Transferring BLOBs over the wire in
Firebird

Simonov Denis

Version 1.0 by 2025-03-16

Table of Contents

Preface
1. Application and Database for Testing
2. BLOB vs VARCHAR
3. BLOB vs VARCHAR + wire compression
4. How BLOB data is transmitted over the wire
5. Using BLOB and VARCHAR together to optimize wire transfer
6. Improvements in BLOB transfer with fbclient version 5.0.2
7. Improvements to BLOB wire transfer in Firebird 5.0.3
7.1. How does this work?
7.2. Are the default settings always appropriate?
8. Comparison of BLOB transfer speed in different Firebird versions

9. Conclusions

o O W N

10
14
17
22
26
27
30
32

Preface

This material is sponsored and created with the sponsorship and support of IBSurgeon
https://www.ib-aid.com, vendor of HQbird (advanced distribution of Firebird) and supplier of
performance optimization, migration and technical support services for Firebird.

The material is licensed under Public Documentation License https:/www.firebirdsql.org/file/
documentation/html/en/licenses/pdl/public-documentation-license.html

https://www.ib-aid.com
https://ib-aid.com/download-hqbird
https://www.firebirdsql.org/file/documentation/html/en/licenses/pdl/public-documentation-license.html
https://www.firebirdsql.org/file/documentation/html/en/licenses/pdl/public-documentation-license.html

Preface

Preface

Application developers and administrators using the Firebird DBMS often wonder: what if they
deploy Firebird in the cloud and access it over an internet connection? However, after testing this
setup, many are left disappointed, as the data transfer speed over high-latency networks (such as
the internet) leaves much to be desired. In most cases, the speed of fetching data from cursors
generated by SQL queries is acceptable, but as soon as BLOB fields (binary or text data) appear in
such queries, the data transfer speed drops catastrophically.

In this article, we will discuss how BLOBs are transmitted over the wire, the challenges users face
when using Firebird in high-latency networks (working over the internet), and explore solutions to
these issues. We will also cover the improvements in BLOB transmission in the latest versions of
Firebird (5.0.2 and 5.0.3).

Chapter 1. Application and Database for Testing

Chapter 1. Application and Database for
Testing

To demonstrate various ways of working with BLOB fields, as well as performance measurements,
a small test application was written, the source codes of which are available at
https://github.com/IBSurgeon/fb-blob-test. On the same page, you can download a ready-made
assembly for Windows x64 and a test database.

This application tests the performance of transferring only text BLOB fields, but the same
mechanisms can be applied to binary BLOBs.

To demonstrate the transfer of BLOBs over the network, we will need a database containing tables
with BLOB fields, and it is desirable that the size of these BLOB fields varies from very small to
medium. For this purpose, you can use the source codes of some Open Source project, for example,
the UDR library lucene_udr.

The contents of the files will be stored in a table with the following structure:

CREATE TABLE BLOB_SAMPLE (
1D BIGINT GENERATED BY DEFAULT AS IDENTITY,
FILE_NAME VARCHAR(255) CHARACTER SET UTF8 NOT NULL,
CONTENT BLOB SUB_TYPE TEXT CHARACTER SET UTF8

)
ALTER TABLE BLOB_SAMPLE ADD PRIMARY KEY (ID);
ALTER TABLE BLOB_SAMPLE ADD UNIQUE (FILE NAME);

Since the project is not large, the number of source code files in it is not as large as we would like.
To make the testing results more visual in numbers, we will increase the number of BLOB records
to 10,000. To do this, we will create a separate table BLOB_TEST with the following structure:

RECREATE TABLE BLOB_TEST (

1D BIGINT GENERATED BY DEFAULT AS IDENTITY,
SHORT_CONTENT VARCHAR(8191) CHARACTER SET UTF8,
CONTENT BLOB SUB_TYPE TEXT CHARACTER SET UTF8,

SHORT_BLOB BOOLEAN DEFAULT FALSE NOT NULL,
CONSTRAINT PK_BLOB_TEST PRIMARY KEY (ID)

)

Here we have removed the file name storage field FILE_NAME, but added the field SHORT_CONTENT. We
will fill this field if the contents of the BLOB field CONTENT can be stored entirely in a field of type
VARCHAR(8191) CHARACTER SET UTF8. We will also add the field SHORT_BLOB, which is an indication that
the BLOB is "short" (fits into VARCHAR). We will need these fields when performing various
comparative tests.

So, we need to fill the table BLOB_TEST from the table BLOB_SAMPLE, so that the target table has 10,000
records. To do this, we will use the following script:

https://github.com/IBSurgeon/fb-blob-test
https://github.com/IBSurgeon/lucene_udr

Chapter 1. Application and Database for Testing

SET TERM #;

EXECUTE BLOCK
AS
DECLARE I INTEGER = @;
DECLARE IS_SHORT BOOLEAN;
BEGIN
WHILE (TRUE) DO
BEGIN
FOR
SELECT
1D,
CONTENT,
CHAR_LENGTH(CONTENT) AS CH_L
FROM BLOB_SAMPLE
ORDER BY FILE_NAME
AS CURSOR C
DO
BEGIN
I=1+1;
-- The contents of the BLOB are placed into a string variable
-- with a length of 8191 characters
IS_SHORT = (C.CH_L < 8191);

INSERT INTO BLOB_TEST (
SHORT_CONTENT,
CONTENT,
SHORT_BLOB
)
VALUES (
IIF(:IS_SHORT, :C.CONTENT, NULL), -- if BLOB is short we write it in VARCHAR field
:C.CONTENT,
:IS_SHORT
)i
-- exit when 10000 records are inserted
IF (I = 10000) THEN EXIT;
END
END
ENDA

SET TERM ;7

COMMIT;

The database with BLOB fields of different lengths is ready for testing.

