
www.ibdeveloper.com

Cover story

2

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Inside Savepoints

Contents
Cover story
by Dmitri Yemanov
Inside Savepoints ... 3

by IBSurgeon Research Labs, research@ib-aid.com
Type conversion through
COMPUTED BY .. 10

Database maintenance
by Dmitri Kouzmenko
Embedded User Authentication
in InterBase 7.5 .. 11

by Vasiliy Ovchinnikov
Using KEEPALIVE-sockets to detect and release hung InterBase
and Firebird client connections,
or how to avoid 10054/104 errors 15

Developers area
by Dmitri Kouzmenko
Working with temporary tables in InterBase 7.5 18

by Dmitri Kovalenko
Working with UNICODE in InterBase/Firebird 21

by Dmitri Kouzmenko
Hyperthreading, SMP and InterBase, Firebird, Yaffil 23

Dear colleagues!

I am happy to present to you the
first issue of “The InterBase and
Firebird Developer Magazine”. It
has been a long time since the ini-
tial idea for such a magazine was
born, and now you are reading
the first issue.

Why “InterBase and Firebird”

I think the “editor’s note” is the right
place to answer some obvious ques-
tions about a newborn magazine. First
of all, why does its title contain both
“InterBase” and “Firebird”? Some
newbies and gurus of InterBase and
Firebird insist that they are different
products – and I completely agree.
They are different, but people who use
them are the same. Development
approaches, problems and techniques
are almost always the same.

Of course, InterBase and Firebird are
different but it is not the same kind of
difference as between Oracle and MS
SQL – they are different like brothers.

Who need our magazine
You sometimes hear the opinion that

“InterBase is not a serious DBMS” and
“Firebird? What’s this?” And it is a
hardly known fact that the size of our
community is close to the community
size of such monsters as Oracle and
MS SQL. Despite the fact that Oracle

and Microsoft command huge PR-
budgets, we are very well positioned in
this competition. And I am sure that
there is huge hidden potential in our
community.

Now the situation is changing. We
have got at least one great book about
Firebird, we have annual conference
events, and now we have got our own
magazine – just like other big players.

I hope that our magazine will be useful
and interesting for all people who work
with InterBase and Firebird – as DBAs,
as developers or even as project man-
agers. We are concentrating on “all
times greatest hits” problems and will
try to make this magazine not a one-off
reading, but a long-play interesting
novel that makes for some good reaing
a number of times. Also in future issues
we will pay attention to community
events like BorCon and the Firebird
Conference.

In this issue

Ok, what do we have in this issue? The
first and largest article “Inside Save-
points” by Dmitri Yemanov is devote to
the internal details of server save-
points. Explicit savepoints are a rather
recent improvement in both InterBase
and Firebird, and I think it will be very
interesting for all readers to know nitty-
gritty details of their functioning.

Another hot article is “Using Embed-
ded User Authentication in InterBase
7.5” by Dmitri Kouzmenko. We have

all been waiting for this feature for a
long time, and I suppose we won't be
disappointed.

“Working with temporary tables in
InterBase 7.5” is also very interesting.
To my mind, adding user temporary
tables is the most important recent
improvement of InterBase so every
developer should know its details.

And I think many InterBase and Fire-
bird developers came across the most
annoying error – error 10054. The
article of Vasily Ovchinnikov is devoted
to practical ways to avoid 10054
errors.

Of course, this is not all of it in this issue
– please feel invited to read on.

We need your feedback
This is the first issue of “The Interbase
and Firebird Developer Magazine”.
We have got plenty of ideas for the fol-
lowing issues and will try to make “The
Interbase and Firebird Developer
Magazine” the best database devel-
oper magazine around. And the most
important thing we would like to know
is your opinion and your thoughts
about our work. Please do not hesitate
to contact us:

readers@ibdeveloper.com

Sincerely yours, Alexey Kovyazin.

Chief Editor

Such a nice newborn
Editor’s note

Credits
Alexey Kovyazin, Chief Editor
Dmitri Kouzmenko, Editor
Lev Tashchilin, Designer
Volker Rehn, Subeditor

Subscribe now!
To receive future issues notifications send email to
subscribe@ibdeveloper.com

mailto:subscribe@ibdeveloper.com?subject=Subscribe
mailto: subscribe@ibdeveloper.com

rollbacks, the server also uses them for
exception handling. Each SQL and/or
PSQL operator is enclosed in a save-
point frame, which allows to rollback
this particular operator, keeping the
previous ones unchanged. This guaran-
tees either successful execution of the
operator or automatic cancellation of
all changes made, and a corresponding
error will be initiated.

For exception handling in PSQL, each
BEGIN…END block is also enclosed in
a savepoint frame, which allows you to
cancel all changes made by this block.
Let's consider some details of how save-
points work.

Savepoints in action
A savepoint is a data structure, which is
located in the server's dynamic storage
(transaction pool) and has a unique
numerical ID. A list of activities made
within the savepoint context is associat-
ed with this savepoint. Such a list is
called an "undo log." Savepoints form a
stack within a transaction, and that is
the reason why only sequential rollback
of savepoints is possible.

Undo log fragments are distributed
across savepoints that store the history.
A savepoint, which is active when a

General information
A savepoint is an internal mechanism of
the database, which binds any changes
in the database to a specific point of
time during a transaction, and in case of
necessity, allows a user to cancel all
changes, which were made after setting
this particular savepoint. This process is
also known as rolling back to savepoint.

Also server uses savepoint mechanism
to implement transaction handling This
mechanism helps either to commit or to
cancel all changes made during a trans-
action. For those purposes, the server
uses the global savepoint.

Such a savepoint is set automatically
when a transaction starts, and it is the
first savepoint in the transaction context.
When transaction rollback is initiated,
all changes made within its context are
cancelled using the transaction global
savepoint. After that, the transaction is
commited (!) within the Transaction
Inventory Page (TIP). This is necessary
in order to avoid housekeeping opera-
tions in the future.

However, if the number of changes in
transaction context becomes too big
(approx.10000 - 1000000 records),
then the storing of rollback lists
becomes expensive, and the server
deletes the transaction global save-
point, switching to the standard TIP
mechanism to mark the transaction as
dead.

In addition to the use of savepoints for

Cover story

3

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Inside Savepoints

Inside Savepoints

record is being changed, is called "cur-
rent". Information about record changes
is stored in the current savepoint undo
log. If a rollback to the savepoint is per-
formed, the undo log is unwound, and
records are reconstructed. As a result,
the record becomes as it was at the
moment this savepoint was set.

Tip:
If you expect that during transaction many changes are to be made, then
it makes sense to specify the isc_tpb_no_auto_undo transaction parame-
ter, which disables usage of the global savepoint for rollback. In some
cases, it allows to increase server's performance during batch operations.

Author: Dmitri Yemanov
dimitr@users.sourceforge.net

In case there are no exception handlers available, the records may be
reconstructed down to the global savepoint, providing complete
transaction rollback. After reconstruction of all modified records, the
savepoint is usually deleted from the transaction context.

Releasing savepoints
In addition to the rollback to savepoint operation, there is an opera-
tion of regular deletion (release) of a savepoint. In case a savepoint is
deleted, its undo log is merged with the undo log of the previous one,
in the savepoint stack. In this sense, each savepoint is nested.

It is clear, that regular deletion of all savepoints located "deeper" than
the global one, would lead to the transfer of all changes to the trans-
action global savepoint.

Figure 1 Savepoints in action

mailto:dimitr@users.sourceforge.net

Cover story

4

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Inside Savepoints

Thus, the combination of all changes,
which were successfully executed dur-
ing transaction, is stored in undo logs.
That is why, when the automatic undo
log is enabled, the server can cancel all
performed changes, and in the TIP this
transaction would be marked as com-
mitted, and not as dead.

When specifying the
isc_tpb_no_auto_undo parameter at
transaction start, a global savepoint is

not created, and if regular deletion of the current stack is performed, the
combined undo log is simply deleted, and transaction is marked dead, and
all changes are to be cleared (garbage collection).

Savepoints and exception handling
There are several events, which make server create system-defined (i.e.
user-uncontrollable) savepoints:

1. Execution of any user SQL-query. As has been said above, this done in
order to guarantee atomicity of a query. That is to say, if any exception
occurs during query execution, the changes made in the database will
always be canceled. After the query is executed, the savepoint will be

automatically deleted.

2. Execution of the BEGIN…END block
in PSQL (stored procedure or a trigger)
in case the block contains an error han-
dler (WHEN-block). In that case, each
BEGIN operator sets a savepoint, and
a corresponding END operator deletes
it. This enables to provide error han-
dling

in the PSQL-block.

3. Execution of an SQL-operator in the
context of a “BEGIN…END” block,
which contains an error handler
(WHEN-block). That is, if the block con-
tains an error handler, any SQL-opera-
tor in this block is framed by a save-
point frame.

Exception handling

Let’s consider the errors handling
process on the server. When an excep-
tion occurs, automatic rollback to the
last set savepoint is performed. As a
result, all operations performed by an
invalid SQL-query would be canceled.

Then, in case of a PSQL-block, it is
checked, if there is a custom WHEN-
handler. If it does exist, control is trans-
ferred to it, and after exiting, savepoint
is deleted.

Then the process repeats recursively,
until embedded handlers end. Thus, if a
stored procedure doesn't contain a
handler which would be able to handle
this error, the whole procedure will be
considered as a single SQL-operator,
and canceled.

Let’s make a summary

Firstly, if there is no WHEN-handler,
any PSQL-block (including stored pro-
cedure and trigger) becomes atomic,

and would be canceled entirely, if an
error occurs.

Secondly, in the presence of a
WHEN-handler, the occurrence of an
error leads a rollback of the only oper-
ator, and after that the process is man-
aged by the handler.

That is to say, there are obvious dif-
ferences in the server’s reactions, which
depend on the presence of a WHEN-
handler.

It is worth considering a known
anomaly, which does not fit the scheme
described above. The scheme works as
follows: the paragraph 3 (enclosing of
each SQL-operator inside a PSQL-
block by its own savepoint frame) is
true for SQL-operators only (moreover,
not for all of them). In other words, for
example, an assignment operator will
not be framed by a savepoint frame.

As a result of an error in assign-
ment, execution leads to a normal roll-
back to the previous savepoint, which
is… exactly! – the block’s savepoint.

That is to say, even if there is a
WHEN-handler, the error may cause
the rollback of the whole block before
control to the error handler.

I consider this situation as a serious
flaw in the server’s exceptions handling
logic. Below is the full list of operators,
for which the savepoint frame is creat-
ed: INSERT, UPDATE, DELETE, EXCEP-
TION, EXECUTE STATEMENT [INTO].

