
© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 1

Firebird 3.0 statistics and plans

Dmitry Kuzmenko, IBSurgeon

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 2

Firebird 2017 Tour: Performance Optimization

• Firebird Tour 2017 is organized by Firebird Project, IBSurgeon
and IBPhoenix, and devoted to Firebird Performance.

• The Platinum sponsor is Moscow Exchange

• Tour's locations and dates:
– October 3, 2017 – Prague, Czech Republic

– October 5, 2017 – Bad Sassendorf, Germany

– November 3, 2017 – Moscow, Russia

http://firebirdsql.org/
https://ib-aid.com/
http://ibphoenix.com/
http://moex.com/

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 3

• Platinum Sponsor
• Sponsor of

– «Firebird 2.5 SQL Language Reference»
– «Firebird 3.0 SQL Language Reference»
– «Firebird 3.0 Developer Guide»
– «Firebird 3.0 Operations Guide»

• Sponsor of Firebird 2017 Tour seminars
• www.moex.com

http://www.moex.com/

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 4

• Replication, Recovery and
Optimization for Firebird
and InterBase since 2002

• Platinum Sponsor of
Firebird Foundation

• Based in Moscow, Russia

www.ib-aid.com

http://www.ib-aid.com/
http://www.ib-aid.com/
http://www.ib-aid.com/
https://ib-aid.com/en/hqbird/

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 5

Agenda
• New elements for table statistics

– Including blob information

• New elements for index statistics

• Plan elements
• Explained plans
• Optimizer enhancements

– Firebird 3 and 4

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 6

NEW STATISTICS ELEMENTS

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 7

How to get statistics
• Gstat –r

• Gstat –r –t tablename1 –t
tablename2…

• Services API

• HQbird Database Analyst

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 8

Tables
• JOB (129)

• Primary pointer page: 228, Index root page: 229

• Total formats: 1, used formats: 1

• Average record length: 65.58, total records: 31

• Average version length: 0.00, total versions: 0, max versions: 0

• Average fragment length: 0.00, total fragments: 0, max fragments: 0

• Average unpacked length: 96.00, compression ratio: 1.46

• Pointer pages: 1, data page slots: 3

• Data pages: 3, average fill: 72%

• Primary pages: 1, secondary pages: 2, swept pages: 1

• Empty pages: 0, full pages: 1

• Blobs: 39, total length: 4840, blob pages: 0

• Level 0: 39, Level 1: 0, Level 2: 0

• Fill distribution:

• 0 - 19% = 0

• 20 - 39% = 0

• 40 - 59% = 1

• 60 - 79% = 1

• 80 - 99% = 1

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 9

 Total formats: 1, used formats: 1

• Number of table structure changes (except triggers and
indices)

• Limited to 256

• After limit exceeded, you need to do backup/restore

• Used formats – how many formats used by primary
records. Number of all used formats is unknown (less
or equal of Formats)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 10

Primary, Secondary – new storage concept

• Primary
– Primary record versions - insert
– Backversions

• Secondary
– Backversions, record fragments -

update/delete
– Small blobs (level 0)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 11

Swept

• Processed by garbage collector or sweep
– Sweep skips swept pages

• Used for primary pages

• When no work for garbage collector

• Cleared when new version is created on the
data page

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 12

Average fragment length: 0.00, total
fragments: 0, max fragments: 0

• Fragments - records that does not fit at a
page
–Big records

–Big record+versions chain

• Max fragments – the most number of
fragments for some record

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 13

Packing

• Average unpacked length: 96.00,
compression ratio: 1.46

• Average record length: 65.58

• 96 / 65.58 = 1.46

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 14

Empty, full

• Full – when there is no space to place new
record (version)

• Empty – empty, while not gathered into 8-
pages extent. These pages are marked as
unused only when all pages in extent are
empty.

