
Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API1

Firebird Tour 2017Firebird Tour 2017
Advanced Trace APIAdvanced Trace API

Vlad Khorsun, Firebird Project

About Firebird Tour 2017

● Firebird Tour 2017 is organized by Firebird Project,
IBSurgeon and IBPhoenix, and devoted to Firebird
Performance.

● The Platinum sponsor is Moscow Exchange
● Tour's locations and dates:

● October 3, 2017 – Prague, Czech Republic
● October 5, 2017 – Bad Sassendorf, Germany
● November 3, 2017 – Moscow, Russia

https://firebirdsql.org/en/firebird-tour-2017-optimization/
https://ib-aid.com/
http://ibphoenix.com/
https://moex.com/

• Platinum Sponsor
• Sponsor of

– «Firebird 2.5 SQL Language Reference»
– «Firebird 3.0 SQL Language Reference»
– «Firebird 3.0 Developer Guide»
– «Firebird 3.0 Operations Guide»

• Sponsor of Firebird 2017 Tour seminars
• www.moex.com

http://www.moex.com/

• Replication, Recovery
and Optimization for
Firebird since 2002

• Platinum Sponsor of
Firebird Foundation

• Based in Moscow, Russia

www.ib-aid.com

http://www.ib-aid.com/

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API5

Trace Session Configuration
● fbtrace.conf file in Firebird root directory

● Self-documented
● Show all possible trace parameters
● Uses own XML-like syntax in Firebird 2.5

– Different from firebird.conf, fbintl.conf, etc
● In Firebird 3 all configuration files have same syntax

– Syntax for trace configuration slightly changed

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API6

User Trace and System Audit
● User trace session

● Initiated (started) by user
via special service

● Not preserved after
Firebird shutdown

● Output read by initiated
service connection

● Scope depends on user
privileges

● Audit trace session
● Initiated only by Firebird

itself
● Started with Firebird every

time
● Output stored in log file(s)
● Scope is not limited

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API7

User Trace and System Audit
● User trace session

● Could be temporary
paused by the Firebird

● Could be many user trace
sessions

● Could be managed by
creator user or by
SYSDBA

● Audit trace session
● Never interrupted by

Firebird
● Only one audit trace

session could exists
● Could be managed by

SYSDBA only

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API8

Trace Sessions in the Engine

Database Attachment

Trace Manager

session object
...

session object

Trace Config Storage

stored session record
stored session record

...
stored session record

Database Attachment

Trace Manager

session object
...

session object

Service Attachment

Trace Manager

session object
...

session object

Trace Services

● Start trace session
● Stop trace session
● Suspend trace session
● Resume trace session
● List of trace sessions

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API9

Trace Sessions in the Engine
● To support multiply trace sessions we need some kind of

manager
● Trace sessions need a place to keep its parameters

● ID, name, creator user, state, etc
● Trace session configuration

● TraceConfigStorage object is used for this goals
● One instance per engine process
● Common part is in shared memory
● Changes increments special counter
● Requires synchronization between engine processes

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API10

Trace Configuration Storage
● Consists from two files

● fb_trace, control file, mapped into shared memory
● fb_trace_AAAAAA, storage of trace sessions records

● Both files placed at Firebird lock directory
● by default COMMON_APPDATA\firebird

● Creates when Firebird process starts
● Shared by all Firebird processes (embedded too !)
● Deleted when last Firebird process gone

● trace sessions is not preserved between Firebird restarts

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API11

Trace Sessions in the Engine
● All trace activity in the engine done using TraceManager

object
● Each database connection has own instance of

TraceManager
● Each service connection has own instance of TraceManager
● No additional synchronization between any kind of

connections is required

● TraceManager sits between the engine and trace plugin(s)
● Load and initialize trace plugin
● Put events data into trace plugin methods

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API12

Trace Manager
● Maintains list of active trace session objects which should

be used at database\service connection
● Maintains list of trace plugin’s which should receive

corresponding events
● Two main tasks

● React on changes in trace sessions list
– New trace session created
– Requests to stop trace session
– Requests to suspend\resume trace session

● Pass events produced by the engine into trace plugin(s)

● Should have minimal impact on engine performance!