In order to compare different BLOB field transfer options fairly, it is necessary to
"warm up" the page cache, i.e. to make sure that all the data pages of the BLOB_TEST
table, as well as the BLOB pages, are included in it. If this is not done, the first

o query may be executed significantly slower than the others. The application for
testing the performance of BLOB transfer over the network automatically executes
a SQL query to "warm up" the page cache.

Chapter 1. Application and Database for Testing

For testing, I use Firebird 5.0.3 in the SuperServer architecture. The value of the
DefaultDbCachePages parameter is 32K, which is enough to ensure that all our
queries do not perform physical reads after the page cache is filled.

Chapter 2. BLOB vs VARCHAR

Chapter 2. BLOB vs VARCHAR

Let’s try to find out why working over a high-latency network (Internet channel) becomes
uncomfortable if queries select data containing BLOB columns. To do this, we will conduct a
comparative test of transferring the same data when this data is located in VARCHAR and BLOB
fields. Testing will be performed using fbclient version 5.0.1 (earlier versions behave similarly).

Let me remind you that in Firebird a VARCHAR column can hold 32765 bytes, if it contains text in
UTF8 encoding, then VARCHAR can hold up to 8191 characters (UTF-8 uses variable-length encoding
1-4 bytes per character). That is why in the BLOB_TEST table the SHORT_CONTENT column is defined as

SHORT_CONTENT VARCHAR(8191) CHARACTER SET UTF8

First, let’s look at the statistics for executing a query that transfers data using a BLOB column whose
length does not exceed 8191 characters:

SELECT
1D,
CONTENT
FROM BLOB_TEST
WHERE SHORT_BLOB IS TRUE
FETCH FIRST 1000 ROWS ONLY

Statistics

Elapsed time: 36544ms

Max id: 1700

Record count: 1000

Content size: 3366000 bytes

Now let’s compare it with the statistics of the query execution using a VARCHAR column:

SELECT
1D,
SHORT_CONTENT
FROM BLOB_TEST
WHERE SHORT_BLOB IS TRUE
FETCH FIRST 1000 ROWS ONLY

Statistics

Elapsed time: 574ms

Max id: 1700

Record count: 1000

Content size: 3366000 bytes

Wow, data transfer using a VARCHAR column is 64 times faster!

Chapter 2. BLOB vs VARCHAR

Now let’s try to measure the transfer of not only short, but also medium BLOB fields:

SELECT
1D,
CONTENT
FROM BLOB_TEST
FETCH FIRST 1000 ROWS ONLY

Statistics

Elapsed time: 38256ms

Max id: 1000

Record count: 1000

Content size: 12607388 bytes

This is terribly slow. But starting with Firebird 3.0, we can use wire compression, and perhaps in
this case, the results will be better?

Chapter 3. BLOB vs VARCHAR + wire compression

Chapter 3. BLOB vs VARCHAR + wire
compression

Well, let’s try enabling wire compression. This can be done by specifying the WireCompression=True
parameter when connecting to the database.

Test of transferring short BLOBs:

SELECT
1D,
CONTENT
FROM BLOB_TEST
WHERE SHORT_BLOB IS TRUE
FETCH FIRST 1000 ROWS ONLY

Elapsed time: 36396ms

Max id: 1700

Record count: 1000

Content size: 3366000 bytes

Test of transferring data in the VARCHAR(8191) type:

SELECT
1D,
SHORT_CONTENT
FROM BLOB_TEST
WHERE SHORT_BLOB IS TRUE
FETCH FIRST 1000 ROWS ONLY

Elapsed time: 489ms

Max id: 1700

Record count: 1000

Content size: 3366000 bytes

Test of transferring short and medium-sized BLOBs:

SELECT
1D,
CONTENT
FROM BLOB_TEST
FETCH FIRST 1000 ROWS ONLY

Elapsed time: 38107ms
Max id: 1000
Record count: 1000

Chapter 3. BLOB vs VARCHAR + wire compression

Content size: 12607388 bytes

The situation has hardly changed. Let’s try to understand the reasons.

Chapter 4. How BLOB data is transmitted over the wire

Chapter 4. How BLOB data is transmitted
over the wire

To understand why this happens, we need to delve into the inner workings of the Firebird server’s
network protocol. First and foremost, it’s important to understand two fundamental aspects. The
network protocol and API are designed to handle large binary objects or long strings (BLOBs):

* in small chunks (no larger than 64 KB);

* in a deferred (lazy) mode.

If the first point is implemented similarly in almost all SQL servers, the second might come as a
surprise to those who haven’t worked with BLOBs at the API level (only through high-level access
components).

Let’s take a look at a typical code snippet for fetching and processing cursor records:

Firebird::IResultSet* rs = stmt->openCursor(status, tra, inMetadata, nullptr, outMetadata, 0);
while (rs->fetchNext(status, outBuffer) == Firebird::IStatus::RESULT_OK) {
recordProcess(outBuffer);

}

rs->close(status);

Here’s a simplified explanation of what happens. When the cursor is opened, a corresponding
network packet op_execute? is sent to the server. The fetchNext call sends a network packet op_fetch
to the server, after which the server returns as many records as can fit into the network buffer.
Subsequent fetchNext calls will not send network packets to the server but will instead read the
next record from the buffer until the buffer is exhausted. When the buffer is empty, the fetchNext
call will again send a network packet op_fetch to the server. This approach significantly reduces the
number of roundtrips. A roundtrip refers to sending a network packet to the server and receiving
a response packet from the server back to the client. The fewer such roundtrips, the higher the
efficiency of the network protocol.