To understand the reasons of this
anomaly, it is necessary to take into
account the following 2 facts:

•If an error occurs, rollback to the
last savepoint is performed uncondi-
tionally.

Figure 2 Releasing a savepoint: undo data moved to upward savepoint

Tip:
As is illustrated below, each custom SQL-query is a set of savepoints within a transaction.

Tip:
It is necessary to note that the isc_tpb_no_auto_undo parameter does not disable the savepoints mecha-
nism (this is impossible due to the atomicity guarantee for SQL-operators). It only disables the creation
of a transaction undo log as a single whole.

Cover story

5

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Inside Savepoints

•A block’s savepoint deletion (or roll-
back to it) is performed together with the
verification of the savepoint’s identifier

This means that when an error occurs in
operators not included to the above list
(i.e. not enclosed in a savepoint frame),
that actually the wrong (block's) save-
point is deleted. But the block itself is tol-
erant to that fact, since it only deletes its
own savepoint (in case it has one). This
is the reason why the described server
error does not cause fatal conse-
quences.

Let us illustrate such a situation, using the
description of the [428903] Exception
Handling Bug error. To clarify this, we
provide these examples with comments
about show the server deals with save-
points.

Example 1
A procedure with an error handler and
error generation in the assignment
operator:

In this case, since savepoint #1 is the
nearest to the erratic operator (save-

InterBase Myths № 1
When performing a "restore" outdated, versions are
deleted (and, therefore, are stored in backup) or
gbak -g creates a backup file without versions, and
by default versions are included in the file.
Nothing of the kind! No records versions are stored in a back-
up because it is unnecessary. Generally, the backup process is an ordi-
nary snapshot transaction (repeatable read), and it reads only those
records versions, which were relevant at the beginning of the transac-
tion. The “no_garbage_collect” flag controls collecting garbage versions
in the database itself. This flag can also be used during ordinary con-
nections accessing the AP (i.e. in applications, when, say, one needs to
accelerate sampling in some cases).

point #2 was deleted right before assignment execution), INSERT will be
canceled. Therefore, a rollback of the whole BEGIN...END block will be
performed before entering the handler.

Below is the same procedure with an explicit exception statement, enclosed
in a block without a WHEN-handler:

As you see, no savepoint frame near assignment operator was
created. Therefore, the result would be similar to the previous one.

Below is the same procedure with an explicit exception call, in the
block, which contains WHEN-handler:

CREATE PROCEDURE PROC1
AS
DECLARE VARIABLE X INT;

-- start savepoint #1
BEGIN
-- start savepoint #2
INSERT INTO TAB (COL) VALUES

(01);
-- end savepoint #2
X = 1 / 0;

WHEN ANY DO
EXIT;

-- end savepoint #1
END

CREATE PROCEDURE PROC2
AS
DECLARE VARIABLE X INT;

-- start savepoint #1
BEGIN
-- start savepoint #2
INSERT INTO TAB (COL) VALUES (23);
-- end savepoint #2
BEGIN
X = 1 / 0;

END
WHEN ANY DO
EXIT;

-- end savepoint #1
END

CREATE PROCEDURE PROC3
AS
DECLARE VARIABLE X INT;

-- start savepoint #1
BEGIN
-- start savepoint #2
INSERT INTO TAB (COL) VALUES (45);
-- end savepoint #2
-- start savepoint #3
BEGIN
X = 1 / 0;

WHEN ANY DO
EXIT;

-- end savepoint #3

END
WHEN ANY DO
EXIT;

-- end savepoint #1
END
Here we see a created savepoint frame. As a result, rollback is performed only for the
nearest BEGIN level (savepoint #3), and the INSERT operator remained executed.

Example 2
A procedure with error handler and explicit exception call:

CREATE PROCEDURE PROC4
AS
-- start savepoint #1
BEGIN
-- start savepoint #2
INSERT INTO TAB (COL) VALUES (67);
-- end savepoint #2
-- start savepoint #3
EXCEPTION E;
-- end savepoint #3

WHEN ANY DO
EXIT;

-- end savepoint #1
END

Cover story

6

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Inside Savepoints

In this case, INSERT will not be canceled,
due to the fact that the exception initiation
of E results in rollback to savepoint #3 and
subsequent transfer of control to the error
handler. In order to cancel the INSERT
operator in this case, you should inhibit the
execution of the deletion handler:

In addition, a few words about
exception handling adequacy
regarding the SQL-standard.

The standard allows three types of
handlers in PSQL: CONTINUE,
EXIT, and UNDO. With a CON-
TINUE-handler, the server must
rollback the erroneous operator,
execute the handler code, and then
continue the execution of the block,
beginning with the operator next to
the which one caused the error.

An EXIT-handler requires finishing
of the execution of the block right
after exiting the handler code.

An UNDO-handler requires a roll-
back of all actions of the block
before entering the handler.

Current versions of the server
(InterBase as well as Firebird) do
not support the explicit specifica-
tion of the handler type, and work
according to the EXIT principle
(however, there is a possibility of
UNDO-behavior due to the anom-
aly described above).

I suppose that in the future, it

would be desirable to provide an
alternative to choose between
UNDO- and EXIT- behavior of a
handler, and repair the described
anomaly.

Custom savepoints
In addition to the internal
realization of savepoints at
transaction (and opera-
tor/block) levels, the latest
versions of servers (Inter-
Base 7.1, Firebird 1.5, and
Yaffil 1.1) provide an SQL-
interface, developed for

this mechanism.

Note: savepoints’ syntax and
semantics are declared in the SQL-
99 standard (see section 4.37.1 of
the specification).

Custom savepoints (also known as
nested transactions) provide a con-
venient business logic error han-
dling method, with no need to roll-
back the whole transaction.

Note: rollback to a savepoint is
also sometimes called “partial
transaction rollback.”

New SQL operator (SAVEPOINT)
was added to define a savepoint in
the transaction context, to which a
rollback can be performed later
on:

CREATE PROCEDURE PROC5
AS
BEGIN
INSERT INTO TAB (COL) VALUES (89);
EXCEPTION E;

END

a transaction. If you attempt to create
two savepoints with similar names, the
first savepoint is deleted, and the speci-
fied name is given to the second one.

For rollback to a savepoint, the follow-
ing operator is used:

SAVEPOINT <name>;
<name> - the string identifier of a save-
point. As soon as a savepoint is creat-
ed, you can either continue transaction,
commit (or cancel) the whole transac-
tion, or perform a rollback to a particu-
lar savepoint. Savepoints’ names (iden-
tifiers) must be unique in the context of

Note: the SAVEPOINT keyword is
obligatory in InterBase 7.1.

During execution of this operator, the
following actions are performed:

•Rollback of all changes made after
the savepoint was set;

•All savepoints set after this one are
deleted. The current savepoint remains
unchanged, and thus you can perform
several rollbacks to a savepoint. Previ-
ous savepoints remain unchanged as
well.

Note: Performing a rollback to save-
point in InterBase 7.1 deletes the select-
ed savepoint.

•All explicit and implicit write locks,
occupied after the savepoint was set,
are released. At that, other transac-
tions, which requested an access to the
records blocked by the transaction after
the savepoint was set, continue waiting
for the current transaction to be fin-
ished. Transactions, which did not
request access to the records, may con-
tinue and get access to them.

Note: This behavior refers to Firebird
1.5 and can be changed in higher ver-
sions.

Since each savepoint uses certain sys-
tem resources, and also clogs the
namespace, it makes sense to release

(delete) savepoints when they are no longer necessary. This can be accom-
plished using the following operator:

RELEASE SAVEPOINT <name> [ONLY];
This command deletes the selected (and all following) savepoints from
transaction context. The “ONLY” option is a switch to delete the selected
savepoint only; at that, all following savepoints will be saved. If a savepoint

was not released explicitly, it will be automatically deleted as
soon as the transaction is finished.

Note: The “ONLY” option is non-standard extension, and is
not supported by InterBase 7.1.

ROLLBACK [WORK] TO [SAVEPOINT] <name>;

FastReport 3 - new generation
of the reporting tools.

Visual report designer with rulers, guides and
zooming, wizards for base type reports, export
filters to html, tiff, bmp, jpg, xls, pdf, Dot matrix

reports support, support most popular DB-engines.

Full WYSIWYG, text rotation 0..360 degrees,
memo object supports simple html-tags

(font color, b, i, u, sub, sup), improved stretching
(StretchMode, ShiftMode properties),

Access to DB fields, styles, text flow, URLs, Anchors.

http://www.fast-report.com/en/readers.php
5% discount for all our readers!

http://www.fast-report.com/en/readers.php

Savepoints in stored procedures and triggers
Now let us consider the usage of custom savepoints in procedures and triggers.

At first glance, it looks very attractive and useful. Originally this functionality is declared
in InterBase 7.1. Let’s consider the capabilities in detail.

First of all, savepoints must not break the atomicity of SQL-operators. This means that
none of the commands can be canceled partially. Remember that EXECUTE PROCE-
DURE is a legal SQL-operator, and any operators updates may lead to trigger execu-
tion. Generally speaking, any “simple” operator, such as INSERT or UPDATE may result
in launching of a whole chain of triggers and procedures. That is why we are to examine
the scope of a savepoint.

It is obvious that in order to meet the atomicity requirement, savepoint affected instruc-
tions with in a procedure should not have an access to the transaction savepoint (set

through the SAVEPOINT global opera-
tor). In addition, procedure savepoints
must be local and their scope must be
defined by the procedure. That is to say,
there can be a savepoint named “S1”
both in the transaction and in procedures
and triggers executed in the context of this
transaction. At that, such savepoints will
be isolated from each other. Note that this
very method is used in InterBase 7.1.

A question emerges: how would custom
savepoints coexist with internal save-
points managed by the server?

Cover story

7

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Inside Savepoints

InterBase Myths № 2
Record versions are created during reading
Versions are created only when records are changed or
deleted (UPDATE or DELETE). On the contrary, if
unnecessary versions of the same record are detected,
they are marked as trash (i.e., they would be deleted). Read
as much as you want, this will not result in creation of new versions.
Vice versa, updating of a record creates a new version of the record in
any case, disregarding the fact that someone else reads this record.
A myth sometimes becomes true: versions of the records may be cre-
ated during reading, but only in Firebird 1.5 (and higher) in queries
select ... for update with lock. More detailed information will be pub-
lished in the next issue of full title.

A simple example of working with savepoints is given below:
create table test (id int);
commit;
insert into test (id) values (1);
commit;
insert into test (id) values (2);
savepoint y;
delete from test;
select * from test; -- returns empty set
rollback to y;
select * from test; -- returns two records
rollback;
select * from test; -- returns one record
A custom savepoint
Now let us consider an example of how savepoints can be used in business logic.
Assume there is an operation of mass document handling in the application, and
it is necessary to display error messages (or save them for future presentation as
a list), and let this bulk operation continue. Since the document handling opera-
tion is not atomic, on the client’s side it is better not to use regular exception han-
dling since we cannot continue the transaction if we know that an exception per-
formed a rollback of only half of the operation.

