Firebird Conference 2014, Prague

How Firebird transactions work

Dmitry Kuzmenko
www.IBSurgeon.com

http://www.IBSurgeon.com/

Firebird Conference 2014, Prague

© IBSurgeon

IBSurgeon

Firehird

SPONSOR
Supporting
Firebird development

* Tools and consulting
* Platinum Sponsor of Firebird

Foundation

* Founded in 2002: 12 years of

Firebird and InterBase recoveries
and consulting

- Based in Moscow, Russia

Agenda

What is transaction? Why we need it?
How we will present about transactions
Records and versions

Transactions and record versions
Transaction Inventory

Record visibility in transactions
Transaction Markers and their evaluation

Some conclusions

Firebird Conference 2014, Prague © IBSurgeon

What is transaction?

* Transaction as a general concept of any dynamic system

* “Classic” example
* begin
* -- move money from account1 to account2
* Decrease account1
* Increase account2

* end — commit/rollback

* Transaction Managers

Firebird Conference 2014, Prague © IBSurgeon

Database transaction definition

* a unit of work performed against a database, and treated
in a coherent and reliable way independent of other
transactions.

A database transaction, by definition, must be
Atomic, Consistent, Isolated and Durable

Firebird Conference 2014, Prague

Insert into T1(i1)
values (100);

© IBSurgeon

In ideal world

SELECT i1
) FROM T1

Insert into T1(i1)
values (200);

only serial operations

7 Firebird Conference 2014, Prague © IBSurgeon

Firebird Conference 2014, Prague © IBSurgeon

In real world

m —

UPDATE T1 UPDATE T1

nowait

m -

INSERT T1

UPDATE T1

to t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

The ultimate purpose of
transaction:

- Concurrent execution of operations should lead to the
exactly the same result as sequental execution of
operations.

In simple words: each transaction should run as the only
transaction.

For each [snapshot] transaction Firebird engine
should maintain a stable view of the database.

Firebird Conference 2014, Prague © IBSurgeon

Firebird Conference 2014, Prague © IBSurgeon

How Firebird does implement stable
view for each transactions?

Firebird Conference 2014, Prague © IBSurgeon

How we will present about transactions

Start End
Transaction’s
number
1T 1T T T 71 T T T T

t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

How we will present about transactions

m 'ﬁ Transaction’s
result

Transaction’s
result

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

How we will present about transactions

m —

snapshot

Transaction’s
parameters

T r—r—r—r—rr>

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

How we will present about transactions

m —

Insert into T1(i1)
values (100);

snapshot

Operation in the frames of
transaction

LI S EEN NN BN B B R R R

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

How we will present about transactions

Result of operation

N
Insert into T1(i1) SELECT i1
values (100); FROM T1

snapshot

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

Now let's start...

Basics your [probably] know:
- Everything in the database is done within transaction

- Each transaction get it's own incremented number
1,2, 3, ... efc

- Firebird is a multi-version engine (each record in Firebird
can have versions)

Firebird Conference 2014, Prague © IBSurgeon

Record versions is a key thing for understanding
transactions' work in Firebird.

Firebird Conference 2014, Prague © IBSurgeon

How record versions appear

| 10 L

Insert into
T1(i1) values
(100);

L IS BN N EEE S B B B R R B

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

How record versions appear

m —

SELECT i1
FROM T1

Insert into | 100 |

T1(i1) values -
(100);

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

How record versions appear

0
UPDATE T1

SET i1=200

new version!

m —

SELECT i1
FROM T1
Insert into 100
T1(i1) values
(100);

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

How record versions appear

0
UPDATE T1

SELECT i1
SET i1=200 FROM T1

200
R
SELECT i1 SELECT i1
FROM T1 FROM T1

| Tx10 R

Insert into 100
T1(i1) values
(100);

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

How it works?