The buffer into which a record is placed after executing fetchNext is called the output message.
The output message is described using output message metadata, which is either returned when
preparing the SQL query or prepared within the application. Let’s take a look at how output
messages can be mapped to structures based on the columns of the query.

For the SQL query:

SELECT
1D,
SHORT_CONTENT
FROM BLOB_TEST
WHERE SHORT_BLOB IS TRUE
FETCH FIRST 1000 ROWS ONLY

the output message can be mapped to the following structure:

10

Chapter 4. How BLOB data is transmitted over the wire

struct message {

int64_t id; // value of the ID field

short idNull; // NULL indicator for the ID field

struct {
unsigned short length; // actual length of the VARCHAR field in bytes
char[8191 * 4] str; // buffer for VARCHAR string data

} short_content; // value of the SHORT_CONTENT field

short contentNull; // NULL indicator for the SHORT_CONTENT field

Thus, when fetchNext is executed, the value of the VARCHAR field is immediately available. The server
uses so-called prefetch of records for more efficient transmission over the network.

Now let’s look at the structure of the output message for the SQL query:

SELECT
1D,
CONTENT
FROM BLOB_TEST
FETCH FIRST 1000 ROWS ONLY

the output message can be mapped to the following structure:

struct message {

int64_t id; // value of the ID field

short idNull; // NULL indicator for the ID field
ISC_QUAD content; // identifier for the BLOB field CONTENT
contentNull; // NULL indicator for the CONTENT field

Here, ISC_QUAD is a structure defined as follows:

struct GDS_QUAD_t {
ISC_LONG gds_quad_high;
ISC_ULONG gds_quad_Tlow;
¥

typedef struct GDS_QUAD_t ISC_QUAD;

This structure only describes the BLOB identifier, which does not include the actual content. The
content of the BLOB field must be retrieved using separate API functions.

Indeed, if we were to fetch only the BLOB identifiers without their content, our test would show
excellent results, but that’s not what we need.

Elapsed time: 38ms
Max id: 1000

11

Chapter 4. How BLOB data is transmitted over the wire

Record count: 1000

Thus, the last query retrieves only the BLOB identifier, and now we need to fetch its content. For
string BLOBs, this can be done using the following functions:

std::string readBlob(Firebird::ThrowStatusWrapper* status, Firebird::IAttachment* att,
Firebird::Transaction* tra, ISC_QUAD* blobId)

{
// Open the BLOB using the specified identifier
Firebird::IBlob* blob = att->openBlob(status, tra, blobId, @, nullptr);

// Retrieve BLOB information (size)
FbBlobInfo blobInfo;

std: :memset(&blobInfo, @, sizeof(blobInfo));
getBlobStat(status, blob, blobInfo);

std::string s;
s.reserve(blobInfo.blob_total_length);
bool eof = false;
std::vector<char> vBuffer (MAX_SEGMENT_SIZE);
auto buffer = vBuffer.data();
while (leof) {
unsigned int 1 = 0;
// Read the next portion of the BLOB or its segment
switch (blob->getSegment(status, MAX_SEGMENT_SIZE, buffer, &1))
{
case Firebird::IStatus::RESULT_OK:
case Firebird::IStatus::RESULT_SEGMENT:
s.append(buffer, 1);
break;
default:
eof = true;
break;
}
}
blob->close(status);
return s;

void getBlobStat(Firebird::ThrowStatusWrapper® status, Firebird::IBlob* blob, FbBlobInfo& stat)
{
ISC_UCHAR buffer[1024];
const unsigned char info_options[] = {
isc_info_blob_num_segments, isc_info_blob_max_segment,
isc_info_blob_total_length, isc_info_blob_type,
isc_info_end };
// Retrieve BLOB information
blob->getInfo(status, sizeof(info_options), info_options, sizeof(buffer), buffer);
for (ISC_UCHAR* p = buffer; *p != isc_info_end;) {
const unsigned char item = *p++;
const ISC_SHORT length = static_cast<ISC_SHORT>(portable_integer(p, 2));
p += 2;
switch (item) {

12

Chapter 4. How BLOB data is transmitted over the wire

case isc_info_blob_num_segments:
stat.blob_num_segments = portable_integer(p, length);
break;

case isc_info_blob_max_segment:
stat.blob_max_segment = portable_integer(p, length);
break;

case isc_info_blob_total_length:
stat.blob_total_length = portable_integer(p, length);
break;

case isc_info_blob_type:
stat.blob_type = static_cast<short>(portable_integer(p, length));
break;

default:
break;

}
p += length;
h

This is roughly what happens under the hood at the API level when you call BlobField.AsString in
high-level access components to retrieve the content of a BLOB field as a string.