Such a dilemma can be resolved by handling each document sequentially in a
separate transaction. Nevertheless, this does increase the consumption of inter-
nal server resources (maximum number of records in TIP, transaction counter
increment), and is therefore not the best alternative.

In addition, if there is a need to fix a set of documents during the handling process
(for example, by changing the transaction isolation mode or explicit blocking of
the SELECT … WITH LOCK type), it would require using only one transaction for
the delta packet. Using a savepoint, the following algorithm would be used (in
pseudocode):
START TRANSACTION;
OPEN C FOR (SELECT …);
FOR (C) DO
LOOP
TRY
SAVEPOINT DOC;
<…> ///single document handling commands

EXCEPT
ROLLBACK TO SAVEPOINT DOC;

<…> //either log the error or display it

END
END

CLOSE C;
COMMIT;
Note: The use of savepoints in loops
has an additional advantage: you do
not need to call RELEASE each time,
since resetting a savepoint automatical-
ly deletes the previous savepoint with
the same name.

Another example is, undoubtedly,
audit. For example, you need to pro-
vide a log record for each activity, and
at the same time, if an error occurs, the
record should remain in the audit log
(with a corresponding note):

START TRANSACTION;
INSERT INTO AUDIT_LOG (ID, EVENT, STATUS) VALUES (:ID, :EVENT, 1);
SAVEPOINT OPER;
TRY

<…> // operations on database
EXCEPT
ROLLBACK TO SAVEPOINT OPER;
UPDATE AUDIT_LOG SET STATUS = 0 WHERE ID = :ID;

END
COMMIT;

Cover story

8

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Inside Savepoints

Some theory
Let us consider a simple example of savepoint usage in PSQL, suggested by
Borland in the InterBase 7.1 server documentation:

CREATE PROCEDURE ADD_EMP_PROJ2 (
EMP_NO SMALLINT,
EMP_NAME VARCHAR(20),
PROJ_ID CHAR(5))

AS
BEGIN
BEGIN
SAVEPOINT EMP_PROJ_INSERT;
INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)

VALUES (:EMP_NO, :PROJ_ID);
WHEN SQLCODE -530 DO
BEGIN
ROLLBACK TO SAVEPOINT EMP_PROJ_INSERT;
EXCEPTION UNKNOWN_EMP_ID;

END
END

END
This example demonstrates how exceptional situations are handled when
using savepoints. That is to say, when an exception with code -530 occurs
(the violation of reference integrity by a foreign key) we cancel the insert
operation and initiate a user exception. Actually, this example is absolute-
ly useless, since we do not need a savepoint here:

BEGIN
INSERT INTO …

WHEN SQLCODE –530 DO
EXCEPTION unknown_emp_id;

END

This code will execute the same function, since the server itself cancels the
INSERT operation when an exception during it's execution.

Let’s consider a more complicated example:
FOR SELECT ID, … INTO :REC_ID, …
BEGIN
SAVEPOINT S1;
INSERT INTO TABLE1 …
INSERT INTO TABLE2 …

INSERT INTO TABLE3 …
EXECUTE PROCEDURE …
…

WHEN ANY DO
BEGIN
ROLLBACK TO SAVEPOINT

S1;
ERROR = REC_ID;
SUSPEND;

END
END
Here we try to handle all documents,
but the program does not stop in case
of failure, it only returns all unsuccessful
attempts at the end of the procedure.
Server standard logic would cancel the
error operator and control to the han-
dler, which in its turn cancels actions of
the whole block. Thus, we can easily
turn the EXIT-handler to UNDO in case
if necessary. Of course, this functionali-
ty can be obtained by standard means
as well:

FOR SELECT ID, … INTO
:REC_ID, …
BEGIN
BEGIN
INSERT INTO TABLE1 …
INSERT INTO TABLE2 …
INSERT INTO TABLE3 …
EXECUTE PROCEDURE …
…

END
WHEN ANY DO
BEGIN
ERROR = REC_ID;
SUSPEND;

END
END

In this case, all operators within the
loop will be automatically canceled, in
the event that an exception occurs,
since the operators are located in the
atomic block by which the savepoint
frame for SQL-operators mechanism
was enabled. After that, the server will
go through the chain of embedded
blocks, and will switch to the handler.

Therefore, in virtually any case, one

can realize the same semantics using
the server's standard mechanisms, i.e.
using system savepoints instead of cus-
tom ones, at the cost of relatively
unhandy source code. Thus, savepoints
in PSQL are nothing but an easy and
comprehensive alternative for the explic-
it usage of BEGIN…WHEN…END blocks.

A bit of practice

Now let us return from theory to prac-
tice and test this reasoning in InterBase
7.1. The result is quite depressing: none
(!!!) of the given examples work, and
error messages appear:

Even the first example, which was taken
from the Release Notes (!), is not work-
ing properly. At the same time, the most
primitive examples, such as:

SAVEPOINT S1;
INSERT …
ROLLBACK TO SAVEPOINT S1;

work correctly. So what’s the matter? If
we investigate the situation more careful-
ly, the reason becomes obvious. Remem-
ber the two facts described above:

1. savepoints constitute a stack, and
can be canceled sequentially only

2. each block of PSQL-code with an
exception handler is enclosed in a frame

Thus we arrive at a conclusion that any
code area of the following type:

SAVEPOINT S1;
…
BEGIN
…
ROLLBACK TO SAVEPOINT S1;

…
WHEN

is definitely invalid, since to perform a
rollback to savepoint S1, it would be
necessary to delete the system save-
point, created by the server for excep-
tion handling in the “BEGIN…END”
block. This would destroy the internal
undo log, and may corrupt the data-
base.

Thank God, the InterBase developers
did not create such cardinal realization,

and server attempts to cancel the
previous (last) savepoint directly,
only if its name matches. Since sys-
tem savepoints are unnamed, in

this case such an attempt would fail.
This is proven by the above mentioned
error message.The above makes us
arrive to the conclusion that working-
with savepoints in PSQL is limited by the
nesting level, in case we are dealing
with blocks with a WHEN-handler.

However, it turned out that the most
interesting thing is yet to come. The
server’s reaction to the error initiated
by the ROLLBACK TO SAVEPOINT or
RELEASE SAVEPOINT operator is
amusing. Let’s illustrate this using an
example:

Statement failed, SQLCODE = -504
Savepoint <name> unknown.

Cover story

9

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Inside Savepoints

BEGIN
INSERT INTO TABLE1 …
ROLLBACK TO SAVEPOINT S1;
INSERT INTO TABLE2 …

END

This is an emulation of an error, which
usually occurs if the required save-
point cannot be found within a single
code block. As one would expect, the
execution of the procedure returns the
same error. But!!! Procedure execution
does not stop at this point. Instead, the
second INSERT is executed (which you
can easily verify by substituting
INSERT with an operator of EXCEP-
TION E_TEST type). The question is,
why? It turns out that this error cannot
be handled in the procedure, i.e. the
code:

INSERT INTO TABLE1 …
BEGIN
ROLLBACK TO SAVEPOINT S1;
WHEN ANY DO
EXCEPTION E_TEST;

END
does not throw the E_TEST exception,
as one might expect. Even though the
code after ROLLBACK TO SAVE-
POINT is executed, nothing really
happens. Which means, that in case
the described error occurs in a proce-
dure, all changes made by this proce-
dure will be unconditionally (!) can-
celed. This happens regardless of
which code was executed before or
after the command. It would be inter-
esting to find out how InterBase devel-
opers explain this phenomenon.

Summary
There are some peculiarities in save-
points logic, which prevent realization
of their complete support by PSQL. The
analysis of InterBase 7.1 behavior
proves the point. The rationale of that is
the presence of system savepoints,
which interaction with custom ones is
limited, due to data integrity require-
ments. That's why this functionality is

ISC_STATUS isc_start_transaction(ISC_STATUS* status,
isc_tr_handle* trans, char* name);

ISC_STATUS isc_release_transaction(ISC_STATUS* status,
isc_tr_handle* trans, char* name);

ISC_STATUS isc_rollback_transaction(ISC_STATUS* status,
isc_tr_handle* trans, char* name, short option);

neither available in Firebird, nor in Yaffil.

Note: As far as I understand it, the same reasons prevent from using commit/roll-
back retaining in PSQL, since in that case the savepoint-frame of a procedure would
be destroyed.

Savepoint in distributed transactions
InterBase 7.1 introduces the option to work with savepoints in coordinated transac-
tions.

For this purpose, three new API functions are introduced:

As you see, these functions do not
have a connection descriptor (data-
base handle) which means that corre-
sponding SQL-commands are issued to

/* Connect to the database */
isc_attach_database(status, 0, database1, &db1, 0, NULL);
isc_attach_database(status, 0, database2, &db2, 0, NULL);

/* Begin coordinated transaction */
isc_start_transaction(status, &trans, 2, &db1, 0, NULL, &db2, 0, NULL);

/* Create savepoint */
isc_start_savepoint(status, &trans, "A");

/* Executing database operations */
isc_dsql_execute_immediate(status, &db1, &trans, 0, "DELETE FROM TABLE1", 1, NULL);
isc_dsql_execute_immediate(status, &db2, &trans, 0, "DELETE FROM TABLE2", 1, NULL);
/* Delete the savepoint explicitly, through the second connection descriptor */
isc_dsql_execute_immediate(status, &db2, &trans, 0, "RELEASE SAVEPOINT A", 1, NULL);

/* Rollback to savepoint */
isc_rollback_savepoint(status, &trans, "A", 0);

all databases used by the transaction. This seems absolutely logical, since formal-
ly, a savepoint is a part of a transaction and not of a connection. However, there
is one nuance here. Let’s examine following program fragment (error handling is
not included):

http://www.ibsurgeon.com/interbase/firebird/repair/services.html

stored as integers’ one, and therefore
when one enters 1.88, in NUMERIC(15,
2) it would look as 1.88, though actual-
ly (as a string) will turn out to be
1.8799999952316.

Thus, we can make up several conclu-
sions:

•real numbers’ accuracy is bounded,
and therefore numbers stored as real,
should never be used in equality (every-
one knows that)

•precision of the FLOAT fields is quite
short (similar to Delphi’s single). That is
why it is better to use DOUBLE PRECI-
SION instead.

•not all types are interconvertible: the
NUMERIC(15, 2) field as INTEGER
COMPUTED BY... will contain 0.

•inaccuracy should be taken into
account when processing real numbers
(rounding, aggregation, comparison,
addition/subtraction and multiplica-
tion/division). Also, do not forget the
bookkeeper’s rule: when multiplying
and dividing, multiplication should be
calculated in the first place.