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API13

Trace Manager

TraceManager::change_number ==
TraceConfigStorage::change_number

Event to trace

TraceManager::
update_sessions()

No

TraceManager :
Pass event into every

session object

Yes

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API14

Trace session's output
● User trace

● Many writers
– Other connections, produced events to trace

● One reader
– The service connection which creates trace session

● It is hard to directly pass events data from different engine
processes into given service connection

● Writers needs to store it somewhere and reader should
read it

● Disk space used should be limited

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API15

Trace session's output
● User trace

● Many writers
● One reader
● Disk space released while

reading
● Delete whole log when

reader gone
● Log file name set by

Firebird

● System audit trace
● Many writers
● No readers
● Log files rotation

● Log files not deleted by
Firebird

● Log file name set in trace
configuration on per-
database (service) basis

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API16

Output of user trace

Log Control File
fb_trace.{GUID}

struct ShMemHeader
{

volatile unsigned int readFileNum;
volatile unsigned int writeFileNum;

...

● Log files placed at Firebird's lock directory
● by default COMMON_APPDATA\firebird

● Maximum size of each log file is 1MB
● Maximum summary log size set in firebird.conf

● MaxUserTraceLogSize = 10

Log Files
fb_trace.{GUID}.NNNNNNN

ATTACH_DATABASE
...
START_TRANSACTION
...
COMMIT_TRANSACTION
...

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API17

Output of System Audit trace
● Stored in disk file(s)
● File name is set in trace configuration file on per-database

(per-service) basis
● «log_filename» setting in database or service section
● Each traced database or service could have own trace log file

● Log file could be “rotated” when its size reached
«max_log_size» MB
● Current log file is renamed

– log_filename.<timestamp>
● New log file is created
● Old log files should be removed by the administrator

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API18

Trace tips and hints
● The more events is traced the more performance delay

could happen
● Be careful:

● Trigger related events will appear for every record affected by
DML statements!

● If you use some PSQL function in SQL statement – function
execution could be traced as many times as records
processed!

● Same about joins with stored procedures
● Same about RDB$SET_CONTEXT usage

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API19

Trace tips and hints
● Statements like

EXECUTE PROCEDURE, or
SELECT ... FROM<procedure>

will produce
● set of SQL statement related events

– log_statement_prepare
– log_statement_free
– log_statement_start
– log_statement_finish

● set of PSQL related events
– log_procedure_start
– log_procedure_finish

● Choose what you really need

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API20

Trace tips and hints
● Question

● Database could be accessed by file name or by alias, or
● I need to trace same set of events for few databases using

one trace session

● Solution
● set all required events and params at default database

section, but do not enable it
● add few more database sections using patterns and set

enable = true there

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API21

Trace tips and hints
database
{

enabled = false
log_statement_finish = true
print_perf = true
time_threshold = 60

}

by the file name pattern

database = c:\\databases\\%.fdb
{

enabled = true
}

by database alias
database = mycooldb
{

enabled = true
}

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API22

Trace tips and hints
● Consider to “mark” interesting queries using comments

embedded into query text and later add filter at trace
configuration to include (or exclude) such queries:

/* no trace me */ SELECT …

exclude_filter = %(no trace me)%

● Big app with a lot of modules\queries:
mark queries with module names to easy find source
module which run the query

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API23

Trace tips and hints
● Performance statistics in trace and in tools (isql, etc) could

be different
● Trace shows “clear” time spent by the engine only to

execute statement
● ISQL time includes

● network delays
● prepare time
● commit time (DDL statements and autoddl = on)

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API24

Trace tips and hints
● Performance statistics in trace and in tools (isql, etc) could

be different
● How ISQL measure stats and time:

● take "before" stats
● free previous stmt
● prepare current stmt
● ask for PLAN (if required)
● execute statement
● ask for record counts (if query is ins\upd\del)
● fetch and print results
● take "after" stats
● print difference "after" - "before"

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API25

Trace tips and hints
● Log of slow queries

database
{
log_statement_finish = true
print_perf = true
time_threshold = 10000

}

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API26

Trace tips and hints
● Log DDL statements

database
{
log_statement_start = true
include_filter = %(CREATE|ALTER|DROP)%
time_threshold = 0

}

case insensitive filter could looks a bit more complex

%([Cc]Rr[Ee][Aa][Tt][Ee])%

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API27

Trace tips and hints
● Trace configuration uses regexp patterns with the same

syntax as Firebird itself
● You may check regexp pattern\filter with Firebird:

SELECT ‘Matched’ FROM RDB$DATABASE
 WHERE <string> IS SIMILAR TO <pattern string>

Firebird Tour 2017Firebird Tour 2017 Advanced TraceAdvanced Trace API API28

THANK YOU FOR ATTENTION !THANK YOU FOR ATTENTION !

Questions ?Questions ?

Firebird official web site

Firebird tracker

hvlad@users.sf.net

http://www.firebirdsql.org/
http://tracker.firebirdsql.org/

	Slide 1
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

