be changed.

password
User password. Its theoretical limit is 31 bytes but only the first 8 characters are
considered. Case-sensitive

firstname Optional: User's first name, or other optional text. Max. length is 31 characters

middlename
Optional: User's middle name, or other optional text. Max. length is 31 charac-
ters

lastname Optional: User's last name, or other optional text. Max. length is 31 characters

Use an ALTER USER statement to edit the details in the named Firebird user account. To modify the account
of another user, the current user must have administrator privileges in the security database. Administrator
privileges only in regular databases are not sufficient.

Any user can alter his or her own account, except that only an administrator may use GRANT/REVOKE ADMIN
ROLE.

All of the arguments are optional but at least one of them must be present:

• The PASSWORD parameter is for specifying a new password for the user

• FIRSTNAME, MIDDLENAME and LASTNAME allow updating of the optional user properties, such as the
person's first name, middle name and last name respectively

• Including the clause GRANT ADMIN ROLE grants the user the privileges of the RDB$ADMIN role in the
security database (security2.fdb), enabling him/her to manage the accounts of other users. It does not
grant the user any special privileges in regular databases.

• Including the clause REVOKE ADMIN ROLE removes the user's administrator in the security database which,
once the transaction is committed, will deny that user the ability to alter any user account except his or her own

Note

Remember to commit your work if you are working in an application that does not auto-commit DDL.

Examples:

Security

367

1. Changing the password for the user bobby and granting him user management privileges:

ALTER USER bobby PASSWORD '67-UiT_G8'
GRANT ADMIN ROLE;

2. Editing the optional properties (the first and last names) of the user dan:

ALTER USER dan
FIRSTNAME 'No_Jack'
LASTNAME 'Kennedy';

3. Revoking user management privileges from user dumbbell:

ALTER USER dumbbell
DROP ADMIN ROLE;

See also: CREATE USER, DROP USER

DROP USER

Used for: Deleting a Firebird user account

Available in: DSQL

Syntax:

DROP USER username;

Table 10.5. DROP USER Statement Parameter

Parameter Description

username User name

Use the statement DROP USER to delete a Firebird user account. The current user requires administrator priv-
ileges.

Note

Remember to commit your work if you are working in an application that does not auto-commit DDL.

Example: Deleting the user bobby:

DROP USER bobby;

Security

368

See also: CREATE USER, ALTER USER

SQL Privileges
The second level of Firebird's security model is SQL privileges. Whilst a successful login—the first level—
authorises a user's access to the server and to all databases under that server, it does not imply that he has
access to any objects in any databases. When an object is created, only the user that created it (its owner) and
administrators have access to it. The user needs privileges on each object he needs to access. As a general rule,
privileges must be granted explicitly to a user by the object owner or an administrator of the database.

A privilege comprises a DML access type (SELECT, INSERT, UPDATE, DELETE, EXECUTE and REFERENCES),
the name of a database object (table, view, procedure, role) and the name of the user (user, procedure, trigger,
role) to which it is granted. Various means are available to grant multiple types of access on an object to multiple
users in a single GRANT statement. Privileges may be withdrawn from a user with REVOKE statements.

Privileges are are stored in the database to which they apply and are not applicable to any other database.

The Object Owner

The user who creates a database object becomes its owner. Only the owner of an object and users with admin-
istrator privileges in the database, including the database owner, can alter or drop the database object.

Some Ownership Drawbacks

Any authenticated user can access any database and create any valid database object. Up to and including this
release, the issue is not controlled.

Because not all database objects are associated with an owner—domains, external functions (UDFs), BLOB
filters, generators (sequences) and exceptions—ownerless objects must be regarded as vulnerable on a server
that is not adequately protected.

SYSDBA, the database owner or the object owner can grant privileges to and revoke them from other users,
including privileges to grant privileges to other users. The process of granting and revoking SQL privileges is
implemented with two statements of the general form:

GRANT <privilege> ON <OBJECT-TYPE> <object-name>
 TO { <user-name> | ROLE <role-name> }

REVOKE <privilege> ON <OBJECT-TYPE> <object-name>
 FROM { <user-name> | ROLE <role-name> }

The <OBJECT-TYPE> is not required for every type of privilege. For some types of privilege, extra parameters
are available, either as options or as requirements.

Statements for Granting Privileges

A GRANT statement is used for granting privileges—including roles—to users and other database objects.

Security

369

GRANT

Used for: Granting privileges and assigning roles

Available in: DSQL, ESQL

Syntax:

GRANT {
 <privileges> ON [TABLE] {tablename | viewname}
 | EXECUTE ON PROCEDURE procname
 }
TO <grantee_list>
 [WITH GRANT OPTION]} | [{GRANTED BY | AS} [USER] grantor];

GRANT <role_granted>
TO <role_grantee_list> [WITH ADMIN OPTION]
[{GRANTED BY | AS} [USER] grantor]

<privileges> ::= ALL [PRIVILEGES] | <privilege_list>

<privilege_list> ::= {<privilege> [, <privilege> [, …]] }

<privilege> ::=
 SELECT |
 DELETE |
 INSERT |
 UPDATE [(col [, col [, …]])] |
 REFERENCES (col [, …])

<grantee_list> ::= {<grantee> [, <grantee> [, …]]}

<grantee> ::=
 [USER] username | [ROLE] rolename | GROUP Unix_group
 | PROCEDURE procname | TRIGGER trigname | VIEW viewname | PUBLIC

<role_granted> ::= rolename [, rolename …]

<role_grantee_list> ::= [USER] <role_grantee> [,[USER] <role_grantee> [, …]]

<role_grantee> ::= {username | PUBLIC }

Table 10.6. GRANT Statement Parameters

Parameter Description

tablename The name of the table the privilege applies to

viewname The name of the view the privilege applies to

procname
The name of the stored procedure the EXECUTE privilege applies to; or the
name of the procedure to be granted the privilege[s]

Security

370

Parameter Description

col The table column the privilege is to apply to

Unix_group The name of a user group in a POSIX operating system

username
The user name to which the privileges are granted to or to which the role is as-
signed

rolename Role name

trigname Trigger name

grantor The user granting the privilege[s]

A GRANT statement grants one or more privileges on database objects to users, roles, stored procedures, triggers
or views.

A regular, authenticated user has no privileges on any database object until they are explicitly granted, either
to that individual user or to all users bundled as the user PUBLIC. When an object is created, only the user
who has created it (the owner) and administrators have privileges for it and can grant privileges to other users,
roles or objects.

Different sets of privileges apply to different types of metadata objects. The different types of privileges will
be described separately later.

The TO Clause

The TO clause is used for listing the users, roles and database objects (procedures, triggers and views) that are
to be granted the privileges enumerated in <privileges>. The clause is mandatory.

The optional USER and ROLE keywords in the TO clause allow you to specify exactly who or what is granted
the privilege. If a USER or ROLE keyword is not specified, the server checks for a role with this name and, if
there is none, the privileges are granted to the user without further checking.

Packaging Privileges in a ROLE Object

A role is a “container” object that can be used to package a collection of privileges. Use of the role is then granted
to each user that requires those privileges. A role can also be granted to a list of users.

The role must exist before privileges can be granted to it. See CREATE ROLE in the DDL chapter for the syntax
and rules. The role is maintained by granting privileges to it and, when required, revoking privileges from it. If
a role is dropped (see DROP ROLE), all users lose the privileges acquired through the role. Any privileges that
were granted additionally to an affected user by way of a different grant statement are retained.

A user that is granted a role must supply that role with his login credentials in order to exercise the associated
privileges. Any other privileges granted to the user are not affected by logging in with a role.

More than one role can be granted to the same user but logging in with multiple roles simultaneously is not
supported.

A role can be granted only to a user.

Security

371

Please note:

• When a GRANT statement is executed, the security database is not checked for the existence of the grantee
user. This is not a bug: SQL permissions are concerned with controlling data access for authenticated users,
both native and trusted, and trusted operating system users are not stored in the security database.

• When granting a privilege to a database object, such as a procedure, trigger or view, you must specify the
object type between the keyword TO and the object name.

• Although the USER and ROLE keywords are optional, it is advisable to use them, in order to avoid ambiguity.

The User PUBLIC

Firebird has a predefined user named PUBLIC, that represents all users. Privileges for operations on a particular
object that are granted to the user PUBLIC can be exercised by any user that has been authenticated at login.

Important

If privileges are granted to the user PUBLIC, they should be revoked from the user PUBLIC as well.

The WITH GRANT OPTION Clause

The optional WITH GRANT OPTION clause allows the users specified in the user list to grant the privileges
specified in the privilege list to other users.

Caution

It is possible to assign this option to the user PUBLIC. Do not do it!

The GRANTED BY Clause

By default, when privileges are granted in a database, the current user is recorded as the grantor. The GRANTED
BY clause enables the current user to grant those privileges as another user.

If the REVOKE statement is used, it will fail if the current user is not the user that was named in the GRANTED
BY clause.

Alternative Syntax Using AS <username>

The non-standard AS clause is supported as a synonym of the GRANTED BY clause to simplify migration from
other database systems.

The clauses GRANTED BY and AS can be used only by the database owner and administrators. The object owner
cannot use it unless he also has administrator privileges.

Privileges on Tables and Views

In theory, one GRANT statement grants one privilege to one user or object. In practice, the syntax allows multiple
privileges to be granted to multiple users in one GRANT statement.

Security

372

Syntax extract:

...
<privileges> ::= ALL [PRIVILEGES] | <privilege_list>

<privilege_list> ::= {<privilege> [, <privilege> [, …]] }

<privilege> ::= {
 SELECT |
 DELETE |
 INSERT |
 UPDATE [(col [,col [, …])]])] |
 REFERENCES (col [, col [, …]])
 }

Table 10.7. List of Privileges on Tables

Privilege Description

SELECT Permits the user or object to SELECT data from the table or view

INSERT Permits the user or object to INSERT rows into the table or view

UPDATE
Permits the user or object to UPDATE rows in the table or view, optionally re-
stricted to specific columns

col (Optional) name of a column to which the user's UPDATE privilege is restricted

DELETE Permits the user or object to DELETE rows from the table or view

REFERENCES
Permits the user or object to reference the specified column[s] of the table via
a foreign key. If the primary or unique key referenced by the foreign key of the
other table is composite then all columns of the key must be specified.

col (Mandatory) name of one column in the referenced foreign key

ALL
Combines SELECT, INSERT, UPDATE, DELETE and REFERENCES privi-
leges in a single package

Examples of GRANT <privilege> on Tables:

1. SELECT and INSERT privileges to the user ALEX:

GRANT SELECT, INSERT ON TABLE SALES
 TO USER ALEX;

2. The SELECT privilege to the MANAGER, ENGINEER roles and to the user IVAN:

GRANT SELECT ON TABLE CUSTOMER
 TO ROLE MANAGER, ROLE ENGINEER, USER IVAN;

Security

373

3. All privileges to the ADMINISTRATOR role, together with the authority to grant the same privileges to
others:

GRANT ALL ON TABLE CUSTOMER
 TO ROLE ADMINISTRATOR
 WITH GRANT OPTION;

4. The SELECT and REFERENCEs privileges on the NAME column to all users and objects:

GRANT SELECT, REFERENCES (NAME) ON TABLE COUNTRY
TO PUBLIC;

5. The SELECT privilege being granted to the user IVAN by the user ALEX:

GRANT SELECT ON TABLE EMPLOYEE
 TO USER IVAN
 GRANTED BY ALEX;

6. Granting the UPDATE privilege on the FIRST_NAME, LAST_NAME columns:

GRANT UPDATE (FIRST_NAME, LAST_NAME) ON TABLE EMPLOYEE
 TO USER IVAN;

7. Granting the INSERT privilege to the stored procedure ADD_EMP_PROJ:

GRANT INSERT ON EMPLOYEE_PROJECT
 TO PROCEDURE ADD_EMP_PROJ;

The EXECUTE Privilege

The EXECUTE privilege applies to stored procedures. It allows the grantee to execute the stored procedure and,
if applicable, to retrieve its output. In the case of selectable stored procedures, it acts somewhat like a SELECT
privilege, insofar as this style of stored procedure is executed in response to a SELECT statement.

Example: Granting the EXECUTE privilege on a stored procedure to a role:

GRANT EXECUTE ON PROCEDURE ADD_EMP_PROJ
 TO ROLE MANAGER;

Assigning Roles

Assigning a role is similar to granting a privilege. One or more roles can be assigned to one or more users,
including the user PUBLIC, using one GRANT statement.

Security

374

The WITH ADMIN OPTION Clause

The optional WITH ADMIN OPTION clause allows the users specified in the user list to grant the role[s] specified
to other users.

Caution

It is possible to assign this option to PUBLIC. Do not do it!

Examples of Role Assignment:

1. Assigning the DIRECTOR and MANAGER roles to the user IVAN:

GRANT DIRECTOR, MANAGER TO USER IVAN;

2. Assigning the ADMIN role to the user ALEX with the authority to assign this role to other users:

GRANT MANAGER TO USER ALEX WITH ADMIN OPTION;

See also: REVOKE

Statements for Revoking Privileges

A REVOKE statement is used for revoking privileges—including roles—from users and other database objects.

REVOKE

Used for: Revoking privileges or role assignments

Available in: DSQL, ESQL

Syntax:

REVOKE [GRANT OPTION FOR] {
 <privileges> ON [TABLE] {tablename | viewname} |
 EXECUTE ON PROCEDURE procname }
FROM <grantee_list>
[{GRANTED BY | AS} [USER] grantor];

REVOKE [ADMIN OPTION FOR] <role_granted>
FROM {PUBLIC | <role_grantee_list>}
[{GRANTED BY | AS} [USER] grantor];

REVOKE ALL ON ALL FROM <grantee_list>

<privileges> ::= ALL [PRIVILEGES] | <privilege_list>

Security

375

<privilege_list> ::= {<privilege> [, <privilege> [, …]] }

<privilege> ::=
 SELECT |
 DELETE |
 INSERT |
 UPDATE [(col [, col [, col [,…]]])] |
 REFERENCES (col [, col [, …]])

<grantee_list> ::= {<grantee> [, <grantee> [, …]]}

<grantee> ::=
 [USER] username | [ROLE] rolename | GROUP Unix_group
 | PROCEDURE procname | TRIGGER trigname | VIEW viewname | PUBLIC

<role_granted> ::= rolename [, rolename …]

<role_grantee_list> ::= [USER] <role_grantee> [,[USER] <role_grantee> [, …]]

<role_grantee> ::= {username | PUBLIC }

Table 10.8. REVOKE Statement Parameters

Parameter Description

tablename The name of the table the privilege is to be revoked from

viewname The name of the view the privilege is to be revoked from

procname
The name of the stored procedure the EXECUTE privilege is to be revoked
from; or the name of the procedure that is to have the privilege[s] revoked

trigname Trigger name

col The table column the privilege is to be revoked from

username
The user name from which the privileges are to be revoked from or the role is to
be removed from

rolename Role name

Unix_group The name of a user group in a POSIX operating system

grantor The grantor user on whose behalf the the privilege[s] are being revoked

The REVOKE statement is used for revoking privileges from users, roles, stored procedures, triggers and views
that were granted using the GRANT statement. See GRANT for detailed descriptions of the various types of
privileges.

Only the user who granted the privilege can revoke it.

The FROM Clause

The FROM clause is used to specify the list of users, roles and database objects (procedures, triggers and views)
that will have the enumerated privileges revoked. The optional USER and ROLE keywords in the FROM clause

Security

376

allow you to specify exactly which type is to have the privilege revoked. If a USER or ROLE keyword is not
specified, the server checks for a role with this name and, if there is none, the privileges are revoked from the
user without further checking.

Tips

• Although the USER and ROLE keywords are optional, it is advisable to use them in order to avoid ambiguity.
• The GRANT statement does not check for the existence of the user from which the privileges are being

revoked.
• When revoking a privilege from a database object, you must specify its object type

Revoking Privileges from user PUBLIC

Privileges that were granted to the special user named PUBLIC must be revoked from the user PUBLIC. User
PUBLIC provides a way to grant privileges to all users at once but it is not “a group of users”.

Revoking the GRANT OPTION

The optional GRANT OPTION FOR clause revokes the user's privilege to grant privileges on the table, view,
trigger or stored procedure to other users or to roles. It does not revoke the privilege with which the grant option
is associated.

Removing the Privilege to One or More Roles

One usage of the REVOKE statement is to remove roles that were assigned to a user, or a group of users, by a
GRANT statement. In the case of multiple roles and/or multiple grantees, the REVOKE verb is followed by the
list of roles that will be removed from the list of users specified after the FROM clause.

The optional ADMIN OPTION FOR clause provides the means to revoke the grantee's “administrator” privilege,
the ability to assign the same role to other users, without revoking the grantee's privilege to the role.

Multiple roles and grantees can be processed in a single statement.

Revoking Privileges That Were GRANTED BY

A privilege that has been granted using the GRANTED BY clause is internally attributed explicitly to the grantor
designated by that original GRANT statement. To revoke a privilege that was obtained by this method, the current
user must be logged in either with full administrative privileges or as the user designated as <grantor> by that
GRANTED BY clause.

Note

The same rule applies if the syntax used in the original GRANT statement used the synonymous AS form to
introduce the clause, instead of the standard GRANTED BY form.

Revoking ALL ON ALL

If the current user is logged in with full administrator privileges in the database, the statement

Security

377

REVOKE ALL ON ALL FROM <grantee_list>

can be used to revoke all privileges (including role memberships) on all objects from one or more users and/or
roles. All privileges for the user will be removed, regardless of who granted them. It is a quick way to “clear”
privileges when access to the database must be blocked for a particular user or role.

If the current user is not logged in as an administrator, the only privileges revoked will be those that were granted
originally by that user.

The REVOKE ALL ON ALL statement cannot be used to revoke privileges that have been granted TO stored
procedures, triggers or views.

Note

The GRANTED BY clause is not supported.

Examples using REVOKE

1. Revoking the privileges for reading and inserting into the SALES

REVOKE SELECT, INSERT ON TABLE SALES FROM USER ALEX;

2. Revoking the privilege for reading the CUSTOMER table from the MANAGER and ENGINEER roles
and from the user IVAN:

REVOKE SELECT ON TABLE CUSTOMER
FROM ROLE MANAGER, ROLE ENGINEER, USER IVAN;

3. Revoking from the ADMINISTRATOR role the authority to grant any privileges on the CUSTOMER table
to other users or roles:

REVOKE GRANT OPTION FOR ALL ON TABLE CUSTOMER
FROM ROLE ADMINISTRATOR;

4. Revoking the privilege for reading the COUNTRY table and the authority to reference the NAME column
of the COUNTRY table from any user, via the special user PUBLIC:

REVOKE SELECT, REFERENCES (NAME) ON TABLE COUNTRY
 FROM PUBLIC;

5. Revoking the privilege for reading the EMPLOYEE table from the user IVAN, that was granted by the
user ALEX:

REVOKE SELECT ON TABLE EMPLOYEE
 FROM USER IVAN GRANTED BY ALEX;

Security

378

6. Revoking the privilege for updating the FIRST_NAME and LAST_NAME columns of the EMPLOYEE
table from the user IVAN:

REVOKE UPDATE (FIRST_NAME, LAST_NAME) ON TABLE EMPLOYEE
 FROM USER IVAN;

7. Revoking the privilege for inserting records into the EMPLOYEE_PROJECT table from the
ADD_EMP_PROJ procedure:

REVOKE INSERT ON EMPLOYEE_PROJECT
 FROM PROCEDURE ADD_EMP_PROJ;

8. Revoking the privilege for executing the procedure ADD_EMP_PROJ from the MANAGER role:

REVOKE EXECUTE ON PROCEDURE ADD_EMP_PROJ
 FROM ROLE MANAGER;

9. Revoking the DIRECTOR and MANAGER roles from the user IVAN:

REVOKE DIRECTOR, MANAGER FROM USER IVAN;

10. Revoke from the user ALEX the authority to assign the MANAGER role to other users:

REVOKE ADMIN OPTION FOR MANAGER FROM USER IVAN;

11. Revoking all privileges (including roles) on all objects from the user IVAN:

REVOKE ALL ON ALL FROM IVAN;

After this statement is executed, the user IVAN will have no privileges whatsoever.

See also: GRANT

379

Appendix A:
Supplementary Information

In this Appendix are topics that developers may wish to refer to, to enhance understanding of features or changes.

The RDB$VALID_BLR Field
The field RDB$VALID_BLR was added to the system tables RDB$PROCEDURES and RDB$TRIGGERS in Firebird
2.1. Its purpose is to signal possible invalidation of a PSQL module after alteration of a domain or table column
on which the module depends.RDB$VALID_BLR is set to 0 for any procedure or trigger whose code is made
invalid by such a change.

How Invalidation Works

In triggers and procedures, dependencies arise on the definitions of table columns accessed and also on any
parameter or variable that has been defined in the module using the TYPE OF clause.

After the engine has altered any domain, including the implicit domains created internally behind column defi-
nitions and output parameters, the engine internally recompiles all of its dependencies.

Note

In V.2.x these comprise procedures and triggers but not blocks coded in DML statements for run-time execution
with EXECUTE BLOCK. Firebird 3 will encompass more module types (stored functions, packages).

Any module that fails to recompile because of an incompatibility arising from a domain change is marked as
invalid (“invalidated” by setting the RDB$VALID_BLR in its system record (in RDB$PROCEDURES or RDB
$TRIGGERS, as appropriate) to zero.

Revalidation (setting RDB$VALID_BLR to 1) occurs when

1. the domain is altered again and the new definition is compatible with the previously invalidated module
definition; OR

2. the previously invalidated module is altered to match the new domain definition

The following query will find the modules that depend on a specific domain and report the state of their RDB
$VALID_BLR fields:

SELECT * FROM (
 SELECT
 'Procedure',
 rdb$procedure_name,
 rdb$valid_blr

Supplementary Information

380

 FROM rdb$procedures
 UNION ALL
 SELECT
 'Trigger',
 rdb$trigger_name,
 rdb$valid_blr
 FROM rdb$triggers
) (type, name, valid)
WHERE EXISTS
 (SELECT * from rdb$dependencies
 WHERE rdb$dependent_name = name
 AND rdb$depended_on_name = 'MYDOMAIN')

/* Replace MYDOMAIN with the actual domain name.
 Use all-caps if the domain was created
 case-insensitively. Otherwise, use the exact
 capitalisation. */

The following query will find the modules that depend on a specific table column and report the state of their
RDB$VALID_BLR fields:

SELECT * FROM (
 SELECT
 'Procedure',
 rdb$procedure_name,
 rdb$valid_blr
 FROM rdb$procedures
 UNION ALL
 SELECT
 'Trigger',
 rdb$trigger_name,
 rdb$valid_blr
 FROM rdb$triggers) (type, name, valid)
WHERE EXISTS
 (SELECT *
 FROM rdb$dependencies
 WHERE rdb$dependent_name = name
 AND rdb$depended_on_name = 'MYTABLE'
 AND rdb$field_name = 'MYCOLUMN')

Important

All PSQL invalidations caused by domain/column changes are reflected in the RDB$VALID_BLR field. How-
ever, other kinds of changes, such as the number of input or output parameters, called routines and so on, do
not affect the validation field even though they potentially invalidate the module. A typical such scenario might
be one of the following:

1. A procedure (B) is defined, that calls another procedure (A) and reads output parameters from it. In this
case, a dependency is registered in RDB$DEPENDENCIES. Subsequently, the called procedure (A) is al-
tered to change or remove one or more of those output parameters. The ALTER PROCEDURE A statement
will fail with an error when commit is attempted.

2. A procedure (B) calls procedure A, supplying values for its input parameters. No dependency is registered
in RDB$DEPENDENCIES. Subsequent modification of the input parameters in procedure A will be allowed.
Failure will occur at run-time, when B calls A with the mismatched input parameter set.

