

15 Firebird Anti-patterns,
or

don’t do it!

Alexey Kovyazin, Firebird Foundation

15 Firebird antipatterns
1) Multiple parallel queries to MON$

2) Slow Dashboard Loading

3) Loading Unnecessary Records

4) Excessive Querying on Scroll

5) Unnecessary Automatic Refreshes

6) Frequent Record Updates

7) Using write transactions for read-only
selects

8) Use LIKE :param

9) Not closing transactions for read-only
operations

10) Query Parameterization Issues

11) Wrong Integrity Checking:
triggers/CHECKs instead of Primary Key

12) ID generation with MAX()

13) Inefficient GUID Usage

14) Inefficient Computed Fields

15) Error Suppression Without Logging

1. Multiple parallel queries to MON$
● Very popular mistake — trigger OnConnect, query to

MON$ATTACHMENTS to select user’s details for audit
purposes, or calculate number of connection for
licensing purposes.

1. Multiple parallel queries to MON$ —
why is it bad?

● MON$ tables are virtual tables which are stored in
fbNN_mon_xx system files, with performance statistics, etc
– File >1Gb means you are using it too much

● They are designed for system administrators usage only —
i.e., 1-2 parallel queries, exclusively for administrators

● 200+ connections with parallel queries to MON$ will slow
down Firebird very significantly, and 500+ simultaneous
queries will «hang» Firebird with high chances

1. Multiple parallel queries to MON$ —
Solutions

● Don’t use MON$ for non-administrative tasks, i.e., to
count or audit, avoid using them in OnConnect
– For audit purposes

● Use Context Variables like CURRENT_USER,
CURRENT_TIMESTAMP, etc

– https://firebirdsql.org/file/documentation/html/en/refdocs/fblangref50/firebird-50-language-reference.html#fblangref50-contextvars

● Use Audit — native Firebird feature, much more powerful than
triggers

– For licensing purposes — use user’s context variables

https://firebirdsql.org/file/documentation/html/en/refdocs/fblangref50/firebird-50-language-reference.html#fblangref50-contextvars

2. Slow Dashboard Loading
● Loading comprehensive dashboards or scoreboards that sum all orders and

invoices for the last month or year during application startup, or updating
some metrics every minute or more often.

SELECT

 SUM(total_sales) as yearly_sales,

 COUNT(DISTINCT customers) as customer_count,

 AVG(order_value) as avg_order_value

FROM orders

WHERE order_date BETWEEN '2025-01-01' AND '2025-01-01';

2. Slow Dashboard Loading
— why is it bad?

● Users must wait several seconds to see company-wide statistics
before they can start their actual work, such as creating invoices
or performing other specific tasks they're paid to do.

● From Firebird point of view — in order to constantly run many
parallel queries, to retrieve the massive amounts of data,
sort/group them, Firebird will intensively use multiple CPU cores,
reading from disk, cache, memory dedicated for sorting (and
sometimes sorting goes to disk).
– It is like building report several times per minute!

2. Slow Dashboard Loading
— Solutions

1) Decrease the number of users who will see dashboards:
1) Usually Dashboard is required only for analysts and managements, exclude it from

general application load

2) Make loading of dashboard on startup/for some form optional, disabled by default

3) Load dashboard data by explicit button click, not at startup (i.e., make it as a report)

2) Calculate dashboard data with 1 process by schedule (i.e., robot) and store
them into the simple table ready to be retrieved by simple query (without
necessity to read, sort/group large amounts of data)

3) Use triggers to aggregate data and store them ready for use

4) Use replica database to calculate dashboards data (and all heavy reports
too)

3. Loading Unnecessary Records
Loading all data without filtering into the grid when opening an
application or form, regardless of whether it contains hundreds of
thousands of records.

procedure TDataForm.LoadAllRecords;

begin

 FDQuery1.SQL.Text := 'SELECT * FROM large_table';

 FDQuery1.Open;

 // Loads entire table into memory

 DBGrid1.DataSource.DataSet := FDQuery1;

end;

3. Loading Unnecessary Records
— why is it bad?

● Despite the grid only showing 50 records, users must scroll through
thousands of records instead of using search functionality.

