
1

© IBSurgeonFirebird Conference 2014, Prague1

How Firebird transactions work

Dmitry Kuzmenko
www.IBSurgeon.com 

http://www.IBSurgeon.com/


2

© IBSurgeonFirebird Conference 2014, Prague2

• Tools and consulting
• Platinum Sponsor of Firebird 

Foundation
• Founded in 2002: 12 years of 

Firebird and InterBase recoveries 
and consulting

• Based in Moscow, Russia



3

© IBSurgeonFirebird Conference 2014, Prague3

Agenda
What is transacton? Why we need it?
How we will present about transactons 
Records and versions
Transactons and record versions
Transacton Inventory
Record visibility in transactons
Transacton Markers and their evaluaton
Some conclusions



4

© IBSurgeonFirebird Conference 2014, Prague4

• Transaction as a general concept of any dynamic system
• “Classic” example

• begin
• -- move money from account1 to account2
• Decrease account1
• Increase account2

• end – commit/rollback

• Transaction Managers

What is transaction?



5

© IBSurgeonFirebird Conference 2014, Prague5

Database transaction definition

• a unit of work performed against a database, and treated 
in a coherent and reliable way independent of other 
transactions.

• A database transaction, by definition, must be 
Atomic, Consistent, Isolated and Durable



6

© IBSurgeonFirebird Conference 2014, Prague6

In ideal world

only serial operations

Insert into T1(i1) 
values (100);

SELECT i1 
FROM T1

Insert into T1(i1) 
values (200);



7

© IBSurgeonFirebird Conference 2014, Prague7



8

© IBSurgeonFirebird Conference 2014, Prague8



9

© IBSurgeonFirebird Conference 2014, Prague9

In real world

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx11

INSERT T1 

Tx14
commit

UPDATE T1 

nowait

commit

Tx20

UPDATE T1

rollback

UPDATE T1 



10

© IBSurgeonFirebird Conference 2014, Prague10

The ultimate purpose of 
transaction:

• Concurrent execution of operations should lead to the 
exactly the same result as sequental execution of 
operations.

For each [snapshot] transacton Firebird engine 
should maintain a stable view of the database.

In simple words: each transacton should run as the only 
transacton.



11

© IBSurgeonFirebird Conference 2014, Prague11



12

© IBSurgeonFirebird Conference 2014, Prague12

How Firebird does implement stable 
view for each transactons?



13

© IBSurgeonFirebird Conference 2014, Prague13

How we will present about transactions

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11

Transaction’s 
number

Start End



14

© IBSurgeonFirebird Conference 2014, Prague14

How we will present about transactions

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Tx 12
rollback

Transaction’s 
result

Transaction’s 
result



15

© IBSurgeonFirebird Conference 2014, Prague15

How we will present about transactions

Tx 11
commit

snapshot

Transaction’s 
parameters

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12



16

© IBSurgeonFirebird Conference 2014, Prague16

How we will present about transactions

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Insert into T1(i1) 
values (100);

snapshot

Operation in the frames of 
transaction



17

© IBSurgeonFirebird Conference 2014, Prague17

How we will present about transactions

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Insert into T1(i1) 
values (100);

SELECT i1 
FROM T1

snapshot

i1
100

Result of operation



18

© IBSurgeonFirebird Conference 2014, Prague18

Now let's start...

Basics your [probably] know:

- Everything in the database is done within transaction

- Each transaction get it’s own incremented number
1, 2, 3, … etc

- Firebird is a multi-version engine (each record in Firebird 
can have versions)



19

© IBSurgeonFirebird Conference 2014, Prague19

Record versions is a key thing for understanding 
transactons' work in Firebird.



20

© IBSurgeonFirebird Conference 2014, Prague20

How record versions appear

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into 
T1(i1) values 

(100);



21

© IBSurgeonFirebird Conference 2014, Prague21

How record versions appear

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into 
T1(i1) values 

(100);

Tx50
commit

SELECT  i1
FROM T1

i1
100



22

© IBSurgeonFirebird Conference 2014, Prague22

How record versions appear

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into 
T1(i1) values 

(100);

Tx50
commit

SELECT  i1
FROM T1

i1
100

Tx60
commit

UPDATE T1
SET i1=200

new version!



23

© IBSurgeonFirebird Conference 2014, Prague23

How record versions appear

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into 
T1(i1) values 

(100);

Tx50
commit

SELECT  i1
FROM T1

i1
100

SELECT  i1
FROM T1

Tx60
commit

UPDATE T1
SET i1=200

SELECT  i1
FROM T1

i1
100

i1
200



24

© IBSurgeonFirebird Conference 2014, Prague24

How it works?



25

© IBSurgeonFirebird Conference 2014, Prague25

Each record version has transaction #

N on page Transaction number Datafield1, datafield2

1 50 100



26

© IBSurgeonFirebird Conference 2014, Prague26

TR50
read

N Tx Data

1 10 100

...



27

© IBSurgeonFirebird Conference 2014, Prague27

N Tx Data

1 10 100

...

TR50 TR60write
read



28

© IBSurgeonFirebird Conference 2014, Prague28

N Tx Data

1 10 100

60 200

...