Firebird Conference 2014, Prague © IBSurgeon

Each record version has transaction #

N on page Transaction number Datafieldl, datafield2

1 50 100

Firebird Conference 2014, Prague © IBSurgeon

.\r

Firebird Conference 2014, Prague © IBSurgeon

write

Firebird Conference 2014, Prague © IBSurgeon

write
60 200 Y

Firebird Conference 2014, Prague © IBSurgeon

Firebird Conference 2014, Prague © IBSurgeon

Some intermediate conclusions

1. No “locks” are placed on the record
2. There can be a lot of committed versions for one record

3. Versions may be needed or not. If not, they can be
considered as “garbage”.

4. Only one non-committed version can exist for the record

(2 active transactions can’t update the same record) _

Firebird Conference 2014, Prague © IBSurgeon

How server knows about transactions states?
Is transaction Active or not?

* TIP — Transaction Inventory Pages

* Linear list of transaction states, from 1 to last
transaction number

- Stored in the database
* Limitation — 2 billions of transactions

Firebird Conference 2014, Prague © IBSurgeon

Transaction states

TIP contents

* Each transaction is represented in Tx Ne Tx state
Transactions Inventory by it's state
* 00 — Active "
* 01 — Committed
* 10 — Rolled back

* 11 — Limbo (distributed 2-phase
transactions)

18 active

A
©

20 active

Firebird Conference 2014, Prague © IBSurgeon

TIP
| o0 T
UPDATE T1 SELECT i1
SET i1=200 FROM T1

200

commit

m SELECT i1 SELECT i1

FROM T1 FROM T1
Insert into

T1(i1) values
(100);

t0 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague

Transaction isolation levels

Firebird Conference 2014, Prague © IBSurgeon

|Isolation levels in Firebird

Isolation levels in Firebird

READ COMMITED

SNAPSHOT
SNAPSHOT WITH TABLE STABILITY

Firebird Conference 2014, Prague

© IBSurgeon

napshot

snapshot

SELECT FROM T1

commit

SELECT FROM T1

Insert into T1(i1)
values (200);

Insert into T1(i1)
values (100);

t0 t1 t3 t4 t5 t6 t7

commit

t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

Read Commitec

commit

SELECT i1 SELECT i1
FROM T1 FROM T1
read commited =
i1

m —

Insert into T1(i1)
values (100);

t0 t1 t3 t4 / t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

Read Commited and Snapshot

Read Committed transactions “see” global TIP.
That’s why they can read committed changes of other transactions

B P B B S R B EE

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10

Snapshot copies TIP on it’s start. It does not see any changes made by
other committed transactions after snapshot start

/10 t1 t3 t4 t5 t6 t7 t8 t9 /110

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

TIP for Read Commitec

m —

SELECT i1 SELECT i1
FROM T1 FROM T1
read commited —
i1
3
Insert into T1(i1)
values (100);
>

t0 t1 t3 t4

t5 t6 t7

15 Active

t8 t9

15 Commited

| Tx_| state |
-- snapshot

t0 t1

Firebird Conference 2014, Prague

t3

TIP for snapshot

© IBSurgeon

commit

SELECT FROM T1

SELECT FROM T1

Insert into T1(i1)

ot |
values (200);
‘=

commit
Insert into T1(i1)
values (100);

t6 t7 t8

ﬁm -h

Active

Rollback

t12

Firebird Conference 2014, Prague © IBSurgeon

Each transaction can see:

* Own created records and versions
* Insert, Update, Delete

- If it is Read Committed, it can see every changes that
was made by committed transactions, because it looks
into global TIP

- If it is Snapshot, it can see own changes and record
versions commited to the moment of its start, because it
looks into it's own copy of TIP

Firebird Conference 2014, Prague

Record versions visibility

Firebird Conference 2014, Prague © IBSurgeon

How we will present about records

Each record can have versions, created by
different transactions

Tx 10 100

Firebird Conference 2014, Prague © IBSurgeon

How we will present about records

Tx 10 100

Compact representation

3 rules of record visibilty

1) For each snapshot transaction engine maintains
stable view of database

2) Transaction can not see record versions created
by another active transaction

3) Transaction should walk backversions chain
looking for commited backversion

Firebird Conference 2014, Prague

© IBSurgeon

Ex: record versions visibility for Tx20

Snapshot isolation, copy of TIP for Tx20

TIP contents for Tx 20

Tx state

active

active

active

active

[Record versions or versions chain }

Tx 18

A

2 W Tx 20 can see
)

-

S R Y S Y
A

s[oo |~ e |
R4 T 14 } Tx 20 can see
R5 Tx 25

> Tx14 J

* |n order to figure out which record version is
visible, every transaction must read TIP

