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• Tools and consulting
• Platinum Sponsor of Firebird 

Foundation
• Founded in 2002: 12 years of 

Firebird and InterBase recoveries 
and consulting

• Based in Moscow, Russia
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Agenda
What is transacton? Why we need it?
How we will present about transactons 
Records and versions
Transactons and record versions
Transacton Inventory
Record visibility in transactons
Transacton Markers and their evaluaton
Some conclusions
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• Transaction as a general concept of any dynamic system
• “Classic” example

• begin
• -- move money from account1 to account2
• Decrease account1
• Increase account2

• end – commit/rollback

• Transaction Managers

What is transaction?
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Database transaction definition

• a unit of work performed against a database, and treated 
in a coherent and reliable way independent of other 
transactions.

• A database transaction, by definition, must be 
Atomic, Consistent, Isolated and Durable
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In ideal world

only serial operations

Insert into T1(i1) 
values (100);

SELECT i1 
FROM T1

Insert into T1(i1) 
values (200);



7

© IBSurgeonFirebird Conference 2014, Prague7



8

© IBSurgeonFirebird Conference 2014, Prague8



9

© IBSurgeonFirebird Conference 2014, Prague9

In real world

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx11

INSERT T1 

Tx14
commit

UPDATE T1 

nowait

commit

Tx20

UPDATE T1

rollback

UPDATE T1 
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The ultimate purpose of 
transaction:

• Concurrent execution of operations should lead to the 
exactly the same result as sequental execution of 
operations.

For each [snapshot] transacton Firebird engine 
should maintain a stable view of the database.

In simple words: each transacton should run as the only 
transacton.
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How Firebird does implement stable 
view for each transactons?
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How we will present about transactions

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11

Transaction’s 
number

Start End
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How we will present about transactions

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Tx 12
rollback

Transaction’s 
result

Transaction’s 
result
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How we will present about transactions

Tx 11
commit

snapshot

Transaction’s 
parameters

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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How we will present about transactions

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Insert into T1(i1) 
values (100);

snapshot

Operation in the frames of 
transaction
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How we will present about transactions

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Insert into T1(i1) 
values (100);

SELECT i1 
FROM T1

snapshot

i1
100

Result of operation
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Now let's start...

Basics your [probably] know:

- Everything in the database is done within transaction

- Each transaction get it’s own incremented number
1, 2, 3, … etc

- Firebird is a multi-version engine (each record in Firebird 
can have versions)
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Record versions is a key thing for understanding 
transactons' work in Firebird.
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How record versions appear

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into 
T1(i1) values 

(100);
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How record versions appear

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into 
T1(i1) values 

(100);

Tx50
commit

SELECT  i1
FROM T1

i1
100
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How record versions appear

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into 
T1(i1) values 

(100);

Tx50
commit

SELECT  i1
FROM T1

i1
100

Tx60
commit

UPDATE T1
SET i1=200

new version!
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How record versions appear

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into 
T1(i1) values 

(100);

Tx50
commit

SELECT  i1
FROM T1

i1
100

SELECT  i1
FROM T1

Tx60
commit

UPDATE T1
SET i1=200

SELECT  i1
FROM T1

i1
100

i1
200
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How it works?
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Each record version has transaction #

N on page Transaction number Datafield1, datafield2

1 50 100
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TR50
read

N Tx Data

1 10 100

...
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N Tx Data

1 10 100

...

TR50 TR60write
read
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N Tx Data

1 10 100

60 200

...

TR50 TR60
read

write
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TR50 TR60

read

N Tx Data

1 10 100

60 200

...

read
write
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Some intermediate conclusions

1. No “locks” are placed on the record

2. There can be a lot of committed versions for one record

3. Versions may be needed or not. If not, they can be 
considered as “garbage”. 

4. Only one non-committed version can exist for the record
(2 active transactions can’t update the same record)
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How server knows about transactions states? 
Is transaction Active or not?

• TIP – Transaction Inventory Pages
• Linear list of transaction states, from 1 to last 
transaction number

• Stored in the database
• Limitation — 2 billions of transactions
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Transaction states

• Each transaction is represented in 
Transactions Inventory by it’s state
• 00 – Active
• 01 – Committed
• 10 – Rolled back
• 11 – Limbo (distributed 2-phase 

transactions)

TIP contents

Tx № Tx state

…

10 committed

11 committed

12 committed

13 rolled back

14 committed

15 committed

16 committed

17 rolled back

18 active

19 committed

20 active
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into 
T1(i1) values 

(100);

Tx50
commit

SELECT  i1
FROM T1

i1
100

SELECT  i1
FROM T1

Tx60
commit

UPDATE T1
SET i1=200

SELECT  i1
FROM T1

i1
100

i1
200

TIP

Tx State

10 Commited

Tx State

10 Commited

50 Active

60 Active

Tx State

10 Commited

50 Commited

60 Commited
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Transaction isolation levels
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Isolation levels in Firebird

READ COMMITED

SNAPSHOT

SNAPSHOT WITH TABLE STABILITY

Isolation levels in FirebirdIsolation levels in Firebird
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Snapshot

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 52
commit

Insert into T1(i1) 
values (100);

Tx 51
rollback

Insert into T1(i1) 
values (200);

Tx 10
commit

SELECT FROM T1 SELECT FROM T1

snapshot

i1
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Read Commited

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 15
commit

Insert into T1(i1) 
values (100);