● In 99% of cases users need the very narrow subset of data: the most
recent sales records, for example.

● From Firebird point of view:
● Every opening requires reading, storing in cache, and transfers of thousands

of records through network

● If you keep dataset open (in Delphi), Firebird keeps buffers, sorted records
in temp space (if ORDER BY, GROUP BY, etc) until the closing of dataset

3. Loading Unnecessary Records
— Solutions

1) Limit the number of records with
FIRST/SKIP/ROWS

2) Limit the number of records with some criteria,
for example, shows records created/changed
during recent 3 days

3) Close queries as soon as possible

4. Excessive Querying on Scroll
● Executing queries on scroll events. For example, when displaying

data in a grid or table, performing a separate query FOR EACH
record (i.e., requesting Details in master-detail)

procedure TForm1.GridScrolled(Sender: TObject);

begin

 // query for each row

 FDQuery2.SQL.Text :=

 'SELECT additional_info FROM details ' +

 'WHERE id = ' + IntToStr(CurrentRowId);

 FDQuery2.Open;

end;

4. Excessive Querying on Scroll
— why is it bad?

● Performing a separate query FOR EACH record in
dynamic grid forces Firebird to process thousands of tiny
queries, unnecessarily consuming CPU resources.

● From Firebird point of view
– Many (thousands per second) small queries will create

significant CPU load, because even if query shows 0ms
in statistics, it requires to be prepared, executed, result
to be transferred, etc

4. Excessive Querying on Scroll
— Solutions

● Load multiple rows at once

procedure TForm1.LoadDetailsInBatch;

begin

 FDQuery2.SQL.Text :=

 'SELECT id, additional_info FROM details WHERE id IN (:ids)';

 FDQuery2.Params.ArraySize := GridVisibleRows.Count;

 // Batch load multiple rows at once

 for i := 0 to GridVisibleRows.Count - 1 do

 FDQuery2.Params.ParamByName('ids').AsIntegers[i] :=

 GridVisibleRows[i].ID;

 FDQuery2.Execute;

end;

4. Excessive Querying on Scroll
— Solutions-2

1) Enhance the main query for grid to execute detailed
query as part of it

2) Add explicit button to load details for visible part of grid

3) Add delay to execute the query to receive details, to
prevent immediate queries during the scrolling

4) Don’t enable on-scroll loading of details for all users by
default

5) Prepare queries

5. Unnecessary Automatic Refreshes
● Refreshing grid data automatically at minimal

intervals in every client application, with this
feature enabled by default.

5. Unnecessary Automatic Refreshes
— why is it bad?

● This results in hundreds of client connections running
almost identical queries to retrieve the same records.

● Where it happens: automatic refreshes for schedules, or
select for queue positions, or search for «nearest slot», etc

● From Firebird point of view
– Combination of loading dashboards and on-scroll events: many

mid-size queries create load on the system

5. Unnecessary Automatic Refreshes
— Solutions

1) Increase interval!

2) Implement explicit (user-triggered) refreshes

3) Use selective refresh of data set based on
actual data changes (streaming or triggers or
event+trigger)

6. Frequent Record Updates
● Frequently updating the same record in different transactions, creating

numerous record versions.
● How to check it Max Versions:

gstat -r -t TableName -user SYSDBA -pass masterkey > stat1.txt

TRDT (161)

 Primary pointer page: 977, Index root page: 978

 Total formats: 1, used formats: 1

 Average record length: 22.50, total records: 4

 Average version length: 10.59, total versions: 444, max versions: 148

 Average fragment length: 0.00, total fragments: 0, max fragments: 0

 Average unpacked length: 58.00, compression ratio: 2.58

 Pointer pages: 1, data page slots: 1

 Data pages: 1, average fill: 76%

 Primary pages: 1, secondary pages: 0, swept pages: 0

 Empty pages: 0, full pages: 0

6. Frequent Record Updates
— why is it bad?

● A record with dozens of versions can significantly
degrade performance, a record with thousands can
become a blocker.