Now let’s look at the additional network calls made in this code. The IAttachment: :openBlob function
opens a BLOB by the given identifier by sending the op_open_blob2 network packet. Next, we request
information about the BLOB using IBlob::getInfo, which sends another op_info_blob network
packet and waits for the BLOB information to be returned. After that, we start reading the BLOB in
chunks using the IBlob::getSegment function, which sends another op_get_segment network packet.
Note that IBlob::getSegment is optimized to read the BLOB in as many chunks as possible in one
network call, i.e. if you call getSegment with a size of 10 bytes, a much larger chunk will be read into
the internal buffer, similar to how IResultSet::fetchNext does it. When the entire BLOB has been
read, the IBlob::close method will be called, which will send another op_close_blob network
packet.

From the above, it is clear that even the shortest BLOB requires 4 additional network packets:
op_open_blob2, op_info_blob, op_get_segment, op_close_blob. You can avoid using op_info_blob to
reserve a buffer for the output string in advance, which will save one roundtrip. However, most
high-level access components do exactly what I described when working with BLOBs.

Now it becomes clear why your applications slow down in high-latency networks (Internet channel)
when using selections containing BLOB columns. Is there any way to improve the situation?

13

Chapter 5. Using BLOB and VARCHAR together to optimize wire transfer

Chapter 5. Using BLOB and VARCHAR
together to optimize wire transfer

As shown above, the main overhead is incurred when transferring short BLOBs. Larger BLOBs
require additional op_get_segment packets, while other network packets associated with the BLOB
are sent at most once. This is an unavoidable evil, since large BLOBs cannot be transferred in a
single network packet.

But what if we transfer the BLOB contents as VARCHAR if they can fit in this data type, and transfer
the rest of the BLOBs in the standard way? Let’s try that.

Let’s rewrite our query as follows:

SELECT
BLOB_TEST.ID,
CASE
WHEN CHAR_LENGTH(BLOB_TEST.CONTENT) <= 8191
THEN CAST(BLOB_TEST.CONTENT AS VARCHAR(8191))
END AS SHORT_CONTENT,
CASE
WHEN CHAR_LENGTH(BLOB_TEST.CONTENT) > 8191
THEN CONTENT
END AS CONTENT
FROM BLOB_TEST
FETCH FIRST 1000 ROWS ONLY

Now we need to rewrite our application code so that it can choose where to read data from:

Firebird::IResultSet* rs = stmt->openCursor(status, tra, inMetadata, nullptr, outMetadata, 0);

// Description of the output message structure
FB_MESSAGE (OutMessage, Firebird::ThrowStatusWrapper,
(FB_BIGINT, 1id)
(FB_VARCHAR(8191 * 4), short_content)
(FB_BLOB, content)
) out(status, master);

size t blb_size = 0;
while (rs->fetchNext(status, out.getData()) == Firebird::IStatus::RESULT_OK) {
std::string s;
if (out->short_contentNull && !out->contentNull) {
// If the field SHORT_CONTENT IS NULL and CONTENT IS NOT NULL read from BLOB
Firebird::IBlob* blob = att->openBlob(status, tra, &out->content, @, nullptr);
s = readBlob(status, blob);
blob->close(status);
}
else {
// otherwise read from VARCHAR
s = std::string(out->short_content.str, out->short_content.length);

14

Chapter 5. Using BLOB and VARCHAR together to optimize wire transfer

}

blb_size += s.size();

}

rs->close(status);

Let’s look at the performance of this solution:

Statistics WireCompression=False):

Elapsed time: 20212ms

Max id: 1000

Record count: 1000

Content size: 12607388 bytes

Now let’'s measure the performance with network traffic compression enabled
(WireCompression=True):

Statistics WireCompression=True):

Elapsed time: 15927ms

Max id: 1000

Record count: 1000

Content size: 12607388 bytes

Much better. Let me remind you that the results of reading only BLOB fields were 38256ms and
38107ms.

Can we improve our result even more? Yes, because if our table already stores short BLOBs as
VARCHAR. In this case, the SQL query looks like this:

SELECT
BLOB_TEST.ID,
CASE
WHEN BLOB_TEST.SHORT_BLOB IS TRUE
THEN BLOB_TEST.SHORT_CONTENT
END AS SHORT_CONTENT,
CASE
WHEN BLOB_TEST.SHORT_BLOB IS FALSE
THEN BLOB_TEST.CONTENT
END AS CONTENT
FROM BLOB_TEST
FETCH FIRST 1000 ROWS ONLY

Statistics WireCompression=False):

Elapsed time: 19288ms

Max id: 1000

Record count: 1000

Content size: 12607388 bytes

15

Chapter 5. Using BLOB and VARCHAR together to optimize wire transfer

Statistics WireCompression=True):

Elapsed time: 15752ms

Max id: 1000

Record count: 1000

Content size: 12607388 bytes

16

Chapter 6. Improvements in BLOB transfer with fbclient version 5.0.2

Chapter 6. Improvements in BLOB transfer
with fbclient version 5.0.2

In Firebird 5.0.2, a small optimization of BLOB transfer over the network was made. In fact, the
changes affected only the client part of Firebird, that is, fbclient. You can feel it when transferring
BLOB with any Firebird older than 2.1 when using fbclient version 5.0.2 and higher. Before
explaining what exactly was improved, we will provide the test results.

Test transmission VARCHAR(8191) (WireCompression=False):

SELECT
1D,
SHORT_CONTENT
FROM BLOB_TEST
WHERE SHORT_BLOB IS TRUE
FETCH FIRST 1000 ROWS ONLY

Statistics (WireCompression=False):

Elapsed time: 569ms
Max id: 1700
Record count: 1000
Content size: 3366000 bytes
Wire logical statistics:
send packets = 34
recv packets = 1034
send bytes = 712
recv bytes = 3396028
Wire physical statistics:
send packets = 33
recv packets = 2179
send bytes = 712
recv bytes = 3396028
roundtrips = 33

In addition to execution statistics, wire statistics are provided here. Wire statistics is a new feature
available on the client side with fbclient version 5.0.2 and higher.