Supplementary Information

381

Other Notes

• For PSQL modules inherited from earlier Firebird versions (including a number of system triggers, even if
the database was created under Firebird 2.1 or higher), RDB$VALID_BLR is NULL. This does not imply
that their BLR is invalid.

• The isql commands SHOW PROCEDURES and SHOW TRIGGERS display an asterisk in the RDB$VALID_BLR
column for any module for which the value is zero (i.e., invalid). However, SHOW PROCEDURE <procname>
and SHOW TRIGGER <trigname>, which display individual PSQL modules, do not signal invalid BLR at all.

A Note on Equality

Important

This note about equality and inequality operators applies everywhere in Firebird's SQL language.

The “=” operator, which is explicitly used in many conditions, only matches values to values. According to the
SQL standard, NULL is not a value and hence two NULLs are neither equal nor unequal to one another. If you
need NULLs to match each other in a condition, use the IS NOT DISTINCT FROM operator. This operator returns
true if the operands have the same value or if they are both NULL.

select *
 from A join B
 on A.id is not distinct from B.code

Likewise, in cases where you want to test against NULL for a condition of inequalityequality, use IS DISTINCT
FROM, not “<>”. If you want NULL to be considered different from any value and two NULLs to be considered
equal:

select *
 from A join B
 on A.id is distinct from B.code

382

Appendix B:
Exception Codes

and Messages
This appendix includes:

• SQLSTATE Error Codes and Descriptions
• GDSCODE Error Codes, SQLCODEs and Descriptions

1. GDSCODEs 335544366 to 335544334
2. GDSCODEs 335544454 to 336330760
3. GDSCODEs 335544329 to 335544613
4. GDSCODEs 335544614 to 335544689

Custom Exceptions

Firebird DDL provides a simple syntax for creating custom exceptions for use in PSQL modules, with message
text of up to 1,021 characters. For more information, see CREATE EXCEPTION in DDL Statements and, for
usage, the statement EXCEPTION in PSQL Statements.

The Firebird SQLCODE error codes do not correlate with the standards-compliant SQLSTATE codes. SQLCODE
has been used for many years and should be considered as deprecated now. Support for SQLCODE is likely to
be dropped in a future version.

SQLSTATE Error Codes and Descriptions
This table provides the error codes and message texts for the SQLSTATE context variables.

The structure of an SQLSTATE error code is five characters comprising the SQL error class (2 characters) and
the SQL subclass (3 characters).

Table B.1. SQLSTATE Codes and Message Texts

SQLSTATE Mapped Message

SQLCLASS 00 (Success)

00000 Success

SQLCLASS 01 (Warning)

01000 General warning

01001 Cursor operation conflict

01002 Disconnect error

Exception Codes and Messages

383

SQLSTATE Mapped Message

01003 NULL value eliminated in set function

01004 String data, right-truncated

01005 Insufficient item descriptor areas

01006 Privilege not revoked

01007 Privilege not granted

01008 Implicit zero-bit padding

01100 Statement reset to unprepared

01101 Ongoing transaction has been committed

01102 Ongoing transaction has been rolled back

SQLCLASS 02 (No Data)

02000 No data found or no rows affected

SQLCLASS 07 (Dynamic SQL error)

07000 Dynamic SQL error

07001 Wrong number of input parameters

07002 Wrong number of output parameters

07003 Cursor specification cannot be executed

07004 USING clause required for dynamic parameters

07005 Prepared statement not a cursor-specification

07006 Restricted data type attribute violation

07007 USING clause required for result fields

07008 Invalid descriptor count

07009 Invalid descriptor index

SQLCLASS 08 (Connection Exception)

08001 Client unable to establish connection

08002 Connection name in use

08003 Connection does not exist

08004 Server rejected the connection

08006 Connection failure

08007 Transaction resolution unknown

SQLCLASS 0A (Feature Not Supported)

0A000 Feature Not Supported

Exception Codes and Messages

384

SQLSTATE Mapped Message

SQLCLASS 0B (Invalid Transaction Initiation)

0B000 Invalid transaction initiation

SQLCLASS 0L (Invalid Grantor)

0L000 Invalid grantor

SQLCLASS 0P (Invalid Role Specification)

0P000 Invalid role specification

SQLCLASS 0U (Attempt to Assign to Non-Updatable Column)

0U000 Attempt to assign to non-updatable column

SQLCLASS 0V (Attempt to Assign to Ordering Column)

0V000 Attempt to assign to Ordering column

SQLCLASS 20 (Case Not Found For Case Statement)

20000 Case not found for case statement

SQLCLASS 21 (Cardinality Violation)

21000 Cardinality violation

21S01 Insert value list does not match column list

21S02 Degree of derived table does not match column list

SQLCLASS 22 (Data Exception)

22000 Data exception

22001 String data, right truncation

22002 Null value, no indicator parameter

22003 Numeric value out of range

22004 Null value not allowed

22005 Error in assignment

22006 Null value in field reference

22007 Invalid datetime format

22008 Datetime field overflow

22009 Invalid time zone displacement value

2200A Null value in reference target

2200B Escape character conflict

2200C Invalid use of escape character

2200D Invalid escape octet

Exception Codes and Messages

385

SQLSTATE Mapped Message

2200E Null value in array target

2200F Zero-length character string

2200G Most specific type mismatch

22010 Invalid indicator parameter value

22011 Substring error

22012 Division by zero

22014 Invalid update value

22015 Interval field overflow

22018 Invalid character value for cast

22019 Invalid escape character

2201B Invalid regular expression

2201C Null row not permitted in table

22012 Division by zero

22020 Invalid limit value

22021 Character not in repertoire

22022 Indicator overflow

22023 Invalid parameter value

22024 Character string not properly terminated

22025 Invalid escape sequence

22026 String data, length mismatch

22027 Trim error

22028 Row already exists

2202D Null instance used in mutator function

2202E Array element error

2202F Array data, right truncation

SQLCLASS 23 (Integrity Constraint Violation)

23000 Integrity constraint violation

SQLCLASS 24 (Invalid Cursor State)

24000 Invalid cursor state

24504
The cursor identified in the UPDATE, DELETE, SET, or GET statement is not
positioned on a row

Exception Codes and Messages

386

SQLSTATE Mapped Message

SQLCLASS 25 (Invalid Transaction State)

25000 Invalid transaction state

25S01 Transaction state

25S02 Transaction is still active

25S03 Transaction is rolled back

SQLCLASS 26 (Invalid SQL Statement Name)

26000 Invalid SQL statement name

SQLCLASS 27 (Triggered Data Change Violation)

27000 Triggered data change violation

SQLCLASS 28 (Invalid Authorization Specification)

28000 Invalid authorization specification

SQLCLASS 2B (Dependent Privilege Descriptors Still Exist)

2B000 Dependent privilege descriptors still exist

SQLCLASS 2C (Invalid Character Set Name)

2C000 Invalid character set name

SQLCLASS 2D (Invalid Transaction Termination)

2D000 Invalid transaction termination

SQLCLASS 2E (Invalid Connection Name)

2E000 Invalid connection name

SQLCLASS 2F (SQL Routine Exception)

2F000 SQL routine exception

2F002 Modifying SQL-data not permitted

2F003 Prohibited SQL-statement attempted

2F004 Reading SQL-data not permitted

2F005 Function executed no return statement

SQLCLASS 33 (Invalid SQL Descriptor Name)

33000 Invalid SQL descriptor name

SQLCLASS 34 (Invalid Cursor Name)

34000 Invalid cursor name

SQLCLASS 35 (Invalid Condition Number)

35000 Invalid condition number

Exception Codes and Messages

387

SQLSTATE Mapped Message

SQLCLASS 36 (Cursor Sensitivity Exception)

36001 Request rejected

36002 Request failed

SQLCLASS 37 (Invalid Identifier)

37000 Invalid identifier

37001 Identifier too long

SQLCLASS 38 (External Routine Exception)

38000 External routine exception

SQLCLASS 39 (External Routine Invocation Exception)

39000 External routine invocation exception

SQLCLASS 3B (Invalid Save Point)

3B000 Invalid save point

SQLCLASS 3C (Ambiguous Cursor Name)

3C000 Ambiguous cursor name

SQLCLASS 3D (Invalid Catalog Name)

3D000 Invalid catalog name

3D001 Catalog name not found

SQLCLASS 3F (Invalid Schema Name)

3F000 Invalid schema name

SQLCLASS 40 (Transaction Rollback)

40000 Ongoing transaction has been rolled back

40001 Serialization failure

40002 Transaction integrity constraint violation

40003 Statement completion unknown

SQLCLASS 42 (Syntax Error or Access Violation)

42000 Syntax error or access violation

42702 Ambiguous column reference

42725 Ambiguous function reference

42818 The operands of an operator or function are not compatible

42S01 Base table or view already exists

42S02 Base table or view not found

Exception Codes and Messages

388

SQLSTATE Mapped Message

42S11 Index already exists

42S12 Index not found

42S21 Column already exists

42S22 Column not found

SQLCLASS 44 (With Check Option Violation)

44000 WITH CHECK OPTION Violation

SQLCLASS 45 (Unhandled User-defined Exception)

45000 Unhandled user-defined exception

SQLCLASS 54 (Program Limit Exceeded)

54000 Program limit exceeded

54001 Statement too complex

54011 Too many columns

54023 Too many arguments

SQLCLASS HY (CLI-specific Condition)

HY000 CLI-specific condition

HY001 Memory allocation error

HY003 Invalid data type in application descriptor

HY004 Invalid data type

HY007 Associated statement is not prepared

HY008 Operation canceled

HY009 Invalid use of null pointer

HY010 Function sequence error

HY011 Attribute cannot be set now

HY012 Invalid transaction operation code

HY013 Memory management error

HY014 Limit on the number of handles exceeded

HY015 No cursor name available

HY016 Cannot modify an implementation row descriptor

HY017 Invalid use of an automatically allocated descriptor handle

HY018 Server declined the cancellation request

HY019 Non-string data cannot be sent in pieces

Exception Codes and Messages

389

SQLSTATE Mapped Message

HY020 Attempt to concatenate a null value

HY021 Inconsistent descriptor information

HY024 Invalid attribute value

HY055 Non-string data cannot be used with string routine

HY090 Invalid string length or buffer length

HY091 Invalid descriptor field identifier

HY092 Invalid attribute identifier

HY095 Invalid Function ID specified

HY096 Invalid information type

HY097 Column type out of range

HY098 Scope out of range

HY099 Nullable type out of range

HY100 Uniqueness option type out of range

HY101 Accuracy option type out of range

HY103 Invalid retrieval code

HY104 Invalid Length/Precision value

HY105 Invalid parameter type

HY106 Invalid fetch orientation

HY107 Row value out of range

HY109 Invalid cursor position

HY110 Invalid driver completion

HY111 Invalid bookmark value

HYC00 Optional feature not implemented

HYT00 Timeout expired

HYT01 Connection timeout expired

SQLCLASS XX (Internal Error)

XX000 Internal error

XX001 Data corrupted

XX002 Index corrupted

Exception Codes and Messages

390

SQLCODE and GDSCODE
Error Codes and Descriptions

The table provides the SQLCODE groupings, the numeric and symbolic values for the GDSCODE errors and
the message texts.

Note

SQLCODE has been used for many years and should be considered as deprecated now. Support for SQLCODE
is likely to be dropped in a future version.

Table B.2. SQLCODE and GDSCODE Error Codes and Message Texts (1)

SQL-
CODE

GDSCODE Symbol Message Text

101 335544366 Segment
Segment buffer length shorter than ex-
pected

100 335544338 from_no_match No match for first value expression

100 335544354 no_record Invalid database key

100 335544367 segstr_eof
Attempted retrieval of more segments
than exist

100 335544374 stream_eof
Attempt to fetch past the last record in a
record stream

0 335741039 gfix_opt_SQL_dialect -sql_dialect | set database dialect n

0 335544875 bad_debug_format Bad debug info format

-84 335544554 nonsql_security_rel
Table/procedure has non-SQL security
class defined

-84 335544555 nonsql_security_fld
Column has non-SQL security class de-
fined

-84 335544668 dsql_procedure_use_err Procedure @1 does not return any values

-85 335544747 usrname_too_long
The username entered is too long. Maxi-
mum length is 31 bytes

-85 335544748 password_too_long
The password specified is too long. Maxi-
mum length is @1 bytes

-85 335544749 usrname_required A username is required for this operation

-85 335544750 password_required A password is required for this operation

-85 335544751 bad_protocol The network protocol specified is invalid

-85 335544752 dup_usrname_found

Exception Codes and Messages

391

SQL-
CODE

GDSCODE Symbol Message Text

A duplicate user name was found in the
security database

-85 335544753 usrname_not_found
The user name specified was not found in
the security database

-85 335544754 error_adding_sec_record
An error occurred while attempting to add
the user

-85 335544755 error_modifying_sec_record
An error occurred while attempting to
modify the user record

-85 335544756 error_deleting_sec_record
An error occurred while attempting to
delete the user record

-85 335544757 error_updating_sec_db
An error occurred while updating the se-
curity database

-103 335544571 dsql_constant_err Data type for constant unknown

-104 336003075 dsql_transitional_numeric
Precision 10 to 18 changed from DOU-
BLE PRECISION in SQL dialect 1 to 64-
bit scaled integer in SQL dialect 3

-104 336003077 sql_db_dialect_dtype_unsupport
Database SQL dialect @1 does not sup-
port reference to @2 datatype

-104 336003087 dsql_invalid_label Label @1 @2 in the current scope

-104 336003088 dsql_datatypes_not_comparable
Datatypes @1are not comparable in ex-
pression @2

-104 335544343 invalid_blr Invalid request BLR at offset @1

-104 335544390 syntaxerr
BLR syntax error: expected @1 at offset
@2, encountered @3

-104 335544425 ctxinuse Context already in use (BLR error)

-104 335544426 ctxnotdef Context not defined (BLR error)

-104 335544429 badparnum Bad parameter number

-104 335544440 bad_msg_vec -

-104 335544456 invalid_sdl
Invalid slice description language at offset
@1

-104 335544570 dsql_command_err Invalid command

-104 335544579 dsql_internal_err Internal error

-104 335544590 dsql_dup_option Option specified more than once

-104 335544591 dsql_tran_err Unknown transaction option

-104 335544592 dsql_invalid_array Invalid array reference

Exception Codes and Messages

392

SQL-
CODE

GDSCODE Symbol Message Text

-104 335544608 command_end_err Unexpected end of command

-104 335544612 token_err Token unknown

-104 335544634 dsql_token_unk_err Token unknown - line @1, column @2

-104 335544709 dsql_agg_ref_err Invalid aggregate reference

-104 335544714 invalid_array_id Invalid blob id

-104 335544730 cse_not_supported
Client/Server Express not supported in
this release

-104 335544743 token_too_long Token size exceeds limit

-104 335544763 invalid_string_constant
A string constant is delimited by double
quotes

-104 335544764 transitional_date DATE must be changed to TIMESTAMP

-104 335544796 sql_dialect_datatype_unsupport
Client SQL dialect @1 does not support
reference to @2 datatype

-104 335544798 depend_on_uncommitted_rel
You created an indirect dependency on
uncommitted metadata. You must roll
back the current transaction

-104 335544821 dsql_column_pos_err
Invalid column position used in the @1
clause

-104 335544822 dsql_agg_where_err
Cannot use an aggregate function in a
WHERE clause, use HAVING instead

-104 335544823 dsql_agg_group_err
Cannot use an aggregate function in a
GROUP BY clause

-104 335544824 dsql_agg_column_err
Invalid expression in the @1 (not con-
tained in either an aggregate function or
the GROUP BY clause)

-104 335544825 dsql_agg_having_err
Invalid expression in the @1 (neither
an aggregate function nor a part of the
GROUP BY clause)

-104 335544826 dsql_agg_nested_err
Nested aggregate functions are not al-
lowed

-104 335544849 malformed_string Malformed string

-104 335544851 command_end_err2
Unexpected end of command- line @1,
column @2

-104 336397215 dsql_max_sort_items Cannot sort on more than 255 items

-104 336397216 dsql_max_group_items Cannot group on more than 255 items

Exception Codes and Messages

393

SQL-
CODE

GDSCODE Symbol Message Text

-104 336397217 dsql_conflicting_sort_field
Cannot include the same field (@1.@2)
twice in the ORDER BY clause with con-
flicting sorting options

-104 336397218 dsql_derived_table_more_columns
Column list from derived table @1 has
more columns than the number of items in
its SELECT statement

-104 336397219 dsql_derived_table_less_columns
Column list from derived table @1 has
less columns than the number of items in
its SELECT statement

-104 336397220 dsql_derived_field_unnamed
No column name specified for column
number @1 in derived table @2

-104 336397221 dsql_derived_field_dup_name
Column @1 was specified multiple times
for derived table @2

-104 336397222 dsql_derived_alias_select
Internal dsql error: alias type expected by
pass1_expand_select_node

-104 336397223 dsql_derived_alias_field
Internal dsql error: alias type expected by
pass1_field

-104 336397224 dsql_auto_field_bad_pos
Internal dsql error: column position out of
range in pass1_union_auto_cast

-104 336397225 dsql_cte_wrong_reference
Recursive CTE member (@1) can refer it-
self only in FROM clause

-104 336397226 dsql_cte_cycle CTE '@1' has cyclic dependencies

-104 336397227 dsql_cte_outer_join
Recursive member of CTE can't be mem-
ber of an outer join

-104 336397228 dsql_cte_mult_references
Recursive member of CTE can't reference
itself more than once

-104 336397229 dsql_cte_not_a_union Recursive CTE (@1) must be an UNION

-104 336397230 dsql_cte_nonrecurs_after_recurs
CTE '@1' defined non-recursive member
after recursive

-104 336397231 dsql_cte_wrong_clause
Recursive member of CTE '@1' has @2
clause

-104 336397232 dsql_cte_union_all
Recursive members of CTE (@1) must be
linked with another members via UNION
ALL

-104 336397233 dsql_cte_miss_nonrecursive
Non-recursive member is missing in CTE
'@1'

-104 336397234 dsql_cte_nested_with WITH clause can't be nested

Exception Codes and Messages

394

SQL-
CODE

GDSCODE Symbol Message Text

-104 336397235 dsql_col_more_than_once_using
Column @1 appears more than once in
USING clause

-104 336397237 dsql_cte_not_used CTE "@1" is not used in query

-105 335544702 like_escape_invalid Invalid ESCAPE sequence

-105 335544789 extract_input_mismatch
Specified EXTRACT part does not exist
in input datatype

-150 335544360 read_only_rel Attempted update of read-only table

-150 335544362 read_only_view Cannot update read-only view @1

-150 335544446 non_updatable Not updatable

-150 335544546 constaint_on_view Cannot define constraints on views

-151 335544359 read_only_field Attempted update of read - only column

-155 335544658 dsql_base_table
@1 is not a valid base table of the speci-
fied view

-157 335544598 specify_field_err
Must specify column name for view se-
lect expression

-158 335544599 num_field_err
Number of columns does not match select
list

-162 335544685 no_dbkey
Dbkey not available for multi - table
views

-170 335544512 prcmismat
Input parameter mismatch for procedure
@1

-170 335544619 extern_func_err
External functions cannot have morethan
10 parametrs

-170 335544850 prc_out_param_mismatch
Output parameter mismatch for procedure
@1

-171 335544439 funmismat Function @1 could not be matched

-171 335544458 invalid_dimension
Column not array or invalid dimensions
(expected @1, encountered @2)

-171 335544618 return_mode_err
Return mode by value not allowed for this
data type

-171 335544873 array_max_dimensions
Array data type can use up to @1 dimen-
sions

-172 335544438 funnotdef Function @1 is not defined

-203 335544708 dyn_fld_ambiguous Ambiguous column reference

Exception Codes and Messages

395

SQL-
CODE

GDSCODE Symbol Message Text

-204 336003085 dsql_ambiguous_field_name
Ambiguous field name between @1 and
@2

-204 335544463 gennotdef Generator @1 is not defined

-204 335544502 stream_not_defined Reference to invalid stream number

-204 335544509 charset_not_found CHARACTER SET @1 is not defined

-204 335544511 prcnotdef Procedure @1 is not defined

-204 335544515 codnotdef Status code @1 unknown

-204 335544516 xcpnotdef Exception @1 not defined

-204 335544532 ref_cnstrnt_notfound
Name of Referential Constraint not de-
fined in constraints table

-204 335544551 grant_obj_notfound
Could not find table/procedure for
GRANT

-204 335544568 text_subtype
Implementation of text subtype @1 not
located

-204 335544573 dsql_datatype_err Data type unknown

-204 335544580 dsql_relation_err Table unknown

-204 335544581 dsql_procedure_err Procedure unknown

-204 335544588 collation_not_found
COLLATION @1 for CHARACTER
SET @2 is not defined

-204 335544589 collation_not_for_charset
COLLATION @1 is not valid for speci-
fied CHARACTER SET

-204 335544595 dsql_trigger_err Trigger unknown

-204 335544620 alias_conflict_err
Alias @1 conflicts with an alias in the
same statement

-204 335544621 procedure_conflict_error
Alias @1 conflicts with a procedure in the
same statement

-204 335544622 relation_conflict_err
Alias @1 conflicts with a table in the
same statement

-204 335544635 dsql_no_relation_alias
There is no alias or table named @1 at
this scope level

-204 335544636 indexname There is no index @1 for table @2

-204 335544640 collation_requires_text
Invalid use of CHARACTER SET or
COLLATE

-204 335544662 dsql_blob_type_unknown BLOB SUB_TYPE @1 is not defined

Exception Codes and Messages

396

SQL-
CODE

GDSCODE Symbol Message Text

-204 335544759 bad_default_value
Can not define a not null column with
NULL as default value

-204 335544760 invalid_clause Invalid clause - '@1'

-204 335544800 too_many_contexts
Too many Contexts of Relation/Proce-
dure/Views. Maximum allowed is 255

-204 335544817 bad_limit_param
Invalid parameter to FIRST.Only integers
>= 0 are allowed

-204 335544818 bad_skip_param
Invalid parameter to SKIP. Only integers
>= 0 are allowed

-204 335544837 bad_substring_offset
Invalid offset parameter @1 to SUB-
STRING. Only positive integers are al-
lowed

-204 335544853 bad_substring_length
Invalid length parameter @1 to SUB-
STRING. Negative integers are not al-
lowed

-204 335544854 charset_not_installed CHARACTER SET @1 is not installed

-204 335544855 collation_not_installed
COLLATION @1 for CHARACTER
SET @2 is not installed

-204 335544867 subtype_for_internal_use
Blob sub_types bigger than 1 (text) are
for internal use only

-205 335544396 fldnotdef Column @1 is not defined in table @2

-205 335544552 grant_fld_notfound Could not find column for GRANT

-205 335544883 fldnotdef2
Column @1 is not defined in procedure
@2

-206 335544578 dsql_field_err Column unknown

-206 335544587 dsql_blob_err Column is not a BLOB

-206 335544596 dsql_subselect_err Subselect illegal in this context

-206 336397208 dsql_line_col_error At line @1, column @2

-206 336397209 dsql_unknown_pos At unknown line and column

-206 336397210 dsql_no_dup_name
Column @1 cannot be repeated in @2
statement

-208 335544617 order_by_err Invalid ORDER BY clause

-219 335544395 relnotdef Table @1 is not defined

-219 335544872 domnotdef Domain @1 is not defined

-230 335544487 walw_err WAL Writer error

Exception Codes and Messages

397

SQL-
CODE

GDSCODE Symbol Message Text

-231 335544488 logh_small Log file header of @1 too small

-232 335544489 logh_inv_version Invalid version of log file @1

-233 335544490 logh_open_flag
Log file @1 not latest in the chain but
open flag still set