* TIP can contain up to 2 Billion transactions

* So each transaction should read up to 2 billions
of transactions! - Damn, that's why Firebird is

slow! (it's a joke)

Firebird Conference 2014, Prague © IBSurgeon

TIP (example)

We need a way to separate old, not interesting
transactions from currently active part of TIP

* For this purpose engine maintains Oldest
Interesting Transaction marker, or OIT

49 Firebird Conference 2014, Prague © IBSurgeon

TIP (example)

KECI NN [I

transaction number

Firebird Conference 2014, Prague © IBSurgeon

‘ not interesting transactions

0 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 | 14 | 15

16

32
48
64
80

96
112 122
4

128 /ﬁy

)
\
/ N\

_ first not committed
OIT =122 transaction

Firebird Conference 2014, Prague

Transaction markers

firebird>gstat -h A.FDB
Database header page information:
Flags 0

Generation 6

System Change Number 0
Page size 4096

ODS version 12.0

Oldest transaction 1
Oldest active 2

Oldest snapshot 2

Next transaction 3
Sequence number 0

Next attachmentID 3

© IBSurgeon

Firebird Conference 2014, Prague © IBSurgeon

4 markers

* Transaction markers are key characterstics of
TIP and transaction mechanism

— Let's see what they mean and how they evaluated:
* NEXT — next transaction
* OAT — Oldest Active
* OST — Oldest Snapshot
* OIT — Oldest Interesting

Firebird Conference 2014, Prague © IBSurgeon

NEXT

* NEXT is the simplest — it's the most recent
transaction

* NEXT number is written on header page

OAT - Oldest Active Transaction

OAT is the first transaction in TIP which state is
“‘active’

Evaluation:

« Scan TIP starting from current OAT value looking
for “active” transaction

. Save found value in transaction's lock data

» Save found value as new OAT marker

OAT is really an oldest active transaction

Firebird Conference 2014, Prague

OAT evaluation example

© IBSurgeon

« Sample of transactions flow and evaluation of OAT

Tx 5, OAT =4

Tx 4, OAT =2

Tx 3, OAT =1

Tx 2, OAT =1

Tx 1, OAT =1

time

Firebird Conference 2014, Prague © IBSurgeon

Problems indicated by OAT

* Where to look?
* NEXT — OAT > (humber of connections * number of
transaction)
* What it means?
* Long running transaction which makes Firebird to
think that record versions are still needed

e Oldest Snapshot Transaction (OST) marker is the

value of the OAT recorded when oldest of currently
active transactions was started

e Get min value of stored In transactions lock's data

« Save found value as new OST marker

time

| Tx 5, OAT = 4
Tx4, OAT =2
Tx 3, OAT = 1 '
Tx 2, OAT = 1
Tx 1, OAT = 1
- : !
OST =1 OST =2

o Oldest Snapshot Transaction (OST) marker is the
value of the OAT when oldest of currently active

transactions was started

OST value often is not an alive transaction I

Tx 5, OAT =4
Tx 4, OAT =2 |
Tx 3, OAT = 1 | .
Tx 2, Oﬁ:T =1
Txl1, OAT =.1
— ; .’Eime
OST =1 OST =2

« OST marker defines a garbage collection threshold:
records, created by transactions >= OST can not be
garbage collected

Long running transactions will “stuck™ OST and delay GC I

Tx 5, OAT =2

x4, OAT =2

Tx 3, OAT =1

Tx 2, OAT =1

Tx 1, OAT = 1

time

OST =1

OST and Read Commited transactions

« Read Committed transaction don't require stable
snapshot of database

e Oldest Active value for Read Committed transaction is
an own number of such transaction

« Read Committed Readonly transaction can't create
record versions, Is pre-committed at start and have no

Impact on OST

Read Committed Readonly transaction could run forever
and do not delay garbage collection