•it is not recommended to use real types
as table primary keys. Due to inaccuracy
and/or peculiarities of how client’s and
servers processors handle real numbers:
seemingly one and the same number
may lead to different results.

Tips

10

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Inside Savepoints

/* Commit coordinated transaction */
isc_commit_transaction (status, &trans);

/* Disconnecting the database */
isc_detach_database(status, &db1);
isc_detach_database(status, &db2);

As a result of a rollback to savepoint,
I expect rollback to be performed in
both databases I work with. Then I
commit the transaction, and after that
I need to see all data on their places,
since DELETE operators were can-
celed.

And that would be that way, but for
the manually executed "RELEASE
SAVEPOINT A."

At first, savepoint rollback was per-
formed for the first connection and all
changes were canceled.

Then the same operation was accom-
plished for second connection, while…
oops! … there is no savepoint any-
more. As a result, the client receives
an error message. But rollback of one
of the DELETE operators was success-
ful (!) This is a situation, when the
coordinated operation disintegrates
itself, and makes correct handling of
the case impossible.

The two-phase fixation of transaction
mechanism, which should bar from
such cases, simply cannot deal with
savepoints.

That is to say, the new InterBase 7.1
functions create appropriate SQL-
commands, and then cyclically exe-
cute them for databases involved in
this process.

Even if only one of them fails,
an error returns. Generally,
this error does not character-
ize the current situation, in
terms of correctness of the
operation as a single whole.

Of course, one might say that
only one method of working
with savepoints should be
applied – either through
SQL, or through API.

Now you know what it leads
to. However, for working
with savepoints in InterBase
7.1, a new API can be com-
pletely substituted by server’s
standard means.

The server should either sup-
press possibility to control
savepoints in certain connec-
tions in cases of coordinated
transactions, or refuse to
declare their workability.

It is necessary to note that
Firebird’s and Yaffil’s devel-
opers have chosen this way,
preferring not to provide
users with such an ambiguous
feature.

InterBase has an interesting undocumented feature. Usually when the COMPUTED
BY field is declared, the following syntax is used:

<col_def> = col { datatype | COMPUTED [BY] (< expr>) |
domain}

[DEFAULT { literal | NULL | USER}]
[NOT NULL] [<col_constraint>]
[COLLATE collation]

As you see, syntax requires specifying either type of the column (datatype), or the
calculated expression (computed by). The "either/or" directive is the | symbol. Usu-
ally, type of the COMPUTED BY field is similar to the source one (which it is based
on). However, it is possible to specify column type, even if it would not coincide with
the source.

The following experiment can be performed. Create a table with structure as shown
below:

(the PRIMARY KEY definition may be omitted, since in this case it is used only for
Database Explorer tables’ usability: BDE does not allow update tables, which do
not have a primary key)

Type conversion through
COMPUTED BY

CREATE TABLE TESTCOMP(
t_data FLOAT NOT NULL PRIMARY KEY,
c_int INTEGER computed by (t_data),
c_num NUMERIC(15, 2) computed by (t_data),
c_char CHAR(20) computed by (t_data))

Now, in the table, try to enter a record with the following T_DATA value: 1.88, 3.2,
3.51 (this test was done in dialect 1). You would see that the values the FLOAT field
stores on disk differ from what you have entered. The C_INT field contains the round-
ed value of T_DATA. The C_NUM field would contain either exact or rounded value
of T_DATA. It depends on the parameter value of the BDE ENABLE BCD =
TRUE/FALSE alias. At the same time, C_CHAR would contain more precise value of
the C_DATA real number. When doing this trick, it would be helpful to view the
NUMERIC(15, 2) values as strings. The thing is that real numbers’ accuracy cannot be

Author:
IBSurgeon Research Labs, research@ib-aid.com

mailto:"IBSurgeon Research Labs, research@ib-aid.com"

Database maintenance

11

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Embedded UA in InterBase

Embedded User Authentication
in InterBase 7.5

Author: Dmitri Kouzmenko
kdv@ib-aid.com

One of the most important new features in InterBase 7.5 is user
authentication, which is embedded in the database. Let’s con-
sider the scheme used in the previous version:

Standard scheme
In InterBase, a separate special database isc4.gdb is intended for user list
storing. In InterBase 7.0 this database was renamed (admin.ib), and in
addition, new ibconfig parameter was added (ADMIN_DB), which allows
to specify any name for this database.

In isc4.gdb/admin.ib, there is a basic “USERS” table, which contains user-
name, password, and other parameters. When a client connects to a data-
base:

1. the front-end encrypts the password by DES algorithm with data loss,
and then sends the username and encrypted password to the server.

2. the server encrypts the received password once again by the same lossy
DES, and then calls isc4/admin in the “USERS” table, finds the necessary
user, and then verifies the received password with the stored one.

3. if the passwords are equal, the user
connects to the database he/she speci-
fied. And if they do not, the user is
unable to connect to the database
("wrong user name or password" error
reported).

As you can see, to access any database
on this server, a user must be specified
in isc4/admin only once. In the future,
in a particular database, user access is
defined by the rights he is granted.

This scheme is insufficient when used in:

•single-user applications. It becomes
necessary to deploy both the database
and admin.ib.

•deployed or stolen databases. Any-
one can "slip" his/her own “admin.ib”
with SYSDBA/masterkey to the server,
and, as a result, completely control a
database.

•systems, in which a user has to con-
nect to only those databases, with
which one is allowed to work.

Embedded User
Authentication
In InterBase 7.5 you can either refuse
using admin.ib (see below), or combine
admin.ib with user control in the data-
base. For that purpose, attributes of
several system tables were extended,
and new SQL-operators were added to

manage this functionality (in “gsec” a
“user_database” option is added for
user management in such databases).

This functionality is supported only for
ODS 11.2, i.e. for the databases creat-
ed or restored from backup in InterBase
7.5. At that, previous versions of Inter-
Base, for example, 7.1 and below,
when attempting to connect to such
database, will return two types of mes-
sages:

•product DATABASE ACCESS is not
licensed

for databases, in which EUA is enabled
or disabled

•internal gds software consistency
check (decompression overran buffer
(179), file: sqz.c line: 229)

for databases, in which EUA was never
enabled

In other words, there is no other way to
connect to the database, but from Inter-
Base 7.5 specifying a required pass-
word (stored in the database) for a spe-
cific user (we do not consider the possi-
bility of “hacking” such database, i.e.
editing it in HEX-editor).

continued on page 12

mailto:kdv@ib-aid.com

Draw attention to the fact that one can “enable” and “disable” users by the alter
user xxx set inactive/active command. There is no such possibility in the standard
admin.ib.

Authentication order
It is important to comment how exactly connections are performed in case EUA is
active in a database:

•The server opens a specific database.

1. EUA disabled – user authentication is accomplished from admin.ib

2. EUA enabled - user authentication (any user, including SYSDBA), is accom-
plished from rdb$users of this particular database

That is, when enabling SYSDBA and changing password for SYSDBA, it will be pos-
sible to connect to this database under the “SYSDBA” name, only if the user speci-
fies a correct password.

Attention: Admin.ib is mandatory in any case. The server, when trying to connect
to a database, requires presence of admin.ib regardless of whether database EUA
is enabled or not.

Database maintenance

12

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Embedded UA in InterBase

Enabling EUA
There are two ways of enabling EUA in a database:

1. When creating a database, specify an extra option – WITH ADMIN OPTION –
in CREATE DATABASE

2. For any ODS 11.2 database, enter the following operator

ALTER DATABASE SET ADMIN OPTION INACTIVE
and activated

ALTER DATABASE SET ADMIN OPTION ACTIVE
During deactivation, in RDB$USERS field RDB$USER_ACTIVE is set to 'N' for all
user records (including SYSDBA). When activating, it is performed conversely:
RDB$USER_ACTIVE is entered to 'Y' for all users. Doing that, be careful, since if
some users were disabled before EUA deactivation, as soon as EUA is activated, all
EUA users will be able to access the database (i.e. all EUA accounts will be
enabled).

You can completely delete EUA, together with all user records by the command:

ALTER DATABASE DROP ADMIN OPTION
This will clear the RDB$USERS table, and restore functioning of the standard
authentication scheme (through admin.ib).

User management
If EUA is enabled, you can manage users:

{CREATE | ALTER} USER SET

option : PASSWORD
[NO] DEFAULT ROLE

[NO] SYSTEM USER NAME
[NO] GROUP NAME
[NO] UID
[NO] GID
[NO] DESCRIPTION
[NO] FIRST NAME
[NO] MIDDLE NAME
[NO] LAST NAME
ACTIVE
INACTIVE

Examples:

CREATE USER TEST SET PASSWORD 'TEST', NO LAST NAME,
DEFAULT ROLE ABC

As a result, a user TEST with “TEST” password will be created; the LAST_NAME col-
umn will be set NULL, the default role will be “ABC” (and rdb$user_privilege = 0,
i.e. "not a database owner"). The same can be performed by the following com-
mand set:

CREATE USER TEST SET PASSWORD 'TEST';
ALTER USER TEST SET NO LAST NAME, DEFAULT ROLE ABC;

continued on page 13

ALTER DATABASE ADD ADMIN OPTION
In any case, among ODS 11.2 database system tables there always is the
RDB$USERS table. It is an equivalent to the USERS table from admin.ib
(RDB$DEFAULT_ROLE, RDB$USER_ACTIVE, and RDB$USER_PRIVILEGE columns
are added).

When enabling EUA, it becomes active right away, and in the RDB$USERS table the
SYSDBA user standard record appears (the password is encrypted “masterkey”),
and with RDB$USER_PRIVILEGE = 1. After that, when connecting to a database, the
server ignores presence (or absence) of the user in admin.ib, as well as his/her
password. That is to say, when EUA is enabled, one can connect to a database only
if username/password combination, stored in rdb$users, is correctly specified.

EUA can be temporarily deactivated by the command

https://secure.shareit.com/shareit/cart.html?PRODUCT[214084]=1&COUPON1=super5offer&DELIVERY[214084]=EML&stylefrom=200879

Database maintenance

13

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Embedded UA in InterBase

InterBase Myths № 3
Database files (gdb) must be shared with users
Never do that! InterBase – is not a file server, and
works with databases independently. A client only
informs the server, which database he/she wants to work
with, and what queries are to be executed.

User schemes combining
Thus, in InterBase 7.5 two schemes of
user management are supported: stan-
dard and EUA. This allows building the
following schemes

1. standard: all users included in
admin.ib are allowed to access all
databases. Access rights to a specific
database are defined by grants

2. EUA: the usernames for a particular
database are specified in this database
only. Accordingly, only these users can
connect to it.

