
Firebird 3.0 Release Notes

Helen Borrie (Collator/Editor)
21 September 2015 - Document v.0300-24 - for Firebird 3.0 Release Candidate 1

Firebird 3.0 Release Notes
21 September 2015 - Document v.0300-24 - for Firebird 3.0 Release Candidate 1
Helen Borrie (Collator/Editor)

iv

Table of Contents
1. General Notes .. 1

Bug Reporting ... 1
Documentation ... 1

2. New In Firebird 3.0 ... 2
Summary of Features ... 2
Compatibility with Older Versions .. 4

3. Changes in the Firebird Engine ... 5
Remodelled Architecture .. 5

Working Modes (“Models”) ... 5
Providers ... 6
Plug-Ins ... 9
External Engines .. 14

Optimizer Improvements .. 17
Other Optimizations ... 17
Remote Interface/Network Protocol ... 17
Miscellaneous Improvements .. 18

Connections Limit Raised ... 18
Better Error Diagnosis .. 18
ICU Version Upgraded ... 18
Internal Debug Info Made Human-readable ... 18
A Silly Message is Replaced .. 18
New Pseudocolumn RDB$RECORD_VERSION ... 19
systemd init Scripts .. 19

4. Changes to the Firebird API and ODS .. 20
ODS (On-Disk Structure) Changes .. 20

New ODS Number ... 20
Implementation ID is Deprecated .. 20
Maximum Page Size .. 20
Maximum Number of Page Buffers in Cache ... 21
System Tables .. 21

Application Programming Interfaces ... 22
Interfaces and the New Object-oriented API .. 22
Other New APIs .. 24
API Improvements ... 24

5. Reserved Words and Changes ... 31
New Keywords in Firebird 3.0 .. 31

6. Configuration Additions and Changes ... 32
Scope of Parameters ... 32
Macro Substitution ... 32
Includes ... 33

Wildcards ... 33
Expression of Parameter Values .. 34
“Per-database” Configuration .. 34

Format of Configuration Entries .. 34
Parameters Available .. 35

New Parameters ... 35
SecurityDatabase .. 35
AuthServer and AuthClient ... 35

Firebird 3.0 Release Notes

v

WireCrypt .. 36
UserManager .. 36
TracePlugin .. 36
WireCryptPlugin .. 36
KeyHolderPlugin .. 37
Providers .. 37
SharedCache and SharedDatabase ... 37
RemoteAccess .. 37
IPv6V6Only ... 37

Parameters Changed or Enhanced ... 38
ExternalFileAccess ... 38

Parameters Removed or Deprecated .. 39
RootDirectory .. 39
LegacyHash ... 39
OldSetClauseSemantics .. 39
OldColumnNaming ... 39
LockGrantOrder ... 40
Obsolete Windows priority settings ... 40

7. Security ... 41
Location of User Lists .. 41

Creating an Alternative Security Database ... 41
Database Encryption ... 42

Secret Key ... 42
Tasks ... 42

New Authentication Method in Firebird 3 ... 43
SSL/TLS Support ... 43
Increased Password Length ... 44
The Authentication Plug-in ... 44
Multiple User Managers ... 45

"Over the wire" Connection Encryption ... 45
The Secret Session Key .. 46

Mapping of Users to Objects .. 46
The Mapping Rule ... 47

SQL Features for Managing Access .. 50
SQL-driven User Management .. 50
SET ROLE .. 52
GRANT/REVOKE Rights GRANTED BY Specified User ... 53
REVOKE ALL ON ALL .. 54
User Privileges for Metadata Changes ... 54
GRANT EXECUTE Privileges for UDFs .. 56
Improvement for Recursive Stored Procedures ... 56
Privileges to Protect Other Metadata Objects ... 56

Pseudo-Tables with List of Users .. 57
8. Data Definition Language (DDL) .. 58

Quick Links ... 58
DDL Enhancements ... 58

New Data Types .. 58
Manage Nullability in Domains and Columns .. 61
Modify Generators (Sequences) .. 62
Alter the Default Character Set ... 62
BLOB Expressions in Computed Columns .. 62
“Linger” Database Closure for Superserver .. 63

Firebird 3.0 Release Notes

vi

New SQL for Managing Users and Access Privileges ... 63
9. Data Manipulation Language (DML) ... 65

Quick Links ... 65
Supplemental SQL 2008 Features for MERGE .. 65
Window (Analytical) Functions ... 67

Aggregate Functions Used as Window Functions ... 67
Partitioning .. 68
Ordering .. 69
Exclusive window functions ... 69

Advanced Plan Output .. 71
Advanced PLAN Output in isql .. 72

Internal Functions ... 72
SUBSTRING with Regular Expressions .. 72
Inverse Hyperbolic Trigonometric Functions .. 72
Statistical Functions ... 73
TRIM() BLOB Arguments Lose 32 KB limit ... 76
String Literal Limit Adjustments ... 76
Enhancements to DATEADD() Internal Function ... 76