Statistics WireCompression=True):

Elapsed time: 478ms
Max id: 1700
Record count: 1000
Content size: 3366000 bytes
Wire logical statistics:
send packets = 34
recv packets = 1034
send bytes = 712
recv bytes = 3396028
Wire physical statistics:

17

Chapter 6. Improvements in BLOB transfer with fbclient version 5.0.2

send packets = 33
recv packets = 457
send bytes = 297
recv bytes = 648654
roundtrips = 33

VARCHAR fields are transferred unchanged, changes in execution statistics are within the margin of
error.

Short BLOB transfer test:

SELECT
1D,
CONTENT
FROM BLOB_TEST
WHERE SHORT_BLOB IS TRUE
FETCH FIRST 1000 ROWS ONLY

Statistics WireCompression=False):

Elapsed time: 12739ms

Max id: 1700

Record count: 1000

Content size: 3366000 bytes

Wire logical statistics:
send packets = 4002
recv packets = 5002
send bytes = 72084
recv bytes = 3557424

Wire physical statistics:
send packets = 1002
recv packets = 4106

send bytes = 72084
recv bytes = 3557424
roundtrips = 1001

Statistics WireCompression=True):

Elapsed time: 12693ms

Max id: 1700

Record count: 1000

Content size: 3366000 bytes

Wire logical statistics:
send packets = 4002
recv packets = 5002
send bytes = 72084
recv bytes = 3557424

Wire physical statistics:
send packets = 1002
recv packets = 2563
send bytes = 12337
recv bytes = 731253

18

Chapter 6. Improvements in BLOB transfer with fbclient version 5.0.2

roundtrips = 1001

Here the changes are more than noticeable. Let me remind you that for the client version 5.0.1 the
test execution time was: 36544ms and 36396ms. Thus, short BLOBs are transferred up to 3 times
faster, but still significantly worse than VARCHAR.

Let’s look at the statistics of short and medium BLOB transfer:

SELECT
1D,
CONTENT
FROM BLOB_TEST
FETCH FIRST 1000 ROWS ONLY

Statistics WireCompression=False):

Elapsed time: 17907ms
Max id: 1000
Record count: 1000
Content size: 12607388 bytes
Wire logical statistics:
send packets = 4325
recv packets = 5325
send bytes = 77252
recv bytes = 12810832
Wire physical statistics:
send packets = 1325
recv packets = 10578
send bytes = 77252
recv bytes = 12810832
roundtrips = 1324

Statistics WireCompression=True):

Elapsed time: 17044ms
Max id: 1000
Record count: 1000
Content size: 12607388 bytes
Wire logical statistics:
send packets = 4325
recv packets = 5325
send bytes = 77252
recv bytes = 12810832
Wire physical statistics:
send packets = 1325
recv packets = 3468
send bytes = 14883
recv bytes = 2261821
roundtrips = 1324

Here, improvements are also noticeable. For the client version 5.0.1, the test execution time was:

19

Chapter 6. Improvements in BLOB transfer with fbclient version 5.0.2
38256ms and 38107ms.

Let’s see if our method with combined use of BLOB + VARCHAR improves performance.

SELECT
BLOB_TEST.ID,
CASE
WHEN BLOB_TEST.SHORT_BLOB IS TRUE
THEN BLOB_TEST.SHORT_CONTENT
END AS SHORT_CONTENT,
CASE
WHEN BLOB_TEST.SHORT_BLOB IS FALSE
THEN BLOB_TEST.CONTENT
END AS CONTENT
FROM BLOB_TEST
FETCH FIRST 1000 ROWS ONLY

Statistics (WireCompression=False):

Elapsed time: 10843ms
Max id: 1000
Record count: 1000
Content size: 12607388 bytes
Wire logical statistics:
send packets = 2000
recv packets = 3000
send bytes = 35472
recv bytes = 12715904
Wire physical statistics:
send packets = 767
recv packets = 9732
send bytes = 35472
recv bytes = 12715904
roundtrips = 735

Statistics WireCompression=True):

Elapsed time: 9476ms
Max id: 1000
Record count: 1000
Content size: 12607388 bytes
Wire logical statistics:
send packets = 2000
recv packets = 3000
send bytes = 35472
recv bytes = 12715904
Wire physical statistics:
send packets = 767
recv packets = 2385
send bytes = 7878
recv bytes = 2234602
roundtrips = 735

20

Chapter 6. Improvements in BLOB transfer with fbclient version 5.0.2

Using a BLOB column for long strings and VARCHAR(8191) for short ones is still better, although the
gap is not as big as it was with the client library version 5.0.1.

So what is the essence of the changes in the fbclient version 5.0.2 and why does it work much faster
with BLOBs without changing the network protocol and even with older versions of the server?

As described above, when reading a BLOB, the client version 5.0.1 sends the following packets:

* op_open_blob2 - opening a BLOB;
* op_info_blob - getting information about a BLOB (optional);

* op_get_segment - reading the next portion of data or a BLOB segment (1 or more times,
depending on the BLOB size);

* op_close_blob - closing a BLOB.

