

Firebird in the cloud: SaaS and more

Alexey Kovyazin, Firebird Foundation

Agenda
● Scenarios
● Problems with cloud solutions:

– Performance
– Network
– Balance
– Security

● Testing clouds

Scenario 1: traditional client-server

Firebird

Server

Applications

Applications

Applications

Clients
computers

1.1. Only server resides in the cloud

Firebird

Server Clients
computers

Applications

Applications

Applications

1.2. Server and clients are on the
same cloud machine

Firebird

Server

Applications

Applications

Applications

1.3. Scenario: clients and server in
the cloud

Firebird

Server Clients in
cloud VMs

Applications

Applications

Applications

Scenario 2: middleware

Firebird

Server

Web app

Mobile app

Applications

Clients
computers

Web server
or

API (e.g.
REST)

2.1: Only server in the cloud

Firebird

Server

Web app

Mobile app

Applications

Clients
computers

Web server
or

API (e.g.
REST)

2.2. Database and middleware in
the cloud

Firebird

Server

Web app

Mobile app

Applications

Clients
computers

Web server
or

API (e.g.
REST)

2.3. Database and middleware on
the same server

Firebird

Server

Web app

Mobile app

Applications

Clients
computers

Web server
or

API (e.g.
REST)

Database per client (SaaS or hosting)

Server

DB1

DB2

DB NN

Client 1
Client 2

Web app

Mobile app

Applications

Web app

Mobile app

Applications

ClientNN

Web app

Mobile app

Applications

3.1.Database per client

Server

DB1

DB2

DB NN

Client 1
Client N

Web app

Mobile app

Applications

Web app

Mobile app

Applications

3.2: Database per client with middleware

Server

DB1

DB2

DB NN

Client 1
Client N

Web app

Mobile app

Applications

Web app

Mobile app

Applications

Web server
or

API (e.g.
REST)

Web server
or

API (e.g.
REST)

3.3: Database per client with middleware on the same
server

Server

DB1

DB2

DB NN

Client 1
Client N

Web app

Mobile app

Applications

Web app

Mobile app

Applications

Web server
or

API (e.g.
REST)

Web server
or

API (e.g.
REST)

All scenarios
● Traditional Client-Server - few databases

– Database in Cloud, Applications with direct access
– Database in Cloud, Applications in cloud on RDP
– Database and Applications together on the same server

● Client-Server with middleware – few databases
– Database in Cloud, Middleware in another Cloud
– Database and Middleware in the same cloud, different servers
– Database and Middleware on the same server in cloud

● Many databases on the server
– tighter resources, need to balance resources, more security problems

Cloud = VM + Network through
Internet

Problems:
1) VM Level: Cloud and shared environment, there may be

several VMs per host, VM always slower than host with
physical server
1) Virtual Machine overhead
2) Shared storage systems
3) Memory overcommit

2) Network: high latency, loss of packets, settings
3) Balance: how to divide resources between databases,

applications, middleware, clients

Scenarios and their problems
● Traditional Client-Server - few databases

– Database in Cloud, Applications with direct access — VM, net
– Database in Cloud, Applications in cloud on RDP - VM
– Database and Applications together on the same server - VM, balance

● Client-Server with middleware – few databases
– Database in Cloud, Middleware in another Cloud — VM, net
– Database and Middleware in the same cloud, different servers - VM
– Database and Middleware on the same server in cloud — VM. balance

● Many databases on the server
– tighter resources, need to balance resources, more security problems —

 VM, net, balance

Which scenario is better?
● Scenario depends on development history and

client requirements
● If you plan to start from scratch

– Database and Middleware on different servers

How to solve the problems
● VM
● Network
● Balance

VM level
● Choice of Firebird architecture
● Cloud-specific configurations
● Recommended Operating Systems
● File systems
● Query optimization: focus on reads/writes and

fetches

Choice of Firebird architecture-1
● SuperServer - memory usage per database

– great for few databases
– Good option for <100 databases with 5+ connections

per database
– For Firebird version 3+
– For environments with query monitoring

Choice of Firebird architecture-2
● SuperClassic – memory usage proportional to

the number connection
– The only option for v2.5 with good performance
– For situations when number of connections is less

than quantity of databases (3000 databases, but, on
average 500 connections)

Choice of Firebird architecture-3
● Classic – like SuperClassic, separate

processes, slightly slower
– can use OS tools to kill connections with high

resource consumption

Most common problems with architectures
(beyond wrong configuration)

● SuperServer (v3+)
– Firebird crash (due to wrong UDF, bugs) will stop all

connections
– without advanced monitoring difficult to identify which

database uses many resources and disturbs others
● SuperClassic/Classic (v3+)

– many connections will consume all memory. Generally
needs more memory

– lower performance than SuperServer

Cloud-specific configurations
● Deficient resources

1) IO is almost always the first problem!

2) Memory – second problem

3) CPU – can be a problem in case of non-
optimized queries and very frequent
connections/transactions

How to create cloud configuration
● Start with Configuration Calculator https://cc.ib-

aid.com
● Become Firebird Supporter to get access to

Advanced Calculator
– https://store.firebirdsql.org/

https://cc.ib-aid.com/
https://cc.ib-aid.com/
https://store.firebirdsql.org/

Operating Systems - Windows
● Windows Server

– Use recent versions 2019+
– keep drivers updated

● Power configurations
● - always maintain High performance
● Hibernate – prohibit!
● Windows - never disable swap!