Snapshot Tx 5, OAT =4
Tx 4, OAT =2 |
Tx 3, OAT - 2 I
Tx 2, OAT = 1 |
Tx 1, OAT =1
' : plime
OST =1 OST=2
Read committed Tx 5, OAT =5
Tx 4, OAT =4 |
Tx 3, OAT = 3 I
Tx 2, OAT = 2 |
Tx 1, OAT =1

time

OST =1

OST=2

OST=4

Firebird Conference 2014, Prague © IBSurgeon

UPDATE T1
. —e e owm
UPDATE T1
4
L ®
UPDATE T1
L o
UPDATE T1
. ®
UPDATE T1
.
Select * from
write rdb$database
>
t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

The longer transaction lasts, the higher chance to create potentially
useless (potential garbage) versions

Firebird Conference 2014, Prague © IBSurgeon

Problems indicated by OST

Where to look
(OST-OIT) > sweep interval

What it means
— Autosweep does not work (if sweep interval >0)
— Some records need garbage collection

Firebird Conference 2014, Prague © IBSurgeon

Problems caused by long running
transactions

* Direct
* Loss of performance due to more record versions: i.e., queries
become slower
* More indexed reads

* More data page reads
* 1.5min versions ~30mb per record

* Indirect

* After transaction’s end its versions become garbage, and garbage
collection mechanism tries to gather it
* Due to long transaction OST stuck, so autosweep (if it is not
disabled) tries to start at unpredictable moment (and ends without
success)
* GC and sweep can consume a lot of resources
* Unpredictable moment can occur at high load time

Oldest Interesting Transaction

e Oldest Interesting Transaction (OIT) marker is
necessary to know to separate old not active part of
TIP from currently used active part

e OIT points before a first transaction in TIP which state
IS not committed

e Evaluation:

« Scan TIP starting from current OIT value looking for
first not committed transaction

Firebird Conference 2014, Prague © IBSurgeon

TIP size

* TIP to be copied is NEXT - OIT
* Size of active part of the TIP in bytes is (Next — OIT) / 4

-+ Page zize 4096

- Forced Wiite M

- Dialect 3

- OnDizkStructure 11.2

- Attributes force write
-« Sweep interyal 20000

- Oldest tranzaction 2147483644
+ [Oldest znapzhat 2147483645
- Oldest active 2147482645
- Mext transaction _
- Sweep gap [active - oldest) 1

- TIP size 131073 pages, 524232 kilobytes

Databasze info

D atabaze name
Creation date
Statiztics date

Fage zize

Forced \wiite

Dialect
COnDizkStructure
Sttributes

Sweep interval
Oldest tranzaction
Oidest snapshot
Oldest active

Mext tranzachion
Sweep gap [zhapshot
TIF zize

Shapshot TIF zize
Sctive tranzactions
Tranzachons per day

- oldest)

05%.06. 2003 10:02:19
31.058.2006 15:11: 32
=192

0N

1

10.0

farce write
1l

H34249471

42949017 7B

H342494 72

534249437

104753295

16305 pages. 130440 kilobytes
10 tranzactions, 8 kilobytes

9, 0% of daily average

451224, tor 1184 days

Problems indicated by OIT

Where to look

OIT- OST
Problem

Big size of TIP
— Global, and,
specifically copies
of TIP for snapshots

Creation date
Statiztics date

Page zize

Forced 'Wiite

Dialect
OnDzkStucture
Attributes

Sweep interval
Oldest transaction
Oldest znapshot
Oldest active

Mext tranzaction
Sweep gap [shapshat - oldest)
TIP zize

Snhapzhot TIP zize
Active transactions
Tranzactions per day

05.06.2003 10:02:19
22062004 20:55:52
8132

amM

1

10.0

farce write
a

829563

1124305617

112430625

112431441

1115305933

3452 pages, 27457 kilobytes

111591 873 tranzactions, 27252 kilobytes
816, 0% of daly average

292730, for 384 daps

Firebird Conference 2014, Prague © IBSurgeon

Ideal transactions flow

- Short transactions does
not stuck OIT or OAT or
OST, and avoid problems
related with it.

Oldest transaction X-1
Oldest active X

Oldest snapshot X
Next transaction X+1

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Firebird Conference 2014, Prague © IBSurgeon

Summary

* Make write (for INSERT/UPDATE/DELETE)
transactions as short as possible

* Use Read Commited Read-Only transactions for
SELECTs

Firebird Conference 2014, Prague © IBSurgeon

Thank you!

* Questions? support@ib-aid.com

mailto:support@ib-aid.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