-234 335544491 logh_open_flag2
Log file @1 not closed properly; database
recovery may be required

-235 335544492 logh_diff_dbname
Database name in the log file @1 is dif-
ferent

-236 335544493 logf_unexpected_eof
Unexpected end of log file @1 at offset
@2

-237 335544494 logr_incomplete
Incomplete log record at offset @1 in log
file @2

-238 335544495 logr_header_small2
Log record header too small at offset @1
in log file @

-239 335544496 logb_small
Log block too small at offset @1 in log
file @2

-239 335544691 cache_too_small
Insufficient memory to allocate page
buffer cache

-239 335544693 log_too_small Log size too small

-239 335544694 partition_too_small Log partition size too small

-243 335544500 no_wal Database does not use Write-ahead Log

-257 335544566 start_cm_for_wal
WAL defined; Cache Manager must be
started first

-260 335544690 cache_redef Cache redefined

-260 335544692 log_redef Log redefined

-261 335544695 partition_not_supp
Partitions not supported in series of log
file specification

-261 335544696 log_length_spec
Total length of a partitioned log must be
specified

-281 335544637 no_stream_plan Table @1 is not referenced in plan

-282 335544638 stream_twice
Table @1 is referenced more than once in
plan; use aliases to distinguish

-282 335544643 dsql_self_join
The table @1 is referenced twice; use
aliases to differentiate

Exception Codes and Messages

398

SQL-
CODE

GDSCODE Symbol Message Text

-282 335544659 duplicate_base_table
Table @1 is referenced twice in view; use
an alias to distinguish

-282 335544660 view_alias
View @1 has more than one base table;
use aliases to distinguish

-282 335544710 complex_view
Navigational stream @1 references a
view with more than one base table

-283 335544639 stream_not_found
Table @1 is referenced in the plan but not
the from list

-284 335544642 index_unused
Index @1 cannot be used in the specified
plan

-291 335544531 primary_key_notnull
Column used in a PRIMARY constraint
must be NOT NULL

-292 335544534 ref_cnstrnt_update
Cannot update constraints (RDB
$REF_CONSTRAINTS)

-293 335544535 check_cnstrnt_update
Cannot update constraints (RDB
$CHECK_CONSTRAINTS)

-294 335544536 check_cnstrnt_del
Cannot delete CHECK constraint entry
(RDB$CHECK_CONSTRAINTS)

-295 335544545 rel_cnstrnt_update
Cannot update constraints (RDB
$RELATION_CONSTRAINTS)

-296 335544547 invld_cnstrnt_type
Internal gds software consistency check
(invalid RDB$CONSTRAINT_TYPE)

-297 335544558 check_constraint
Operation violates check constraint @1
on view or table @2

-313 336003099 upd_ins_doesnt_match_pk
UPDATE OR INSERT field list does not
match primary key of table @1

-313 336003100 upd_ins_doesnt_ match _matching
UPDATE OR INSERT field list does not
match MATCHING clause

-313 335544669 dsql_count_mismatch
Count of column list and variable list do
not match

-314 335544565 transliteration_failed
Cannot transliterate character between
character sets

-315 336068815 dyn_dtype_invalid
Cannot change datatype for column
@1.Changing datatype is not supported
for BLOB or ARRAY columns

-383 336068814 dyn_dependency_exists
Column @1 from table @2 is referenced
in @3

Exception Codes and Messages

399

SQL-
CODE

GDSCODE Symbol Message Text

-401 335544647 invalid_operator
Invalid comparison operator for find oper-
ation

-402 335544368 segstr_no_op Attempted invalid operation on a BLOB

-402 335544414 blobnotsup
BLOB and array data types are not sup-
ported for @1 operation

-402 335544427 datnotsup Data operation not supported

-406 335544457 out_of_bounds Subscript out of bounds

-407 335544435 nullsegkey Null segment of UNIQUE KEY

-413 335544334 convert_error Conversion error from string "@1"

Table B.3. SQLCODE and GDSCODE Error Codes and Message Texts (2)

SQL-
CODE

GDSCODE Symbol Message Text

-413 335544454 nofilter
Filter not found to convert type @1 to
type @2

-413 335544860 blob_convert_error
Unsupported conversion to target type
BLOB (subtype @1)

-413 335544861 array_convert_error
Unsupported conversion to target type
ARRAY

-501 335544577 dsql_cursor_close_err Attempt to reclose a closed cursor

-502 336003090 dsql_cursor_redefined
Statement already has a cursor @1 as-
signed

-502 336003091 dsql_cursor_not_found
Cursor @1 is not found in the current
context

-502 336003092 dsql_cursor_exists
Cursor @1 already exists in the current
context

-502 336003093 dsql_cursor_rel_ambiguous Relation @1 is ambiguous in cursor @2

-502 336003094 dsql_cursor_rel_not_found Relation @1 is not found in cursor @2

-502 336003095 dsql_cursor_not_open Cursor is not open

-502 335544574 dsql_decl_err Invalid cursor declaration

-502 335544576 dsql_cursor_open_err Attempt to reopen an open cursor

-504 336003089 dsql_cursor_invalid Empty cursor name is not allowed

-504 335544572 dsql_cursor_err Invalid cursor reference

-508 335544348 no_cur_rec No current record for fetch operation

Exception Codes and Messages

400

SQL-
CODE

GDSCODE Symbol Message Text

-510 335544575 dsql_cursor_update_err Cursor @1 is not updatable

-518 335544582 dsql_request_err Request unknown

-519 335544688 dsql_open_cursor_request
The prepare statement identifies a prepare
statement with an open cursor

-530 335544466 foreign_key
Violation of FOREIGN KEY constraint
"@1" on table "@2"

-530 335544838 foreign_key_target_doesnt_exist
Foreign key reference target does not ex-
ist

-530 335544839 foreign_key_references_present
Foreign key references are present for the
record

-531 335544597 dsql_crdb_prepare_err
Cannot prepare a CREATE DATABASE/
SCHEMA statement

-532 335544469 trans_invalid Transaction marked invalid by I/O error

-551 335544352 no_priv No permission for @1 access to @2 @3

-551 335544790 insufficient_svc_privileges
Service @1 requires SYSDBA permis-
sions. Reattach to the Service Manager
using the SYSDBA account

-552 335544550 not_rel_owner
Only the owner of a table may reassign
ownership

-552 335544553 grant_nopriv
User does not have GRANT privileges for
operation

-552 335544707 grant_nopriv_on_base
User does not have GRANT privileges on
base table/view for operation

-553 335544529 existing_priv_mod Cannot modify an existing user privilege

-595 335544645 stream_crack The current position is on a crack

-596 335544644 stream_bof
Illegal operation when at beginning of
stream

-597 335544632 dsql_file_length_err
Preceding file did not specify length, so
@1 must include starting page number

-598 335544633 dsql_shadow_number_err
Shadow number must be a positive inte-
ger

-599 335544607 node_err Gen.c: node not supported

-599 335544625 node_name_err
A node name is not permitted in a sec-
ondary, shadow, cache or log file name

-600 335544680 crrp_data_err Sort error: corruption in data structure

Exception Codes and Messages

401

SQL-
CODE

GDSCODE Symbol Message Text

-601 335544646 db_or_file_exists Database or file exists

-604 335544593 dsql_max_arr_dim_exceeded Array declared with too many dimensions

-604 335544594 dsql_arr_range_error Illegal array dimension range

-605 335544682 dsql_field_ref Inappropriate self-reference of column

-607 336003074 dsql_dbkey_from_non_table
Cannot SELECT RDB$DB_KEY from a
stored procedure

-607 336003086 dsql_udf_return_pos_err
External function should have return posi-
tion between 1 and @1

-607 336003096 dsql_type_not_supp_ext_tab
Data type @1 is not supported for EX-
TERNAL TABLES. Relation '@2', field
'@3'

-607 335544351 no_meta_update Unsuccessful metadata update

-607 335544549 systrig_update Cannot modify or erase a system trigger

-607 335544657 dsql_no_blob_array
Array/BLOB/DATE data types not al-
lowed in arithmetic

-607 335544746 reftable_requires_pk
"REFERENCES table" without "(col-
umn)" requires PRIMARY KEY on refer-
enced table

-607 335544815 generator_name GENERATOR @1

-607 335544816 udf_name UDF @1

-607 335544858 must_have_phys_field
Can't have relation with only computed
fields or constraints

-607 336397206 dsql_table_not_found Table @1 does not exist

-607 336397207 dsql_view_not_found View @1 does not exist

-607 336397212 dsql_no_array_computed
Array and BLOB data types not allowed
in computed field

-607 336397214 dsql_only_can_subscript_array
Scalar operator used on field @1 which is
not an array

-612 336068812 dyn_domain_name_exists
Cannot rename domain @1 to @2. A do-
main with that name already exists

-612 336068813 dyn_field_name_exists
Cannot rename column @1 to @2.A col-
umn with that name already exists in table
@3

-615 335544475 relation_lock
Lock on table @1 conflicts with existing
lock

Exception Codes and Messages

402

SQL-
CODE

GDSCODE Symbol Message Text

-615 335544476 record_lock
Requested record lock conflicts with ex-
isting lock

-615 335544507 range_in_use Refresh range number @1 already in use

-616 335544530 primary_key_ref
Cannot delete PRIMARY KEY being
used in FOREIGN KEY definition

-616 335544539 integ_index_del
Cannot delete index used by an Integrity
Constraint

-616 335544540 integ_index_mod
Cannot modify index used by an Integrity
Constraint

-616 335544541 check_trig_del
Cannot delete trigger used by a CHECK
Constraint

-616 335544543 cnstrnt_fld_del
Cannot delete column being used in an In-
tegrity Constraint

-616 335544630 dependency There are @1 dependencies

-616 335544674 del_last_field Last column in a table cannot be deleted

-616 335544728 integ_index_deactivate
Cannot deactivate index used by an in-
tegrity constraint

-616 335544729 integ_deactivate_primary
Cannot deactivate index used by a PRI-
MARY/UNIQUE constraint

-617 335544542 check_trig_update
Cannot update trigger used by a CHECK
Constraint

-617 335544544 cnstrnt_fld_rename
Cannot rename column being used in an
Integrity Constraint

-618 335544537 integ_index_seg_del
Cannot delete index segment used by an
Integrity Constraint

-618 335544538 integ_index_seg_mod
Cannot update index segment used by an
Integrity Constraint

-625 335544347 not_valid
Validation error for column @1, value
"@2"

-625 335544879 not_valid_for_var
Validation error for variable @1, value
"@2"

-625 335544880 not_valid_for Validation error for @1, value "@2"

-637 335544664 dsql_duplicate_spec
Duplicate specification of @1- not sup-
ported

-637 336397213 dsql_implicit_domain_name
Implicit domain name @1 not allowed in
user created domain

Exception Codes and Messages

403

SQL-
CODE

GDSCODE Symbol Message Text

-660 336003098 primary_key_required Primary key required on table @1

-660 335544533 foreign_key_notfound
Non-existent PRIMARY or UNIQUE
KEY specified for FOREIGN KEY

-660 335544628 idx_create_err Cannot create index @1

-663 335544624 idx_seg_err Segment count of 0 defined for index @1

-663 335544631 idx_key_err Too many keys defined for index @1

-663 335544672 key_field_err
Too few key columns found for index @1
(incorrect column name?)

-664 335544434 keytoobig
Key size exceeds implementation restric-
tion for index "@1"

-677 335544445 ext_err @1 extension error

-685 335544465 bad_segstr_type Invalid BLOB type for operation

-685 335544670 blob_idx_err
Attempt to index BLOB column in index
@1

-685 335544671 array_idx_err
Attempt to index array column in index
@1

-689 335544403 badpagtyp
Page @1 is of wrong type (expected @2,
found @3)

-689 335544650 page_type_err Wrong page type

-690 335544679 no_segments_err
Segments not allowed in expression index
@1

-691 335544681 rec_size_err New record size of @1 bytes is too big

-692 335544477 max_idx
Maximum indexes per table (@1) exceed-
ed

-693 335544663 req_max_clones_exceeded
Too many concurrent executions of the
same request

-694 335544684 no_field_access Cannot access column @1 in view @2

-802 335544321 arith_except
Arithmetic exception, numeric overflow,
or string truncation

-802 335544836 concat_overflow
Concatenation overflow. Resulting string
cannot exceed 32K in length

-803 335544349 no_dup
Attempt to store duplicate value (visible
to active transactions) in unique index
"@1"

Exception Codes and Messages

404

SQL-
CODE

GDSCODE Symbol Message Text

-803 335544665 unique_key_violation
Violation of PRIMARY or UNIQUE
KEY constraint "@1" on table "@2"

-804 336003097 dsql_feature_not_supported_ods
Feature not supported on ODS version
older than @1.@2

-804 335544380 wronumarg Wrong number of arguments on call

-804 335544583 dsql_sqlda_err
SQLDA missing or incorrect version, or
incorrect number/type of variables

-804 335544584 dsql_var_count_err
Count of read - write columns does not
equal count of values

-804 335544586 dsql_function_err Function unknown

-804 335544713 dsql_sqlda_value_err Incorrect values within SQLDA structure

-804 336397205 dsql_too_old_ods
ODS versions before ODS@1 are not
supported

-806 335544600 col_name_err
Only simple column names permitted for
VIEW WITH CHECK OPTION

-807 335544601 where_err
No WHERE clause for VIEW WITH
CHECK OPTION

-808 335544602 table_view_err
Only one table allowed for VIEW WITH
CHECK OPTION

-809 335544603 distinct_err
DISTINCT, GROUP or HAVING not
permitted for VIEW WITH CHECK OP-
TION

-810 335544605 subquery_err
No subqueries permitted for VIEW WITH
CHECK OPTION

-811 335544652 sing_select_err Multiple rows in singleton select

-816 335544651 ext_readonly_err
Cannot insert because the file is readonly
or is on a read only medium

-816 335544715 extfile_uns_op
Operation not supported for EXTERNAL
FILE table @1

-817 336003079 isc_sql_dialect_conflict_num
DB dialect @1 and client dialect @2 con-
flict with respect to numeric precision @3

-817 336003101 upd_ins_with_complex_view
UPDATE OR INSERT without MATCH-
ING could not be used with views based
on more than one table

-817 336003102 dsql_incompatible_trigger_type Incompatible trigger type

-817 336003103 dsql_db_trigger_type_cant_change Database trigger type can't be changed

Exception Codes and Messages

405

SQL-
CODE

GDSCODE Symbol Message Text

-817 335544361 read_only_trans
Attempted update during read - only
transaction

-817 335544371 segstr_no_write Attempted write to read-only BLOB

-817 335544444 read_only Operation not supported

-817 335544765 read_only_database Attempted update on read - only database

-817 335544766 must_be_dialect_2_and_up
SQL dialect @1 is not supported in this
database

-817 335544793 ddl_not_allowed_by_db_sql_dial
Metadata update statement is not allowed
by the current database SQL dialect @1

-820 335544356 obsolete_metadata Metadata is obsolete

-820 335544379 wrong_ods
Unsupported on - disk structure for file
@1; found @2.@3, support @4.@5

-820 335544437 wrodynver Wrong DYN version

-820 335544467 high_minor
Minor version too high found @1 expect-
ed @2

-820 335544881 need_difference
Difference file name should be set explic-
itly for database on raw device

-823 335544473 invalid_bookmark Invalid bookmark handle

-824 335544474 bad_lock_level Invalid lock level @1

-825 335544519 bad_lock_handle Invalid lock handle

-826 335544585 dsql_stmt_handle Invalid statement handle

-827 335544655 invalid_direction Invalid direction for find operation

-827 335544718 invalid_key Invalid key for find operation

-828 335544678 inval_key_posn Invalid key position

-829 336068816 dyn_char_fld_too_small
New size specified for column @1 must
be at least @2 characters

-829 336068817 dyn_invalid_dtype_conversion
Cannot change datatype for @1.Conver-
sion from base type @2 to @3 is not sup-
ported

-829 336068818 dyn_dtype_conv_invalid
Cannot change datatype for column @1
from a character type to a non-character
type

-829 336068829 max_coll_per_charset
Maximum number of collations per char-
acter set exceeded

-829 336068830 invalid_coll_attr Invalid collation attributes

Exception Codes and Messages

406

SQL-
CODE

GDSCODE Symbol Message Text

-829 336068852 dyn_scale_too_big
New scale specified for column @1 must
be at most @2

-829 336068853 dyn_precision_too_small
New precision specified for column @1
must be at least @2

-829 335544616 field_ref_err Invalid column reference

-830 335544615 field_aggregate_err Column used with aggregate

-831 335544548 primary_key_exists
Attempt to define a second PRIMARY
KEY for the same table

-832 335544604 key_field_count_err
FOREIGN KEY column count does not
match PRIMARY KEY

-833 335544606 expression_eval_err Expression evaluation not supported

-833 335544810 date_range_exceeded Value exceeds the range for valid dates

-834 335544508 range_not_found Refresh range number @1 not found

-835 335544649 bad_checksum Bad checksum

-836 335544517 except Exception @1

-836 335544848 except2 Exception @1

-837 335544518 cache_restart Restart shared cache manager

-838 335544560 shutwarn Database @1 shutdown in @2 seconds

-841 335544677 version_err Too many versions

-842 335544697 precision_err Precision must be from 1 to 18

-842 335544698 scale_nogt Scale must be between zero and precision

-842 335544699 expec_short Short integer expected

-842 335544700 expec_long Long integer expected

-842 335544701 expec_ushort Unsigned short integer expected

-842 335544712 expec_positive Positive value expected

-901 335740929 gfix_db_name Database file name (@1) already given

-901 336330753 gbak_unknown_switch Found unknown switch

-901 336920577 gstat_unknown_switch Found unknown switch

-901 336986113 fbsvcmgr_bad_am Wrong value for access mode

-901 335740930 gfix_invalid_sw Invalid switch @1

-901 335544322 bad_dbkey Invalid database key

-901 336986114 fbsvcmgr_bad_wm Wrong value for write mode

Exception Codes and Messages

407

SQL-
CODE

GDSCODE Symbol Message Text

-901 336330754 gbak_page_size_missing Page size parameter missing

-901 336920578 gstat_retry Please retry, giving a database name

-901 336986115 fbsvcmgr_bad_rs Wrong value for reserve space

-901 336920579 gstat_wrong_ods
Wrong ODS version, expected @1, en-
countered @2

-901 336330755 gbak_page_size_toobig
Page size specified (@1) greater than lim-
it (16384 bytes)

-901 335740932 gfix_incmp_sw Incompatible switch combination

-901 336920580 gstat_unexpected_eof Unexpected end of database file

-901 336330756 gbak_redir_ouput_missing
Redirect location for output is not speci-
fied

-901 336986116 fbsvcmgr_info_err
Unknown tag (@1) in info_svr_db_info
block after isc_svc_query()

-901 335740933 gfix_replay_req Replay log pathname required

-901 336330757 gbak_switches_conflict Conflicting switches for backup/restore

-901 336986117 fbsvcmgr_query_err
Unknown tag (@1) in isc_svc_query() re-
sults

-901 335544326 bad_dpb_form Unrecognized database parameter block

-901 335740934 gfix_pgbuf_req
Number of page buffers for cache re-
quired

-901 336986118 fbsvcmgr_switch_unknown Unknown switch "@1"

-901 336330758 gbak_unknown_device Device type @1 not known

-901 335544327 bad_req_handle Invalid request handle

-901 335740935 gfix_val_req Numeric value required

-901 336330759 gbak_no_protection Protection is not there yet

-901 335544328 bad_segstr_handle Invalid BLOB handle

-901 335740936 gfix_pval_req Positive numeric value required

-901 336330760 gbak_page_size_not_allowed
Page size is allowed only on restore or
create

Table B.4. SQLCODE and GDSCODE Error Codes and Message Texts (3)

SQL-
CODE

GDSCODE Symbol Message Text

-901 335544329 bad_segstr_id Invalid BLOB ID

Exception Codes and Messages

408

SQL-
CODE

GDSCODE Symbol Message Text

-901 335740937 gfix_trn_req
Number of transactions per sweep re-
quired

-901 336330761 gbak_multi_source_dest Multiple sources or destinations specified

-901 335544330 bad_tpb_content
Invalid parameter in transaction parame-
ter block

-901 336330762 gbak_filename_missing Requires both input and output filenames

-901 335544331 bad_tpb_form
Invalid format for transaction parameter
block

-901 336330763 gbak_dup_inout_names
Input and output have the same name.
Disallowed

-901 335740940 gfix_full_req "full" or "reserve" required

-901 335544332 bad_trans_handle
Invalid transaction handle (expecting ex-
plicit transaction start)

-901 336330764 gbak_inv_page_size Expected page size, encountered "@1"

-901 335740941 gfix_usrname_req User name required

-901 336330765 gbak_db_specified
REPLACE specified, but the first file @1
is a database

-901 335740942 gfix_pass_req Password required

-901 336330766 gbak_db_exists
Database @1 already exists.To replace it,
use the -REP switch

-901 335740943 gfix_subs_name Subsystem name

-901 336723983 gsec_cant_open_db Unable to open database

-901 336330767 gbak_unk_device Device type not specified

-901 336723984 gsec_switches_error Error in switch specifications

-901 335740945 gfix_sec_req Number of seconds required

-901 335544337 excess_trans
Attempt to start more than @1 transac-
tions

-901 336723985 gsec_no_op_spec No operation specified

-901 335740946 gfix_nval_req
Numeric value between 0 and 32767 in-
clusive required

-901 336723986 gsec_no_usr_name No user name specified

-901 335740947 gfix_type_shut Must specify type of shutdown

-901 335544339 infinap
Information type inappropriate for object
specified

Exception Codes and Messages

409

SQL-
CODE

GDSCODE Symbol Message Text

-901 335544340 infona
No information of this type available for
object specified

-901 336723987 gsec_err_add Add record error

-901 336723988 gsec_err_modify Modify record error

-901 336330772 gbak_blob_info_failed Gds_$blob_info failed

-901 335740948 gfix_retry Please retry, specifying an option

-901 335544341 infunk Unknown information item

-901 336723989 gsec_err_find_mod Find / modify record error

-901 336330773 gbak_unk_blob_item Do not understand BLOB INFO item @1

-901 335544342 integ_fail
Action cancelled by trigger (@1) to pre-
serve data integrity

-901 336330774 gbak_get_seg_failed Gds_$get_segment failed

-901 336723990 gsec_err_rec_not_found Record not found for user: @1

-901 336723991 gsec_err_delete Delete record error

-901 336330775 gbak_close_blob_failed Gds_$close_blob failed

-901 335740951 gfix_retry_db Please retry, giving a database name

-901 336330776 gbak_open_blob_failed Gds_$open_blob failed

-901 336723992 gsec_err_find_del Find / delete record error

-901 335544345 lock_conflict Lock conflict on no wait transaction

-901 336330777 gbak_put_blr_gen_id_failed Failed in put_blr_gen_id

-901 336330778 gbak_unk_type Data type @1 not understood

-901 336330779 gbak_comp_req_failed Gds_$compile_request failed

-901 336330780 gbak_start_req_failed Gds_$start_request failed

-901 336723996 gsec_err_find_disp Find / display record error

-901 336330781 gbak_rec_failed gds_$receive failed

-901 336920605 gstat_open_err Can't open database file @1

-901 336723997 gsec_inv_param Invalid parameter, no switch defined

-901 335544350 no_finish
Program attempted to exit without finish-
ing database

-901 336920606 gstat_read_err Can't read a database page

-901 336330782 gbak_rel_req_failed Gds_$release_request failed

Exception Codes and Messages

410

SQL-
CODE

GDSCODE Symbol Message Text

-901 336723998 gsec_op_specified Operation already specified

-901 336920607 gstat_sysmemex System memory exhausted

-901 336330783 gbak_db_info_failed gds_$database_info failed

-901 336723999 gsec_pw_specified Password already specified

-901 336724000 gsec_uid_specified Uid already specified

-901 336330784 gbak_no_db_desc Expected database description record

-901 335544353 no_recon Transaction is not in limbo

-901 336724001 gsec_gid_specified Gid already specified

-901 336330785 gbak_db_create_failed Failed to create database @1

-901 336724002 gsec_proj_specified Project already specified

-901 336330786 gbak_decomp_len_error RESTORE: decompression length error

-901 335544355 no_segstr_close BLOB was not closed

-901 336330787 gbak_tbl_missing Cannot find table @1

-901 336724003 gsec_org_specified Organization already specified

-901 336330788 gbak_blob_col_missing Cannot find column for BLOB

-901 336724004 gsec_fname_specified First name already specified

-901 335544357 open_trans
Cannot disconnect database with open
transactions (@1 active)