Operating Systems — Linux - 1
● Linux – uname -a

– core 5.+ minimum, 6+ recommended

● Power configurations
– maintain High performance
– Power saving also exists in Linux!

Operating Systems — Linux - 2
● Swapiness

– If RAM>32Gb in /etc/sysctl.conf vm.swapiness = 1
● Swap - never disable swap!
● Max Open Files

– set 50000 minimum, for SaaS with 50+ DB – 500000+
● vm.max_map

– 250000 minimum, for 50+ DB - 1000000

File Systems
● Linux – ext4 no barrier

– xfs, zfs shows lower performance than ext4
– Details are in Firebird Linux webinar

● Windows – NTFS
– Cluster size – can be default

Firebird Performance Webinars
about Firebird and Linux

● Webinars with Firebird core developers for
Firebird Supporters
– Windows with Vlad Khorsun
– Linux with Alex Peshkoff

● Recordings are available
● More to come!

SQLs
● Problematic SQLs for VMs

– many reads and writes – problem with slow disks
– many fetches - problem with shared CPU

● Less problematic – frequent SQLs
● Analyze with trace logs and advanced tools

Network

1) Firebird Version — 3+, 5.0.3 to work with
BLOBs

2) Client versions – need to be updated, client
versions need to equal server version

3) Use of BLOBs

4) Configurations in conf

6) Basic check

Firebird Version - 3+

1) In version 3 the network protocol was optimized

2) Even more optimized in 4

3) Breakthrough in version 5.0.3

Client versions
1) Client version = server version

2) To check (v3+):

SELECT DISTINCT MON$CLIENT_VERSION FROM
MON$ATTACHMENTS

Zoo example:

LI-V4.0.0.2496 Firebird 4.0

WI-V3.0.5.33220 Firebird 3.0

WI-V4.0.1.2692 Firebird 4.0

WI-V4.0.2.2816 Firebird 4.0

WI-V4.0.3.2975 Firebird 4.0

WI-V5.0.0.1306 Firebird 5.0

Use of BLOBs
● Blobs

– problem with blobs in network protocol was resolved in v
5.0.3

● See BLOB revolution article https://firebirdsql.org/en/community-news/
blob-revolution

● Versions <5.0.3
– cast to VARCHAR as a workaround
– don't include BLOB for SELECT for grid, do separately
– 1:1 tables with BLOB fields
– store in varchar preview with part 1, remainder in blob of

another table

https://firebirdsql.org/en/community-news/blob-revolution
https://firebirdsql.org/en/community-news/blob-revolution

Configurations in conf
● WireCrypt and WireCompress

– Makes a difference!
– Mandatory libraries on client side - from Firebird

distributive

Basic Check
● ping server_ip -f -l 1472
● MTU 1500

Balance
1) How to measure resource usage between databases?

2) How to measure resource usage between applications
and Firebird (on the same server)?

3) How to divide resource usage between databases?

4) How to divide resource usage between Firebird and
applications?

How to measure resource usage
between databases?

1) In vanilla Firebird with
SuperServer/SuperClassic – difficult.

With Classic can identify processes and see trace
log and MON$

2) In HQbird has resources in SuperServer to see
load per database

How to measure resource usage between
applications and Firebird (on the same server)?

1) Memory - RAMMap in Windows, top in Linux

2) Disk – Resource Monitor in Windows, iostat in
Linux

3) CPU – Resource Monitor, top

How to divide resource usage
between databases?

1) Different Firebird instances on different ports
● install.sh -path /opt/fbXXX
● RemoteServicePort and RemoteAuxPort

2) Can use Classic and SuperClassic on different
ports to work with the same database

How to divide resource usage between
Firebird and applications (same server)?

1) CPUAffinity (Windows)

2) nice in Linux

3) Other tools that manage affinity and process
priority (not only for Firebird)

Security
● Don't use masterkey
● Don't use SYSDBA
● Encrypt databases
● Change the standard ports RemoteServicePort (3050),

RemoteAuxPort
● Use Srp (strong passwords), don't use LegacyAuth
● Don't share folders on the server!

Testing clouds
● Don't believe what they say, do the test!

https://ib-aid.com/en/simple-insert-update-delete-t
est-for-firebird/

https://ib-aid.com/en/simple-insert-update-delete-test-for-firebird/
https://ib-aid.com/en/simple-insert-update-delete-test-for-firebird/

Testing clouds:
Top 3:

1) Google Cloud

2) Digital Ocean

3) AWS i3en.xlarge

Testing clouds:
value per $1

● Value per USD$1:
1)Digital Ocean

2)SaveInCloud

3)Google Cloud

4)AWS c5ad.xlarge

Thank you!
● Questions?

– ak@firebirdsql.org
● Become a Firebird Supporter now:

– https://store.firebirdsql.org/
– Certification
– Access to EmberWings magazine
– Access to webinars with core developers (recording and

new)
– Discounts and special offers

mailto:ak@firebirdsql.org
https://store.firebirdsql.org/

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34
	Страница 35
	Страница 36
	Страница 37
	Страница 38
	Страница 39
	Страница 40
	Страница 41
	Страница 42
	Страница 43
	Страница 44
	Страница 45
	Страница 46
	Страница 47
	Страница 48