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 15

Blobs, blob levels
• Blobs: 463, total length: 248371310, blob pages: 15410

Level 0: 0, Level 1: 463, Level 2: 0

• Level 0 – fits to the data page. Record data is sparsed.
– Page of 4096 bytes can hold blob of 4052 bytes

• Level 1 – pointers to the blob pages.
– Blobs bigger than page size, and up to ~4mb size can rarefact data same

way as 4052 blobs. Because 4052 bytes can fit 1013 links to the blob
pages

• Level 2 – pointer to the blob pointer page, that contain pointers to the
blob pages

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 16

BLOB Levels

• Level 1 –
pointers to the
blob pages BLOB

BLOB page

with data

BLOB page

with data

BLOB record

• Level 0 – at data page, as record data

• Level 2 – pointers to
pointers (BLOB pages
with pointers)

BLOB Record

BLOB

pointer page

BLOB

pointer page

BLOB data

page

BLOB data

page

BLOB data

page

BLOB data

page

Data page

BLOB record

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 17

What was earlier (ODS < 12)

• Small blobs (level 0) sparse record data,
because they fit at data page

• Records could be highly sparsed, causing
performance loss on scans without accessing
blobs

• To avoid this small blobs needed to be moved
to separate table, linked 1:1 to the main table

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 18

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 19

Blob level 0

• Now “blob record”, i.e. blob contents,
stored at a secondary page, while record
is at primary page

• Eliminates data page sparse

• Makes scan operations much faster
–Anything that does not touch blob data

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 20

Blob level 1

• Blobs: 463, total length: 248371310, blob pages:
15410
Level 0: 0, Level 1: 463, Level 2: 0

• Here all blobs
– Bigger than page size (16k) (no Level 0)

– Less than 64mb (no level 2)

– Do not interleave record data

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 21

Blob level 2

• Blob record points to pages that contain
pointers to blob pages

• For 16k page size blob size must be
bigger than 64mb to get Level 2

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 22

Test
• Page size = 8192

• Tables, 100k records, random data

– A – no blobs at all

– B – random blobs from 128 to 1024 bytes size

• Fits at data page – level 0

– C – fixed blobs 1024 bytes size

• Fits at data page – level 0

– D – fixed blobs 9000 bytes size

• Goes to separate blob page – level 1

• Reading all fields except blob

– Fetch all, select count

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 23

Reading speed, ms

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

A B C D

FB 2.5

FB 3.0

Performance with B and C may decrease up to 22%

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 24

SELECT * FROM C

Fetch All

PLAN (C NATURAL)

------ Performance info ------

Prepare time = 16ms

Execute time = 875ms

Memory buffers = 256

Reads from disk to cache = 1 066

Writes from cache to disk = 0

Fetches from cache = 104 274

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 25

Page reads

0

2000

4000

6000

8000

10000

12000

14000

16000

A B C D

FB 2.5

FB 3.0

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 26

957

8658

14286

1555
960

8904

15352

1560
960 1072 1066 1069

0

7832

14286

491

A B C D

FB 2.5 FB 3.0 PP SP

Number of pages

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 27

Results
• Now blob record is placed at secondary page

• Blobs and versions may be mixed at secondary pages
only

• Scanning data without blobs is faster and uses less I/O

• Level 0 in FB 3.0 by performance similar to blobs Level
1 in Firebird 2.5

• Scanning - 2x times less fetches

• Select count - 25% less fetches

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 28

Indices
• Index MAXSALX (2)
• Root page: 324, depth: 1, leaf buckets: 1, nodes: 31
• Average node length: 14.74, total dup: 5, max dup: 1
• Average key length: 13.71, compression ratio: 1.37
• Average prefix length: 7.87, average data length: 10.90
• Clustering factor: 1, ratio: 0.03
• Fill distribution:
• 0 - 19% = 1
• 20 - 39% = 0
• 40 - 59% = 0
• 60 - 79% = 0
• 80 - 99% = 0

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 29

Node, key, prefix
• Average node length: 14.74
• Average key length: 13.71, compression ratio: 1.37
• Average prefix length: 7.87, average data length: 10.90

• Node – prefix + key + record number
• Key – indexed data (column value)
• Compression –

– board 0 5 board
– boarding 5 3 ing
– boarded 5 2 ed

• Sequential numbers may be compressed up to 8 times in comparison with
GUIDs

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 30

Clustering Factor
Index Key 1

Index Key 2

Index Key 3

Index Key 5

Index Key 4

Data Page 12

Data Page 25

Data Page 28

Data Page 57

Data Page 44

Data Page 12

Data Page 13

Data Page 14

Bad Clustering Factor = 5

guid primary key
Good Clustering Factor = 3

int/bigint primary key

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 31

Example: Clustering factor: 1066, ratio: 0.01

• nodes: 100000

• Primary pages: 1066

• Ratio = Clustering factor / Nodes =
1066/100000 = 0.01

– Ratio * keys in range = future DP reads

• The best Clustering factor – equal to the
number of primary data pages

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 32

Example: Clustering factor: 1066, ratio: 0.01
• Clustering factor – jumps to different primary data

pages while walking through index

– 1066 with 1066 primary pages means the best

• Another index may have worse clustering factor

– For example, 2132, i.e. will be 2x primary page reads

• Cache size – will these data pages fit, or not? (will be
re-read from disk)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 33