-901 336330789 gbak_create_blob_failed Gds_$create_blob failed

-901 336724005 gsec_mname_specified Middle name already specified

-901 335544358 port_len
Message length error (encountered @1,
expected @2)

-901 336330790 gbak_put_seg_failed Gds_$put_segment failed

-901 336724006 gsec_lname_specified Last name already specified

-901 336330791 gbak_rec_len_exp Expected record length

-901 336724008 gsec_inv_switch Invalid switch specified

-901 336330792 gbak_inv_rec_len
Wrong length record, expected @1 en-
countered @2

-901 336330793 gbak_exp_data_type Expected data attribute

-901 336724009 gsec_amb_switch Ambiguous switch specified

-901 336330794 gbak_gen_id_failed Failed in store_blr_gen_id

Exception Codes and Messages

411

SQL-
CODE

GDSCODE Symbol Message Text

-901 336724010 gsec_no_op_specified No operation specified for parameters

-901 335544363 req_no_trans No transaction for request

-901 336330795 gbak_unk_rec_type Do not recognize record type @1

-901 336724011 gsec_params_not_allowed No parameters allowed for this operation

-901 335544364 req_sync Request synchronization error

-901 336724012 gsec_incompat_switch Incompatible switches specified

-901 336330796 gbak_inv_bkup_ver Expected backup version 1..8. Found @1

-901 335544365 req_wrong_db
Request referenced an unavailable
database

-901 336330797 gbak_missing_bkup_desc Expected backup description record

-901 336330798 gbak_string_trunc String truncated

-901 336330799 gbak_cant_rest_record warning -- record could not be restored

-901 336330800 gbak_send_failed Gds_$send failed

-901 335544369 segstr_no_read Attempted read of a new, open BLOB

-901 336330801 gbak_no_tbl_name No table name for data

-901 335544370 segstr_no_trans
Attempted action on blob outside transac-
tion

-901 336330802 gbak_unexp_eof Unexpected end of file on backup file

-901 336330803 gbak_db_format_too_old
Database format @1 is too old to restore
to

-901 335544372 segstr_wrong_db
Attempted reference to BLOB in unavail-
able database

-901 336330804 gbak_inv_array_dim
Array dimension for column @1 is in-
valid

-901 336330807 gbak_xdr_len_expected Expected XDR record length

-901 335544376 unres_rel
Table @1 was omitted from the transac-
tion reserving list

-901 335544377 uns_ext
Request includes a DSRI extension not
supported in this implementation

-901 335544378 wish_list Feature is not supported

-901 335544382 random @1

-901 335544383 fatal_conflict
Unrecoverable conflict with limbo trans-
action @1

Exception Codes and Messages

412

SQL-
CODE

GDSCODE Symbol Message Text

-901 335740991 gfix_exceed_max Internal block exceeds maximum size

-901 335740992 gfix_corrupt_pool Corrupt pool

-901 335740993 gfix_mem_exhausted Virtual memory exhausted

-901 336330817 gbak_open_bkup_error Cannot open backup file @1

-901 335740994 gfix_bad_pool Bad pool id.

-901 336330818 gbak_open_error
Cannot open status and error output file
@1

-901 335740995 gfix_trn_not_valid Transaction state @1 not in valid range

-901 335544392 bdbincon Internal error

-901 336724044 gsec_inv_username
Invalid user name (maximum 31 bytes al-
lowed)

-901 336724045 gsec_inv_pw_length
Warning - maximum 8 significant bytes
of password used

-901 336724046 gsec_db_specified Database already specified

-901 336724047 gsec_db_admin_specified
Database administrator name already
specified

-901 336724048 gsec_db_admin_pw_specified
Database administrator password already
specified

-901 336724049 gsec_sql_role_specified SQL role name already specified

-901 335741012 gfix_unexp_eoi Unexpected end of input

-901 335544407 dbbnotzer Database handle not zero

-901 335544408 tranotzer Transaction handle not zero

-901 335741018 gfix_recon_fail
Failed to reconnect to a transaction in
database @1

-901 335544418 trainlim Transaction in limbo

-901 335544419 notinlim Transaction not in limbo

-901 335544420 traoutsta Transaction outstanding

-901 335544428 badmsgnum Undefined message number

-901 335741036 gfix_trn_unknown Transaction description item unknown

-901 335741038 gfix_mode_req "read_only" or "read_write" required

-901 335544431 blocking_signal Blocking signal has been received

-901 335741042 gfix_pzval_req Positive or zero numeric value required

Exception Codes and Messages

413

SQL-
CODE

GDSCODE Symbol Message Text

-901 335544442 noargacc_read
Database system cannot read argument
@1

-901 335544443 noargacc_write
Database system cannot write argument
@1

-901 335544450 misc_interpreted @1

-901 335544468 tra_state Transaction @1 is @2

-901 335544485 bad_stmt_handle Invalid statement handle

-901 336330934 gbak_missing_block_fac Blocking factor parameter missing

-901 336330935 gbak_inv_block_fac
Expected blocking factor, encountered
"@1"

-901 336330936 gbak_block_fac_specified
A blocking factor may not be used in con-
junction with device CT

-901 336068796 dyn_role_does_not_exist SQL role @1 does not exist

-901 336330940 gbak_missing_username User name parameter missing

-901 336330941 gbak_missing_password Password parameter missing

-901 336068797 dyn_no_grant_admin_opt
User @1 has no grant admin option on
SQL role @2

-901 335544510 lock_timeout Lock time-out on wait transaction

-901 336068798 dyn_user_not_role_member User @1 is not a member of SQL role @2

-901 336068799 dyn_delete_role_failed @1 is not the owner of SQL role @2

-901 336068800 dyn_grant_role_to_user @1 is a SQL role and not a user

-901 336068801 dyn_inv_sql_role_name
User name @1 could not be used for SQL
role

-901 336068802 dyn_dup_sql_role SQL role @1 already exists

-901 336068803 dyn_kywd_spec_for_role
Keyword @1 can not be used as a SQL
role name

-901 336068804 dyn_roles_not_supported
SQL roles are not supported in on older
versions of the database. A backup and
restore of the database is required

-901 336330952 gbak_missing_skipped_bytes
missing parameter for the number of
bytes to be skipped

-901 336330953 gbak_inv_skipped_bytes
Expected number of bytes to be skipped,
encountered "@1"

-901 336068820 dyn_zero_len_id Zero length identifiers are not allowed

Exception Codes and Messages

414

SQL-
CODE

GDSCODE Symbol Message Text

-901 336330965 gbak_err_restore_charset Character set

-901 336330967 gbak_err_restore_collation Collation

-901 336330972 gbak_read_error
Unexpected I/O error while reading from
backup file

-901 336330973 gbak_write_error
Unexpected I/O error while writing to
backup file

-901 336068840 dyn_wrong_gtt_scope @1 cannot reference @2

-901 336330985 gbak_db_in_use
Could not drop database @1 (database
might be in use)

-901 336330990 gbak_sysmemex System memory exhausted

-901 335544559 bad_svc_handle Invalid service handle

-901 335544561 wrospbver Wrong version of service parameter block

-901 335544562 bad_spb_form Unrecognized service parameter block

-901 335544563 svcnotdef Service @1 is not defined

-901 336068856 dyn_ods_not_supp_feature
Feature '@1' is not supported in ODS
@2.@3

-901 336331002 gbak_restore_role_failed SQL role

-901 336331005 gbak_role_op_missing SQL role parameter missing

-901 336331010 gbak_page_buffers_missing Page buffers parameter missing

-901 336331011 gbak_page_buffers_wrong_param Expected page buffers, encountered "@1"

-901 336331012 gbak_page_buffers_restore
Page buffers is allowed only on restore or
create

-901 336331014 gbak_inv_size
Size specification either missing or incor-
rect for file @1

-901 336331015 gbak_file_outof_sequence File @1 out of sequence

-901 336331016 gbak_join_file_missing Can't join - one of the files missing

-901 336331017 gbak_stdin_not_supptd
standard input is not supported when us-
ing join operation

-901 336331018 gbak_stdout_not_supptd
Standard output is not supported when us-
ing split operation

-901 336331019 gbak_bkup_corrupt Backup file @1 might be corrupt

-901 336331020 gbak_unk_db_file_spec Database file specification missing

-901 336331021 gbak_hdr_write_failed Can't write a header record to file @1

Exception Codes and Messages

415

SQL-
CODE

GDSCODE Symbol Message Text

-901 336331022 gbak_disk_space_ex Free disk space exhausted

-901 336331023 gbak_size_lt_min
File size given (@1) is less than minimum
allowed (@2)

-901 336331025 gbak_svc_name_missing Service name parameter missing

-901 336331026 gbak_not_ownr
Cannot restore over current database,
must be SYSDBA or owner of the exist-
ing database

-901 336331031 gbak_mode_req "read_only" or "read_write" required

-901 336331033 gbak_just_data Just data ignore all constraints etc.

-901 336331034 gbak_data_only
Restoring data only ignoring foreign key,
unique, not null & other constraints

-901 335544609 index_name INDEX @1

-901 335544610 exception_name EXCEPTION @1

-901 335544611 field_name COLUMN @1

-901 335544613 union_err Union not supported

Table B.5. SQLCODE and GDSCODE Error Codes and Message Texts (4)

SQL-
CODE

GDSCODE Symbol Message Text

-901 335544614 dsql_construct_err Unsupported DSQL construct

-901 335544623 dsql_domain_err Illegal use of keyword VALUE

-901 335544626 table_name TABLE @1

-901 335544627 proc_name PROCEDURE @1

-901 335544641 dsql_domain_not_found
Specified domain or source column @1
does not exist

-901 335544656 dsql_var_conflict
Variable @1 conflicts with parameter in
same procedure

-901 335544666 srvr_version_too_old
Server version too old to support all CRE-
ATE DATABASE options

-901 335544673 no_delete Cannot delete

-901 335544675 sort_err Sort error

-901 335544703 svcnoexe
Service @1 does not have an associated
executable

-901 335544704 net_lookup_err Failed to locate host machine

Exception Codes and Messages

416

SQL-
CODE

GDSCODE Symbol Message Text

-901 335544705 service_unknown Undefined service @1/@2

-901 335544706 host_unknown
The specified name was not found in the
hosts file or Domain Name Services

-901 335544711 unprepared_stmt
Attempt to execute an unprepared dynam-
ic SQL statement

-901 335544716 svc_in_use Service is currently busy: @1

-901 335544731 tra_must_sweep [no associated message]

-901 335544740 udf_exception
A fatal exception occurred during the exe-
cution of a user defined function

-901 335544741 lost_db_connection Connection lost to database

-901 335544742 no_write_user_priv
User cannot write to RDB
$USER_PRIVILEGES

-901 335544767 blob_filter_exception
A fatal exception occurred during the exe-
cution of a blob filter

-901 335544768 exception_access_violation
Access violation.The code attempted to
access a virtual address without privilege
to do so

-901 335544769 exception_datatype_missalignment
Datatype misalignment.The attempted to
read or write a value that was not stored
on a memory boundary

-901 335544770 exception_array_bounds_exceeded
Array bounds exceeded. The code at-
tempted to access an array element that is
out of bounds.

-901 335544771 exception_float_denormal_ operand
Float denormal operand.One of the float-
ing-point operands is too small to repre-
sent a standard float value.

-901 335544772 exception_float_divide_by_zero
Floating-point divide by zero.The code at-
tempted to divide a floating-point value
by zero.

-901 335544773 exception_float_inexact_result
Floating-point inexact result.The result of
a floating-point operation cannot be repre-
sented as a decimal fraction

-901 335544774 exception _float_invalid_operand
Floating-point invalid operand.An inde-
terminant error occurred during a float-
ing-point operation

-901 335544775 exception_float_overflow
Floating-point overflow.The exponent of
a floating-point operation is greater than
the magnitude allowed

Exception Codes and Messages

417

SQL-
CODE

GDSCODE Symbol Message Text

-901 335544776 exception_float_stack_check
Floating-point stack check.The stack
overflowed or underflowed as the result
of a floating-point operation

-901 335544777 exception_float_underflow
Floating-point underflow.The exponent of
a floating-point operation is less than the
magnitude allowed

-901 335544778 exception_integer_divide_by_zero
Integer divide by zero.The code attempt-
ed to divide an integer value by an integer
divisor of zero

-901 335544779 exception_integer_overflow
Integer overflow.The result of an integer
operation caused the most significant bit
of the result to carry

-901 335544780 exception_unknown
An exception occurred that does not have
a description.Exception number @1

-901 335544781 exception_stack_overflow
Stack overflow.The resource require-
ments of the runtime stack have exceeded
the memory available to it

-901 335544782 exception_sigsegv
Segmentation Fault. The code attempted
to access memory without privileges

-901 335544783 exception_sigill
Illegal Instruction. The Code attempted to
perfrom an illegal operation

-901 335544784 exception_sigbus
Bus Error. The Code caused a system bus
error

-901 335544785 exception_sigfpe
Floating Point Error. The Code caused an
Arithmetic Exception or a floating point
exception

-901 335544786 ext_file_delete Cannot delete rows from external files

-901 335544787 ext_file_modify Cannot update rows in external files

-901 335544788 adm_task_denied
Unable to perform operation.You must be
either SYSDBA or owner of the database

-901 335544794 cancelled Operation was cancelled

-901 335544797 svcnouser
User name and password are required
while attaching to the services manager

-901 335544801 datype_notsup Data type not supported for arithmetic

-901 335544803 dialect_not_changed Database dialect not changed

-901 335544804 database_create_failed Unable to create database @1

-901 335544805 inv_dialect_specified Database dialect @1 is not a valid dialect

Exception Codes and Messages

418

SQL-
CODE

GDSCODE Symbol Message Text

-901 335544806 valid_db_dialects Valid database dialects are @1

-901 335544811 inv_client_dialect_specified
Passed client dialect @1 is not a valid di-
alect

-901 335544812 valid_client_dialects Valid client dialects are @1

-901 335544814 service_not_supported
Services functionality will be supported in
a later version of the product

-901 335544820 invalid_savepoint
Unable to find savepoint with name @1
in transaction context

-901 335544835 bad_shutdown_mode
Target shutdown mode is invalid for
database "@1"

-901 335544840 no_update Cannot update

-901 335544842 stack_trace @1

-901 335544843 ctx_var_not_found
Context variable @1 is not found in
namespace @2

-901 335544844 ctx_namespace_invalid
Invalid namespace name @1 passed to
@2

-901 335544845 ctx_too_big Too many context variables

-901 335544846 ctx_bad_argument Invalid argument passed to @1

-901 335544847 identifier_too_long
BLR syntax error. Identifier @1... is too
long

-901 335544859 invalid_time_precision
Time precision exceeds allowed range (0-
@1)

-901 335544866 met_wrong_gtt_scope @1 cannot depend on @2

-901 335544868 illegal_prc_type
Procedure @1 is not selectable (it does
not contain a SUSPEND statement)

-901 335544869 invalid_sort_datatype
Datatype @1 is not supported for sorting
operation

-901 335544870 collation_name COLLATION @1

-901 335544871 domain_name DOMAIN @1

-901 335544874 max_db_per_trans_allowed
A multi database transaction cannot span
more than @1 databases

-901 335544876 bad_proc_BLR Error while parsing procedure @1' s BLR

-901 335544877 key_too_big Index key too big

-901 336397211 dsql_too_many_values
Too many values (more than @1) in
member list to match against

Exception Codes and Messages

419

SQL-
CODE

GDSCODE Symbol Message Text

-901 336397236 dsql_unsupp_feature_dialect Feature is not supported in dialect @1

-902 335544333 bug_check
Internal gds software consistency check
(@1)

-902 335544335 db_corrupt Database file appears corrupt (@1)

-902 335544344 io_error I/O error for file "@2"

-902 335544346 metadata_corrupt Corrupt system table

-902 335544373 sys_request Operating system directive @1 failed

-902 335544384 badblk Internal error

-902 335544385 invpoolcl Internal error

-902 335544387 relbadblk Internal error

-902 335544388 blktoobig
Block size exceeds implementation re-
striction

-902 335544394 badodsver Incompatible version of on-disk structure

-902 335544397 dirtypage Internal error

-902 335544398 waifortra Internal error

-902 335544399 doubleloc Internal error

-902 335544400 nodnotfnd Internal error

-902 335544401 dupnodfnd Internal error

-902 335544402 locnotmar Internal error

-902 335544404 corrupt Database corrupted

-902 335544405 badpage Checksum error on database page @1

-902 335544406 badindex Index is broken

-902 335544409 trareqmis
Transaction - request mismatch (synchro-
nization error)

-902 335544410 badhndcnt Bad handle count

-902 335544411 wrotpbver
Wrong version of transaction parameter
block

-902 335544412 wroblrver
Unsupported BLR version (expected @1,
encountered @2)

-902 335544413 wrodpbver
Wrong version of database parameter
block

-902 335544415 badrelation Database corrupted

Exception Codes and Messages

420

SQL-
CODE

GDSCODE Symbol Message Text

-902 335544416 nodetach Internal error

-902 335544417 notremote Internal error

-902 335544422 dbfile Internal error

-902 335544423 orphan Internal error

-902 335544432 lockmanerr Lock manager error

-902 335544436 sqlerr SQL error code = @1

-902 335544448 bad_sec_info [no associated message]

-902 335544449 invalid_sec_info [no associated message]

-902 335544470 buf_invalid Cache buffer for page @1 invalid

-902 335544471 indexnotdefined There is no index in table @1 with id @2

-902 335544472 login
Your user name and password are not de-
fined. Ask your database administrator to
set up a Firebird login

-902 335544506 shutinprog Database @1 shutdown in progress

-902 335544528 shutdown Database @1 shutdown

-902 335544557 shutfail Database shutdown unsuccessful

-902 335544569 dsql_error Dynamic SQL Error

-902 335544653 psw_attach Cannot attach to password database

-902 335544654 psw_start_trans
Cannot start transaction for password
database

-902 335544717 err_stack_limit
Stack size insufficent to execute current
request

-902 335544721 network_error
Unable to complete network request to
host "@1"

-902 335544722 net_connect_err Failed to establish a connection

-902 335544723 net_connect_listen_err
Error while listening for an incoming con-
nection

-902 335544724 net_event_connect_err
Failed to establish a secondary connection
for event processing

-902 335544725 net_event_listen_err
Error while listening for an incoming
event connection request

-902 335544726 net_read_err Error reading data from the connection

-902 335544727 net_write_err Error writing data to the connection

Exception Codes and Messages

421

SQL-
CODE

GDSCODE Symbol Message Text

-902 335544732 unsupported_network_drive
Access to databases on file servers is not
supported

-902 335544733 io_create_err Error while trying to create file

-902 335544734 io_open_err Error while trying to open file

-902 335544735 io_close_err Error while trying to close file

-902 335544736 io_read_err Error while trying to read from file

-902 335544737 io_write_err Error while trying to write to file

-902 335544738 io_delete_err Error while trying to delete file

-902 335544739 io_access_err Error while trying to access file

-902 335544745 login_same_as_role_name
Your login @1 is same as one of the SQL
role name. Ask your database administra-
tor to set up a valid Firebird login.

-902 335544791 file_in_use
The file @1 is currently in use by another
process.Try again later

-902 335544795 unexp_spb_form
Unexpected item in service parameter
block, expected @1

-902 335544809 extern_func_dir_error
Function @1 is in @2, which is not in a
permitted directory for external functions

-902 335544819 io_32bit_exceeded_err
File exceeded maximum size of 2GB.
Add another database file or use a 64 bit
I/O version of Firebird

-902 335544831 conf_access_denied
Access to @1 "@2" is denied by server
administrator

-902 335544834 cursor_not_open Cursor is not open

-902 335544841 cursor_already_open Cursor is already open

-902 335544856 att_shutdown Connection shutdown

-902 335544882 long_login
Login name too long (@1 characters,
maximum allowed @2)

-904 335544324 bad_db_handle
Invalid database handle (no active con-
nection)

-904 335544375 unavailable Unavailable database

-904 335544381 imp_exc Implementation limit exceeded

-904 335544386 nopoolids Too many requests

-904 335544389 bufexh Buffer exhausted

Exception Codes and Messages

422

SQL-
CODE

GDSCODE Symbol Message Text

-904 335544391 bufinuse Buffer in use

-904 335544393 reqinuse Request in use

-904 335544424 no_lock_mgr No lock manager available

-904 335544430 virmemexh
Unable to allocate memory from operat-
ing system

-904 335544451 update_conflict Update conflicts with concurrent update

-904 335544453 obj_in_use Object @1 is in use

-904 335544455 shadow_accessed Cannot attach active shadow file

-904 335544460 shadow_missing
A file in manual shadow @1 is unavail-
able

-904 335544661 index_root_page_full Cannot add index, index root page is full

-904 335544676 sort_mem_err Sort error: not enough memory

-904 335544683 req_depth_exceeded
Request depth exceeded. (Recursive defi-
nition?)

-904 335544758 sort_rec_size_err
Sort record size of @1 bytes is too
big ????

-904 335544761 too_many_handles Too many open handles to database

-904 335544792 service_att_err Cannot attach to services manager

-904 335544799 svc_name_missing The service name was not specified

-904 335544813 optimizer_between_err
Unsupported field type specified in BE-
TWEEN predicate

-904 335544827 exec_sql_invalid_arg
Invalid argument in EXECUTE STATE-
MENT-cannot convert to string

-904 335544828 exec_sql_invalid_req
Wrong request type in EXECUTE
STATEMENT '@1'

-904 335544829 exec_sql_invalid_var
Variable type (position @1) in EXE-
CUTE STATEMENT '@2' INTO does
not match returned column type

-904 335544830 exec_sql_max_call_exceeded
Too many recursion levels of EXECUTE
STATEMENT

-904 335544832 wrong_backup_state
Cannot change difference file name while
database is in backup mode

-904 335544852 partner_idx_incompat_type
Partner index segment no @1 has incom-
patible data type

-904 335544857 blobtoobig Maximum BLOB size exceeded

Exception Codes and Messages

423

SQL-
CODE

GDSCODE Symbol Message Text

-904 335544862 record_lock_not_supp Stream does not support record locking

-904 335544863 partner_idx_not_found
Cannot create foreign key constraint @1.
Partner index does not exist or is inactive

-904 335544864 tra_num_exc
Transactions count exceeded. Perform
backup and restore to make database op-
erable again

-904 335544865 field_disappeared Column has been unexpectedly deleted

-904 335544878 concurrent_transaction Concurrent transaction number is @1

-906 335544744 max_att_exceeded
Maximum user count exceeded.Contact
your database administrator

-909 335544667 drdb_completed_with_errs Drop database completed with errors

-911 335544459 rec_in_limbo
Record from transaction @1 is stuck in
limbo

-913 335544336 deadlock Deadlock

-922 335544323 bad_db_format File @1 is not a valid database

-923 335544421 connect_reject Connection rejected by remote interface

-923 335544461 cant_validate
Secondary server attachments cannot vali-
date databases

-923 335544464 cant_start_logging
Secondary server attachments cannot start
logging

-924 335544325 bad_dpb_content
Bad parameters on attach or create
database

-924 335544441 bad_detach Database detach completed with errors

-924 335544648 conn_lost Connection lost to pipe server

-926 335544447 no_rollback No rollback performed

-999 335544689 ib_error Firebird error

424

Appendix C:
Reserved Words
and Keywords

Reserved words are part of the Firebird SQL language. They cannot be used as identifiers (e.g. as table or
procedure names), except when enclosed in double quotes in Dialect 3. However, you should avoid this unless
you have a compelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper context, but they
are not reserved for Firebird's own and exclusive use. You can use them as identifiers without double-quoting.