Firebird 5.0.2 client groups the following op_open_blob2, op_info_blob and op_get_segment packets
into one logical packet and sends them when opening a BLOB (calling IAttachment::openBlob). In
response, it receives information about the BLOB and the first portion of data (up to 64 KB) in one
logical packet, i.e. the so-called prefetch of information and the first portion of data is performed.
Grouping physical packets into logical ones is available since Firebird 2.1, but it was not performed
for the IAttachment::openBlob API function at the client level before version 5.0.2.

Thus, for short BLOBs, instead of sending 3-4 network packets, 2 network packets are sent, which
leads to a significant increase in the performance of BLOB transfer over the network.

21

Chapter 7. Improvements to BLOB wire transfer in Firebird 5.0.3

Chapter 7. Improvements to BLOB wire
transfer in Firebird 5.0.3

Firebird 5.0.3 has another optimization of BLOB transfer over the wire. This time the changes
affected the network protocol. The client and server are required to support the network protocol
version 19. Therefore, in order to use this optimization, it is necessary to update the Firebird server
and fbclient to version 5.0.3.

Let’s look at the results of our tests with the new versions of the client and server.

Test of transferring VARCHAR(8191) (WireCompression=False):

SELECT
1D,
SHORT_CONTENT
FROM BLOB_TEST
WHERE SHORT_BLOB IS TRUE
FETCH FIRST 1000 ROWS ONLY

Statistics WireCompression=False):

Elapsed time: 554ms
Max id: 1700
Record count: 1000
Content size: 3366000 bytes
Wire logical statistics:
send packets = 34
recv packets = 1034
send bytes = 716
recv bytes = 3396028
Wire physical statistics:
send packets = 33
recv packets = 2394
send bytes = 716
recv bytes = 3396028
roundtrips = 33

Statistics WireCompression=True):

Elapsed time: 482ms
Max id: 1700
Record count: 1000
Content size: 3366000 bytes
Wire logical statistics:
send packets = 34
recv packets = 1034
send bytes = 716
recv bytes = 3396028
Wire physical statistics:
send packets = 33

22

Chapter 7. Improvements to BLOB wire transfer in Firebird 5.0.3

recv packets = 472
send bytes = 277
recv bytes = 648656
roundtrips = 33

Here everything is as expected, the transfer of VARCHAR type fields has not changed.

Test of transfer of short BLOBs:

SELECT
1D,
CONTENT
FROM BLOB_TEST
WHERE SHORT_BLOB IS TRUE
FETCH FIRST 1000 ROWS ONLY

Statistics (WireCompression=False):

MaxInlineBlobSize = 65535
Elapsed time: 1110ms
Max id: 1700
Record count: 1000
Content size: 3366000 bytes
Wire logical statistics:
send packets = 27
recv packets = 2027
send bytes = 576
recv bytes = 3453744
Wire physical statistics:
send packets = 26
recv packets = 2458
send bytes = 576
recv bytes = 3453744
roundtrips = 26

Statistics WireCompression=True):

MaxInlineBlobSize = 65535
Elapsed time: 157ms
Max id: 1700
Record count: 1000
Content size: 3366000 bytes
Wire logical statistics:
send packets = 6
recv packets = 2006
send bytes = 156
recv bytes = 3453492
Wire physical statistics:
send packets = 5
recv packets = 454
send bytes = 58
recv bytes = 672345

23

Chapter 7. Improvements to BLOB wire transfer in Firebird 5.0.3

roundtrips = 5

Wow! The speed of short BLOB transfer without using network traffic compression increased 11
times compared to version 5.0.2 (was 12739ms) and 33 times compared to version 5.0.1 (was
36544ms).

When using network traffic compression, the transfer speed increased 81 times compared to 5.0.2
(was 12693ms) and 232 times compared to 5.0.1 (was 36396ms). But the most amazing thing is that
short BLOBs began to be transferred even faster than VARCHAR(8191) 482ms vs 157ms. Excellent
result!

Let’s try to look at the statistics of short and medium BLOB transfer:

SELECT
1D,
CONTENT
FROM BLOB_TEST
FETCH FIRST 1000 ROWS ONLY

Statistics WireCompression=False):

MaxInlineBlobSize = 65535
Elapsed time: 3254ms
Max id: 1000
Record count: 1000
Content size: 12607388 bytes
Wire logical statistics:
send packets = 249
recv packets = 2220
send bytes = 4552
recv bytes = 12701676
Wire physical statistics:
send packets = 161
recv packets = 8872
send bytes = 4552
recv bytes = 12701676
roundtrips = 161

Statistics WireCompression=True):

MaxInlineBlobSize = 65535
Elapsed time: 1365ms
Max id: 1000
Record count: 1000
Content size: 12607388 bytes
Wire logical statistics:
send packets = 184
recv packets = 2155
send bytes = 3264
recv bytes = 12700876
Wire physical statistics:
send packets = 97

24

Chapter 7. Improvements to BLOB wire transfer in Firebird 5.0.3

recv packets = 1470
send bytes = 951
recv bytes = 2187089
roundtrips = 88

Excellent result. Results of previous tests:

e 5.0.1 WireCompression=False) 38256ms
* 5.0.1 WireCompression=True) 38107ms
* 5.0.2 WireCompression=False) 17907ms
* 5.0.2 WireCompression=True) 17044ms

Now let’s see if it makes sense to use our bicycle when short BLOBs are passed as VARCHAR, and
long ones as BLOBs.