TR50 TR60
read

write



29

© IBSurgeonFirebird Conference 2014, Prague29

TR50 TR60

read

N Tx Data

1 10 100

60 200

...

read
write



30

© IBSurgeonFirebird Conference 2014, Prague30

Some intermediate conclusions

1. No “locks” are placed on the record

2. There can be a lot of committed versions for one record

3. Versions may be needed or not. If not, they can be 
considered as “garbage”. 

4. Only one non-committed version can exist for the record
(2 active transactions can’t update the same record)



31

© IBSurgeonFirebird Conference 2014, Prague31

How server knows about transactions states? 
Is transaction Active or not?

• TIP – Transaction Inventory Pages
• Linear list of transaction states, from 1 to last 
transaction number

• Stored in the database
• Limitation — 2 billions of transactions



32

© IBSurgeonFirebird Conference 2014, Prague32

Transaction states

• Each transaction is represented in 
Transactions Inventory by it’s state
• 00 – Active
• 01 – Committed
• 10 – Rolled back
• 11 – Limbo (distributed 2-phase 

transactions)

TIP contents

Tx № Tx state

…

10 committed

11 committed

12 committed

13 rolled back

14 committed

15 committed

16 committed

17 rolled back

18 active

19 committed

20 active



33

© IBSurgeonFirebird Conference 2014, Prague33

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into 
T1(i1) values 

(100);

Tx50
commit

SELECT  i1
FROM T1

i1
100

SELECT  i1
FROM T1

Tx60
commit

UPDATE T1
SET i1=200

SELECT  i1
FROM T1

i1
100

i1
200

TIP

Tx State

10 Commited

Tx State

10 Commited

50 Active

60 Active

Tx State

10 Commited

50 Commited

60 Commited



34

© IBSurgeonFirebird Conference 2014, Prague34

Transaction isolation levels



35

© IBSurgeonFirebird Conference 2014, Prague35

Isolation levels in Firebird

READ COMMITED

SNAPSHOT

SNAPSHOT WITH TABLE STABILITY

Isolation levels in FirebirdIsolation levels in Firebird



36

© IBSurgeonFirebird Conference 2014, Prague36

Snapshot

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 52
commit

Insert into T1(i1) 
values (100);

Tx 51
rollback

Insert into T1(i1) 
values (200);

Tx 10
commit

SELECT FROM T1 SELECT FROM T1

snapshot

i1



37

© IBSurgeonFirebird Conference 2014, Prague37

Read Commited

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 15
commit

Insert into T1(i1) 
values (100);

Tx 10
commit

SELECT i1 
FROM T1

SELECT i1
FROM T1

read commited

i1
100

i1



38

© IBSurgeonFirebird Conference 2014, Prague38

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10

Read Committed transactions “see” global TIP. 
That’s why they can read committed changes of other transactions

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10

Snapshot copies TIP on it’s start. It does not see any changes made by
other committed transactions after snapshot start

Read Commited and Snapshot



39

© IBSurgeonFirebird Conference 2014, Prague39

TIP for Read Commited

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 15
commit

Insert into T1(i1) 
values (100);

Tx 10
commit

SELECT i1 
FROM T1

SELECT i1
FROM T1

read commited

i1
100

i1

Tx State

10 Active

Tx State

10 Active

15 Active

Tx State

10 Active

15 Commited



40

© IBSurgeonFirebird Conference 2014, Prague40

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 52
commit

Insert into T1(i1) 
values (100);

Tx 51
rollback

Insert into T1(i1) 
values (200);

Tx 10
commit

SELECT FROM T1 SELECT FROM T1

snapshot

i1

Tx State

10 Active

Tx State

10 Active

51 Active

52 Active

Tx State

10 Active

51 Rollback

52 Commited

Tx State

10 Active

TIP for snapshot



41

© IBSurgeonFirebird Conference 2014, Prague41

Each transaction can see:

• Own created records and versions
• Insert, Update, Delete

• If it is Read Committed, it can see every changes that 
was made by committed transactions, because it looks 
into global TIP

• If it is Snapshot, it can see own changes and record 
versions commited to the moment of its start, because it 
looks into it’s own copy of TIP



42

© IBSurgeonFirebird Conference 2014, Prague42

Record versions visibility



43

© IBSurgeonFirebird Conference 2014, Prague43

How we will present about records

Each record can have versions, created by 
diferent transactons

Record 10 Tx 10  100 Tx 20 200 Tx 30 555



44

© IBSurgeonFirebird Conference 2014, Prague44

Record 10 Tx 10  100 Tx 20 200 Tx 30 555

R10 Tx 10  Tx 20 Tx 30

Compact representaton

How we will present about records



45

© IBSurgeonFirebird Conference 2014, Prague45

3 rules of record visibilty

1) For each snapshot transaction engine maintains 
stable view of database

2) Transaction can not see record versions created 
by another active transaction

3) Transaction should walk backversions chain 
looking for commited backversion



46

© IBSurgeonFirebird Conference 2014, Prague46

Ex: record versions visibility for Tx20

Snapshot isolaton, copy of TIP for Tx20



47

© IBSurgeonFirebird Conference 2014, Prague47

• In order to fgure out which record version is 
visible, every transacton must read TIP

