

Firebird Configuration, episode 3:
InlineSortThreshold and details of sortings

Alexey Kovyazin, President of Firebird Foundation

What operations do require sorting?
● ORDER BY
● GROUP BY
● DISTINCT
● UNION (without UNION ALL)

Sorting example
● SELECT ID, NAME FROM TABLE1 ORDER BY DATE1

34 John 06-JUL-1977

2 Alex 12-MAR-1980

51 Tom 07-DEC-1982

80 Roland 16-MAY-1992

7 Helen 26-NOV-1996

19 Nataly 03-APR-1974

39 Carlos 20-AUG-1987

7 Helen 26-NOV-1996

80 Roland 16-MAY-1992

39 Carlos 20-AUG-1987

51 Tom 07-DEC-1982

2 Alex 12-MAR-1980

34 John 06-JUL-1977

19 Nataly 03-APR-1974

How Sorting Works

● There are 3 ways how sorting can work:
– SORT
– REFETCH/INLINE
– INDEX

SELECT ID, NAME FROM TABLE1 ORDER BY DATE1

RESULT OF SORTING

SORT
SELECT ID, NAME FROM TABLE1 ORDER BY DATE1

RESULT OF SORTING KEY OF SORTING

ID INTEGER (8 bytes) NAME VARCHAR(100) DATE 8 bytes

116 bytes

SORT
3 Steps
1. Read both result columns and key into the single wide record set,
stored in the temp area and, if not enough, on disk
2. Sort recordset by key columns
3. Return results according the fetch command

4 *

5 *

2 *

1 *

3 *

SELECT ID, NAME
FROM TABLE1 ORDER BY DATE1

1

2

3

4

5

Ordering ID, NAME, DATE1 by DATE1Storing ID, NAME, DATE Return results
(fetching records)

SORT with *
SELECT ID, NAME FROM TABLE1 ORDER BY DATE1

Record length KEY OF SORTING

* = many fields e.g. 20000 bytes DATE 8 bytes

Total 116 bytes

SELECT * FROM TABLE1 ORDER BY DATE1

ID INTEGER (8 bytes) NAME VARCHAR(100) DATE 8 bytes

Total 20008 bytes

SORT — small sorting

Record Set
= 1Gb

TempCacheLimit
= 2Gb

ID, NAME, DATE1

SORT — big sorting

Record Set
= 3Gb

TempCacheLimit
= 2Gb

fb_sort_ file
= 1Gb

* (ALL), DATE1

How can we know the size of
sorting?

● In isql
– set explain;

● In trace
– explain_plan = true

Examples
SQL> show table rdb$types;

RDB$FIELD_NAME (RDB$FIELD_NAME) CHAR(63) CHARACTER SET UTF8 Nullable

RDB$TYPE (RDB$GENERIC_TYPE) SMALLINT Nullable

RDB$TYPE_NAME (RDB$TYPE_NAME) CHAR(63) CHARACTER SET UTF8 Nullable

RDB$DESCRIPTION (RDB$DESCRIPTION) BLOB segment 80,

 subtype TEXT CHARACTER SET UTF8 Nullable

RDB$SYSTEM_FLAG (RDB$SYSTEM_FLAG) SMALLINT Not Null

Example — sorting records 284 bytes
SQL> select rdb$type_name from rdb$types order by
rdb$type;

Select Expression

 -> Sort (record length: 284, key length: 8)

 -> Table "RDB$TYPES" Full Scan

Example — sorting record 548 bytes
SQL> select * from rdb$types order by rdb$type;

Select Expression

 -> Sort (record length: 548, key length: 8)

 -> Table "RDB$TYPES" Full Scan

Record size calculation
● Header for each record — always aligned to 32 bytes

– 8 bytes — transaction’s number
– 1 byte — DBKEY validity
– 8 bytes — DBKEY
– 8 bytes — key for recordset

● Returned data
– Integer — 8 bytes
– Timestamp — 8 bytes
– Varchar (NNN) = NNN * charset (4 for UTF8)

Some calculations
● Sorting 1000000 records, 548 bytes = ~522Mb
● CREATE TABLE T1(i1 integer, v1 varchar(999);

– SELECT * FROM T1 ORDER BY i1
● Each record 8b+999*4 (UTF8)+24 bytes = 4028 bytes
● 1mln records = ~3,7Gb

Example
SELECT FIRST 10 * FROM T1 ORDER BY F1
● Table size = 1000000 records
● Width of record to sort (ALL + F1) = 4K
● F1 size = 8 bytes

To show 10 first records, Firebird will sort 4Gb of
data!

Sorting size 4Gb

Data to show 40Kb

REFETCH
● In firebird.conf of Firebird 4

– InlineSortThreshold=NN #bytes

● In firebird.conf of HQbird 3
– SortDataStorageThreshold=NN #bytes

● If optimizer sees that record is bigger than specified limit,
it will sort only keys, and re-read records by the key

Example Refetch
SQL> create table TEST11(I1 integer, vbig varchar(20000));

SQL> show table TEST11;

I1 INTEGER Nullable

VBIG VARCHAR(20000) Nullable

SQL> select * from TEST11 ORDER BY I1;

Select Expression

 -> Refetch

 -> Sort (record length: 28, key length: 8)

 -> Table "TEST11" Full Scan

How refetch works
SELECT * FROM TEST11 ORDER BY I1

1. Read records, build keys for records set
2. Sort keys as usual
3. Re-read records according the sorted keys
4. Return results

SELECT * FROM T1 ORDER BY I1
Reading records, building keys
(I1+address)

4

5

2

1

3

Ordering keys

1

2

3

4

5

Re-reading records
according the sorted keys

Final record set

Return results

ORDER INDEX
● If there is index matching the condition in

ORDER BY or GROUP BY, Firebird will try to
use index (with some limitation)
– In this case Firebird will not use temp area to store

records

Why ORDER INDEX is not always
great

● It can be used to order only one table
● Access through index usually requires 3-4x

more fetches operations than NATURAL
fetching and therefore slower for sorting large
amounts of data!

Comparsion
SORT REFETCH INDEX

Use Temp area? Yes Yes No

Sort record and key? Yes No No

Good to sort millions of records with
small or moderate size?

Yes, will Depends No

Good to sort millions of records with extra
large size (>16K)?

No Yes No

Good to return only a few (<1000) first
rows?

No Depends Yes

Order/Group condition can have columns
from various tables?

Yes Yes No

Reads tables twice? No Yes No

Recommendations for tuning
InlineSortThreshold

● Find queries with SORT plan generating large
sort files

● Set InlineSortThreshold less than their records
length

● Monitor production

Analysing actual temp space usage
● Unfortunately, in the current versions of vanilla

Firebird there is no monitoring of used space in
TempCacheLimit
– HQbird has TempSpaceThreshold parameter to

report operations which use more space than set

Questions?
● ak@firebirdsql.org
●

mailto:ak@firebirdsql.org

Allocating and deallocating temp
space

● TempCacheLimit sets the limit, the memory is
allocated on demand.

● Temp space is allocated by blocks, specified by
parameter TempBlockSize, default =1Mb

● Temp space is deallocated when query finishes the
fetch — i.e., when all records of resultset are
returned to the client

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26