Tx 10
commit

SELECT i1 
FROM T1

SELECT i1
FROM T1

read commited

i1
100

i1
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10

Read Committed transactions “see” global TIP. 
That’s why they can read committed changes of other transactions

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10

Snapshot copies TIP on it’s start. It does not see any changes made by
other committed transactions after snapshot start

Read Commited and Snapshot
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TIP for Read Commited

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 15
commit

Insert into T1(i1) 
values (100);

Tx 10
commit

SELECT i1 
FROM T1

SELECT i1
FROM T1

read commited

i1
100

i1

Tx State

10 Active

Tx State

10 Active

15 Active

Tx State

10 Active

15 Commited
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 52
commit

Insert into T1(i1) 
values (100);

Tx 51
rollback

Insert into T1(i1) 
values (200);

Tx 10
commit

SELECT FROM T1 SELECT FROM T1

snapshot

i1

Tx State

10 Active

Tx State

10 Active

51 Active

52 Active

Tx State

10 Active

51 Rollback

52 Commited

Tx State

10 Active

TIP for snapshot
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Each transaction can see:

• Own created records and versions
• Insert, Update, Delete

• If it is Read Committed, it can see every changes that 
was made by committed transactions, because it looks 
into global TIP

• If it is Snapshot, it can see own changes and record 
versions commited to the moment of its start, because it 
looks into it’s own copy of TIP
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Record versions visibility
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How we will present about records

Each record can have versions, created by 
diferent transactons

Record 10 Tx 10  100 Tx 20 200 Tx 30 555
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Record 10 Tx 10  100 Tx 20 200 Tx 30 555

R10 Tx 10  Tx 20 Tx 30

Compact representaton

How we will present about records
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3 rules of record visibilty

1) For each snapshot transaction engine maintains 
stable view of database

2) Transaction can not see record versions created 
by another active transaction

3) Transaction should walk backversions chain 
looking for commited backversion
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Ex: record versions visibility for Tx20

Snapshot isolaton, copy of TIP for Tx20
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• In order to fgure out which record version is 
visible, every transacton must read TIP

• TIP can contain up to 2 Billion transactons
• So each transacton should read up to 2 billions 

of transactons! - Damn, that's why Firebird is 
slow! (it's a joke)
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TIP (example)

We need a way to separate old, not interesting
transactions from currently active part of TIP

● For this purpose engine maintains Oldest 
Interesting Transaction marker, or OIT
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TIP (example)
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firebird>gstat -h A.FDB
Database header page information:
Flags 0
Generation 6
System Change Number 0
Page size 4096
ODS version 12.0
Oldest transaction 1
Oldest active 2
Oldest snapshot 2
Next transaction 3
Sequence number 0
Next attachment ID 3

Transaction markers
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4 markers

• Transacton markers are key characterstcs of 
TIP and transacton mechanism

– Let's see what they mean and how they evaluated:
• NEXT — next transacton
• OAT — Oldest Actve 
• OST — Oldest Snapshot
• OIT — Oldest Interestng
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NEXT

• NEXT is the simplest — it's the most recent 
transacton

• NEXT number is writen on header page
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OAT is the first transaction in TIP which state is 
“active”

Evaluation:

● Scan TIP starting from current OAT value looking

for “active” transaction

● Save found value in transaction's lock data

● Save found value as new OAT marker

OAT is really an oldest active transaction

OAT - Oldest Actve Transacton
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OAT evaluaton example
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Problems indicated by OAT

● Where to look?
● NEXT — OAT > (number of connectons * number of 

transacton)
● What it means?

● Long running transacton which makes Firebird to 
think that record versions are stll needed
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OST and Read Commited transactons
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

UPDATE T1

UPDATE T1

UPDATE T1

UPDATE T1

UPDATE T1

N Tx Data

1 4 ccc

2 1 aaa

3 2 bbb

4 3 bbbb

5

6

7

...

Select * from 
rdb$databasewrite

The longer transaction lasts, the higher chance to create potentially 
useless (potential garbage) versions
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Where to look 
(OST-OIT) > sweep interval

What it means
– Autosweep does not work (if sweep interval >0)
– Some records need garbage collecton

Problems indicated by OST
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• Direct 
• Loss of performance due to more record versions: i.e., queries 

become slower
• More indexed reads 
• More data page reads

• 1.5mln versions ~30mb per record

• Indirect
• After transaction’s end its versions become garbage, and garbage 

collection mechanism tries to gather it
• Due to long transaction OST stuck, so autosweep (if it is not 

disabled) tries to start at unpredictable moment (and ends without 
success)
• GC and sweep can consume a lot of resources
• Unpredictable moment can occur at high load time

Problems caused by long running 
transactons
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Oldest Interestng Transacton
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TIP size

• TIP to be copied is NEXT - OIT

• Size of active part of the TIP in bytes is (Next – OIT) / 4
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Problems indicated by OIT

Where to look
OIT- OST

Problem
Big size of TIP 

— Global, and, 
specifcally copies 
of TIP for snapshots
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Ideal transactions flow

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

TxNN

TxNN

TxNN

TxNN

TxNN

TxNN

TxNN

TxNN Short transactons does 
not stuck OIT or OAT or 
OST, and avoid problems 
related with it.

Oldest transaction X-1
Oldest active X
Oldest snapshot X
Next transaction X+1
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Summary

• Make write (for INSERT/UPDATE/DELETE) 
transactons as short as possible

• Use Read Commited Read-Only transactons for 
SELECTs
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Thank you!

• Questons? support@ib-aid.com 

mailto:support@ib-aid.com
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