SELECT
BLOB_TEST.ID,
CASE
WHEN BLOB_TEST.SHORT_BLOB IS TRUE
THEN BLOB_TEST.SHORT_CONTENT
END AS SHORT_CONTENT,
CASE
WHEN BLOB_TEST.SHORT_BLOB IS FALSE
THEN BLOB_TEST.CONTENT
END AS CONTENT
FROM BLOB_TEST
FETCH FIRST 1000 ROWS ONLY

Statistics (WireCompression=False):

MaxInlineBlobSize = 65535
Elapsed time: 3678ms
Max id: 1000
Record count: 1000
Content size: 12607388 bytes
Wire logical statistics:
send packets = 249
recv packets = 1631
send bytes = 4560
recv bytes = 12667632
Wire physical statistics:
send packets = 161
recv packets = 8958

send bytes = 4560
recv bytes = 12667632
roundtrips = 161

Statistics WireCompression=True):

MaxInlineBlobSize = 65535

25

Chapter 7. Improvements to BLOB wire transfer in Firebird 5.0.3

Elapsed time: 1576ms
Max id: 1000
Record count: 1000
Content size: 12607388 bytes
Wire logical statistics:
send packets = 207
recv packets = 1589
send bytes = 3732
recv bytes = 12667108
Wire physical statistics:
send packets = 120
recv packets = 1527
send bytes = 1086
recv bytes = 2187418
roundtrips = 110

No, this method of data transfer is slower than direct data transfer as BLOB.

Overall, excellent results were obtained, now you can safely use BLOB columns in selections when
placing the Firebird server in high-latency networks (Internet channel).

7.1. How does this work?

If the BLOB size is less than the MaxInlineBlobSize parameter (default 64 KB - 1), the BLOB contents
are sent in the same data stream as the main ResultSet.

The BLOB metadata (size, number of buckets, type) and data are sent using the new op_inline_blob
packet type and the new P_INLINE_BLOB structure.

The op_inline_blob packet is sent before the corresponding op_sql_response (in case of a response to
op_execute2 or op_exec_immediate2) or op_fetch_response (response to op_fetch).

The number of op_inline_blob packets can match the number of BLOB fields in the output format. If
the BLOB is NULL or too large, the BLOBs are not sent.

The entire blob is sent, meaning the current implementation does not support sending a portion of
a blob. The reasons are simpler code and the fact that search is not implemented for segmented
BLOBs.

Sent inline BLOBs are cached on the client side at the connection level (IAttachment). There is a
structure on the client side for quickly looking up the BLOB contents and its metadata by BLOB
identifier. When an application opens a BLOB using IAttachment::openBlob, its metadata and
contents are retrieved from the BLOB cache. Calls to IAttachment::openBlob, IBlob::getSegment and
IBlob::close do not transmit any additional network packets. Calling IBlob::close removes the
BLOB from the cache. Thus, reopening and using the BLOB will result in additional network
packets.

The size of the cache for inline BLOBs is limited by the MaxBlobCacheSize parameter (default is 10
MB). If there is no room in the cache for an inline BLOB, then the BLOB is discarded. The
MaxBlobCacheSize parameter can be set with isc_dpb_max_blob_cache_size when connecting to the
database, and changed later with the IAttachment::setMaxBlobCacheSize method. Changing the limit

26

Chapter 7. Improvements to BLOB wire transfer in Firebird 5.0.3

is not applied immediately, i.e. if the new limit is smaller than the currently used size, nothing
happens.

The maximum inline BLOB size is controlled by the MaxInlineBlobSize parameter, which defaults to
64 KB - 1 (63535 bytes). This value is set for each prepared statement before it is executed with the
IStatement: :setMaxInlineBlobSize method. If MaxInlineBlobSize is set to 0, inline BLOB transmission
will be disabled. The default value for newly prepared statements can be changed at the connection
level with the IAttachment::setMaxInlineBlobSize method. The default value for the
MaxInlineBlobSize parameter can also be set using isc_dpb_max_inline_blob_size.

7.2. Are the default settings always appropriate?

To answer this question, let’s try running a test that reads only BLOB identifiers without their
contents or metadata.

SELECT
1D,
CONTENT
FROM BLOB_TEST
FETCH FIRST 1000 ROWS ONLY

Statistics WireCompression=False):

MaxInlineBlobSize = 65535
Elapsed time: 2049ms
Max id: 1000
Record count: 1000
Wire logical statistics:
send packets = 75
recv packets = 2046
send bytes = 1536
recv bytes = 10438516
Wire physical statistics:
send packets = 74
recv packets = 7170
send bytes = 1536
recv bytes = 10438516
roundtrips = 74

Statistics WireCompression=True):

MaxInlineBlobSize = 65535
Elapsed time: 280ms
Max id: 1000
Record count: 1000
Wire logical statistics:
send packets = 11
recv packets = 1982
send bytes = 256
recv bytes = 10437748
Wire physical statistics:

27

Chapter 7. Improvements to BLOB wire transfer in Firebird 5.0.3

send packets = 10
recv packets = 1171
send bytes = 86

recv bytes = 1618835
roundtrips = 10

Let’s compare these results with the client version 5.0.2:

e WireCompression=False - 26ms

e WireCompression=True - 28ms
We see that the execution time of this test has increased. What happened?

For all BLOBs whose length is less than the value of the MaxInlineBlobSize parameter, the server
sent an additional op_inline_blob network packet, but we did not use the data that was sent by this
packet.