Reserved words
Full list of reserved words in Firebird 2.5:

ADD ADMIN ALL
ALTER AND ANY
AS AT AVG
BEGIN BETWEEN BIGINT
BIT_LENGTH BLOB BOTH
BY CASE CAST
CHAR CHAR_LENGTH CHARACTER
CHARACTER_LENGTH CHECK CLOSE
COLLATE COLUMN COMMIT
CONNECT CONSTRAINT COUNT
CREATE CROSS CURRENT
CURRENT_CONNECTION CURRENT_DATE CURRENT_ROLE
CURRENT_TIME CURRENT_TIMESTAMP CURRENT_TRANSACTION
CURRENT_USER CURSOR DATE
DAY DEC DECIMAL
DECLARE DEFAULT DELETE
DELETING DISCONNECT DISTINCT
DOUBLE DROP ELSE
END ESCAPE EXECUTE
EXISTS EXTERNAL EXTRACT
FETCH FILTER FLOAT
FOR FOREIGN FROM
FULL FUNCTION GDSCODE
GLOBAL GRANT GROUP
HAVING HOUR IN
INDEX INNER INSENSITIVE
INSERT INSERTING INT
INTEGER INTO IS

Reserved Words and Keywords

425

JOIN LEADING LEFT
LIKE LONG LOWER
MAX MAXIMUM_SEGMENT MERGE
MIN MINUTE MONTH
NATIONAL NATURAL NCHAR
NO NOT NULL
NUMERIC OCTET_LENGTH OF
ON ONLY OPEN
OR ORDER OUTER
PARAMETER PLAN POSITION
POST_EVENT PRECISION PRIMARY
PROCEDURE RDB$DB_KEY REAL
RECORD_VERSION RECREATE RECURSIVE
REFERENCES RELEASE RETURNING_VALUES
RETURNS REVOKE RIGHT
ROLLBACK ROW_COUNT ROWS
SAVEPOINT SECOND SELECT
SENSITIVE SET SIMILAR
SMALLINT SOME SQLCODE
SQLSTATE (2.5.1) START SUM
TABLE THEN TIME
TIMESTAMP TO TRAILING
TRIGGER TRIM UNION
UNIQUE UPDATE UPDATING
UPPER USER USING
VALUE VALUES VARCHAR
VARIABLE VARYING VIEW
WHEN WHERE WHILE
WITH YEAR

Keywords
The following terms have a special meaning in Firebird 2.5 DSQL. Some of them are also reserved words,
others are not.

!< ^< ^=
^> , :=
!= !> (
) < <=
<> = >
>= || ~<
~= ~> ABS
ACCENT ACOS ACTION
ACTIVE ADD ADMIN
AFTER ALL ALTER
ALWAYS AND ANY
AS ASC ASCENDING
ASCII_CHAR ASCII_VAL ASIN
AT ATAN ATAN2
AUTO AUTONOMOUS AVG

Reserved Words and Keywords

426

BACKUP BEFORE BEGIN
BETWEEN BIGINT BIN_AND
BIN_NOT BIN_OR BIN_SHL
BIN_SHR BIN_XOR BIT_LENGTH
BLOB BLOCK BOTH
BREAK BY CALLER
CASCADE CASE CAST
CEIL CEILING CHAR
CHAR_LENGTH CHAR_TO_UUID CHARACTER
CHARACTER_LENGTH CHECK CLOSE
COALESCE COLLATE COLLATION
COLUMN COMMENT COMMIT
COMMITTED COMMON COMPUTED
CONDITIONAL CONNECT CONSTRAINT
CONTAINING COS COSH
COT COUNT CREATE
CROSS CSTRING CURRENT
CURRENT_CONNECTION CURRENT_DATE CURRENT_ROLE
CURRENT_TIME CURRENT_TIMESTAMP CURRENT_TRANSACTION
CURRENT_USER CURSOR DATA
DATABASE DATE DATEADD
DATEDIFF DAY DEC
DECIMAL DECLARE DECODE
DEFAULT DELETE DELETING
DESC DESCENDING DESCRIPTOR
DIFFERENCE DISCONNECT DISTINCT
DO DOMAIN DOUBLE
DROP ELSE END
ENTRY_POINT ESCAPE EXCEPTION
EXECUTE EXISTS EXIT
EXP EXTERNAL EXTRACT
FETCH FILE FILTER
FIRST FIRSTNAME FLOAT
FLOOR FOR FOREIGN
FREE_IT FROM FULL
FUNCTION GDSCODE GEN_ID
GEN_UUID GENERATED GENERATOR
GLOBAL GRANT GRANTED
GROUP HASH HAVING
HOUR IF IGNORE
IIF IN INACTIVE
INDEX INNER INPUT_TYPE
INSENSITIVE INSERT INSERTING
INT INTEGER INTO
IS ISOLATION JOIN
KEY LAST LASTNAME
LEADING LEAVE LEFT
LENGTH LEVEL LIKE
LIMBO LIST LN
LOCK LOG LOG10
LONG LOWER LPAD
MANUAL MAPPING MATCHED

Reserved Words and Keywords

427

MATCHING MAX MAXIMUM_SEGMENT
MAXVALUE MERGE MIDDLENAME
MILLISECOND MIN MINUTE
MINVALUE MOD MODULE_NAME
MONTH NAMES NATIONAL
NATURAL NCHAR NEXT
NO NOT NULL
NULLIF NULLS NUMERIC
OCTET_LENGTH OF ON
ONLY OPEN OPTION
OR ORDER OS_NAME
OUTER OUTPUT_TYPE OVER
OVERFLOW OVERLAY PAD
PAGE PAGE_SIZE PAGES
PARAMETER PASSWORD PI
PLACING PLAN POSITION
POST_EVENT POWER PRECISION
PRESERVE PRIMARY PRIVILEGES
PROCEDURE PROTECTED RAND
RDB$DB_KEY READ REAL
RECORD_VERSION RECREATE RECURSIVE
REFERENCES RELEASE REPLACE
REQUESTS RESERV RESERVING
RESTART RESTRICT RETAIN
RETURNING RETURNING_VALUES RETURNS
REVERSE REVOKE RIGHT
ROLE ROLLBACK ROUND
ROW_COUNT ROW_NUMBER ROWS
RPAD SAVEPOINT SCALAR_ARRAY
SCHEMA SECOND SEGMENT
SELECT SENSITIVE SEQUENCE
SET SHADOW SHARED
SIGN SIMILAR SIN
SINGULAR SINH SIZE
SKIP SMALLINT SNAPSHOT
SOME SORT SOURCE
SPACE SQLCODE SQLSTATE (2.5.1)
SQRT STABILITY START
STARTING STARTS STATEMENT
STATISTICS SUB_TYPE SUBSTRING
SUM SUSPEND TABLE
TAN TANH TEMPORARY
THEN TIME TIMEOUT
TIMESTAMP TO TRAILING
TRANSACTION TRIGGER TRIM
TRUNC TWO_PHASE TYPE
UNCOMMITTED UNDO UNION
UNIQUE UPDATE UPDATING
UPPER USER USING
UUID_TO_CHAR VALUE VALUES
VARCHAR VARIABLE VARYING
VIEW WAIT WEEK

Reserved Words and Keywords

428

WEEKDAY WHEN WHERE
WHILE WITH WORK
WRITE YEAR YEARDAY

429

Appendix D:
System Tables

When you create a database, the Firebird engine creates a lot of system tables. Metadata—the descriptions and
attributes of all database objects—are stored in these system tables.

System table identifiers all begin with the prefix RDB$.

Table D.1. List of System Tables

System Table Contents

RDB$BACKUP_HISTORY History of backups performed using nBackup

RDB$CHARACTER_SETS Names and describes the character sets available in the database

RDB$CHECK_CONSTRAINTS

Cross references between the names of constraints (NOT NULL
constraints, CHECK constraints and ON UPDATE and ON
DELETE clauses in foreign key constraints) and their associated
system-generated triggers

RDB$COLLATIONS Collation sequences for all character sets

RDB$DATABASE Basic information about the database

RDB$DEPENDENCIES Information about dependencies between database objects

RDB$EXCEPTIONS Custom database exceptions

RDB$FIELDS Column and domain definitions, both system and custom

RDB$FIELD_DIMENSIONS Dimensions of array columns

RDB$FILES Information about secondary files and shadow files

RDB$FILTERS Information about BLOB filters

RDB$FORMATS Information about changes in the formats of tables

RDB$FUNCTIONS Information about external functions

RDB$FUNCTION_ARGUMENTS Attributes of the parameters of external functions

RDB$GENERATORS Information about generators (sequences)

RDB$INDEX_SEGMENTS Segments and index positions

RDB$INDICES
Definitions of all indexes in the database (system- or user-de-
fined)

RDB$LOG_FILES Not used in the current version

RDB$PAGES Information about database pages

System Tables

430

System Table Contents

RDB$PROCEDURE_PARAMETERS Parameters of stored procedures

RDB$PROCEDURES Definitions of stored procedures

RDB$REF_CONSTRAINTS Definitions of referential constraints (foreign keys)

RDB$RELATION_CONSTRAINTS Definitions of all table-level constraints

RDB$RELATION_FIELDS Top-level definitions of table columns

RDB$RELATIONS Headers of tables and views

RDB$ROLES Role definitions

RDB$SECURITY_CLASSES Access control lists

RDB$TRANSACTIONS State of multi-database transactions

RDB$TRIGGER_MESSAGES Trigger messages

RDB$TRIGGERS Trigger definitions

RDB$TYPES Definitions of enumerated data types

RDB$USER_PRIVILEGES SQL privileges granted to system users

RDB$VIEW_RELATIONS
Tables that are referred to in view definitions: one record for
each table in a view

RDB$BACKUP_HISTORY
RDB$BACKUP_HISTORY stores the history of backups performed using the nBackup utility.

Column Name Data Type Description

RDB$BACKUP_ID INTEGER The identifier assigned by the engine

RDB$TIMESTAMP TIMESTAMP Backup date and time

RDB$BACKUP_LEVEL INTEGER Backup level

RDB$GUID CHAR(38) Unique identifier

RDB$SCN INTEGER System (scan) number

RDB$FILE_NAME VARCHAR(255) Full path and file name of backup file

RDB$CHARACTER_SETS
RDB$CHARACTER_SETS names and describes the character sets available in the database.

System Tables

431

Column Name Data Type Description

RDB$CHARACTER_SET_NAME CHAR(31) Character set name

RDB$FORM_OF_USE CHAR(31) Not used

RDB
$NUMBER_OF_CHARACTERS

INTEGER
The number of characters in the set. Not
used for existing character sets

RDB
$DEFAULT_COLLATE_NAME

CHAR(31)
The name of the default collation sequence
for the character set

RDB$CHARACTER_SET_ID SMALLINT Unique character set identifier

RDB$SYSTEM_FLAG SMALLINT

System flag: value is 1 if the character set is
defined in the system when the database is
created; value is 0 for a user-defined char-
acter set

RDB$DESCRIPTION BLOB TEXT
Could store text description of the character
set

RDB$FUNCTION_NAME CHAR(31)
For a user-defined character set that is ac-
cessed via an external function, the name of
the external function

RDB$BYTES_PER_CHARACTER SMALLINT
The maximum number of bytes represent-
ing one character

RDB$CHECK_CONSTRAINTS
RDB$CHECK_CONSTRAINTS provides the cross references between the names of system-generated triggers
for constraints and the names of the associated constraints (NOT NULL constraints, CHECK constraints and
the ON UPDATE and ON DELETE clauses in foreign key constraints).

Column Name Data Type Description

RDB$CONSTRAINT_NAME CHAR(31)
Constraint name, defined by the user or au-
tomatically generated by the system

RDB$TRIGGER_NAME CHAR(31)

For a CHECK constraint, it is the name of
the trigger that enforces this constraint. For
a NOT NULL constraint, it is the name of
the table the constraint is applied to. For a
foreign key constraint, it is the name of the
trigger that enforces the ON UPDATE, ON
DELETE clauses

System Tables

432

RDB$COLLATIONS
RDB$COLLATIONS stores collation sequences for all character sets.

Column Name Data Type Description

RDB$COLLATION_NAME CHAR(31) Collation sequence name

RDB$COLLATION_ID SMALLINT
Collation sequence identifier. Together with
the character set identifier, it is a unique
collation sequence identifier

RDB$CHARACTER_SET_ID SMALLINT
Character set identifier. Together with the
collection sequence identifier, it is a unique
identifier

RDB$COLLATION_ATTRIBUTES SMALLINT

Collation attributes. It is a bit mask where
the first bit shows whether trailing spaces
should be taken into account in collations
(0 - NO PAD; 1 - PAD SPACE); the sec-
ond bit shows whether the collation is
case-sensitive (0 - CASE SENSITIVE, 1 -
CASE INSENSITIVE); the third bit shows
whether the collation is accent-sensitive
(0 - ACCENT SENSITIVE, 1 - ACCENT
SENSITIVE). Thus, the value of 5 means
that the collation does not take into account
trailing spaces and is accent-insensitive

RDB$SYSTEM_FLAG SMALLINT
Flag: the value of 0 means it is user-de-
fined; the value of 1 means it is system-de-
fined

RDB$DESCRIPTION BLOB TEXT
Could store text description of the collation
sequence

RDB$FUNCTION_NAME CHAR(31) Not currently used

RDB$BASE_COLLATION_NAME CHAR(31)
The name of the base collation sequence for
this collation sequence

RDB$SPECIFIC_ATTRIBUTES BLOB TEXT Describes specific attributes

RDB$DATABASE
RDB$DATABASE stores basic information about the database. It contains only one record.

System Tables

433

Column Name Data Type Description

RDB$DESCRIPTION BLOB TEXT Database comment text

RDB$RELATION_ID SMALLINT
A number that steps up by one each time a
table or view is added to the database

RDB$SECURITY_CLASS CHAR(31)

The security class defined in RDB
$SECURITY_CLASSES in order to apply
access control limits common to the entire
database

RDB$CHARACTER_SET_NAME CHAR(31)

The name of the default character set for the
database set in the DEFAULT CHARAC-
TER SET clause when the database is creat-
ed. NULL for character set NONE.

RDB$DEPENDENCIES
RDB$DEPENDENCIES stores the dependencies between database objects.

Column Name Data Type Description

RDB$DEPENDENT_NAME CHAR(31)

The name of the view, procedure, trigger,
CHECK constraint or computed column the
dependency is defined for, i.e., the depen-
dent object

RDB$DEPENDED_ON_NAME CHAR(31)

The name of the object that the defined ob-
ject—the table, view, procedure, trigger,
CHECK constraint or computed column—
depends on

RDB$FIELD_NAME CHAR(31)

The column name in the depended-on ob-
ject that is referred to by the dependent
view, procedure, trigger, CHECK constraint
or computed column

RDB$DEPENDENT_TYPE SMALLINT

Identifies the type of the dependent object:

0 - table
1 - view
2 - trigger
3 - computed column
4 - CHECK constraint
5 - procedure
6 - index expression
7 - exception
8 - user

System Tables

434

Column Name Data Type Description

9 - column
10 - index

RDB$DEPENDED_ON_TYPE SMALLINT

Identifies the type of the object depended
on:

0 - table (or a column in it)
1 - view
2 - trigger
3 - computed column
4 - CHECK constraint
5 - procedure (or its parameter[s])
6 - index expression
7 - exception
8 - user
9 - column
10 - index
14 - generator (sequence)
15 - UDF
17 - collation

RDB$EXCEPTIONS
RDB$EXCEPTIONS stores custom database exceptions.

Column Name Data Type Description

RDB$EXCEPTION_NAME CHAR(31) Custom exception name

RDB$EXCEPTION_NUMBER INTEGER
The unique number of the exception as-
signed by the system

RDB$MESSAGE VARCHAR(1021) Exception message text

RDB$DESCRIPTION BLOB TEXT
Could store text description of the excep-
tion

RDB$SYSTEM_FLAG SMALLINT

Flag:

user-defined = 0
system-defined = 1 or higher

RDB$FIELDS
RDB$FIELDS stores definitions of columns and domains, both system and custom. This is where the detailed
data attributes are stored for all columns.

System Tables

435

Note

The column RDB$FIELDS.RDB$FIELD_NAME links to RDB$RELATION_FIELDS.RDB
$FIELD_SOURCE, not to RDB$RELATION_FIELDS.RDB$FIELD_NAME.

Column Name Data Type Description

RDB$FIELD_NAME CHAR(31)

The unique name of the domain created
by the user or of the domain automatical-
ly built for the table column by the system.
System-created domain names start with the
'RDB$' prefix

RDB$QUERY_NAME CHAR(31) Not used

RDB$VALIDATION_BLR BLOB BLR
The binary language representation (BLR)
of the SQL expression specifying the check
of the CHECK value in the domain

RDB$VALIDATION_SOURCE BLOB TEXT
The original source text in the SQL lan-
guage specifying the check of the CHECK
value

RDB$COMPUTED_BLR BLOB BLR

The binary language representation (BLR)
of the SQL expression the database server
uses for evaluation when accessing a COM-
PUTED BY column

RDB$COMPUTED_SOURCE BLOB TEXT
The original source text of the expression
that defines a COMPUTED BY column

RDB$DEFAULT_VALUE BLOB BLR
The default value, if any, for the field or
domain, in binary language representation
(BLR)

RDB$DEFAULT_SOURCE BLOB TEXT
The default value in the source code, as an
SQL constant or expression

RDB$FIELD_LENGTH SMALLINT

Column size in bytes. FLOAT, DATE,
TIME, INTEGER occupy 4 bytes. DOU-
BLE PRECISION, BIGINT, TIMESTAMP
and BLOB identifier occupy 8 bytes. For
the CHAR and VARCHAR data types, the
column stores the maximum number of
bytes specified when a string domain (col-
umn) is defined

RDB$FIELD_SCALE SMALLINT
The negative number that specifies the scale
for DECIMAL and NUMERIC columns—
the number of digits after the decimal point

RDB$FIELD_TYPE SMALLINT

Data type code for the column:

7 = SMALLINT
8 = INTEGER
10 = FLOAT

System Tables

436

Column Name Data Type Description

12 = DATE
13 = TIME
14 = CHAR
16 = BIGINT
27 = DOUBLE PRECISION
35 = TIMESTAMP
37 = VARCHAR
261 = BLOB
Codes for DECIMAL and NUMERIC are
the same as for the integer types used to
store them

RDB$FIELD_SUB_TYPE SMALLINT

Specifies the subtype for the BLOB data
type:

0 - untyped
1 - text
2 - BLR
3 - access control list
4 - reserved for future use
5 - encoded table metadata description
6 - for storing the details of a cross-database
transaction that ends abnormally

Specifies for the CHAR data type:

0 - untyped data
1 - fixed binary data

Specifies the particular data type for the in-
teger data types (SMALLINT, INTEGER,
BIGINT) and for fixed-point numbers (NU-
MERIC, DECIMAL):

0 or NULL - the data type matches the val-
ue in the RDB$FIELD_TYPE field
1 - NUMERIC
2 - DECIMAL

RDB$MISSING_VALUE BLOB BLR Not used

RDB$MISSING_SOURCE BLOB TEXT Not used

RDB$DESCRIPTION BLOB TEXT Any domain (table column) comment text

RDB$SYSTEM_FLAG SMALLINT

Flag: the value of 1 means the domain is
automatically created by the system, the
value of 0 means that the domain is defined
by the user

RDB$QUERY_HEADER BLOB TEXT Not used

System Tables

437

Column Name Data Type Description

RDB$SEGMENT_LENGTH SMALLINT
Specifies the length of the BLOB buffer in
bytes for BLOB columns. Stores NULL for
all other data types

RDB$EDIT_STRING VARCHAR(127) Not used

RDB$EXTERNAL_LENGTH SMALLINT
The length of the column in bytes if it be-
longs to an external table. Always NULL
for regular tables

RDB$EXTERNAL_SCALE SMALLINT
The scale factor of an integer-type field in
an external table; represents the power of
10 by which the integer is multiplied

RDB$EXTERNAL_TYPE SMALLINT

The data type of the field as it is represent-
ed in an external table:

7 = SMALLINT
8 = INTEGER
10 = FLOAT
12 = DATE
13 = TIME
14 = CHAR
16 = BIGINT
27 = DOUBLE PRECISION
35 = TIMESTAMP
37 = VARCHAR
261 = BLOB

RDB$DIMENSIONS SMALLINT
Defines the number of dimensions in an ar-
ray if the column is defined as an array. Al-
ways NULL for columns that are not arrays

RDB$NULL_FLAG SMALLINT
Specifies whether the column can take an
empty value (the field will contain NULL)
or not (the field will contain the value of 1)

RDB$CHARACTER_LENGTH SMALLINT
The length of CHAR or VARCHAR
columns in characters (not in bytes)

RDB$COLLATION_ID SMALLINT
The identifier of the collation sequence for
a character column or domain. If it is not
defined, the value of the field will be 0

RDB$CHARACTER_SET_ID SMALLINT
The identifier of the character set for a char-
acter column, BLOB TEXT column or do-
main

RDB$FIELD_PRECISION SMALLINT

Specifies the total number of digits for the
fixed-point numeric data type (DECIMAL
and NUMERIC). The value is 0 for the in-
teger data types, NULL is for other data
types

System Tables

438

RDB$FIELD_DIMENSIONS
RDB$FIELD_DIMENSIONS stores the dimensions of array columns.

Column Name Data Type Description

RDB$FIELD_NAME CHAR(31)
The name of the array column. It must be
present in the RDB$FIELD_NAME field of
the RDB$FIELDS table

RDB$DIMENSION SMALLINT
Identifies one dimension in the array col-
umn. The numbering of dimensions starts
with 0

RDB$LOWER_BOUND INTEGER The lower bound of this dimension

RDB$UPPER_BOUND INTEGER The upper bound of this dimension

RDB$FILES
RDB$FILES stores information about secondary files and shadow files.

Column Name Data Type Description

RDB$FILE_NAME VARCHAR(255)

The full path to the file and the name of ei-
ther

•
the database secondary file in a mul-
ti-file database, or

• the shadow file

RDB$FILE_SEQUENCE SMALLINT
The sequential number of the secondary
file in a sequence or of the shadow file in a
shadow file set

RDB$FILE_START INTEGER
The initial page number in the secondary
file or shadow file

RDB$FILE_LENGTH INTEGER File length in database pages

RDB$FILE_FLAGS SMALLINT For internal use

RDB$SHADOW_NUMBER SMALLINT
Shadow set number. If the row describes
a database secondary file, the field will be
NULL or its value will be 0

System Tables

439

RDB$FILTERS
RDB$FILTERS stores information about BLOB filters.