● From Firebird point of view: record versions chain should
be reconstructed to identify the proper version of the
specific transaction, it requires numerous read operations
– As a result, garbage collection becomes much slower

6. Frequent Record Updates
— Solutions

1) Migrate to Firebird 4+, there is intermediate
garbage collection

2) Don’t keep long running writeable transations,
organize proper garbage collection

3) For Firebird <4, consider to use
DELETE+INSERT instead of UPDATE

7. Using write transactions for read-
only selects — why is it bad?

● Using write transactions for read-only selects
leads to many unnecessary writes of header
pages

● Using write transactions for read-only
operations is inefficient (large TIP during
commit creates additional load on server)

7. Using write transactions for read-
only selects — Solutions

● Use separate read-only transaction for
operations which do not change data
– Firebird is one of a few databases which allow to

open several transactions in the frames of single
connection.

– Global Temporary tables are available for use in
read-only transactions

8. Use LIKE :param
● The following query with parameter will not use

index for the fieldName (even if index exists):

SELECT * FROM Table1 WHERE fieldName LIKE :p

8. Use LIKE :param
— why is it bad?

● Since LIKE allows wildcard search (%), which can replace any number
of symbols, Firebird cannot determine in advance, will the parameter
value be suitable for index search, and disable index usage.

● Usually developers try to workaround it with explicit parameter value in
the query text:
– fieldName LIKE «Alex%» - possible to use index
– fieldName LIKE «%Alex» - not possible to use standard index
– fieldName LIKE «%Alex%» - not possible to use index at all

● It leads to other problems (see #10 below)

8. Use LIKE :param
— solutions-1

1. Use STARTING WITH for known string prefixes

When your search value never starts with a wildcard %, prefer `STARTING WITH` over
`LIKE`:

WHERE fieldName STARTING WITH :param1

2. Optimize bidirectional string searches

For strings with known prefix or suffix patterns, use reversed index:

-- Create reversed index

CREATE INDEX ixreverse1 ON TABLE1 COMPUTED BY (REVERSE(fieldName));

-- Query using both directions

WHERE fieldName STARTING WITH :param1

 OR reverse(fieldName) STARTING WITH reverse(:param2)

8. Use LIKE :param
— solutions-2

3. Implement progressive search strategy

For strings that appear at start/end/middle (but not simultaneously):

1. First try fast indexed search with STARTING WITH

2. If no results found, fall back to slower LIKE search

4. Word-Based Search Optimization

When searching for complete words (delimited by spaces, commas, etc.):
● Create a separate word-ID mapping table
● Search through the mapping table instead of the original text

5. For comprehensive full-text search capabilities:
● Consider using IBSurgeon Full Text Search UDR
● This open-source solution provides advanced text search functionality

9. Not closing transactions for read-
only operations — why is it bad?

● Keeping transactions open for extended periods
could force Firebird to maintain numerous back
versions for potential old snapshot transactions

9. Not closing transactions for read-
only operations — Solutions

● Use read-only transactions where it is possible,
and close writeable transactions as soon as
possible

● Use modern Firebird versions (4+) to reduce
impact of records versions chains

● Implement proper sweep

10. Query Parameterization Issues
Avoiding prepared queries and parameterization, instead
embedding parameter values directly in query text.

FDQuery1.SQL.Text :=

 'SELECT * FROM users WHERE name = ''' +

 EditUsername.Text + '''';

FDQuery1.Open;

10. Query Parameterization Issues
— why is it bad?

● This practice reduces performance for repeated queries
– Every query with embedded parameters values should be

prepared as new
– Preparation can be long and time consuming for large tables

● Complicates problem analysis
– It is difficult to group queries by text

● Creates SQL injection vulnerabilities

10. Query Parameterization Issues
— Solutions

● Use parameters!

FDQuery1.SQL.Text :=

 'SELECT * FROM users WHERE name = :username';

FDQuery1.ParamByName('username').AsString :=

 EditUsername.Text;

FDQuery1.Open;

11. Wrong Integrity Checking:
triggers/CHECKs instead of Primary Key

● Using triggers or CHECK instead of Primary Keys for
database integrity checks.
– Yes, it happens!