3. standard+EUA 1: SYSDBA every-
where is the same (including pass-
word), i.e. it administrates all databas-
es on the server. The server databases
can be divided into 2 sets: the first set
without EUA (public access from
admin.ib), and the second set with EUA
(only the users specified in this particu-
lar database are allowed to access it)

4. standard+EUA 2: All users are com-
mon for all databases (if those, for
example are copied from one source),
but SYSDBA requires different pass-

words. That is to say, one SYSDBA
manages the databases, which do not
have EUA, while other SYSDBA con-
trols the databases with EUA enabled.

5. standard+EUA 3: SYSDBA user-
names and passwords are different for
all databases – with or without EUA.

The picture illustrates an example of
how two different users connect to dif-
ferent databases.

User 1 can connect to databases with
EUA disabled. To access DB1.IB, it is
necessary to create a new user
(USER1) in this database, and specify
either the same, or a different password
(if needed).

User 2 can connect to DB1.IB only. If
this user is specified in ADMIN.IB,
he/she will be able to work with the
databases, in which EUA is disabled.

BACKUP/RESTORE
At the given moment, in InterBase
7.5.0.174 the following behavior is
detected (there is no report about fixing
that problem in IB 7.5 SP 1):

After restore, the rdb$user_privilege column of the rdb$users table has null value.
Even though this is “unimportant” for SYSDBA, in cases when SYSDBA is not the
database owner (the owner is, say, the “TEST” user), that particular user, as well as
any other users, cannot login to such database.

The situation can be corrected if one logins to this database as SYSDBA, setting “1”
value in the column instead of null for the database owner, and “0” for all other
users. After this procedure, EUA’s workability will be restored.

To date (16.05.2005) in Borland it is considered as bug IB 7.5.0.174.

A workaround:

disable EUA before backup (alter database set admin option inactive); after restore
is performed, enable EUA (alter database set admin option active). However, to
avoid change of the owner (unless it is sysdba), there should be an owner of the
database with EUA in admin.ib.

Other issues
Sometimes, for different purposes, a database can be created by a user other than
SYSDBA, for example, in order to use a database owner as a "backup user" (at that,
all objects are created and modified on behalf of SYSDBA, and the owner cannot
change them). In this case, a user who created the database, is the database owner,
and thus can perform backup/restore being an owner not only of the database but
also of all objects created by her/him. There are several features of applying such
method when EUA is enabled.

1. Create a database not as a “SYSDBA,” but as a “TEST” user. As soon as a
“TEST” user is created, it becomes a database owner. At this point, of course, the
TEST (with password “test,” for example) user should be specified in admin.ib.

2. Enable EUA in the database.

ALTER DATABASE ADD ADMIN OPTION;

In the RDB$USERS table a record about the TEST user with “test” password appears
(the password is double-encrypted, as in admin.ib), rdb$user_active = Y and
rdb$user_privilege = 1

3. Add a "local" user USR

mailto:jwharton@ibobjects.com?subject=Requesting 5% discount
http://qc.borland.com/wc/qcmain.aspx?d=12838

create user USR set password 'usr';

4. All this leads to an interesting situation. The “TEST” user can perform backup, but
would it be a backup from admin.ib, or from the database? Let’s change the TEST’s
password in admin.ib. Let the password be “tttt”.

5. try to backup from TEST user through admin.ib

gbak -b db.ib db.ibk -v -user TEST -pass tttt

does not pass. Try a user from EUA

gbak -b db.ib db.ibk -v -user TEST -pass test

it does pass. That is, only the user specified in eua can do backup (i.e. database
owner).

6. So far, it seems like one can delete the “TEST” user in admin.ib, or completely
delete admin.ib. But without admin.ib the server will not connect even to the data-
bases with active EUA. In addition, restore should be done by a user specified in
admin.ib, since when restoring, it is impossible to find out whether a database has
EUA or not.

gbak -c db.ibk 1.db -v user TEST -pass test

does not pass, as it was expected. The TEST user has a different name in admin.ib.

gbak -c db.ibk 1.db -v user TEST -pass tttt

restore is successfully accomplished.

However, as it was already said above, the column rdb$user_privilege = NULL. This
makes impossible for any EUA user to connect to the restored database EUA
(including the “TEST” user with password “test”).

Connect as TEST/tttt, set “0” instead of “null” in the rdb$users column of the TEST
record, and then disconnect… As a result, EUA resumes work (see above an exam-
ple of temporary solution of the problem).

Conclusion
Regarding all that, we can come to several conclusions:

• EUA in this version does not "outlive" backup/restore not only for the owner, but
for SYSDBA as well. SYSDBA is "both king and god" for databases and that is why
rdb$user_privilege = null is unnoticeable for a developer. This becomes important
when one begins to use the database in operating mode.

• When performing restore, there is a need to verify username/password. For reg-
ular databases, restoring with other usernames is performed when it is necessary to
change the database owner. However, since EUA is enabled for users within the
database, restore can be performed in no other way but specifying a new user at
gbak -c. Actually, SYSDBA from admin.ib may be a "wrong user" differing from
SYSDBA in the database with EUA, if they have different passwords.

Database maintenance

14

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Embedded UA in InterBase

• Probably, it would be better to create a flag in Header Page of the database,
which would signify presence of EUA. In this case, users would be ignored during
restore process. This is up to InterBase 7.5 developers.

• In spite of apparent “autonomy” of EUA, if there is no admin.ib, it would be pos-
sible neither to connect to the database, nor perform restoring.

https://secure.shareit.com/shareit/cart.html?PRODUCT[200879]=1&COUPON1=super5offer&DELIVERY[200879]=EML&stylefrom=200879
www.ibphoenix.com

closed after the following time interval:
KEEPALIVE_ TIME+ (KEEPALIVE_
PROBES+1)* KEEPALIVE_ INTERVAL.

By default, the parameters values are
rather big, and this makes use of them
ineffective. For example, the default
value of KEEPALIVE_ TIME parameter is
“2 hours,” both in Linux and in Win-
dows. Actually, 1-2 minutes would be
enough to make a decision about
forced disconnection of an inaccessible
client. On the other hand, KEEPALIVE
default settings sometimes cause forced
disconnections in Windows networks,
which are stay inactive during these 2
hours (of course, one may cast doubt
on necessity of such connections in the
applications, but this is a different mat-
ter).

Below adjustment of these parameters
for Windows and Linux operating sys-
tems is described.

Setting KEEPAILVE in Linux
KEEPALIVE parameters in Linux can be
changed either by file system direct
editing / proc, or by calling sysctl.

Introduction
In the systems within InterBase or Firebird databases, which are intended
for working in either real-time or near-real-time modes, there is a problem
of client connection status tracking on the server side, and of forced discon-
nection in case the client becomes inaccessible due to connection release.
It is important to promptly release the resources busy with such phantom
connections, especially when using servers with Classic architecture.

If some users connect to the server through an unstable modem connection,
then the risk of disconnection becomes rather high.

For instance, a client saves a modified record set, and after UPDATE is exe-
cuted (while COMMIT is not) the connection is released.

As a rule, client applications in such situations reconnect to the server, but
the client (as he/she continues working with the data, after saving which
one received error message due to connection fail) will be unable to save
changes, since he/she will receive a message about lockout conflict (“lock
conflict on update”). The previous connection, which opened the transac-
tion (in the context of which UPDATE was executed, while COMMIT was-
n’t), still holds these records.

Connection failures may occur in a local network too, if the hardware (net-
cards, hubs, commutators) is out of order or not adapted well, and/or due
to clutter in the network. In Interbase and Firebird logs, failures of tcp con-
nections are displayed as error 10054 in Windows and 104 in Unix; net-
beui failures are displayed as 108/109 errors.

Hung connections control methods
In InterBase and Firebird, the mechanisms of DUMMY-packets or
KEEPALIVE-sockets are used for tracking and disabling of such “dead”
connections.

In InterBase 5.0 and higher, the mechanism of DUMMY-packets is imple-
mented at the application layer between an InterBase/ Firebird server and
a gds32/fbclient client library. It is included in ibconfig/ firebird. conf and
is not examined in the present article.

Note: As we know from previous experience, stability of the dummy-pack-

The TCP stack tracks the moment when
packets stop transmit between the client
and the server, by launching the
KEEPALIVE timer. As soon as the timer
reaches the KEEPALIVE_ TIME point,
the server TCP stack would execute the
first KEEPALIVE probe. Probe is an
empty packet with ACK flag sent to a
user. If everything is alright on the client
side, then the TCP stack on client side
sends a response packet with ACK flag,
and the server TCP stack resets the
KEEPALIVE timer as soon as it receives
a response.

If the client does not response to the
probe, the probes from the server con-
tinue to be sent. Their quantity equals to
the KEEPALIVE_ PROBES value; they
are executed at the KEEPALIVE_ INTER-
VAL time interval. If the client does not
respond to the last probe, then after
another KEEPALIVE_ INTERVAL time
expires, the operating system TCP stack
closes the connection, and the server (in
this case, instance of InterBase or Fire-
bird server) releases all resources busy
with provision of this connection.

Thus, a failed client connection will be

et mechanism (the one implemented in
InterBase 5.0 and repeatedly corrected
in Firebird 1.5.x) strongly depends on
server’s and client’s operating systems,
tcp stack versions, and many other con-
ditions. That is to say, effectiveness of
such system in a real network tends to
zero.

KEEPALIVE-sockets are a more interest-
ing mechanism. Implemented in Inter-
Base 6.0 and higher, it is intended for
connection failure tracking. KEEPALIVE
is enabled by setting the SO_
KEEPALIVE socket option at the open-
ing. There’s no need to manually set it if
you use Firebird 1.5 or higher, since it is
implemented in the program code of
the Firebird server, both for Classic,
and for Superserver.

For Interbase and Firebird versions
lower than 1.5, in the variant with Clas-
sic architecture, an additional setting is
necessary. This setting is described
below.

In this case, the operating system TCP
stack (instead of the Firebird server)
becomes responsible for connection
status. However, to enable this mecha-
nism, one must adjust KEEPALIVE
parameters.

KEEPALIVE description
KEEPALIVE-sockets behavior is con-
trolled by the parameter presented in
the following table.

Database maintenance

15

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Using Keepalive

Using KEEPALIVE-sockets to detect and release hung
InterBase and Firebird client connections,
or how to avoid the 10054/104 errors

Author: Vasiliy Ovchinnikov
ova@tkvc.ru

Parameter Description

KEEPALIVE_ TIME Time interval, on expiry of which KEEPALIVE-probes start

KEEPALIVE_INTERVAL Time interval between KEEPALIVE-probes

KEEPALIVE_PROBES Number of KEEPALIVE-probes

mailto:ova@tkvc.ru

Substitute the < value> word with necessary values.