Clustering factor

• Clustering factor closer to the primary
data pages number – good

• Ratio – less is better

• How clustering factor affects
performance?
See below

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 34

PLAN ELEMENTS

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 35

Plan elements
• tablename NATURAL
• tablename INDEX indexname
• Tablename ORDER indexname
• JOIN
• HASH JOIN
• SORT
• SORT MERGE

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 36

PLAN (TABLE NATURAL)

• select * from employee
PLAN (EMPLOYEE NATURAL)

• The fastest way to read data

Record 1
Record 2
Record 3

Record 3
Record 4
Record 5

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 37

PLAN (TABLE INDEX indexname)
• Search for first key applying to condition
• Collect all row numbers for keys, that applying to condition
• Sort array of row numbers
• Fetch records from sorted array of row numbers

• select * from employee

where emp_no > 5
PLAN (EMPLOYEE INDEX (RDB$PRIMARY7))

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 38

r15
r20
r28

r43
r44

r55
r68
r75

Index -> Table

A
D

A
C

D

A r55
B r28

C r44
C r68

D r15
E r43

 Root Page Pointer Page Keys (Leaf page) Data Pages

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 39

How to force optimizer to use index
• We know that all employees have emp_no > 0. Then…

• select * from employee
where emp_no > 0
PLAN (EMPLOYEE INDEX (RDB$PRIMARY7))

• But,
– All index pages will be scanned to get row numbers of all keys

– data pages will be scanned too (to read records)

– Result – bigger page I/O

• Sometimes this trick allows to change PLAN (and query speed)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 40

Index bitmap merge
• select * from employee

where emp_no > 5 and last_name > 'b'
PLAN (EMPLOYEE INDEX (RDB$PRIMARY7, NAMEX))

rdb$primary7 namex employee

emp_no > 5

last_name > b

AND, OR

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 41

• select * from employee
where emp_no > 5 and last_name > 'b'
PLAN (EMPLOYEE INDEX (RDB$PRIMARY7, NAMEX))

• You will not get that plan in Firebird 3 in
employee.fdb

• Because optimizer eliminates indices on small tables

• Real plan:
PLAN (EMPLOYEE INDEX (RDB$PRIMARY7))

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 42

PLAN (TABLE ORDER INDEX)
• Table walk by index order

• select * from employee
order by last_name
PLAN (EMPLOYEE ORDER NAMEX)

• Stays on first key (or key by where condition)

• Read record
– apply filter, if any

• Goto next key

• Read record

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 43

r15
r20
r28

r43
r44

r55
r68
r75

Index -> Table

A
D

A
C

D

A r55
B r28

C r44
C r68

D r15
E r43

 Root Page Pointer Page Keys (Leaf page) Data Pages

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 44

Clustering Factor
Index Key 1

Index Key 2

Index Key 3

Index Key 5

Index Key 4

Data Page 12

Data Page 25

Data Page 28

Data Page 57

Data Page 44

Data Page 12

Data Page 13

Data Page 14

Bad Clustering Factor

guid primary key

Good Clustering Factor

int/bigint primary key

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 45

Summary for table ORDER index
• Returns first row very quickly

• Jumping by data pages

– Causing pages dropping from cache, if cache size can’t fit
all data pages read

• Index Clustering factor

– Order of keys corresponding to records

– Firebird 3 – between pages and rows (less is better)

• Example

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 46

Index Order Example
• select count(*) from table (14mln records)

Execute time = 42s 500ms
Buffers = 2048
Reads = 118 792
Fetches = 28 814 893

• select a, count(a) from table
group by a
PLAN (TABLE ORDER A)
Execute time = 45m 55s 469ms
Reads = 3 733 434
 each page was read from disk to cache 31 times
Fetches = 42 869 143

Can be used to check disk performance
pages * page_size / sec = 43mb/sec

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 47

• select a from table
order by a
PLAN (TABLE ORDER A)

Execute time = 63ms
Buffers = 2 048
Reads = 48
Fetches = 12 495

• if user will press Ctrl/End, it will take 3 mln reads and
45 minutes to get to the last row