Column Name Data Type Description

RDB$FUNCTION_NAME CHAR(31) The unique identifier of the BLOB filter

RDB$DESCRIPTION BLOB TEXT
Documentation about the BLOB filter and
the two subtypes it is used with, written by
the user

RDB$MODULE_NAME VARCHAR(255)
The name of the dynamic library or shared
object where the code of the BLOB filter is
located

RDB$ENTRYPOINT CHAR(31)

The exported name of the BLOB filter in
the filter library. Note, this is often not the
same as RDB$FUNCTION_NAME, which
is the identifier with which the BLOB filter
is declared to the database

RDB$INPUT_SUB_TYPE SMALLINT
The BLOB subtype of the data to be con-
verted by the function

RDB$OUTPUT_SUB_TYPE SMALLINT The BLOB subtype of the converted data

RDB$SYSTEM_FLAG SMALLINT

Flag indicating whether the filter is user-de-
fined or internally defined:

• 0 = user-defined
• 1 or greater = internally defined

RDB$FORMATS
RDB$FORMATS stores information about changes in tables. Each time any metadata change to a table is com-
mitted, it gets a new format number. When the format number of any table reaches 255, the entire database
becomes inoperable. To return to normal, the database must be backed up with the gbak utility and restored
from that backup copy.

Column Name Data Type Description

RDB$RELATION_ID SMALLINT Table or view identifier

System Tables

440

Column Name Data Type Description

RDB$FORMAT SMALLINT
Table format identifier—maximum 255.
The critical time comes when this number
approaches 255 for any table or view

RDB$DESCRIPTOR BLOB FORMAT
Stores column names and data attributes as
BLOB, as they were at the time the format
record was created

RDB$FUNCTIONS

RDB$FUNCTIONS stores the information needed by the engine about external functions (user-defined func-
tions, UDFs).

Note

In future major releases (Firebird 3.0 +) RDB$FUNCTIONS will also store the information about stored func-
tions: user-defined functions written in PSQL.

Column Name Data Type Description

RDB$FUNCTION_NAME CHAR(31)
The unique (declared) name of the external
function

RDB$FUNCTION_TYPE SMALLINT Not currently used

RDB$QUERY_NAME CHAR(31) Not currently used

RDB$DESCRIPTION BLOB TEXT
Any text with comments related to the ex-
ternal function

RDB$MODULE_NAME VARCHAR(255)
The name of the dynamic library or shared
object where the code of the external func-
tion is located

RDB$ENTRYPOINT CHAR(31)

The exported name of the external function
in the function library. Note, this is often
not the same as RDB$FUNCTION_NAME,
which is the identifier with which the exter-
nal function is declared to the database

RDB$RETURN_ARGUMENT SMALLINT
The position number of the returned argu-
ment in the list of parameters corresponding
to input arguments

RDB$SYSTEM_FLAG SMALLINT
Flag indicating whether the filter is user-de-
fined or internally defined:

System Tables

441

Column Name Data Type Description

• 0 = user-defined
• 1 = internally defined

RDB$FUNCTION_ARGUMENTS
RDB$FUNCTION_ARGUMENTS stores the parameters of external functions and their attributes.

Column Name Data Type Description

RDB$FUNCTION_NAME CHAR(31)
The unique name (declared identifier) of the
external function

RDB$ARGUMENT_POSITION SMALLINT
The position of the argument in the list of
arguments

RDB$MECHANISM SMALLINT

Flag: how this argument is passed:

• 0 = by value
• 1 = by reference
• 2 = by descriptor
• 3 = by BLOB descriptor

RDB$FIELD_TYPE SMALLINT

Data type code defined for the column:

7 = SMALLINT
8 = INTEGER
12 = DATE
13 = TIME
14 = CHAR
16 = BIGINT
27 = DOUBLE PRECISION
35 = TIMESTAMP
37 = VARCHAR
261 = BLOB
40 = CSTRING (null-terminated text)
45 = BLOB_ID
261 = BLOB

RDB$FIELD_SCALE SMALLINT
The scale of an integer or a fixed-point ar-
gument. It is an exponent of 10

RDB$FIELD_LENGTH SMALLINT

Argument length in bytes:

SMALLINT = 2
INTEGER = 4
DATE = 4

System Tables

442

Column Name Data Type Description

TIME = 4
BIGINT = 8
DOUBLE PRECISION = 8
TIMESTAMP = 8
BLOB_ID = 8

RDB$FIELD_SUB_TYPE SMALLINT
Stores the BLOB subtype for an argument
of a BLOB data type

RDB$CHARACTER_SET_ID SMALLINT
The identifier of the character set for a char-
acter argument

RDB$FIELD_PRECISION SMALLINT
The number of digits of precision available
for the data type of the argument

RDB$CHARACTER_LENGTH SMALLINT
The length of a CHAR or VARCHAR argu-
ment in characters (not in bytes)

RDB$GENERATORS

RDB$GENERATORS stores generators (sequences) and keeps them up-to-date.

Column Name Data Type Description

RDB$GENERATOR_NAME CHAR(31) The unique name of the generator

RDB$GENERATOR_ID SMALLINT
The unique identifier assigned to the gener-
ator by the system

RDB$SYSTEM_FLAG SMALLINT

Flag:

0 = user-defined
1 or greater = system-defined

RDB$DESCRIPTION BLOB TEXT
Could store comments related to the genera-
tor

RDB$INDICES

RDB$INDICES stores definitions of both system- and user-defined indexes. The attributes of each column
belonging to an index are stored in one row of the table RDB$INDEX_SEGMENTS.

System Tables

443

Column Name Data Type Description

RDB$INDEX_NAME CHAR(31)
The unique name of the index specified by
the user or automatically generated by the
system

RDB$RELATION_NAME CHAR(31)

The name of the table to which the index
belongs. It corresponds to an identifier in
RDB$RELATION_NAME.RDB$RELA-
TIONS

RDB$INDEX_ID SMALLINT The internal (system) identifier of the index

RDB$UNIQUE_FLAG SMALLINT

Specifies whether the index is unique:

1 - unique
0 - not unique

RDB$DESCRIPTION BLOB TEXT Could store comments concerning the index

RDB$SEGMENT_COUNT SMALLINT
The number of segments (columns) in the
index

RDB$INDEX_INACTIVE SMALLINT

Indicates whether the index is currently ac-
tive:

1 - inactive
0 - active

RDB$INDEX_TYPE SMALLINT

Distinguishes between an expression index
(1) and a regular index (0 or null). Not used
in databases created before Firebird 2.0;
hence, regular indexes in upgraded databas-
es are more more likely to store null in this
column

RDB$FOREIGN_KEY CHAR(31)
The name of the associated Foreign Key
constraint, if any

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the index is system-de-
fined or user-defined:

1 or greater - system-defined
0 - user-defined

RDB$EXPRESSION_BLR BLOB BLR

Expression for an expression index, writ-
ten in the binary language representation
(BLR), used for calculating the values for
the index at runtime.

RDB$EXPRESSION_SOURCE BLOB TEXT
The source code of the expression for an
expression index

RDB$STATISTICS DOUBLE PRECISION
Stores the last known selectivity of the en-
tire index, calculated by execution of a SET
STATISTICS statement over the index. It is

System Tables

444

Column Name Data Type Description

also recalculated whenever the database is
first opened by the server. The selectivity of
each separate segment of the index is stored
in RDB$INDEX_SEGMENTS.

RDB$INDEX_SEGMENTS

RDB$INDEX_SEGMENTS stores the segments (table columns) of indexes and their positions in the key. A
separate row is stored for each column in an index.

Column Name Data Type Description

RDB$INDEX_NAME CHAR(31)
The name of the index this segment is
related to. The master record is RDB
$INDICES.RDB$INDEX_NAME.

RDB$FIELD_NAME CHAR(31)

The name of a column belonging to
the index, corresponding to an iden-
tifier for the table and that column in
RDB$RELATION_FIELDS.RDB
$FIELD_NAME

RDB$FIELD_POSITION SMALLINT
The column position in the index. Positions
are numbered left-to-right, starting at zero

RDB$STATISTICS DOUBLE PRECISION
The last known (calculated) selectivity of
this column in the index. The higher the
number, the lower the selectivity.

RDB$LOG_FILES

RDB$LOG_FILES is not currently used.

RDB$PAGES

RDB$PAGES stores and maintains information about database pages and their usage.

System Tables

445

Column Name Data Type Description

RDB$PAGE_NUMBER INTEGER
The unique number of a physically created
database page

RDB$RELATION_ID SMALLINT
The identifier of the table to which the page
is allocated

RDB$PAGE_SEQUENCE INTEGER
The number of the page in the sequence of
all pages allocated to this table

RDB$PAGE_TYPE SMALLINT
Indicates the page type (data, index, BLOB,
etc.). For system use

RDB$PROCEDURES
RDB$PROCEDURES stores the definitions of stored procedures, including their PSQL source code and the
binary language representation (BLR) of it. The next table, RDB$PROCEDURE_PARAMETERS, stores the
definitions of input and output parameters.

Column Name Data Type Description

RDB$PROCEDURE_NAME CHAR(31) Stored procedure name (identifier)

RDB$PROCEDURE_ID SMALLINT
The procedure's unique, system-generated
identifier

RDB$PROCEDURE_INPUTS SMALLINT
Indicates the number of input parameters.
NULL if there are none

RDB$PROCEDURE_OUTPUTS SMALLINT
Indicates the number of output parameters.
NULL if there are none

RDB$DESCRIPTION BLOB TEXT Any text comments related to the procedure

RDB$PROCEDURE_SOURCE BLOB TEXT The PSQL source code of the procedure

RDB$PROCEDURE_BLR BLOB BLR
The binary language representation (BLR)
of the procedure code

RDB$SECURITY_CLASS CHAR(31)

May point to the security class de-
fined in the system table RDB
$SECURITY_CLASSES in order to apply
access control limits

RDB$OWNER_NAME CHAR(31)

The user name of the procedure's Owner—
the user who was CURRENT_USER when
the procedure was first created. It may or
may not be the user name of the author

RDB$RUNTIME BLOB
A metadata description of the procedure,
used internally for optimization

System Tables

446

Column Name Data Type Description

RDB$SYSTEM_FLAG SMALLINT
Indicates whether the procedure is defined
by a user (value 0) or by the system (a value
of 1 or greater)

RDB$PROCEDURE_TYPE SMALLINT

Procedure type:

1 - selectable stored procedure (contains a
SUSPEND statement)
2 - executable stored procedure
NULL - not known *

* for procedures created before Firebird 1.5

RDB$VALID_BLR SMALLINT
Indicates whether the source PSQL of the
stored procedure remains valid after the lat-
est ALTER PROCEDURE modification

RDB$DEBUG_INFO BLOB
Contains debugging information about vari-
ables used in the stored procedure

RDB$PROCEDURE_PARAMETERS
RDB$PROCEDURE_PARAMETERS stores the parameters of stored procedures and their attributes. It holds
one row for each parameter.

Column Name Data Type Description

RDB$PARAMETER_NAME CHAR(31) Parameter name

RDB$PROCEDURE_NAME CHAR(31)
The name of the procedure where the pa-
rameter is defined

RDB$PARAMETER_NUMBER SMALLINT The sequential number of the parameter

RDB$PARAMETER_TYPE SMALLINT
Indicates whether the parameter is for input
(value 0) or output (value 1)

RDB$FIELD_SOURCE CHAR(31)

The name of the user-created domain, when
a domain is referenced instead of a da-
ta type. If the name starts with the prefix
'RDB$', it is the name of the domain auto-
matically generated by the system for the
parameter.

RDB$DESCRIPTION BLOB TEXT
Could store comments related to the param-
eter

RDB$SYSTEM_FLAG SMALLINT
Indicates whether the parameter was de-
fined by the system (value or greater) or by
a user (value 0)

System Tables

447

Column Name Data Type Description

RDB$DEFAULT_VALUE BLOB BLR
The default value for the parameter, in the
binary language representation (BLR)

RDB$DEFAULT_SOURCE BLOB TEXT
The default value for the parameter, in
PSQL code

RDB$COLLATION_ID SMALLINT
The identifier of the collation sequence
used for a character parameter

RDB$NULL_FLAG SMALLINT
The flag indicating whether NULL is allow-
able

RDB$PARAMETER_MECHANISM SMALLINT

Flag: indicates how this parameter is
passed:

• 0 = by value
• 1 = by reference
• 2 = by descriptor
• 3 = by BLOB descriptor

RDB$FIELD_NAME CHAR(31)

The name of the column the parameter ref-
erences, if it was declared using TYPE
OF COLUMN instead of a regular da-
ta type. Used in conjunction with RDB
$RELATION_NAME (see next).

RDB$RELATION_NAME CHAR(31)
The name of the table the parameter refer-
ences, if it was declared using TYPE OF
COLUMN instead of a regular data type

RDB$REF_CONSTRAINTS
RDB$REF_CONSTRAINTS stores the attributes of the referential constraints—Foreign Key relationships and
referential actions.

Column Name Data Type Description

RDB$CONSTRAINT_NAME CHAR(31)
Foreign key constraint name, defined by the
user or automatically generated by the sys-
tem

RDB$CONST_NAME_UQ CHAR(31)
The name of the primary or unique key con-
straint linked by the REFERENCES clause
in the constraint definition

RDB$MATCH_OPTION CHAR(7)
Not used. The current value is FULL in all
cases

System Tables

448

Column Name Data Type Description

RDB$UPDATE_RULE CHAR(11)

Referential integrity actions applied to the
foreign key record[s] when the primary
(unique) key of the parent table is updat-
ed: RESTRICT, NO ACTION, CASCADE,
SET NULL, SET DEFAULT

RDB$DELETE_RULE CHAR(11)

Referential integrity actions applied to th
foreign key record[s] when the primary
(unique) key of the parent table is deleted:
RESTRICT, NO ACTION, CASCADE,
SET NULL, SET DEFAULT

RDB$RELATIONS
RDB$RELATIONS stores the top-level definitions and attributes of all tables and views in the system.

Column Name Data Type Description

RDB$VIEW_BLR BLOB BLR
Stores the query specification for a view, in
the binary language representation (BLR).
The field stores NULL for a table

RDB$VIEW_SOURCE BLOB TEXT

Contains the original source text of the
query for a view, in SQL language. User
comments are included. The field stores
NULL for a table

RDB$DESCRIPTION BLOB TEXT
Could store comments related to the table
or view

RDB$RELATION_ID SMALLINT Internal identifier of the table or view

RDB$SYSTEM_FLAG SMALLINT
indicates whether the table or view is us-
er-defined (value 0) or system-defined (val-
ue 1 or greater)

RDB$DBKEY_LENGTH SMALLINT

The total length of the database key. For a
table: 8 bytes. For a view, the length is 8
multiplied by the number of tables refer-
enced by the view

RDB$FORMAT SMALLINT
Internal use, points to the relation's record
in RDB$FORMATS—do not modify

RDB$FIELD_ID SMALLINT
The field ID for the next column to be
added. The number is not decremented
when a column is dropped.

System Tables

449

Column Name Data Type Description

RDB$RELATION_NAME CHAR(31) Table or view name

RDB$SECURITY_CLASS CHAR(31)

May reference a security class defined in
the table RDB$SECURITY_CLASSES, in
order to apply access control limits to all
users of this table or view

RDB$EXTERNAL_FILE VARCHAR(255)
The full path to the external data file if the
table is defined with the EXTERNAL FILE
clause

RDB$RUNTIME BLOB
Table metadata description, used internally
for optimization

RDB$EXTERNAL_DESCRIPTION BLOB
Could store comments related to the exter-
nal file of an external table

RDB$OWNER_NAME CHAR(31)
The user name of the user who created the
table or view originally

RDB$DEFAULT_CLASS CHAR(31)
Default security class, used when a new
column is added to the table

RDB$FLAGS SMALLINT Internal flags

RDB$RELATION_TYPE SMALLINT

The type of the relation object being de-
scribed:

0 - system or user-defined table
1 - view
2 - external table
3 - monitoring table
4 - connection-level GTT (PRESERVE
ROWS)
5 - transaction-level GTT (DELETE
ROWS)

RDB$RELATION_CONSTRAINTS
RDB$RELATION_CONSTRAINTS stores the definitions of all table-level constraints: primary, unique, for-
eign key, CHECK, NOT NULL constraints.

Column Name Data Type Description

RDB$CONSTRAINT_NAME CHAR(31)
The name of the table-level constraint de-
fined by the user, or otherwise automatical-
ly generated by the system

System Tables

450

Column Name Data Type Description

RDB$CONSTRAINT_TYPE CHAR(11)
The name of the constraint type: PRIMA-
RY KEY, UNIQUE, FOREIGN KEY,
CHECK or NOT NULL

RDB$RELATION_NAME CHAR(31)
The name of the table this constraint applies
to

RDB$DEFERRABLE CHAR(3)
Currently NO in all cases: Firebird does not
yet support deferrable constraints

RDB$INITIALLY_DEFERRED CHAR(3) Currently NO in all cases

RDB$INDEX_NAME CHAR(31)
The name of the index that supports this
constraint. For a CHECK or a NOT NULL
constraint, it is NULL.

RDB$RELATION_FIELDS
RDB$RELATION_FIELDS stores the definitions of table and view columns.

Column Name Data Type Description

RDB$FIELD_NAME CHAR(31) Column name

RDB$RELATION_NAME CHAR(31)
The name of the table or view that the col-
umn belongs to

RDB$FIELD_SOURCE CHAR(31)

Domain name on which the column is
based, either a user-defined one specified
in the table definition or one created auto-
matically by the system using the set of at-
tributes defined. The attributes are in the
table RDB$FIELDS: this column matches
RDB$FIELDS.RDB$FIELD_NAME.

RDB$QUERY_NAME CHAR(31) Not currently used

RDB$BASE_FIELD CHAR(31)
Only populated for a view, it is the name of
the column from the base table

RDB$EDIT_STRING VARCHAR(127) Not used

RDB$FIELD_POSITION SMALLINT
The zero-based ordinal position of the col-
umn in the table or view, numbering from
left to right

RDB$QUERY_HEADER BLOB TEXT Not used

RDB$UPDATE_FLAG SMALLINT
Indicates whether the column is a regular
one (value 1) or a computed one (value 0)

System Tables

451

Column Name Data Type Description

RDB$FIELD_ID SMALLINT

An ID assigned from RDB
$RELATIONS.RDB$FIELD_ID at the time
the column was added to the table or view.
It should always be treated as transient

RDB$VIEW_CONTEXT SMALLINT
For a view column, the internal identifier of
the base table from which this field derives

RDB$DESCRIPTION BLOB TEXT
Comments related to the table or view col-
umn

RDB$DEFAULT_VALUE BLOB BLR
The value stored for the DEFAULT clause
for this column, if there is one, written in
binary language representation (BLR)

RDB$SYSTEM_FLAG SMALLINT
Indicates whether the column is user-de-
fined (value 0) or system-defined (value 1
or greater)

RDB$SECURITY_CLASS CHAR(31)

May reference a security class defined in
RDB$SECURITY_CLASSES, in order to
apply access control limits to all users of
this column

RDB$COMPLEX_NAME CHAR(31) Not used

RDB$NULL_FLAG SMALLINT
Indicates whether the column is nullable
(NULL) non-nullable (value 1)

RDB$DEFAULT_SOURCE BLOB TEXT
The source text of the DEFAULT clause, if
any

RDB$COLLATION_ID SMALLINT
The identifier of the collation sequence in
the character set for the column, if it is not
the default collation

RDB$ROLES
RDB$ROLES stores the roles that have been defined in this database.

Column Name Data Type Description

RDB$ROLE_NAME CHAR(31) Role name

RDB$OWNER_NAME CHAR(31) The user name of the role owner

RDB$DESCRIPTION BLOB TEXT Could store comments related to the role

RDB$SYSTEM_FLAG SMALLINT System flag

System Tables

452

RDB$SECURITY_CLASSES

RDB$SECURITY_CLASSES stores the access control lists

Column Name Data Type Description

RDB$SECURITY_CLASS CHAR(31) Security class name

RDB$ACL BLOB ACL
The access control list related to the securi-
ty class. It enumerates users and their privi-
leges

RDB$DESCRIPTION BLOB TEXT
Could store comments related to the securi-
ty class

RDB$TRANSACTIONS

RDB$TRANSACTIONS stores the states of distributed transactions and other transactions that were prepared
for two-phase commit with an explicit prepare message

Column Name Data Type Description

RDB$TRANSACTION_ID INTEGER
The unique identifier of the transaction be-
ing tracked

RDB$TRANSACTION_STATE SMALLINT

Transaction state:

0 - in limbo
1 - committed
2 - rolled back

RDB$TIMESTAMP TIMESTAMP Not used

RDB
$TRANSACTION_DESCRIPTION

BLOB

Describes the prepared transaction and
could be a custom message supplied to
isc_prepare_transaction2, even if
it is not a distributed transaction. It may be
used when a lost connection cannot be re-
stored

System Tables

453

RDB$TRIGGERS
RDB$TRIGGERS stores the trigger definitions for all tables and views.

Column Name Data Type Description

RDB$TRIGGER_NAME CHAR(31) Trigger name

RDB$RELATION_NAME CHAR(31)
The name of the table or view the trigger
applies to. NULL if the trigger is applicable
to a database event (“database trigger”)

RDB$TRIGGER_SEQUENCE SMALLINT
Position of this trigger in the sequence. Ze-
ro usually means that no sequence position
is specified

RDB$TRIGGER_TYPE SMALLINT

The event the trigger fires on:

1 - before insert
2 - after insert
3 - before update
4 - after update
5 - before delete
6 - after delete
17 - before insert or update
18 - after insert or update
25 - before insert or delete
26 - after insert or delete
27 - before update or delete
28 - after update or delete
113 - before insert or update or delete
114 - after insert or update or delete
8192 - on connect
8193 - on disconnect
8194 - on transaction start
8195 - on transaction commit
8196 - on transaction rollback

Identification of the exact RDB
$TRIGGER_TYPE code is a lit-
tle more complicated, since it is
a bitmap, calculated according to
which phase and events are covered
and the order in which they are de-
fined. For the curious, the calcu-
lation is explained in this blog by
Mark Rotteveel.

RDB$TRIGGER_SOURCE BLOB TEXT
Stores the source code of the trigger in
PSQL

http://tinyurl.com/fb-triggertype
http://tinyurl.com/fb-triggertype

System Tables

454

Column Name Data Type Description

RDB$TRIGGER_BLR BLOB BLR
Stores the trigger in the binary language
representation (BLR)

RDB$DESCRIPTION BLOB TEXT Trigger comment text

RDB$TRIGGER_INACTIVE SMALLINT
Indicates whether the trigger is currently in-
active (1) or active (0)

RDB$SYSTEM_FLAG SMALLINT
Flag: indicates whether the trigger is us-
er-defined (value 0) or system-defined (val-
ue 1 or greater)

RDB$FLAGS SMALLINT Internal use

RDB$VALID_BLR SMALLINT
Indicates whether the text of the trigger re-
mains valid after the latest modification by
the the ALTER TRIGGER statement

RDB$DEBUG_INFO BLOB
Contains debugging information about vari-
ables used in the trigger

RDB$TRIGGER_MESSAGES
RDB$TRIGGER_MESSAGES stores the trigger messages.

Column Name Data Type Description

RDB$TRIGGER_NAME CHAR(31)
The name of the trigger the message is as-
sociated with

RDB$MESSAGE_NUMBER SMALLINT
The number of the message within this trig-
ger (from 1 to 32,767)

RDB$MESSAGE VARCHAR(1023) Text of the trigger message

RDB$TYPES
RDB$TYPES stores the defining sets of enumerated types used throughout the system.

Column Name Data Type Description

RDB$FIELD_NAME CHAR(31)
Enumerated type name. Each type name
masters its own set of types, e.g., object

System Tables

455

Column Name Data Type Description

types, data types, character sets, trigger
types, blob subtypes, etc.