If you use version of Firebird Classic lower than 1.5, then in /etc/xinet.d/firebird
the following should be added:

FLAGS=REUSE KEEPALIVE

Adjusting KEEPALIVE in Windows 95/98/ME
Register branch

HKEY_ LOCAL_ MACHINE\ System\ CurrentControlSet\ Services\ VxD\ MSTCP

Everything about adjustment of TCP can be found here:

http://support.microsoft.com/default.aspx?scid=kb;en-us;158474

Parameters:

•KeepAliveTime = milliseconds

Type: DWORD

For Windows 98, type STRING.

Defines connection inactivity time in milliseconds. When it expires, KEEPALIVE-
probes start executing. Default value is 2 hours (7200000).

•KeepAliveInterval = 32-digit value

Type: DWORD

For Windows 98, STRING type.

Defines time between KEEPALIVE-probes (in milliseconds). As soon as the specified

KeepAliveTime interval expires, after each KeepAliveInterval time (in millisec-
onds) KEEPALIVE-probes are sent with maximum number of MaxDataRetries. If no
response comes, the connection closes. Default value is 1 second (1000).

•MaxDataRetries = 32-digit value

Type: STRING

Defines maximum number of KEEPALIVE-probes. Default value is 5.

Setting KEEPALIVE in Windows 2000/NT/XP
Register branch

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Pa
rameters\.

Everything about TCP adjustment:

2000/ NT: http://support.microsoft.com/kb/120642

XP: http://support.microsoft.com/kb/314053

The MaxDataRetries parameter is substituted by

TCPMaxDataRetransmissions.

All other parameters have the same names as in Windows 9x

Setting KEEPALIVE in Windows (for clients)
This setting is optional, but it possibly will reduce number of messages about con-
nection failure if one uses unreliable communications channels. Insert to the register
branch

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Pa
rameters

parameter DisableDHCPMediaSense=1. See a description of this parameter
here:

http://support.microsoft.com/?scid =kb%3Bru%3B239924&x=13&y=14

Example

Let’s consider adjustment of Firebird SQL Server 1.5.2 CS under Linux OS.

•Make sure that the DUMMY-packets mechanism is disabled in firebird.conf (the
parameter is commented-out)

……………..

#DummyPacketsInterval=0

…………….

•Make sure there is the /etc/xinet.d/firebird configuration file

Database maintenance

16

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Using Keepalive

For the first case, the following lines should be edited:

/proc/sys/net/ipv4/tcp_keepalive_time
/proc/sys/net/ipv4/tcp_keepalive_intvl
/proc/sys/net/ipv4/tcp_keepalive_probes

For the second case, the following commands should be executed:

sysctl –w net.ipv4.tcp_keepalive_time=value
sysctl –w net.ipv4.tcp_keepalive_intvl=value
sysctl –w net.ipv4.tcp_keepalive_probes=value

Time value is expressed in seconds.

For automatic setting of these parameters in case of server restarting, add the fol-
lowing lines to / etc/ sysctl. conf:

net.ipv4.tcp_keepalive_intvl = value
net.ipv4.tcp_keepalive_time = value
net.ipv4.tcp_keepalive_probes = value

https://secure.shareit.com/shareit/cart.html?PRODUCT[300031918]=1&COUPON1=super5offer&DELIVERY[300031918]=EML&stylefrom=200879
http://support.microsoft.com/?scid =kb%3Bru%3B239924&x=13&y=14
http://support.microsoft.com/kb/314053
http://support.microsoft.com/kb/120642
http://support.microsoft.com/default.aspx?scid=kb;en-us;158474

•Connect to any database on the server from any network client.

•Check traffic on the server using any packet filter.

If parameters specified as /proc/sys/net/tcp_ keepalive_*, within 15 seconds after
everything stops in the channel, the server creates a probe. If the client is “alive,”
the server receives a response packet. 15 seconds after that, checking repeats, and
so on.

•If a client is physically turned off (either the multiplexer or the modem unexpect-
edly turns off – anything is possible), then the server does not receive a response,
and the server begins to send probes with 10 seconds interval. If the client does not
respond to the fifth probe, then 10 seconds after that, the server process discharges,
and releases resources and blockings lockouts. If the client gives any signals and
responses at least to the fifth probe (if worst comes to worst), then, after another 15-
seconds time-out, the server will begin send probes. And so on.

Guidelines
In conclusion, we would like to give you some advice about how KEEPALIVE values
should be selected.

Firstly, determine necessary value of KEEPALIVE_ TIME. The more the value is, the
later KEEPALIVE-probes would start. If you constantly see 10054/104 errors in the
log of the server, and you have to delete them manually, it is recommended to
increase the KEEPALIVE_ TIME value.

Secondly, the values of the KEEPALIVE_ INTERVAL and KEEPALIVE_ PROBES
should meet your needs concerning before-the-fact release of already hung con-
nections. If your users connect to the server through unreliable channels, then you
probably would want to increase number of probes and the interval between them,
in order to give the user a chance to detect the failure and reconnect to the server.
In case clients use a DSL connection to the Internet, or access a SQL-server through
a local network, it is possible to decrease the interval between KEEPALIVE-probes.

General recommendations: if you for no particular reason receive from the clients
many error messages, concerning results saving, due to lockout conflict (i.e. there
are no concurrent connections working with the same data), then you need to
increase system’s reaction to the hung connections release. Practically, the
KEEPALIVE_ TIME value may be above or equal 1 min. You should yourself estimate
the time the longest transaction executes, so that traffic would not be overloaded by

KEEPALIVE-checks of normally
working connections, which
launched long transactions.
The KEEPALIVE_ INTERVAL
value is above or equal 10
seconds, and the KEEPALIVE_
PROBES value is above or
equal 5 checks. When many
users work simultaneously,
remember that if you perform
checking too frequently, it may
considerably increase network
traffic.

Also remember that in case
your users actively change
common data, lockout errors
will occur as a result of opti-
mum situation. In this case, you
would need a correct lockout
error handling in the client
applications. At the same time,
the application should be able
to minimize occurrence of such
errors.

Examples of default
configuration
Finally, here are some more
examples of default configura-
tions. Downtime is the time,
within which users will be
unable to update data, (which
by that moment were updated
by the transaction opened by
the hung connection). Total
time is the time, on the expiry
of which the hung connection
will be closed.

•Clients use modem connec-
tions; most of transactions in
the system are short; downtime
is limited by 3 minutes.

Database maintenance

17

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Using Keepalive

We kept everything unchanged, as it was registered during installation. Nothing
needs to be added.

•Change the TCP stack parameters

KEEPALIVE_TIME 1 minutes
KEEPALIVE_PROBES 3
KEEPALIVE_INTERVAL 30 seconds
TOTAL 3 minutes

InterBase Myths № 4
If I see the word NATURAL in the query, it
is a bad one!
Nothing terrible.
Some data retrieval (depending on query) is better by nat-
ural table scan, than by an index scan.
It's better to check, how long time ago you refreshed statistics for
indices in your database. See documentation about SET STATISTICS
INDEX <index_name> statement.

sysctl –w net.ipv4.tcp_keepalive_time = 15
sysctl –w net.ipv4.tcp_keepalive_intvl = 10
sysctl –w net.ipv4.tcp_keepalive_probes = 5

•Clients use LAN connection; most of transactions in the system are short; downtime
is limited by 2 minutes.

KEEPALIVE_TIME 30 sec
KEEPALIVE_PROBES 5
KEEPALIVE_INTERVAL 10 sec
TOTAL 90 seconds

•Clients use any connections; downtime is not regulated.

KEEPALIVE_TIME 15 minutes
KEEPALIVE_PROBES 4
KEEPALIVE_INTERVAL 1 minutes
TOTAL 20 minutes

•Clients use any connections, continuous transactions are possible in the system,
and downtime limit is 15 minutes.

KEEPALIVE_TIME12 minutes
KEEPALIVE_PROBES 7
KEEPALIVE_INTERVAL 15 sec
TOTAL 14 minutes

We hope that the examples we have shown would be enough for correct adjustment
of TCP stack KEEPALIVE mechanism.

Developers area

18

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Working with temporary tables

Working with temporary
tables in InterBase 7.5

Author: Dmitri Kouzmenko
kdv@ib-aid.com

In InterBase 7.5, a new capability of working with temporary tables
was added. Unlike system temporary tables (tmp$), these tables may
be created and used during applications’ work. To this very day, devel-
opers had to store temporary data in ordinary tables, and that
required constant table content tracking, as well as specific organiza-
tion of work with data.

Surely, most often temporary tables were necessary to those developers, who had
been working with MS SQL before they started to use InterBase/Firebird.

Let’s consider what temporary tables in InterBase 7.5 really are.

Metadata
On the low system level temporary tables are implemented as permanent tables.
That is, when you create these tables, information about them is stored in the
RDB$RELATIONS system table; pointer page and other system pages are distrib-
uted for them as for regular tables. Moreover, these tables not only will be stored in
the database constantly, but also will "outlive" backup/restore (as distinct from any
other attempts to extend or change the structure of the rdb$ system tables).

Syntax of creation of temporary tables is as following:

CREATE GLOBAL TEMPORARY TABLE <table> (
table-element-comma-list)

[ON COMMIT { PRESERVE | DELETE } ROWS]
As you see, temporary tables differ from standard ones by the global temporary
phrase. Besides, on commit is added. In IB 7.5, in the RDB$RELATIONS system
table, there is RDB$RELATION_TYPE column. It contains one of the following values:
RDB$RELATION_TYPE Description
PERSISTENT Standard tables (custom or system), in which

records are deleted only by delete+commit.

GLOBAL TEMPORARY Temporary system tables, which display server sta-
tus, connection to databases, executed queries,
and so on. (TMP$DATABASE, etc)

RDB$RELATION_TYPE Description

GLOBAL TEMPORARY
DELETE

Temporary tables, for which ON COMMIT DELETE
ROWS is specified, i.e. the records, which will be
unconditionally deleted on the commit.

GLOBAL TEMPORARY
PRESERVE

Temporary tables, for which ON COMMIT PRE-
SERVE ROWS is specified, i.e. the records, which
will be unconditionally deleted on disconnection.

It is not recommended to modify this column manually; this will not result in anything
good. That is to say, it is impossible to turn a regular table into a temporary and vice
versa.

For a time of transaction
GLOBAL TEMPORARY DELETE stores records only until any commit is per-
formed (not only in the transaction, which created them, but also of any other
transaction within this connect). Such behavior resembles a bug, since commit-
ting of competitive transactions is not supposed to flush record view. The temporary
system tables work in exactly the same way, i.e. they display updated information
as soon as any concurrent transaction executes a commit. At the same time, the
records created in the table are invisible to all but the current transaction. A rollback
in this case is equivalent to a commit, although it is clear that rollback would also
cancel all changes made in the regular tables. In the case of commit, the transaction
changes will be committed, while the records in temporary tables would “disap-
pear”.