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 48

table ORDER index notes
• Affects ORDER BY and GROUP BY

– Difference is only between number of rows returned to the
client

– ! Group by may use another access method instead SORT, so do
not use GROUP BY for ordering

• Lot of rows causes huge page I/O
• Quickly return first rows, takes long time to get to the last

row
• Only one index can be used – order of fields, number of

fields and order direction must correspond to index

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 49

PLAN SORT

• select * from employee

• order by first_name
PLAN SORT ((EMPLOYEE NATURAL))

Database

Memory +
temporary file

Sorting data

Returning
data to
client

Moving rows

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 50

Sort tuning

• firebird.conf
– TempBlockSize = 1048576

• May increase to 2 or 3mln bytes, but not to 16mb

– TempCacheLimit = 67108864

• SuperServer and SuperClassic. Classic = 8mb.

– TempDirectories = c:\temp;d:\temp…

– Classic – RAM Disk, point TempDirectories to RAM disk first, to hdd
next

– SC, SS – tune Temp* parameters

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 51

ORDER vs SORT

• Reads equal to the table size (select count(*))
• Takes 2 minutes, then ready to return the whole result

without delay
• Temp file is deleted when last row fetched
• N of temp files = N of queries with plan sort

– Need to monitor number of temp files and their size

PLAN SORT ((A NATURAL))
Execute time = 2m 5s 485ms
Buffers = 2 048
Reads = 118 757
Fetches 28 813 410

PLAN (TABLE ORDER A)
Execute time = 45m 55s 469ms
Buffers = 2 048
Reads = 3 733 434
Fetches = 42 869 143

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 52

• Average record length: 118.86, total records: 14 287 964
• Data pages: 120 408, average fill: 99%
• Primary pages: 120 408, secondary pages: 0, swept pages: 0

• Index BY_CZ (5)

– Clustering factor: 2 196 857, ratio: 0.15

• Index MINS_CLIENT (0)
– Clustering factor: 3 651 564, ratio: 0.26

• Index MINS_DATE (3)
– Clustering factor: 7 755 573, ratio: 0.54

• Index MINS_NUMA (1)
– Clustering factor: 8 242 351, ratio: 0.58

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 53

EXPLAIN PLAN

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 54

Old and new plan output
• ISQL

• set planonly;

• Old plan example:

PLAN SORT (RDB$RELATIONS INDEX (RDB$INDEX_0))

• set explain;
• …

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 55

Old and new plan output
SELECT * FROM RDB$RELATIONS
WHERE RDB$RELATION_NAME > :a
ORDER BY RDB$SYSTEM_FLAG
PLAN SORT (RDB$RELATIONS INDEX (RDB$INDEX_0))

Select Expression
 -> Sort (record length: 484, key length: 8)
 -> Filter
 -> Table "RDB$RELATIONS" Access By ID
 -> Bitmap
 -> Index "RDB$INDEX_0" Range Scan (lower bound: 1/1)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 56

Old and new plan output
• SELECT * FROM RDB$RELATIONS
• WHERE RDB$RELATION_NAME > :a
• ORDER BY RDB$SYSTEM_FLAG

• PLAN SORT (RDB$RELATIONS INDEX (RDB$INDEX_0))

Select Expression
 -> Sort (record length: 484, key length: 8)
 -> Filter
 -> Table "RDB$RELATIONS" Access By ID
 -> Bitmap
 -> Index "RDB$INDEX_0" Range Scan (lower bound: 1/1)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 57

Old and new plan output
• SELECT * FROM RDB$RELATIONS
• WHERE RDB$RELATION_NAME > :a
• ORDER BY RDB$SYSTEM_FLAG

• PLAN SORT (RDB$RELATIONS INDEX (RDB$INDEX_0))

Select Expression
 -> Sort (record length: 484, key length: 8)
 -> Filter
 -> Table "RDB$RELATIONS" Access By ID
 -> Bitmap
 -> Index "RDB$INDEX_0" Range Scan (lower bound: 1/1)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 58

Index Scan

• Lower bound

• Upper bound

• Full scan

• Unique scan

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 59

Composite indices
CREATE INDEX BY_AB ON MYTABLE (A, B)
SELECT * FROM MYTABLE
WHERE A = 1 AND B > 5
PLAN (MYTABLE INDEX (BY_AB))