11. Wrong Integrity Checking:
triggers/CHECKs instead of Primary Key

— why is it bad?
● This ignores that Primary Key validation occurs within a

special reading mode of current record versions
(independent of the users’ transaction isolation mode)

● Making PK checks with triggers in user transactions
increases the possibility of duplication and unnecessarily
complicates logic.

● Replication will not work without Primary or Unique Key for
the table

11. Wrong Integrity Checking:
triggers/CHECKs instead of Primary Key

— solutions
● Use primary keys
● Avoid redundant integrity checks
● Keep database logic simple

12. ID generation with MAX()
● Using MAX(id)+1 for new identifiers is

unreliable and inefficient.
INSERT INTO users (id, name)

VALUES ((SELECT MAX(id) + 1 FROM users),

 'John Doe');

12. ID generation with MAX()
— why is it bad?

● Using MAX(id)+1 instead of sequences (generators)
for new identifiers.

● MAX(id)+1 doesn’t guarantee uniqueness with
common transaction parameters - two parallel
transactions could receive the same MAX() value.
– Combination of Max()+1 and CHECK(select if unique)

also does not work!

12. ID generation with MAX()
— solution

-- Use generator/sequence!

CREATE GENERATOR gen_user_id;

-- Use generator for ID generation

INSERT INTO users (id, name)

VALUES (

 GEN_ID(gen_user_id, 1),

 'John Doe');

13. Inefficient GUID Usage
— why is it bad?

● Using system-generated GUIDs instead of
gen_uuid() can impact index performance
– System-generated GUID is highly randomized

13. Inefficient GUID Usage
● Use gen_uuid() function
● Consider to use BIGINT instead
● In version 6 there will be UUID v7

14. Inefficient Computed Fields
● Using computed fields with SELECTs to other tables

significantly decreases the performance of simple SELECT
operations.

CREATE TABLE orders (

 id INTEGER,

 total_amount COMPUTED BY (

 (SELECT SUM(item_price) FROM order_items

 WHERE order_items.order_id = orders.id)));

14. Inefficient Computed Fields
— why is it bad?

● Computed fields are calculated on the fly, and they
are not supposed to implement complex logic, and
can significantly complicate optimization efforts

● It strengthens relationships between tables
● It makes sense to use computed fields only for

lightweight calculations with fields of the table, like
concantenation

14. Inefficient Computed Fields
- Solutions

CREATE TABLE orders (

 id INTEGER PRIMARY KEY,

 cached_total_amount DECIMAL(10,2));

CREATE TRIGGER update_order_total

BEFORE INSERT OR UPDATE ON orders

AS

BEGIN

 NEW.cached_total_amount = (

 SELECT SUM(item_price)

 FROM order_items

 WHERE order_items.order_id = NEW.id

);

END;

15. Error Suppression Without Logging
● Don’t suppress Firebird errors and warning without logging!

try

 FDQuery1.Open;

except

 // Silent failure

end;

15. Error Suppression Without Logging
— why is it bad?

● Hiding errors prevents proper diagnosis and
debugging. Proper error logging is crucial for
understanding and resolving issues quickly.

15. Error Suppression Without Logging
— Solutions?

try

 FDQuery1.Open;

except

 on E: Exception do

 begin

 // Comprehensive logging

 Logger.Error('Database connection failed: ' + E.Message);

 ShowMessage('Unable to connect to database. Please contact support.');

 // Log additional context

 Logger.LogStackTrace(E);

 end;

end;

Thank you, and what next?
● Send your questions to ak@ib-aid.com
● Download text summary (link in the description

of video)
● Become Firebird Supporter (from EUR10/month) and

participate in closed advanced webinars!
– https://store.firebirdsql.org/p/firebird-associate-donation-eur/

mailto:ak@ib-aid.com
https://store.firebirdsql.org/p/firebird-associate-donation-eur/

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34
	Страница 35
	Страница 36
	Страница 37
	Страница 38
	Страница 39
	Страница 40
	Страница 41
	Страница 42
	Страница 43
	Страница 44
	Страница 45
	Страница 46
	Страница 47