Let’s create such a table, and try to work with it.

CREATE GLOBAL TEMPORARY table TMPTRANS (
ID int not null,
NAME varchar(20),
constraint PK_TMPTRANS primary key (id))

ON COMMIT DELETE ROWS

http://www.shareit.com/product.html?productid=173567¤cies=USD&coupon=FBM17S43678
mailto:kdv@ib-aid.com

and create FK from DETAIL to MASTER. As a result, (actually, InterBase would not
allow to create such FK) after creation of records in master and detail, the first com-

For a time of connection
GLOBAL TEMPORARY PRESERVE tables store records until current connection (dur-
ing which they were added) is released. At that, they can be displayed only within
the period of this connection.

Let’s create a table

Developers area

19

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Working with temporary tables

Now you may create a procedure, which would fill in the table with some data

CREATE PROCEDURE XTRANS
AS
DECLARE variable I INT;
BEGIN
I = 0;
WHILE (:I < 10000) DO
BEGIN
INSERT INTO detail VALUES (:I, 'asdfasdfasdfasdfasdf');
I = :I+1;

END
END
You may insert as many records as you need: if all you want is to check the work,
100-10К would be enough. If you want to test speed, it is recommended to begin
either from 100К records or million records (for example, on my computer this pro-
cedure loads 1 million records to a database with 4K within approximately 47 sec-
onds).

Be careful, do not commit after inserting records, otherwise the records will be lost.
Performing select * from tmptran allows you to view the records. After commit is
performed, query iteration will return an empty table.

TIP:

In case you perform these operations using a tool with automatic transac-
tion control (such as IBExpert), you would not see any temporary records,
since IBExpert executing any operator in SQLEditor, performs start/com-
mit of 3-4 another (hidden) transactions, commit of which causes loss of
record view in the on commit delete table.

At this moment, one may ask a question: where actually are these records? The
answer is: despite of “temporariness” of the records, the temporary table
records are stored in the same way as in regular tables, i.e. on a disk.
At that, after the records are inserted and commit is executed, if one gathers statis-
tics (for example, with the help of IBAnalyst) it would look almost like the following:

InterBase Myths № 5

InterBase is designed for Windows, and therefore
it is incompatible with Unix (Linux, Solaris, etc).

This is not true! First version of InterBase was created
for Unix, and, before the Windows-version was released, there were
15 “ports” for different Unix versions (AIX, IRIX, SCO, HP-UX...). Actu-
ally, the Windows version was released 7-8 years after the first ver-
sion of InterBase.

CREATE GLOBAL TEMPORARY table TMPCONN (
ID int not null,
NAME varchar(20),
constraint PK_TMPTRANS primary key (id))

ON COMMIT PRESERVE ROWS

Create a record in this table (it also can be done in IBExpert)

INSERT INTO TMPCONN VALUES (1, 'a')
Perform commit. Now, within this connect, the record will be visible from different
transactions. If another instance of IBExpert (or any other tool) runs, and you exe-
cute the same insert operator, it would be executed with no PK or UNUQIE key vio-
lation error.

As soon as you close the current connection and open a new one, the entered data
will be lost.

Connections between temporary tables
It is quite interesting that you can create Foreign Keys between temporary tables,
but this cannot be done between a temporary table and a constant one. However,

when creating FK one should take into consideration the
record view area in both tables. For example, you create two
tables:

Table Records RecLength VerLen Versions Max Vers Data Pages Slots Avg fill%
TMPTRANS 1000000 31.00 0.00 0 0 51725 51725 68

MASTER, on commit delete
DETAIL, on commit preserve

mailto:jwharton@ibobjects.com?subject=Requesting 5% discount

Developers area

20

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Working with temporary tables

mit would delete all records in master, and that causes presence of records with
missing connections in DETAIL (in fact, such type of connection as commit preserve
-> on commit delete is not permitted, though you can perform the opposite).

To do that (and to change “temporariness” type of the records), the ALTER TABLE
operator has the following extension:
ALTER TABLE <table> ON COMMIT {PRESERVE | DELETE} ROWS
{RESTRICT| CASCADE}

This operator changes table’s type (preserve/delete) and can also perform cascad-
ing correction of type of the tables bound by FK, in order to prevent the situations
with mismatch of records’ lifetime in master and detail. The RESTRICT directive will
inform about error, if other temporary tables refer to this table.

Temporary tables of all types cannot use FK pointing to constant tables.

Garbage collecting

As already mentioned, in spite of “temporariness” of table content, the on commit
delete and on commit preserve records, are nevertheless stored on the disk, as
in ordinary tables. Therefore, the server sometime must remove them (as garbage).
This happens when the following events occur:

An example of the procedure, which automatically fills a temporary table with
records, is given on purpose. Tests were held using 1 million records. For the tests,
2 IBExpert instances were launched and one IB_SQL was used. Without going into
details of the test, we will list its results and conclusions

• For ON COMMIT DELETE tables, garbage is collected during first exclusive con-
nection to the database. Assume we have 10 working applications, which fill in tem-
porary tables. To delete records in all temporary tables, all 10 applications should
disconnect, and at least one should connect. Right at that moment, garbage collect-
ing in the ON COMMIT DELETE tables begins. All connections, which attempt to
connect to the server before garbage collecting is finished, will "hung".

Resume

• Working with ON COMMIT DELETE temporary folders may lead to fast grow of
the database during a day, since it is very seldom that during this period of time all
users disconnect from the database

• The more garbage is collected in the ON COMMIT DELETE temporary tables, the
longer will be the delay between the first connection and the working. It takes

approximately 25 seconds for server to
delete 1 million temporary records, and
~120 seconds to delete 3 million tem-
porary records.

• For the ON COMMIT PRESERVE
tables, garbage is collected when dis-
connecting the connection, which creat-
ed these records.

Resume

• The more records a connection cre-
ates in temporary tables, the longer the
application would “hang” when dis-
connection is performed. Deletion of 1
million temporary records, as well as in
the previous case, takes ~25-35 sec-
onds.

Summary
Temporary tables InterBase 7.5 – are
very useful for applications, which form
complex reports and execute interme-
diate calculations on the server. How-
ever, due to strange behavior of ON
COMMIT DELETE, it becomes possible
to use transaction context temporary
tables only in the applications, which
works with only one transaction at a
time. Or they can work with several
transactions, on condition that a commit
of competitive transaction is forbidden
until the transaction (which works with
the temporary table) performs a com-
mit.

Furthermore, use of ON COMMIT
DELETE tables causes collecting of
garbage records during multiuser work
(since database’s size increases), and
collects garbage on first connection to
the database. This can cause an unde-
sirable delay in the beginning of the
users’ work.

Table type When garbage is collected

ON COMMIT DELETE At first "exclusive" connection to the database

ON COMMIT PRESERVE When canceling the connection created the record

ON COMMIT PRESERVE is a more favorable way, though the process of
disconnection of applications would be more time-consuming (of course,
unless these applications created records in temporary tables). In order to
avoid users’ complaints, you will probably need to specially handle appli-
cation disconnection, and to display a message asking to wait some time.

p.s. during the temporary tables test, a spontaneous processor loading by
the IB7.5.0.28 server was observed (though the applications were inactive).
At that, the loading appeared in certain order of transactions’ starting and
finishing, while they did not contain the executed operator. The reason of
this effect is currently being ascertained (with InterBase 7.5 SP1 also).

Registering for the Conference

Call for papers

Sponsoring the Firebird Conference

http://firebird-conference.com/

http://www.firebirdsql.org/index.php?op=konferenz
http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1121342419:23015&page=fb_conf_sponsors
http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1121342419:23015&page=fb_conf_call_papers
http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1121342419:23015&page=fb_conf_attend

to a database, specify the codepage, which was used during database creation.

In our case, it is UNICODE_FSS. This means that we want to get text data in UTF-8
format from the database, and the text will pass the text in the same format.

Working with database
Exchange with server uses the following data categories:

•General text fields with CHAR and VARCHAR types

•BLOB text fields

•Arrays

•SQL query text.

UNICODE (the text format one usually deals with, when programming for Win-
dows) uses double-byte character set (UCS-2). As evident from the table above, 1-
3 bytes would be enough for presentation of the UNICODE characters with a code
from 0x0000 to 0xFFFF in UTF-8.

InterBase proceeds from the fact that UNICODE characters within the range
[0x0000,0xFFFF] will be stored in UTF-8. Therefore, when specifying size for stor-
ing text data with UNICODE_FSS codepage, the number of characters is multiplied
by 3 bytes. In addition, all current versions of InterBase, when working with
CHAR/VARCHAR data in data presentation, controls number of bytes, not of char-
acters. That is why, for example, one can enter up to 9 single-byte characters to the
CHAR(3) column with UNICODE_FSS codepage.

Developers area

21

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Working with UNICODE
in InterBase/FireDird

Working with UNICODE
in InterBase/Firebird

Author: Dmitri Kovalenko, LCPI
dima@lcpi.lipetsk.ru

What is UNICODE_FSS?
It is an InterBase codepage (often called UTF-8), which displays double-
byte and four-byte UNICODE characters (UCS-2 и UCS-4, respectively)
in character strings from 1 to 6 bytes. What is it intended for?

•It provides transport for UNICODE texts based on regular ASCII text.

•Data packing. The characters with codes less than 128 are, as usual, represented
as one byte

Interconversion of UTF-8 and UCS-2 (UCS-4) files is based on use of the following
table:

Bits Hex Min Hex Max UTF-8 Binary Encoding

7 00000000 0000007F 0xxxxxxx

11 00000080 000007FF 110xxxxx 10xxxxxx

16 00000800 0000FFFF 1110xxxx 10xxxxxx 10xxxxxx

21 00010000 001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

26 00200000 03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

31 04000000 7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

Table 1 Converting UCS-2 to UTF-8

Example

CREATE TABLE TESTUTF(TESTFIELD CHAR(3));
INSERT INTO TESTUTF (TESTFIELD) VALUES(‘123456789’); -- NO EXCEPTION!

The main disadvantage of working with UTF-8 is the impossibility to detect the num-
ber of symbols in a string without viewing it.

That is why, for better performance, it is recommended to recode text data in UTF-
8 format to a codepage with characters of fixed size (such as UCS-2).

Creation of database using UNICODE_FSS
Nothing out of the way, everything is as usual:

CREATE DATABASE ... DEFAULT CHARACTER SET UNICODE_FSS.

Connecting to a database
with a UNICODE_FSS codepage
As is well known, when creating a database, one can use one codepage,
and when connecting to a database, can use a different codepage can be
used. It’s partly true since a server when interacting with a client, tries to
recode text data to a coding the client wishes to use.