But why do we need this mode, you ask? In fact, this mode is often used in applications with data
grids, in which the BLOB content is not displayed directly, but is displayed in a separate control
when the cursor position in the grid changes. For example, you select a record in the grid, and a
picture containing the BLOB is displayed in a separate control.

In some Delphi DataSet-based access components, BLOBs can be retrieved immediately and cached
at the dataset level (read as data is fetched from the cursor) or postponed until the user starts
reading data from the BLOB field. For example, in FireDac access components, it depends on the
fiBlobs flag that can be set in the FetchOptions.Items property of the dataset.

So what to do in this case? Either accept that in the lazy BLOB reading mode your dataset will load
a little longer, or set the MaxInlineBlobSize parameter to 0 using IStatement::setMaxInlineBlobSize.
Let’s try to do this for version 5.0.3 and see the result of the previous test.

Statistics WireCompression=False):

MaxInlineBlobSize = @
Elapsed time: 26ms
Max id: 1000
Record count: 1000
Wire logical statistics:
send packets = 3
recv packets = 1003
send bytes = 96
recv bytes = 32056
Wire physical statistics:
send packets = 2
recv packets = 23
send bytes = 96
recv bytes = 32056
roundtrips = 2

28

Chapter 7. Improvements to BLOB wire transfer in Firebird 5.0.3

Statistics WireCompression=True):

MaxInlineBlobSize = @
Elapsed time: 36ms
Max id: 1000
Record count: 1000
Wire logical statistics:
send packets = 3
recv packets = 1003
send bytes = 96
recv bytes = 32056
Wire physical statistics:
send packets = 2
recv packets = 2
send bytes = 37
recv bytes = 5796
roundtrips = 2

Loading inline BLOBs is disabled, reading only BLOB IDs shows the same time as in 5.0.2.

29

Chapter 8. Comparison of BLOB transfer speed in different Firebird versions

Chapter 8. Comparison of BLOB transfer
speed in different Firebird versions

For clarity, we will compare the loading time of 1000 short BLOB records against VARCHAR(8191) in
different versions of Firebird and different values of the WireCompression parameter (abbreviated
WOQ).

Firebird version and WireCompression Data Type

VARCHAR(8191) BLOB SUB_TYPE TEXT

Firebird 5.0.1 (WC = False) 574 36544
Firebird 5.0.1 (WC = True) 489 36396
Firebird 5.0.2 (WC = False) 569 12739
Firebird 5.0.2 (WC = True) 478 12693
Firebird 5.0.3 (WC = False) 554 1110
Firebird 5.0.3 (WC = True) 482 157

Speed fetch 1000 records

BLOB SUB_TYPE TEXT

Firebird 5.0.3 (WC = True)
® Eirebird 5.0.3 (WC = False)
™ Firehird 5.0.2 (WC = True)

Firebird 5.0.2 (WC = False)
™ Firebird 5.0.1 (WC = True)
® Firebird 5.0.1 (WC = False)

VARCHAR(8191)

__|[

nc
4] 000 10000 TRO00 20000 2RN00 30000 35000 40000

We will also provide comparisons of loading times for 1000 records in different ways: only BLOB or
small data in VARCHAR and large data in BLOB.

Firebird version and WireCompression Content loading method
BLOB BLOB + VARCHAR
Firebird 5.0.1 (WC = False) 38256 19288
Firebird 5.0.1 (WC = True) 36396 15752
Firebird 5.0.2 (WC = False) 17907 10843
Firebird 5.0.2 (WC = True) 17044 9476
Firebird 5.0.3 (WC = False) 3254 3678
Firebird 5.0.3 (WC = True) 1365 1576

30

Chapter 8. Comparison of BLOB transfer speed in different Firebird versions

Speed fetch 1000 records

BLOE + VARCHAR

Firebird 5.0.3 (WC = True)
W Firebird 5.0.3 (WC = False)
™ Firebird 5.0.2 (WC = True)

Firebird 5.0.2 (WC = False)
m Firebird 5.0.1 (WC = True)

m Firebird 5.0.1 (WC = False)
BLOB

:

=

5000 10000 15000 20000 25000 30000 35000 40000 45000

MC

31

Chapter 9. Conclusions

Chapter 9. Conclusions

If you tried to place the Firebird server in the cloud and work with it via the Internet channel, but
abandoned this idea due to performance issues when transferring BLOB objects, then we
recommend trying again!

At the moment, this functionality is available in HQbird (from version 2024 R2 Update 2 and more
recent, version 5.0.3.1629+). Vanilla version Firebird 5.0.3 has not yet been released, but you can try
snapshots of Firebird 5.0.3.

32

https://ib-aid.com/download-hqbird

	Transferring BLOBs over the wire in Firebird
	Table of Contents
	Preface
	Chapter 1. Application and Database for Testing
	Chapter 2. BLOB vs VARCHAR
	Chapter 3. BLOB vs VARCHAR + wire compression
	Chapter 4. How BLOB data is transmitted over the wire
	Chapter 5. Using BLOB and VARCHAR together to optimize wire transfer
	Chapter 6. Improvements in BLOB transfer with fbclient version 5.0.2
	Chapter 7. Improvements to BLOB wire transfer in Firebird 5.0.3
	7.1. How does this work?
	7.2. Are the default settings always appropriate?

	Chapter 8. Comparison of BLOB transfer speed in different Firebird versions
	Chapter 9. Conclusions