• A B
1 1
1 2
1 3
2 1
2 2
2 3
3 1

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 60

• Second column sorted by groups, depending
on first column values

• where A > 1 and B > 5 will not use 2nd column

• where A = 1 and B … will use first and second column

• where A = 1 and B = 5 and C …

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 61

Index "RDB$INDEX_0" Range Scan (lower
bound: 1/1)

• For composite indices > 1.
• First – how many segments were used
• Second – how many segments index have
• 1/3 – only one segment is used
• 2/3 – first 2 segments are used
• 3/3 – all segments are used
• 1/3 – very ineffective, 2/3 medium effective

– Consider using single-column indices instead

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 62

Procedure plan

• Now – natural, instead of all plans for all
queries

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 63

Cost estimation

• Cardinality – number of records in the
table.
–Computed by scanning pointer pages

• Selectivity – 1/(Keys – Total Dup)
– The less is better. Number of unique key

values = keys – total_dup

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 64

Cost estimation
SELECT *

FROM T1 JOIN T2 ON T1.PK = T2.FK

WHERE T1.VAL < 100

ORDER BY T1.RANK

PLAN

SORT (

 JOIN (

 T1 NATURAL,

 T2 INDEX (FK)

))

Final Row Set
cost = 5000

cardinality = 2500

Sort
cost = 5000

cardinality = 2500

Full Scan
cost = 1000

cardinality = 1000

Filter

cost = 1000

cardinality = 500

Index Scan
cost = 7

cardinality = 5

Loop Join
cost = 4500

cardinality = 2500

Table T1: base cardinality = 1000

Table T2: base cardinality = 5000

Index FK: selectivity = 0.001

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 65

EXPLAINED PLAN EXAMPLES

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 66

select * from rdb$relations
where rdb$relation_name > :a
PLAN (RDB$RELATIONS INDEX (RDB$INDEX_0))

Select Expression
 -> Filter
 -> Table "RDB$RELATIONS" Access By ID
 -> Bitmap
 -> Index "RDB$INDEX_0" Range Scan (lower
bound: 1/1)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 67

select * from a
where name > 'b' and a.id > 5
PLAN (A INDEX (ANAME, PK_A))

Select Expression
 -> Filter
 -> Table "A" Access By ID
 -> Bitmap And
 -> Bitmap
 -> Index "ANAME" Range Scan (lower bound: 1/1)
 -> Bitmap
 -> Index "PK_A" Range Scan (lower bound: 1/1)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 68

select * from minutes
where code = '5' and zone > 5
PLAN (MINUTES INDEX (BY_CZ))

Select Expression
 -> Filter
 -> Table "MINUTES" Access By ID
 -> Bitmap
 -> Index "BY_CZ" Range Scan (lower
bound: 2/2, upper bound: 1/2)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 69

select * from rdb$relations
where rdb$relation_name > :a
order by rdb$relation_name
PLAN (RDB$RELATIONS ORDER RDB$INDEX_0)

Select Expression
 -> Filter
 -> Table "RDB$RELATIONS" Access By ID
 -> Index "RDB$INDEX_0" Range Scan (lower bound:
1/1)

! No “Bitmap” – index walk

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 70

select * from rdb$relations

where rdb$relation_name > :a

order by rdb$relation_name||’’
PLAN SORT (RDB$RELATIONS INDEX (RDB$INDEX_0))

Select Expression

 -> Sort (record length: 582, key length: 100)

 -> Filter

 -> Table "RDB$RELATIONS" Access By ID

 -> Bitmap

 -> Index "RDB$INDEX_0" Range Scan (lower bound: 1/1)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 71

select e.last_name, p.proj_id
from employee e, employee_project p
where e.emp_no = p.emp_no
PLAN JOIN (P NATURAL, E INDEX (RDB$PRIMARY7))

Select Expression
 -> Nested Loop Join (inner)
 -> Table "EMPLOYEE_PROJECT" as "P" Full Scan
 -> Filter
 -> Table "EMPLOYEE" as "E" Access By ID
 -> Bitmap
 -> Index "RDB$PRIMARY7" Unique Scan

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 72

select e.last_name, p.proj_id
from employee e left join employee_project p
on e.emp_no = p.emp_no
where p.emp_no is null
PLAN JOIN (E NATURAL, P INDEX (RDB$FOREIGN15))