RDB$TYPE SMALLINT

The object type identifier. A unique series
of numbers is used within each separate
enumerated type. For example, in this se-
lection from the set mastered under RDB
$OBJECT_TYPE in RDB$FIELD_NAME,
some object types are enumerated:

0 - TABLE
1 - VIEW
2 - TRIGGER
3 - COMPUTED_FIELD
4 - VALIDATION
5 - PROCEDURE
...

RDB$TYPE_NAME CHAR(31)

The name of a member of an enumerat-
ed type, e.g., TABLE, VIEW, TRIGGER,
etc. in the example above. In the RDB
$CHARACTER_SET enumerated type,
RDB$TYPE_NAME stores the names of
the character sets.

RDB$DESCRIPTION BLOB TEXT
Any text comments related to the enumerat-
ed type

RDB$SYSTEM_FLAG SMALLINT
Flag: indicates whether the type-member
is user-defined (value 0) or system-defined
(value 1 or greater)

RDB$USER_PRIVILEGES
RDB$USER_PRIVILEGES stores the SQL access privileges for Firebird users and privileged objects.

Column Name Data Type Description

RDB$USER CHAR(31)
The user or object that is granted this privi-
lege

RDB$GRANTOR CHAR(31) The user who grants the privilege

RDB$PRIVILEGE CHAR(6)

The privilege granted hereby:

A - all (all privileges)
S - select (selecting data)
I - insert (inserting rows)

System Tables

456

Column Name Data Type Description

D - delete (deleting rows)
R - references (foreign key)
U - update (updating data)
E - executing (procedure)

RDB$GRANT_OPTION SMALLINT

Whether the WITH GRANT OPTION au-
thority is included with the privilege:

1 - included
0 - not included

RDB$RELATION_NAME CHAR(31)
The name of the object (table, view, proce-
dure or role) the privilege is granted ON

RDB$FIELD_NAME CHAR(31)
The name of the column the privilege is ap-
plicable to, for a column-level privilege (an
UPDATE or REFERENCES privilege)

RDB$USER_TYPE SMALLINT
Identifies the type of user the privilege is
granted TO (a user, a procedure, a view,
etc.)

RDB$OBJECT_TYPE SMALLINT
Identifies the type of the object the privi-
lege is granted ON

RDB$VIEW_RELATIONS
RDB$VIEW_RELATIONS stores the tables that are referred to in view definitions. There is one record for each
table in a view.

Column Name Data Type Description

RDB$VIEW_NAME CHAR(31) View name

RDB$RELATION_NAME CHAR(31) The name of the table the view references

RDB$VIEW_CONTEXT SMALLINT
The alias used to reference the view column
in the BLR code of the query definition

RDB$CONTEXT_NAME CHAR(255)
The text associated with the alias reported
in the RDB$VIEW_CONTEXT column

457

Appendix E:
Monitoring Tables

The Firebird engine can monitor activities in a database and make them available for user queries via the mon-
itoring tables. The definitions of these tables are always present in the database, all named with the prefix MON
$. The tables are virtual: they are populated with data only at the moment when the user queries them. That is
also one good reason why it is no use trying to create triggers for them!

The key notion in understanding the monitoring feature is an activity snapshot. The activity snapshot represents
the current state of the database at the start of the transaction in which the monitoring table query runs. It delivers
a lot of information about the database itself, active connections, users, transactions prepared, running queries
and more.

The snapshot is created when any monitoring table is queried for the first time. It is preserved until the end of the
current transaction to maintain a stable, consistent view for queries across multiple tables, such as a master-detail
query. In other words, monitoring tables always behave as though they were in SNAPSHOT TABLE STABILITY
(“consistency”) isolation, even if the current transaction is started with a lower isolation level.

To refresh the snapshot, the current transaction must be completed and the monitoring tables must be re-queried
in a new transaction context.

Access Security

• SYSDBA and the database owner have full access to all information available from the monitoring tables
• Regular users can see information about their own connections; other connections are not visible to them

Warning

In a highly loaded environment, collecting information via the monitoring tables could have a negative impact
on system performance.

Table E.1. List of Monitoring Tables

System Table Contents

MON$ATTACHMENTS Information about active attachments to the database

MON$CALL_STACK
Calls to the stack by active queries of stored procedures and
triggers

MON$CONTEXT_VARIABLES Information about custom context variables

MON$DATABASE
Information about the database to which the
CURRENT_CONNECTION is attached

MON$IO_STATS Input/output statistics

MON$MEMORY_USAGE Memory usage statistics

MON$RECORD_STATS Record-level statistics

Monitoring Tables

458

System Table Contents

MON$STATEMENTS Statements prepared for execution

MON$TRANSACTIONS Started transactions

MON$ATTACHMENTS
MON$ATTACHMENTS displays information about active attachments to the database.

Column Name Data Type Description

MON$ATTACHMENT_ID INTEGER Connection identifier

MON$SERVER_PID INTEGER Server process identifier

MON$STATE SMALLINT

Connection state:

0 - idle
1 - active

MON$ATTACHMENT_NAME VARCHAR(255)
Connection string—the file name and full
path to the primary database file

MON$USER CHAR(31)
The name of the user who is using this con-
nection

MON$ROLE CHAR(31)

The role name specified when the connec-
tion was established. If no role was speci-
fied when the connection was established,
the field contains the text NONE

MON$REMOTE_PROTOCOL VARCHAR(10) Remote protocol name

MON$REMOTE_ADDRESS VARCHAR(255) Remote address (address and server name)

MON$REMOTE_PID INTEGER Remote client process identifier

MON$CHARACTER_SET_ID SMALLINT
Connection character set identifier (see
RDB$CHARACTER_SET in system table
RDB$TYPES)

MON$TIMESTAMP TIMESTAMP
The date and time when the connection was
started

MON$GARBAGE_COLLECTION SMALLINT
Garbage collection flag (as specified in the
attachment's DPB): 1=allowed, 0=not al-
lowed

MON$REMOTE_PROCESS VARCHAR(255)
The full file name and path to the exe-
cutable file that established this connection

Monitoring Tables

459

Column Name Data Type Description

MON$STAT_ID INTEGER Statistics identifier

Using MON$ATTACHMENTS to Kill a Connection

Monitoring tables are read-only. However, the server has a built-in mechanism for deleting (and only deleting)
records in the MON$ATTACHMENTS table, which makes it possible to close a connection to the database.

Notes

• All the current activity in the connection being deleted is immediately stopped and all active transactions
are rolled back

• The closed connection will return an error with the isc_att_shutdown code to the application

• Later attempts to use this connection (i.e., use its handle in API calls) will return errors

Example: Closing all connections except for your own (current):

 DELETE FROM MON$ATTACHMENTS
 WHERE MON$ATTACHMENT_ID <> CURRENT_CONNECTION

MON$CALL_STACK
MON$CALL_STACK displays calls to the stack from queries executing in stored procedures and triggers.

Column Name Data Type Description

MON$CALL_ID INTEGER Call identifier

MON$STATEMENT_ID INTEGER

The identifier of the top-level SQL state-
ment, the one that initiated the chain of
calls. Use this identifier to find the records
about the active statement in the MON
$STATEMENTS table

MON$CALLER_ID INTEGER
The identifier of the calling trigger or stored
procedure

MON$OBJECT_NAME CHAR(31) PSQL object (module) name

MON$OBJECT_TYPE SMALLINT

PSQL object type (trigger or stored proce-
dure):

2 - trigger

Monitoring Tables

460

Column Name Data Type Description

5 - stored procedure

MON$TIMESTAMP TIMESTAMP The date and time when the call was started

MON$SOURCE_LINE INTEGER
The number of the source line in the SQL
statement being executed at the moment of
the snapshot

MON$SOURCE_COLUMN INTEGER
The number of the source column in the
SQL statement being executed at the mo-
ment of the snapshot

MON$STAT_ID INTEGER Statistics identifier

EXECUTE STATEMENT Calls: Information about calls during the execution of the EXECUTE STATEMENT
statement does not get into the call stack.

Example using MON$CALL_STACK: Getting the call stack for all connections except own:

WITH RECURSIVE
 HEAD AS (
 SELECT
 CALL.MON$STATEMENT_ID, CALL.MON$CALL_ID,
 CALL.MON$OBJECT_NAME, CALL.MON$OBJECT_TYPE
 FROM MON$CALL_STACK CALL
 WHERE CALL.MON$CALLER_ID IS NULL
 UNION ALL
 SELECT
 CALL.MON$STATEMENT_ID, CALL.MON$CALL_ID,
 CALL.MON$OBJECT_NAME, CALL.MON$OBJECT_TYPE
 FROM MON$CALL_STACK CALL
 JOIN HEAD ON CALL.MON$CALLER_ID = HEAD.MON$CALL_ID
)
SELECT MON$ATTACHMENT_ID, MON$OBJECT_NAME, MON$OBJECT_TYPE
FROM HEAD
 JOIN MON$STATEMENTS STMT ON STMT.MON$STATEMENT_ID = HEAD.MON$STATEMENT_ID
WHERE STMT.MON$ATTACHMENT_ID <> CURRENT_CONNECTION

MON$CONTEXT_VARIABLES
MON$CONTEXT_VARIABLES displays information about custom context variables.

Column Name Data Type Description

MON$ATTACHMENT_ID INTEGER

Connection identifier. It contains a valid
value only for a connection-level context
variable. For transaction-level variables it is
NULL.

Monitoring Tables

461

Column Name Data Type Description

MON$TRANSACTION_ID INTEGER

Transaction identifier. It contains a valid
value only for transaction-level context
variables. For connection-level variables it
is NULL.

MON$VARIABLE_NAME VARCHAR(80) Context variable name

MON$VARIABLE_VALUE VARCHAR(255) Context variable value

MON$DATABASE
MON$DATABASE displays the header information from the database the current user is connected to.

Column Name Data Type Description

MON$DATABASE_NAME VARCHAR(255)
The file name and full path of the primary
database file, or the database alias

MON$PAGE_SIZE SMALLINT Database page size in bytes

MON$ODS_MAJOR SMALLINT Major ODS version, e.g., 11

MON$ODS_MINOR SMALLINT Minor ODS version, e.g., 2

MON$OLDEST_TRANSACTION INTEGER
The number of the oldest [interesting] trans-
action (OIT)

MON$OLDEST_ACTIVE INTEGER
The number of the oldest active transaction
(OAT)

MON$OLDEST_SNAPSHOT INTEGER
The number of the transaction that was
active at the moment when the OAT was
started - oldest snapshot transaction (OST)

MON$NEXT_TRANSACTION INTEGER
The number of the next transaction, as it
stood when the monitoring snapshot was
taken

MON$PAGE_BUFFERS INTEGER
The number of pages allocated in RAM for
the database page cache

MON$SQL_DIALECT SMALLINT Database SQL Dialect: 1 or 3

MON$SHUTDOWN_MODE SMALLINT

The current shutdown state of the database:

0 - the database is online
1 - multi-user shutdown
2 - single-user shutdown
3 - full shutdown

Monitoring Tables

462

Column Name Data Type Description

MON$SWEEP_INTERVAL INTEGER Sweep interval

MON$READ_ONLY SMALLINT
Flag indicating whether the database is
read-only (value 1) or read-write (value 0)

MON$FORCED_WRITES SMALLINT

Indicates whether the write mode of the
database is set for synchronous write
(forced writes ON, value is 1) or asyn-
chronous write (forced writes OFF, value is
0)

MON$RESERVE_SPACE SMALLINT
The flag indicating reserve_space (value
1) or use_all_space (value 0) for filling
database pages

MON$CREATION_DATE TIMESTAMP
The date and time when the database was
created or was last restored

MON$PAGES BIGINT
The number of pages allocated for the
database on an external device

MON$STAT_ID INTEGER Statistics identifier

MON$BACKUP_STATE SMALLINT

Current physical backup (nBackup) state:

0 - normal
1 - stalled
2 - merge

MON$IO_STATS
MON$IO_STATS displays input/output statistics. The counters are cumulative, by group, for each group of
statistics.

Column Name Data Type Description

MON$STAT_ID INTEGER Statistics identifier

MON$STAT_GROUP SMALLINT

Statistics group:

0 - database
1 - connection
2 - transaction
3 - statement
4 - call

MON$PAGE_READS BIGINT Count of database pages read

MON$PAGE_WRITES BIGINT Count of database pages written to

Monitoring Tables

463

Column Name Data Type Description

MON$PAGE_FETCHES BIGINT Count of database pages fetched

MON$PAGE_MARKS BIGINT Count of database pages marked

MON$MEMORY_USAGE
MON$MEMORY_USAGE displays memory usage statistics.

Column Name Data Type Description

MON$STAT_ID INTEGER Statistics identifier

MON$STAT_GROUP SMALLINT

Statistics group:

0 - database
1 - connection
2 - transaction
3 - operator
4 - call

MON$MEMORY_USED BIGINT

The amount of memory in use, in bytes.
This data is about the high-level memory
allocation performed by the server. It can be
useful to track down memory leaks and ex-
cessive memory usage in connections, pro-
cedures, etc.

MON$MEMORY_ALLOCATED BIGINT

The amount of memory allocated by the op-
erating system, in bytes. This data is about
the low-level memory allocation performed
by the Firebird memory manager—the
amount of memory allocated by the operat-
ing system—which can allow you to control
the physical memory usage.

MON$MAX_MEMORY_USED BIGINT
The maximum number of bytes used by this
object

MON
$MAX_MEMORY_ALLOCATED

BIGINT
The maximum number of bytes allocated
for this object by the operating system

Note

Not all records in this table have non-zero values. MON$DATABASE and objects related to memory allocation
have non-zero values. Minor memory allocations are not accrued here but are added to the database memory
pool instead.

Monitoring Tables

464

MON$RECORD_STATS
MON$RECORD_STATS displays record-level statistics. The counters are cumulative, by group, for each group
of statistics.

Column Name Data Type Description

MON$STAT_ID INTEGER Statistics identifier

MON$STAT_GROUP SMALLINT

Statistics group:

0 - database
1 - connection
2 - transaction
3 - statement
4 - call

MON$RECORD_SEQ_READS BIGINT Count of records read sequentially

MON$RECORD_IDX_READS BIGINT Count of records read via an index

MON$RECORD_INSERTS BIGINT Count of inserted records

MON$RECORD_UPDATES BIGINT Count of updated records

MON$RECORD_DELETES BIGINT Count of deleted records

MON$RECORD_BACKOUTS BIGINT Count of records backed out

MON$RECORD_PURGES BIGINT Count of records purged

MON$RECORD_EXPUNGES BIGINT Count of records expunged

MON$STATEMENTS
MON$STATEMENTS displays statements prepared for execution.

Column Name Data Type Description

MON$STATEMENT_ID INTEGER Statement identifier

MON$ATTACHMENT_ID INTEGER Connection identifier

MON$TRANSACTION_ID INTEGER Transaction identifier

MON$STATE SMALLINT Statement state:

Monitoring Tables

465

Column Name Data Type Description

0 - idle
1 - active
2 - stalled

MON$TIMESTAMP TIMESTAMP
The date and time when the statement was
prepared

MON$SQL_TEXT BLOB TEXT Statement text in SQL

MON$STAT_ID INTEGER Statistics identifier

The STALLED state indicates that, at the time of the snapshot, the statement had an open cursor and was waiting
for the client to resume fetching rows.

Using MON$STATEMENTS to Cancel a Query

Monitoring tables are read-only. However, the server has a built-in mechanism for deleting (and only deleting)
records in the MON$STATEMENTS table, which makes it possible to cancel a running query.

Notes

• If no statements are currently being executed in the connection, any attempt to cancel queries will not proceed

• After a query is cancelled, calling execute/fetch API functions will return an error with the
isc_cancelled code

• Subsequent queries from this connection will proceed as normal

Example: Cancelling all active queries for the specified connection:

DELETE FROM MON$STATEMENTS
 WHERE MON$ATTACHMENT_ID = 32

MON$TRANSACTIONS
MON$TRANSACTIONS reports started transactions.

Column Name Data Type Description

MON$TRANSACTION_ID INTEGER Transaction identifier (number)

MON$ATTACHMENT_ID INTEGER Connection identifier

MON$STATE SMALLINT Transaction state:

Monitoring Tables

466

Column Name Data Type Description

0 - idle
1 - active

MON$TIMESTAMP TIMESTAMP
The date and time when the transaction was
started

MON$TOP_TRANSACTION INTEGER Top-level transaction identifier (number)

MON$OLDEST_TRANSACTION INTEGER
Transaction ID of the oldest [interesting]
transaction (OIT)

MON$OLDEST_ACTIVE INTEGER
Transaction ID of the oldest active transac-
tion (OAT)

MON$ISOLATION_MODE SMALLINT

Isolation mode (level):

0 - consistency (snapshot table stability)
1 - concurrency (snapshot)
2 - read committed record version
3 - read committed no record version

MON$LOCK_TIMEOUT SMALLINT

Lock timeout:

-1 - wait forever
0 - no waiting
1 or greater - lock timeout in seconds

MON$READ_ONLY SMALLINT
Flag indicating whether the transaction is
read-only (value 1) or read-write (value 0)

MON$AUTO_COMMIT SMALLINT
Flag indicating whether automatic commit
is used for the transaction (value 1) or not
(value 0)

MON$AUTO_UNDO SMALLINT
Flag indicating whether the logging mech-
anism automatic undo is used for the trans-
action (value 1) or not (value 0)

MON$STAT_ID INTEGER Statistics identifier

467

Appendix F:
Character Sets and

Collation Sequences
Table F.1. Character Sets and Collation Sequences

Character Set ID
Bytes
per

Char
Collation Language

ASCII 2 1 ASCII English

BIG_5 56 2 BIG_5 Chinese, Vietnamese, Korean

CP943C 68 2 CP943C Japanese

 '' '' '' CP943C_UNICODE Japanese

CYRL 50 1 CYRL Russian

 '' '' '' DB_RUS Russian dBase

 '' '' '' PDOX_CYRL Russian Paradox

DOS437 10 1 DOS437 U.S. English

 '' '' '' DB_DEU437 German dBase

 '' '' '' DB_ESP437 Spanish dBase

 '' '' '' DB_FIN437 Finnish dBase

 '' '' '' DB_FRA437 French dBase

 '' '' '' DB_ITA437 Italian dBase

 '' '' '' DB_NLD437 Dutch dBase

 '' '' '' DB_SVE437 Swedish dBase

 '' '' '' DB_UK437 English (Great Britain) dBase

 '' '' '' DB_US437 U.S. English dBase

 '' '' '' PDOX_ASCII Code page Paradox—ASCII

 '' '' '' PDOX_SWEDFIN Swedish / Finnish Paradox

 '' '' '' PDOX_INTL International English Paradox

DOS737 9 1 DOS737 Greek

DOS775 15 1 DOS775 Baltic

Character Sets and Collation Sequences

468

Character Set ID
Bytes
per

Char
Collation Language

DOS850 11 1 DOS850 Latin I (no Euro symbol)

 '' '' '' DB_DEU850 German

 '' '' '' DB_ESP850 Spanish

 '' '' '' DB_FRA850 French

 '' '' '' DB_FRC850 French—Canada

 '' '' '' DB_ITA850 Italian

 '' '' '' DB_NLD850 Dutch

 '' '' '' DB_PTB850 Portuguese—Brazil

 '' '' '' DB_SVE850 Swedish

 '' '' '' DB_UK850 English—Great Britain

 '' '' '' DB_US850 U.S. English

DOS852 45 1 DOS852 Latin II

 '' '' '' DB_CSY Czech dBase

 '' '' '' DB_PLK Polish dBase

 '' '' '' DB_SLO Slovak dBase

 '' '' '' PDOX_CSY Czech Paradox

 '' '' '' PDOX_HUN Hungarian Paradox

 '' '' '' PDOX_PLK Polish Paradox

 '' '' '' PDOX_SLO Slovak Paradox

DOS857 46 1 DOS857 Turkish

 '' '' '' DB_TRK Turkish dBase

DOS858 16 1 DOS858 Latin I (with Euro symbol)

DOS860 13 1 DOS860 Portuguese

 '' '' '' DB_PTG860 Portuguese dBase

DOS861 47 1 DOS861 Icelandic

 '' '' '' PDOX_ISL Icelandic Paradox

DOS862 17 1 DOS862 Hebrew

DOS863 14 1 DOS863 French—Canada

 '' '' '' DB_FRC863 French dBase—Canada

Character Sets and Collation Sequences

469

Character Set ID
Bytes
per

Char
Collation Language

DOS864 18 1 DOS864 Arabic

DOS865 12 1 DOS865 Scandinavian

 '' '' '' DB_DAN865 Danish dBase

 '' '' '' DB_NOR865 Norwegian dBase

 '' '' '' PDOX_NORDAN4 Paradox Norway and Denmark

DOS866 48 1 DOS866 Russian

DOS869 49 1 DOS869 Modern Greek

EUCJ_0208 6 2 EUCJ_0208 Japanese EUC

GB_2312 57 2 GB_2312 Simplified Chinese (Hong Kong, Korea)

GB18030 69 4 GB18030 Chinese

 '' '' '' GB18030_UNICODE Chinese

GBK 67 2 GBK Chinese

 '' '' '' GBK_UNICODE Chinese

ISO8859_1 21 1 ISO8859_1 Latin I

 '' '' '' DA_DA Danish

 '' '' '' DE_DE German

 '' '' '' DU_NL Dutch

 '' '' '' EN_UK English—Great Britain

 '' '' '' EN_US U.S. English

 '' '' '' ES_ES Spanish

 '' '' '' ES_ES_CI_AI
Spanish—case insensitive and + ac-
cent-insensitive

 '' '' FI_FI Finnish

 '' '' '' FR_CA French—Canada

 '' '' '' FR_FR French

 '' '' '' FR_FR_CI_AI
French—case insensitive + accent insensi-
tive

 '' '' '' IS_IS Icelandic

 '' '' '' IT_IT Italian

 '' '' '' NO_NO Norwegian

Character Sets and Collation Sequences

470

Character Set ID
Bytes
per

Char
Collation Language

ISO8859_1 '' '' PT_PT Portuguese

 '' '' '' PT_BR Portuguese—Brazil

 '' '' '' SV_SV Swedish

ISO8859_2 22 1 ISO8859_2
Latin 2—Central Europe (Croatian,
Czech, Hungarian, Polish, Romanian, Ser-
bian, Slovak, Slovenian)

 '' '' '' CS_CZ Czech

 '' '' '' ISO_HUN
Hungarian—case insensitive, accent sen-
sitive

 '' '' '' ISO_PLK Polish

ISO8859_3 23 1 ISO8859_3
Latin 3—Southern Europe (Malta, Es-
peranto)

ISO8859_4 34 1 ISO8859_4
Latin 4—Northern Europe (Estonian, Lat-
vian, Lithuanian, Greenlandic, Lappish)

ISO8859_5 35 1 ISO8859_5 Cyrillic (Russian)

ISO8859_6 36 1 ISO8859_6 Arabic

ISO8859_7 37 1 ISO8859_7 Greek

ISO8859_8 38 1 ISO8859_8 Hebrew

ISO8859_9 39 1 ISO8859_9 Latin 5

ISO8859_13 40 1 ISO8859_13 Latin 7—Baltic

 '' '' '' LT_LT Lithuanian

KOI8R 63 1 KOI8R Russian—dictionary ordering

 '' '' '' KOI8R_RU Russian

KOI8U 64 1 KOI8U Ukrainian—dictionary ordering

 '' '' '' KOI8U_UA Ukrainian

KSC_5601 44 2 KSC_5601 Korean

 '' '' '' KSC_DICTIONARY Korean—dictionary sort order

NEXT 19 1 NEXT Coding NeXTSTEP

 '' '' '' NXT_DEU German

 '' '' '' NXT_ESP Spanish

 '' '' '' NXT_FRA French

Character Sets and Collation Sequences

471

Character Set ID
Bytes
per

Char
Collation Language

 '' '' '' NXT_ITA Italian

NEXT 19 1 NXT_US U.S. English

NONE 0 1 NONE

Neutral code page. Translation to upper
case is performed only for code ASCII
97-122. Recommendation: avoid this
character set

OCTETS 1 1 OCTETS Binary character encoding

SJIS_0208 5 2 SJIS_0208 Japanese

TIS620 66 1 TIS620 Thai

 '' '' '' TIS620_UNICODE Thai

UNICODE_FSS 3 3 UNICODE_FSS All English

UTF8 4 4 UTF8
Any language that is supported in Uni-
code 4.0

 '' '' '' USC_BASIC
Any language that is supported in Uni-
code 4.0

 '' '' '' UNICODE
Any language that is supported in Uni-
code 4.0

 '' '' '' UNICODE_CI
Any language that is supported in Uni-
code 4.0—Case insensitive

 '' '' '' UNICODE_CI_AI
Any language that is supported in Uni-
code 4.0—Case insensitive and accent in-
sensitive

WIN1250 51 1 WIN1250 ANSI—Central Europe

 '' '' '' BS_BA Bosnian

 '' '' '' PXW_CSY Czech

 '' '' '' PXW_HUN
Hungarian—case insensitive, accent sen-
sitive

 '' '' '' PXW_HUNDC Hungarian—dictionary ordering

 '' '' '' PXW_HUNDC Polish

 '' '' '' PXW_PLK Slovak

 '' '' '' PXW_SLOV Slovenian

 '' '' '' WIN_CZ Czech

 '' '' '' WIN_CZ_CI Czech—Case insensitive

Character Sets and Collation Sequences

472

Character Set ID
Bytes
per

Char
Collation Language

 '' '' '' WIN_CZ_CI_AI
Czech—Case insensitive and accent in-
sensitive

WIN1251 52 1 WIN1251 ANSI Cyrillic

 '' '' '' WIN1251_UA Ukrainian

 '' '' '' PXW_CYRL Paradox Cyrillic (Russian)

WIN1252 53 1 WIN1252 ANSI—Latin I

 '' '' '' PXW_INTL English International

 '' '' '' PXW_INTL850 Paradox multilingual Latin I

 '' '' '' PXW_NORDAN4 Norwegian and Danish

 '' '' '' PXW_SPAN Paradox Spanish

 '' '' '' PXW_SWEDFIN Swedish and Finnish

 '' '' '' WIN_PTBR Portuguese—Brazil

WIN1253 54 1 WIN1253 ANSI Greek

 '' '' '' PXW_GREEK Paradox Greek

WIN1254 55 1 WIN1254 ANSI Turkish

 '' '' '' PXW_TURK Paradox Turkish

WIN1255 58 1 WIN1255 ANSI Hebrew

WIN1256 59 1 WIN1256 ANSI Arabic

WIN1257 60 1 WIN1257 ANSI Baltic

 '' '' '' WIN1257_EE Estonian—Dictionary ordering

 '' '' '' WIN1257_LT Lithuanian—Dictionary ordering

 '' '' '' WIN1257_LV Latvian—Dictionary ordering

WIN1258 65 1 WIN1258 Vietnamese

473

Appendix G:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this License. Copies of the Li-
cense are available at http://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsql.org/man-
ual/pdl.html (HTML).