• TIP can contain up to 2 Billion transactons
• So each transacton should read up to 2 billions 

of transactons! - Damn, that's why Firebird is 
slow! (it's a joke)



48

© IBSurgeonFirebird Conference 2014, Prague48

TIP (example)

We need a way to separate old, not interesting
transactions from currently active part of TIP

● For this purpose engine maintains Oldest 
Interesting Transaction marker, or OIT



49

© IBSurgeonFirebird Conference 2014, Prague49

TIP (example)



50

© IBSurgeonFirebird Conference 2014, Prague50



51

© IBSurgeonFirebird Conference 2014, Prague51

firebird>gstat -h A.FDB
Database header page information:
Flags 0
Generation 6
System Change Number 0
Page size 4096
ODS version 12.0
Oldest transaction 1
Oldest active 2
Oldest snapshot 2
Next transaction 3
Sequence number 0
Next attachment ID 3

Transaction markers



52

© IBSurgeonFirebird Conference 2014, Prague52

4 markers

• Transacton markers are key characterstcs of 
TIP and transacton mechanism

– Let's see what they mean and how they evaluated:
• NEXT — next transacton
• OAT — Oldest Actve 
• OST — Oldest Snapshot
• OIT — Oldest Interestng



53

© IBSurgeonFirebird Conference 2014, Prague53

NEXT

• NEXT is the simplest — it's the most recent 
transacton

• NEXT number is writen on header page



54

© IBSurgeonFirebird Conference 2014, Prague54

OAT is the first transaction in TIP which state is 
“active”

Evaluation:

● Scan TIP starting from current OAT value looking

for “active” transaction

● Save found value in transaction's lock data

● Save found value as new OAT marker

OAT is really an oldest active transaction

OAT - Oldest Actve Transacton



55

© IBSurgeonFirebird Conference 2014, Prague55

OAT evaluaton example



56

© IBSurgeonFirebird Conference 2014, Prague56

Problems indicated by OAT

● Where to look?
● NEXT — OAT > (number of connectons * number of 

transacton)
● What it means?

● Long running transacton which makes Firebird to 
think that record versions are stll needed



57

© IBSurgeonFirebird Conference 2014, Prague57



58

© IBSurgeonFirebird Conference 2014, Prague58



59

© IBSurgeonFirebird Conference 2014, Prague59



60

© IBSurgeonFirebird Conference 2014, Prague60

OST and Read Commited transactons



61

© IBSurgeonFirebird Conference 2014, Prague61



62

© IBSurgeonFirebird Conference 2014, Prague62

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

UPDATE T1

UPDATE T1

UPDATE T1

UPDATE T1

UPDATE T1

N Tx Data

1 4 ccc

2 1 aaa

3 2 bbb

4 3 bbbb

5

6

7

...

Select * from 
rdb$databasewrite

The longer transaction lasts, the higher chance to create potentially 
useless (potential garbage) versions



63

© IBSurgeonFirebird Conference 2014, Prague63

Where to look 
(OST-OIT) > sweep interval

What it means
– Autosweep does not work (if sweep interval >0)
– Some records need garbage collecton

Problems indicated by OST



64

© IBSurgeonFirebird Conference 2014, Prague64

• Direct 
• Loss of performance due to more record versions: i.e., queries 

become slower
• More indexed reads 
• More data page reads

• 1.5mln versions ~30mb per record

• Indirect
• After transaction’s end its versions become garbage, and garbage 

collection mechanism tries to gather it
• Due to long transaction OST stuck, so autosweep (if it is not 

disabled) tries to start at unpredictable moment (and ends without 
success)
• GC and sweep can consume a lot of resources
• Unpredictable moment can occur at high load time

Problems caused by long running 
transactons



65

© IBSurgeonFirebird Conference 2014, Prague65

Oldest Interestng Transacton



66

© IBSurgeonFirebird Conference 2014, Prague66

TIP size

• TIP to be copied is NEXT - OIT

• Size of active part of the TIP in bytes is (Next – OIT) / 4



67

© IBSurgeonFirebird Conference 2014, Prague67



68

© IBSurgeonFirebird Conference 2014, Prague68

Problems indicated by OIT

Where to look
OIT- OST

Problem
Big size of TIP 

— Global, and, 
specifcally copies 
of TIP for snapshots



69

© IBSurgeonFirebird Conference 2014, Prague69

Ideal transactions flow

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

TxNN

TxNN

TxNN

TxNN

TxNN

TxNN

TxNN

TxNN Short transactons does 
not stuck OIT or OAT or 
OST, and avoid problems 
related with it.

Oldest transaction X-1
Oldest active X
Oldest snapshot X
Next transaction X+1



70

© IBSurgeonFirebird Conference 2014, Prague70

Summary

• Make write (for INSERT/UPDATE/DELETE) 
transactons as short as possible

• Use Read Commited Read-Only transactons for 
SELECTs



71

© IBSurgeonFirebird Conference 2014, Prague71

Thank you!

• Questons? support@ib-aid.com 

mailto:support@ib-aid.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