However, this mechanism has constraints and exceptions, which are described
below. That is why we recommend not to experiment with it. When connecting

http://www.shareit.com/product.html?productid=173567¤cies=USD&coupon=FBM17S43678
mailto:dima@lcpi.lipetsk.ru

When recording text fields, you
convert a text to UTF-8, and then
handle it as an ordinary record.
Buffer size and line length param-
eters are expressed in bytes.

If the field codepage differs from the
codepage of connection to database,
then the server performs conversion of
incoming and outgoing data.

However, for all that, buffer size will be
computed according to the column
codepage. Thus, if the codepage of the
win1252 field and UNICODE_FSS con-
nection is used, and no other additional
operations are launched, then you will
probably receive the «Cannot transliter-
ate characters between character sets»
error message.

Text fields
When reading text fields, the server
requires providing a buffer: (max
character size)*(number of charac-
ters). This is the value, which will be
put in XSQLVAR.sqllen after data
access query text is prepared.

A user does not have to worry about
calculation of size needed for text
field data in the clipboard. We recom-
mend using the value specified in the
definition of the field. However, do
not forget that, for the VARCHAR
columns (SQL_VARYING type), one
should add 2 bytes to the specified
value, in order to reserve some space
for column length indicator. The
returned value will be expressed in
bytes.

The thing is that in win1252 all symbols
are single-byte, and buffer for such col-
umn will be required reasoning from 1
byte for 1 character. When recoding to
UTF-8, characters with a code more
than 127 will become at least double-
byte, and this may result in overflow.

So please consider it, if you want to use
connections with several codepages in
the context of a single database.

BLOB text fields
As is well known, the link to data is
stored in the InterBase record, which
contains a BLOB-field (subtype inde-
pendent). The data are stored separate-
ly and handled by InterBase API func-
tions, designed specially for working
with BLOB.

That is to say, BLOB-fields data are read
and written with separate calls of API.
That is why the rules of working with text
information in BLOB differ from the ones
of working with CHAR/VARCHAR.

The basic rule is: take care of yourself.
By default, the server does not interpret
contents of BLOB-fields, and treats them
as ordinary binary information. Thus,
the client becomes responsible for data
recoding.

Usually it is enough to use
UNICODE_FSS coding on the client,
and not use UNICODE_FSS and one-
byte coding simultaneously, since con-
version to one-byte coding can cause
data loss.

Arrays
UNICODE support in text arrays is simi-
lar to the one for text fields.

As in the text fields case, the server,
when working with text arrays, operates
on the byte-level, not on the level of
characters. Therefore, the number of
characters in a string written in an array
cell, may exceed the length specified
when the text array column had been
created.

In exactly the same way, the server sup-
ports recoding of input and output
arrays data, taking into account the con-
nection codepage.

SQL query text
Strange as it may seem at first sight, SQL
query text is also must use a codepage
for connection to a database. The point
is that a SQL query text is one of the
methods of parameter values explicit
transfer.

There are no severe limitations, except
for general length of an SQL query,
which is 64K. When converting a query

containing national coding characters to
UTF-8, the resulting text may be larger
than the source one, and thus it would
exceed 64K limit.

Access components for
working with UNICODE_FSS
Generally speaking, support of a specif-
ic codepage means that the access to
database component is able to ensure
client’s work with other codepage. To
do that, it is enough to guarantee con-
version of text data (at that, UCS-2, an
intermediate format is used). Conver-
sion of text columns, arrays and SQL-
queries is not a problem at all, but BLOB
fields conversion is quite a laborious
task, especially when accessing the
BLOB field data through a stream mech-
anism.

Theoretically, client application, of
course, should not depend on the code-
pages’ differences. Therefore, access
components must block all possible
ways of text data transfer, and provide
necessary information recoding.

Developers area

22

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Working with UNICODE
in InterBase/FireDird

TIP:

By the way, one of the undocumented features of InterBase is that for text
fields in XSQLVAR.subtype the number of the field codepage is specified in
the lower byte, while the collate number is specified in the upper byte.

InterBase Myths № 6

Compiled procedures store query plans.

Not a bit (unless the query plan is explicit)!

This myth is based on the fact that the procedure after first
call (that is the moment when query plans, written in the procedure,
are computed) remains in the metadata cache until all clients, who
called this procedure, disconnect. In this case, actually, while the pro-
cedure is in memory, query plans do not change, even if statistics of
the indexes used by the plans change. Read about this in InterBase
documentation - DataDef.pdf, Chapter 9, section "Altering and drop-
ping procedures in use".

https://secure.shareit.com/shareit/cart.html?PRODUCT[214084]=1&COUPON1=super5offer&DELIVERY[214084]=EML&stylefrom=200879

When one uses either Firebird/
Yaffil Classic or InterBase 7.1/7.5,
the following questions are often
asked: “what server to choose, a
multiprocessor, or a single-
processor one?” and “should
Hyper-Threading be enabled on
the server or not?”

It’s quite possible that if the server is
purchased from the hardware provider,
such questions do not arise, since in
such cases basic configuration is used
(for example, a dual-processor server
with HT).

However, different tests and comments
witness to the fact that it makes sense to
use (keep enabled) the hyperthreading
technology only on single-processor
workstations (!), and not on servers.

There are many reasons why Hyper-
threading should be turned off on the
server:

Note: Each paragraph contains a link to
a document, which exemplifies “why it is
so.” But this does not mean that the con-
clusion in a particular paragraph is
drawn from that document. You, of
course, will be able to find on the Internet
corroboration of the described facts and
our experience. We followed our own
experience and tests results, and we
have analyzed some reports (tests) of
other people, as well as many different
documents concerning HyperThreading.

1. Database-application (Firebird, Inter-
base, Yaffil) is an application, which
actively uses both the processor and
disk memory. At the same time, the per-
centage of processor and disk charge
may vary.

Total charge of several real (as well as
virtual) processors can occur only on
"calculating" applications.

2. Enabling HT on a double-processor
computer leads to appearance of four
processors (which are 2 physical and 2
virtual). Thus, when all processors are
used, the processor bus becomes more
loaded. As a result, instead of produc-
tivity increase, the system performance
would slowdown by 10-15%.

3. According to different reports,
enabling HT slightly increases produc-
tivity, decreases it, or does not affect
productivity at all. Therefore, the result
can be seen only when analyzing a
particular combination of mother-
board, memory, and processors.

[conferences на newsgroups]

4. As Intel and Microsoft claim, Win-
dows 2003 is the only operating system
"certified" for HyperThreading. There-
fore, if one uses either Windows NT or
Windows 2000, it is most likely that if HT
is enabled, productivity would be the
same or would decrease. The same is
true for Linux, i.e. HT should be enabled
using appropriate versions of this OS.

Hardware

23

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Hyperthreading & SMP + InterBase,
Firebird, Yaffil

Hyperthreading, SMP and
InterBase, Firebird, Yaffil

Author: Dmitri Kouzmenko
kdv@ib-aid.com

This is the first, official
book on Firebird — the
free, independent,
open source relational
database server that
emerged in 2000.

Based on the actual
Firebird Project, this
book will provide you
all you need to know
about Firebird data-
base development, like
installation, multi-plat-
form configuration,
SQL language, inter-
faces, and mainte-
nance.

mailto:ibdeveloper@ibdeveloper.com
http://www.amazon.com/exec/obidos/tg/detail/-/1590592794/qid=1121347490/sr=8-1/ref=pd_bbs_ur_1/104-6332401-7732731?v=glance&s=books&n=507846
mailto:kdv@ib-aid.com

Hardware

24

The InterBase and Firebird Developer Magazine 2005 ISSUE 1

www.ibdeveloper.com©2005 www.ibdeveloper.com ltd. All right reserved

Hyperthreading & SMP + InterBase,
Firebird, Yaffil

Server Server type Operating
system

2 and more
processors

InterBase 6.0 SuperServer Windows No

Linux No

Solaris-SPARC No

Classic Linux Yes

InterBase 6.5 SuperServer Windows No

Linux No

Solaris-SPARC No

InterBase 7.x SuperServer Windows Yes

Linux Yes

Solaris-SPARC Yes

Firebird 1.0 SuperServer Windows No

Linux No

Solaris-x86 No

HP-UX No

Classic Linux Yes

Solaris-x86 Yes

Solaris-SPARC Yes

FreeBSD Yes

MacOS/X Yes

HP-UX Yes

Firebird 1.5 SuperServer Windows No

Linux No

Classic Windows Yes

Linux Yes

FreeBSD Yes

MacOS/X Yes

Sinixz Yes

Solaris-x86 Yes

Yaffil SuperServer Windows No

Classic Windows Yes

http://www.intel.com/support/pla
tform/ht/os.htm?iid=ipp_htm+os&

Note: InterBase 7.1 tests on Windows
2000 and Windows2003 with enabled
HyperThreading have shown that Win
2000’s productivity becomes worse. At
the same time, it is similar for both OS’,
if HT is disabled. That is why the ibcon-
fig ENABLE_HYPERTHREADING para-
meter for IB 7.1 is disabled by default.

5. Generally, there are applications,
which may work incorrectly (fail) on
multiprocessor computers if Hyper-
Threading is enabled.

(search Google for bsod+hyperthread-
ing)

6. The HyperThreading technology is
designed for increasing of multi-thread
applications’ productivity. Therefore,
execution speed of two processes on

two virtual processors would be slower
than it is on two physical processors. If
in addition to a database, some appli-
cations are active on the server, then
enabling HT would cause decrease of
general productivity (this does not con-
cern single-processor systems, in which
a slightly increase of productivity may
be).

http://www.intel.com/technology/
hyperthread/

Supplement
While we hope you understood that
HyperThreading must be turned off on
server, it is still not clear whether it is
better to use a single-processor server,
or a multiprocessor one. The answer to
that question depends on architecture
of the server and operating system:

In the "2 and more processors
" column:

"No" – not recommended or it
makes sense to tie a server
process to a specific processor
(for example, for Windows
through the ibaffinity utility or
through the CPU_AFFINITY
parameter in ibconfig/fire-
bird.conf).

"Yes" – this server variant with
this operating system will use
all processors. In IB 7.x, it is
required to purchase proces-
sor license for each additional
physical processor.

For clarity sake, "yes" variants
in the table are typed in bold.

Subscribe now! To receive future issues notifications send email to subscribe@ibdeveloper.com

mailto:subscribe@ibdeveloper.com?subject=Subscribe
mailto: subscribe@ibdeveloper.com
mailto: ibdeveloper@ibdeveloper.com
http://www.intel.com/technology/hyperthread/
http://www.intel.com/technology/hyperthread/
http://www.intel.com/support/platform/ht/os.htm?iid=ipp_htm+os&