Select Expression
 -> Filter
 -> Nested Loop Join (outer)
 -> Table "EMPLOYEE" as "E" Full Scan
 -> Filter
 -> Table "EMPLOYEE_PROJECT" as "P" Access By ID
 -> Bitmap
 -> Index "RDB$FOREIGN15" Range Scan (full match)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 73

select e.* from employee e, employee_project p
where e.emp_no+0 = p.emp_no+0
PLAN HASH (E NATURAL, P NATURAL)

Select Expression
 -> Filter
 -> Hash Join (inner)
 -> Table "EMPLOYEE" as "E" Full Scan
 -> Record Buffer (record length: 25)
 -> Table "EMPLOYEE_PROJECT" as "P" Full Scan

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 74

select * from employee

where (emp_no = :param) or (:param is null)

where (emp_no = :param) or (:param = 0)

Old plan
PLAN (EMPLOYEE NATURAL)

New plan
PLAN (EMPLOYEE NATURAL, EMPLOYEE INDEX
(RDB$PRIMARY7))

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 75

Plan change at runtime

Select Expression

 -> Filter

 -> Condition

 -> Table "EMPLOYEE" Full Scan

 -> Table "EMPLOYEE" Access By ID

 -> Bitmap

 -> Index "RDB$PRIMARY7" Unique Scan

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 76

select * from employee

where last_name = 'b'

order by first_name
PLAN (EMPLOYEE ORDER NAMEX)

Select Expression

 -> Filter

 -> Table "EMPLOYEE" Access By ID

 -> Index "NAMEX" Range Scan (partial match: 1/2)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 77

select * from employee
where emp_no in (1, 2, 3)
PLAN (EMPLOYEE INDEX (RDB$PRIMARY7, RDB$PRIMARY7, RDB$PRIMARY7))

Select Expression
 -> Filter
 -> Table "EMPLOYEE" Access By ID
 -> Bitmap Or
 -> Bitmap Or
 -> Bitmap
 -> Index "RDB$PRIMARY7" Unique Scan
 -> Bitmap
 -> Index "RDB$PRIMARY7" Unique Scan
 -> Bitmap
 -> Index "RDB$PRIMARY7" Unique Scan

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 78

• Field in (1,2,3)
–Uses index 3 times – one bitmap, 3 scans

• Field+0 in (1,2,3)
–Turns index usage off, completely

• Field+0 in (1, 2,3) and (field between 1
and 3)
–Turns index on back, range scan once, to

avoid natural scan

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 79

ANOTHER FIREBIRD 3 AND 4
OPTIMIZER FEATURES

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 80

• Stream materialization (caching)

– allows to avoid re-reading the same data from tables (for
non-correlated streams)

– currently used only for hash joins, to be used for
subqueries too

• Hash join

– join algorithm for non-indexed correlation

– usually performs better than merge join

– can be used instead of nested loops to avoid repeating
reads of the same rows (in the future)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 81

• FULL JOIN improvements
– reimplemented as «semi-join union all anti-

join»
– can use available indices now

• Conditional streams
– allow to choose between possible plans at

runtime
– currently used only for(FIELD = :PARAM OR

:PARAM IS NULL)

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 82

• Improved ORDER plan implementation

–avoid bad plans like «A ORDER I INDEX(I)»,
use simple «A ORDER I» with a range scan
instead

–allow ORDER plan for «WHERE A = 0
ORDER BY B» if compound index {A, B}
exists

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 83

• Implicit FIRST ROWS / ALL ROWS hints
–whether you need to fetch the first rows faster

(e.g. interactive grids) or the complete result
set –
choose ORDER or SORT

– currently used internally for queries with FIRST,
EXISTS, ANY

– prefers ORDER plan, affects join order

– explicit FIRST/ALL ROWS hints for other query
types will appear in v4

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 84

• Faster prepare for big tables
– sampling PP instead of reading them all
– being field tested

• Misc improvements
– improve some cases of ORDER plan usage in

complex queries
– better plans for LEFT JOIN and UNION used

together
– optimize SORT plan for FIRST ROWS strategy

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 85

Planned for v 4

• HASH/MERGE for outer joins

• Execute EXISTS/IN as semi-join

• LATERAL joins

• More optimizer statistics and its
background update

© IBSurgeon Firebird Tour 2017 – Prague, Bad Sassendorf, Moscow 86

Thank you!

• Contacts:

www.ib-aid.com

support@ib-aid.com

http://www.ib-aid.com/
http://www.ib-aid.com/
http://www.ib-aid.com/
mailto:support@ib-aid.com
mailto:support@ib-aid.com
mailto:support@ib-aid.com