The Original Documentation is titled Firebird 2.5 Language Reference.

The Initial Writers of the Original Documentation are: Paul Vinkenoog, Dmitry Yemanov and Thomas Woinke.
Writers of text originally in Russian are Denis Simonov, Dmitry Filippov, Alexander Karpeykin, Alexey
Kovyazin and Dmitry Kuzmenko.

Copyright (C) 2008-2015. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL-licensed material are: J. Beesley, Helen Borrie, Arno Brinkman, Frank In-
germann, Vlad Khorsun, Alex Peshkov, Nickolay Samofatov, Adriano dos Santos Fernandes, Dmitry Yemanov.

Included portions are Copyright (C) 2001-2015 by their respective authors. All Rights Reserved.

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

474

Appendix H:
Document History

The exact file history is recorded in our git repository; see https://github.com/FirebirdSQL/firebird-documen-
tation

Revision History
1.001 22 January 2018H.E.M.B. Updated the file history link at the top of this chapter to reflect the mi-

gration of the Doc source tree to Github.
Typos fixed/updates by M. Rotteveel Dec. 2017/Jan. 2018

• 14.12.2017 psql.xml line 544 replaced 'stored procedures' with 'trig-
gers'

• 14.12.2017 psql.xml line 1070 removed extraneous '>' symbol
• 21.01.2018 functions-vars.xml line 1222 replaced

'CURRENT_TIME' with 'CURRENT_TIMESTAMP'
• 21.01.2018 dml.xml line 19 switched 'INSERT OR UPDATE' to

'UPDATE OR INSERT'
• 21.01.2018 dml.xml line 3344 removed extraneous 'the'
• 21.01.2018 ddl.xml line 3359 inserted missing keyword 'INDEX' for

SET STATISTICS syntax
• 21.01.2018 commons.xml line 1330 switch keywords 'horizontal'

and 'vertical'
• 21.01.2018 structure.xml lines 276 to 278 change date literal format

to 'yyyy-mm-dd' and include hex representation in example

1.000 11 August 2017 H.E.M.B. There have been no further changes to the content during the final
review period. The chapters DML, PSQL, Functions and Variables,
Transactions and Security were not reviewed in this phase.

0.906 11 August 2016 H.E.M.B. Several revisions were published during the year, as a Beta 1, with re-
views of various sections by Paul Vinkenoog, Aage Johansen and Mark
Rotteveel. This revision (0.906) awaits final revision of some later sec-
tions, marked as “Editor's Note” in red italics.

0.900 1 September
2015

H.E.M.B. Original was in Russian, translated by Dmitry Borodin (MegaTransla-
tions). Raw translation edited and converted to DocBook, as this revi-
son (0.900), by Helen Borrie.
This revision distributed as a PDF build only, for review by Dmitry Ye-
manov, et al.
Reviewers, please pay attention to the comments like this: Editor's
note :: The sky is falling, take cover!

https://github.com/FirebirdSQL/firebird-documentation
https://github.com/FirebirdSQL/firebird-documentation

	Firebird 2.5 Language Reference
	Table of Contents
	About the Firebird SQL Language Reference
	Subject Matter
	Authorship
	Language Reference Updates
	Gestation of the Big Book
	Translation . . .
	. . . and More Translation

	Contributors

	Acknowledgments

	SQL Language Structure
	Background to Firebird's SQL Language
	SQL Flavours
	SQL Dialects
	Error Conditions

	Basic Elements: Statements, Clauses, Keywords
	Identifiers
	Literals
	Operators and Special Characters
	Comments

	Data Types and Subtypes
	Integer Data Types
	SMALLINT
	INTEGER
	BIGINT
	Hexadecimal Format for Integer Numbers

	Floating-Point Data Types
	FLOAT
	DOUBLE PRECISION

	Fixed-Point Data Types
	NUMERIC
	DECIMAL

	Data Types for Dates and Times
	DATE
	TIME
	TIMESTAMP
	Operations Using Date and Time Values

	Character Data Types
	Unicode
	Client Character Set
	Special Character Sets
	Collation Sequence
	Case-Insensitive Searching
	UTF8 Collation Sequences

	Character Indexes
	Character Types in Detail
	CHAR
	VARCHAR
	NCHAR

	Binary Data Types
	BLOB Subtypes
	BLOB Specifics
	ARRAY Type
	Specifying Explicit Boundaries for Dimensions
	Adding More Dimensions

	Special Data Types
	SQL_NULL Data Type

	Conversion of Data Types
	Explicit Data Type Conversion
	Casting to a Domain
	Casting to TYPE OF COLUMN
	Conversions Possible for the CAST Function
	Literal Formats
	Shorthand Casts for Date and Time Data Types

	Implicit Data Type Conversion
	Implicit Conversion During String Concatenation

	Custom Data Types—Domains
	Domain Attributes
	Domain Override
	Creating and Administering Domains
	Altering a Domain
	Deleting (Dropping) a Domain

	Common Language Elements
	Expressions
	Constants
	String Constants (Literals)
	String Constants in Hexadecimal Notation
	Introducer Syntax for String Literals

	Number Constants
	Hexadecimal Notation for Numerals
	Hexadecimal Value Ranges

	SQL Operators
	Operator Precedence
	Concatenation Operator
	Arithmetic Operators
	Comparison Operators
	Logical Operators

	NEXT VALUE FOR

	Conditional Expressions
	CASE
	Simple CASE
	Searched CASE

	NULL in Expressions
	Expressions Returning NULL
	NULL in Logical Expressions

	Subqueries
	Correlated Subqueries
	Scalar Results

	Predicates
	Assertions
	Comparison Predicates
	Other Comparison Predicates
	BETWEEN
	LIKE
	Wildcards
	Using the ESCAPE Character Option

	STARTING WITH
	CONTAINING
	SIMILAR TO
	Syntax: SQL Regular Expressions
	Building Regular Expressions
	Characters
	Wildcards
	Character Classes
	Predefined Character Classes

	Quantifiers
	OR-ing Terms
	Subexpressions
	Escaping Special Characters

	IS [NOT] DISTINCT FROM
	IS [NOT] NULL

	Existential Predicates
	EXISTS
	IN
	SINGULAR

	Quantified Subquery Predicates
	ALL
	ANY and SOME

	Data Definition (DDL) Statements
	DATABASE
	CREATE DATABASE
	Using a Database Alias
	Creating a Database Remotely
	Optional Parameters for CREATE DATABASE
	Examples Using CREATE DATABASE

	ALTER DATABASE
	Parameters for ALTER DATABASE

	DROP DATABASE

	SHADOW
	CREATE SHADOW
	AUTO | MANUAL Modes
	Options for CREATE SHADOW

	DROP SHADOW

	DOMAIN
	CREATE DOMAIN
	Type-specific Details
	CREATE DOMAIN Examples

	ALTER DOMAIN
	What ALTER DOMAIN Cannot Alter
	ALTER DOMAIN Examples

	DROP DOMAIN

	TABLE
	CREATE TABLE
	Making a Column Non-nullable
	Character Columns
	Setting a DEFAULT Value
	Domain-based Columns
	Calculated Fields
	Defining an ARRAY Column
	Constraints
	Names for Constraints and Their Indexes
	Named Constraints
	The USING Clause

	PRIMARY KEY
	The UNIQUE Constraint
	NULL in Unique Keys

	FOREIGN KEY
	Foreign Key Actions

	CHECK Constraint

	Global Temporary Tables (GTT)
	Restrictions on GTTs

	External Tables
	External File Format
	Row Delimiters

	CREATE TABLE Examples

	ALTER TABLE
	Version Count Increments
	The ADD Clause
	The DROP Clause
	The DROP CONSTRAINT Clause
	The ALTER [COLUMN] Clause
	Renaming a Column: the TO Keyword
	Changing the Data Type of a Column: the TYPE Keyword
	Changing the Position of a Column: the POSITION
 Keyword
	The DROP DEFAULT and SET DEFAULT Clauses
	The COMPUTED [BY] or GENERATED ALWAYS AS Clauses
	Attributes that Cannot Be Altered
	Examples Using ALTER TABLE

	DROP TABLE
	RECREATE TABLE

	INDEX
	CREATE INDEX
	Unique Indexes
	Index Direction
	Computed (Expression) Indexes
	Limits on Indexes
	Maximum Indexes per Table
	Character Index Limits

	Examples Using CREATE INDEX

	ALTER INDEX
	Use of ALTER INDEX on a Constraint Index

	DROP INDEX
	SET STATISTICS
	Index Selectivity

	VIEW
	CREATE VIEW
	Updatable Views
	WITH CHECK OPTION
	Ownership of a View

	ALTER VIEW
	CREATE OR ALTER VIEW
	DROP VIEW
	RECREATE VIEW

	TRIGGER
	CREATE TRIGGER
	Statement Terminators
	Relation Triggers (on Tables or Views)
	Forms of Declaration
	Phase
	Row Events
	Firing Order of Triggers
	Variable Declarations
	The Trigger Body

	Database Triggers
	Execution of Database Triggers and Exception Handling
	Traps
	Trigger Suppression

	Two-phase Commit
	Some Caveats

	ALTER TRIGGER
	Permitted Changes to Triggers

	CREATE OR ALTER TRIGGER
	DROP TRIGGER
	RECREATE TRIGGER

	PROCEDURE
	CREATE PROCEDURE
	Statement Terminators
	Parameters
	Use of Domains in Declarations
	Use of Column Type in Declarations

	Variable and Cursor Declarations
	

	ALTER PROCEDURE
	CREATE OR ALTER PROCEDURE
	DROP PROCEDURE
	RECREATE PROCEDURE

	EXTERNAL FUNCTION
	DECLARE EXTERNAL FUNCTION
	DECLARE EXTERNAL FUNCTION Input Parameters
	Clauses and Keywords

	ALTER EXTERNAL FUNCTION
	DROP EXTERNAL FUNCTION

	FILTER
	DECLARE FILTER
	Specifying the Subtypes
	Parameters

	DROP FILTER

	SEQUENCE (GENERATOR)
	CREATE SEQUENCE
	ALTER SEQUENCE
	SET GENERATOR
	DROP SEQUENCE

	EXCEPTION
	CREATE EXCEPTION
	ALTER EXCEPTION
	CREATE OR ALTER EXCEPTION
	DROP EXCEPTION
	RECREATE EXCEPTION

	COLLATION
	CREATE COLLATION
	How the Engine Detects the Collation
	Specific Attributes

	DROP COLLATION

	CHARACTER SET
	ALTER CHARACTER SET

	ROLE
	CREATE ROLE
	ALTER ROLE
	DROP ROLE

	COMMENTS
	COMMENT ON

	Data Manipulation (DML) Statements
	SELECT
	FIRST, SKIP
	Characteristics of FIRST and SKIP

	The SELECT Columns List
	The FROM clause
	Selecting FROM a table or view
	Selecting FROM a stored procedure
	Selecting FROM a derived table
	Selecting FROM a CTE

	Joins
	Inner vs. outer joins
	Qualified joins
	Explicit-condition joins
	Named columns joins

	Natural joins
	A Note on Equality
	Cross joins
	Ambiguous field names in joins
	Joins with stored procedures

	The WHERE clause
	The GROUP BY clause
	HAVING

	The PLAN clause
	Simple plans
	Composite plans

	UNION
	ORDER BY
	Sorting Direction
	Collation Order
	NULLs Position
	Ordering UNION-ed Sets

	ROWS
	Mixing ROWS and FIRST/SKIP
	ROWS Syntax in UNION Queries

	FOR UPDATE [OF]
	WITH LOCK
	Usage with a FOR UPDATE Clause
	How the engine deals with WITH LOCK
	Caveats using WITH LOCK

	INTO
	Common Table Expressions (“WITH ... AS ... SELECT”)
	Recursive CTEs

	INSERT
	INSERT ... VALUES
	INSERT ... SELECT
	The “Unstable Cursor” Problem

	INSERT ... DEFAULT VALUES
	The RETURNING clause
	Inserting into BLOB columns

	UPDATE
	Using an alias
	The SET Clause
	The WHERE Clause
	The “Unstable Cursor” Problem

	The ORDER BY and ROWS Clauses
	The RETURNING Clause
	The INTO Sub-clause

	Updating BLOB columns

	UPDATE OR INSERT
	The RETURNING clause

	DELETE
	Aliases
	WHERE
	PLAN
	ORDER BY and ROWS
	RETURNING

	MERGE
	EXECUTE PROCEDURE
	“Executable” Stored Procedure

	EXECUTE BLOCK
	Input and output parameters
	Statement Terminators

	Procedural SQL (PSQL) Statements
	Elements of PSQL
	DML Statements with Parameters
	Transactions
	Module Structure
	The Module Header
	The Module Body

	Stored Procedures
	Benefits of Stored Procedures
	Types of Stored Procedures
	Executable Procedures
	Selectable Procedures

	Creating a Stored Procedure
	Modifying a Stored Procedure
	Deleting a Stored Procedure

	Stored Functions
	PSQL Blocks
	Triggers
	Firing Order (Order of Execution)
	DML Triggers
	Trigger Options
	OLD and NEW Context Variables

	Database Triggers
	Creating Triggers
	Modifying Triggers
	Deleting a Trigger

	Writing the Body Code
	Assignment Statements
	DECLARE CURSOR
	Cursor Idiosyncrasies
	Examples Using Named Cursors

	DECLARE VARIABLE
	Data Type for Variables

	BEGIN ... END
	IF ... THEN ... ELSE
	WHILE ... DO
	LEAVE
	EXIT
	SUSPEND
	EXECUTE STATEMENT
	Parameterized Statements
	Special Rules for Parameterized Statements

	WITH {AUTONOMOUS | COMMON} TRANSACTION
	WITH CALLER PRIVILEGES
	ON EXTERNAL [DATA SOURCE]
	Connection Pooling
	Transaction Pooling
	Exception Handling
	Miscellaneous Notes

	AS USER, PASSWORD and ROLE
	Caveats with EXECUTE STATEMENT

	FOR SELECT
	The Undeclared Cursor

	FOR EXECUTE STATEMENT
	OPEN
	FETCH
	CLOSE
	IN AUTONOMOUS TRANSACTION
	POST_EVENT

	Trapping and Handling Errors
	System Exceptions
	Custom Exceptions
	EXCEPTION
	WHEN ... DO
	Targeting GDSCODE
	Scope of a WHEN ... DO Statement

	Built-in functions and Variables
	Context variables
	CURRENT_CONNECTION
	CURRENT_DATE
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	SQLSTATE
	'TODAY'
	'TOMORROW'
	UPDATING
	'YESTERDAY'
	USER

	Scalar Functions
	Functions for Working with Context Variables
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()

	Mathematical Functions
	ABS()
	ACOS()
	ASIN()
	ATAN()
	ATAN2()
	CEIL(), CEILING()
	COS()
	COSH()
	COT()
	EXP()
	FLOOR()
	LN()
	LOG()
	LOG10()
	MOD()
	PI()
	POWER()
	RAND()
	ROUND()
	SIGN()
	SIN()
	SINH()
	SQRT()
	TAN()
	TANH()
	TRUNC()

	Functions for Working with Strings
	ASCII_CHAR()
	ASCII_VAL()
	BIT_LENGTH()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	HASH()
	LEFT()
	LOWER()
	LPAD()
	OCTET_LENGTH()
	OVERLAY()
	POSITION()
	REPLACE()
	REVERSE()
	RIGHT()
	RPAD()
	SUBSTRING()
	TRIM()
	UPPER()

	Date and Time Functions
	DATEADD()
	DATEDIFF()
	EXTRACT()
	Returned Data Types and Ranges
	MILLISECOND
	WEEK

	Type Casting Functions
	CAST()
	“Shorthand” Syntax

	Functions for Bitwise Operations
	BIN_AND()
	BIN_NOT()
	BIN_OR()
	BIN_SHL()
	BIN_SHR()
	BIN_XOR()

	Functions for Working with UUID
	CHAR_TO_UUID()
	GEN_UUID()
	UUID_TO_CHAR()

	Functions for Working with Generators (Sequences)
	GEN_ID()

	Conditional Functions
	COALESCE()
	DECODE()
	IIF()
	MAXVALUE()
	MINVALUE()
	NULLIF()

	Aggregate Functions
	AVG()
	COUNT()
	LIST()
	MAX()
	MIN()
	SUM()

	Transaction Control
	Transaction Statements
	SET TRANSACTION
	Transaction Parameters
	Transaction Name
	Access Mode
	Lock Resolution Mode
	WAIT Mode
	NO WAIT Mode

	Isolation Level
	SNAPSHOT Isolation Level
	SNAPSHOT TABLE STABILITY Isolation Level
	READ COMMITTED Isolation Level
	RECORD_VERSION

	NO AUTO UNDO
	IGNORE LIMBO
	RESERVING
	Options for RESERVING Clause

	COMMIT
	COMMIT Options

	ROLLBACK
	ROLLBACK Options
	ROLLBACK TO SAVEPOINT

	SAVEPOINT
	RELEASE SAVEPOINT
	Internal Savepoints
	Savepoints and PSQL

	Security
	User Authentication
	Specially Privileged Users
	POSIX Hosts
	The SYSDBA User on POSIX
	The root User

	Windows Hosts
	The Database Owner

	RDB$ADMIN Role
	Granting the RDB$ADMIN Role in the Security Database
	Doing the Same Task Using gsec
	Using the RDB$ADMIN Role in the Security Database
	Using gsec with RDB$ADMIN Rights

	Granting the RDB$ADMIN Role in a Regular Database
	Using the RDB$ADMIN Role in a Regular Database

	AUTO ADMIN MAPPING
	Auto Admin Mapping in Regular Databases
	Auto Admin Mapping in the Security Database

	Administrators
	SQL Statements for User Management
	CREATE USER
	ALTER USER
	DROP USER

	SQL Privileges
	The Object Owner
	Statements for Granting Privileges
	GRANT
	The TO Clause
	Packaging Privileges in a ROLE Object

	The User PUBLIC
	The WITH GRANT OPTION Clause
	The GRANTED BY Clause
	Alternative Syntax Using AS <username>

	Privileges on Tables and Views
	The EXECUTE Privilege
	Assigning Roles
	The WITH ADMIN OPTION Clause

	Statements for Revoking Privileges
	REVOKE
	The FROM Clause
	Revoking the GRANT OPTION
	Removing the Privilege to One or More Roles
	Revoking Privileges That Were GRANTED BY
	Revoking ALL ON ALL

	A. Supplementary Information
	The RDB$VALID_BLR Field
	How Invalidation Works

	A Note on Equality

	B. Exception Codes and Messages
	SQLSTATE Error Codes and Descriptions
	SQLCODE and GDSCODE Error Codes and Descriptions

	C. Reserved Words and Keywords
	Reserved words
	Keywords

	D. System Tables
	RDB$BACKUP_HISTORY
	RDB$CHARACTER_SETS
	RDB$CHECK_CONSTRAINTS
	RDB$COLLATIONS
	RDB$DATABASE
	RDB$DEPENDENCIES
	RDB$EXCEPTIONS
	RDB$FIELDS
	RDB$FIELD_DIMENSIONS
	RDB$FILES
	RDB$FILTERS
	RDB$FORMATS
	RDB$FUNCTIONS
	RDB$FUNCTION_ARGUMENTS
	RDB$GENERATORS
	RDB$INDICES
	RDB$INDEX_SEGMENTS
	RDB$LOG_FILES
	RDB$PAGES
	RDB$PROCEDURES
	RDB$PROCEDURE_PARAMETERS
	RDB$REF_CONSTRAINTS
	RDB$RELATIONS
	RDB$RELATION_CONSTRAINTS
	RDB$RELATION_FIELDS
	RDB$ROLES
	RDB$SECURITY_CLASSES
	RDB$TRANSACTIONS
	RDB$TRIGGERS
	RDB$TRIGGER_MESSAGES
	RDB$TYPES
	RDB$USER_PRIVILEGES
	RDB$VIEW_RELATIONS

	E. Monitoring Tables
	MON$ATTACHMENTS
	Using MON$ATTACHMENTS to Kill a Connection

	MON$CALL_STACK
	MON$CONTEXT_VARIABLES
	MON$DATABASE
	MON$IO_STATS
	MON$MEMORY_USAGE
	MON$RECORD_STATS
	MON$STATEMENTS
	Using MON$STATEMENTS to Cancel a Query

	MON$TRANSACTIONS

	F. Character Sets and Collation Sequences
	G. License notice
	H. Document History