DML Improvements ... 77
Alternatives for Embedding Quotes in String Literals ... 77
SQL:2008-Compliant OFFSET and FETCH Clauses .. 77
Prohibit Edgy Mixing of Implicit/Explicit Joins ... 78
Support for Left-side Parameters in WHERE Clause .. 79
Enhancements to the RETURNING Clause ... 79
Cursor Stability .. 80
An Improvement for GTTs ... 80
An Improvement for DML Strings .. 80
COUNT() Now Returns BIGINT .. 81
Optimizations ... 81
Dialect 1 Interface .. 82
Embedded SQL (ESQL) Enhancements ... 82

10. Procedural SQL (PSQL) ... 83
Quick Links ... 83
PSQL Stored Functions .. 83
PSQL Sub-routines ... 84
Packages .. 85

Signatures .. 86
Packaging Syntax ... 86
Simple Packaging Example ... 87

DDL triggers .. 88
Permissions .. 90
Support in Utilities ... 90
DDL_TRIGGER Context Namespace .. 90

Scrollable (Bi-directional) Cursor Support ... 94
Cursor Syntax for PSQL ... 94

Exceptions with parameters .. 95
CONTINUE in Looping Logic .. 96
PSQL Cursor Stabilization .. 96
Extension of Colon Prefix Usage .. 97

PSQL Cursors as Variables ... 97
Colon Prefix as a Variable Marker .. 98

SQLSTATE in Exception Handlers ... 99

Firebird 3.0 Release Notes

vii

Some Size Limits Removed Using New API ... 99
11. Monitoring & Command-line Utilities ... 101

Monitoring ... 101
Tracing .. 101
gbak ... 101

New “Skip Data” Backup Option .. 101
Long Names for Log Files .. 102
Run-time Statistics in Verbose Output ... 102

gsec ... 104
isql .. 104

SET EXPLAIN Extensions for Viewing Detailed Plans .. 104
Metadata Extract .. 104
Path to INPUT Files ... 104
Command Buffer Size Increase ... 105

fb_lock_print .. 105
Input Arguments ... 105
Useability Improvements .. 105

gfix .. 105
-NoLinger Switch ... 105
Improvements to Validation Messages ... 105

Other Tweaks ... 106
All Command-line Utilities ... 106
Hard-coded Messages Replaced .. 106
Arbitrary Switch Syntax Clean-up ... 106

12. Compatibility Issues ... 107
Where Are the Tools? .. 107
aliases.conf Is No More .. 107
Embedded Connections ... 107
Initializing the Security Database .. 107

Initialization Steps .. 108
Additional Notes About Security Databases ... 109

Legacy Authentication .. 109
Local Connections to Superserver on Windows .. 110
Configuration Parameters .. 111
SQL Language Changes ... 111
Reserved Words ... 111

13. Bugs Fixed ... 112
Firebird 3.0 Release Candidate 1: Bug Fixes and Minor Improvements .. 112

Core Engine ... 112
POSIX-Specific .. 116
Windows-Specific ... 116
Utilities .. 116

Firebird 3.0 Second Beta Release: Bug Fixes ... 117
Core Engine ... 118
Server Crashes ... 125
API/Remote Interface ... 126
Utilities .. 127

Firebird 3.0 Second Beta Release: Improvements ... 128
Firebird 3.0 First Beta Release .. 130

Core Engine ... 130
Server Crashes ... 136
API/Remote Interface ... 137

Firebird 3.0 Release Notes

viii

Utilities .. 137
Firebird 3.0 Second Alpha Release .. 139

Core Engine ... 139
Server Crashes ... 142
API/Remote Interface ... 142
Security/User Management ... 143
Procedural Language .. 143
Data Definition Language ... 144
Data Manipulation Language .. 144
Utilities .. 145
International Language Support ... 147
Installation Issues ... 147

Firebird 3.0 First Alpha Release .. 147
Core Engine ... 147
API/Remote Interface ... 152
Procedural Language .. 152
Data Definition Language ... 153
Data Manipulation Language & DSQL .. 154
Command-line Utilities ... 156
International Language Support ... 157

14. Firebird 3.0 Project Teams .. 158
Appendix A: Licence Notice ... 160

ix

List of Tables
3.1. Matrix of Working Modes (D. Yemanov) ... 5
6.1. Parameters available in databases.conf .. 35
11.1. Arguments for gbak STATISTICS Output ... 102
14.1. Firebird Development Teams .. 158

1

Chapter 1

General Notes

Thank you for trying out this second Beta release of the forthcoming Firebird 3.0. We cordially invite you to test
it hard against your expectations and engage with us in identifying and fixing any bugs you might encounter.

Bug Reporting

• If you think you have discovered a new bug in this release, please make a point of reading the instructions
for bug reporting in the article How to Report Bugs Effectively, at the Firebird Project website.

• If you think a bug fix hasn't worked, or has caused a regression, please locate the original bug report in the
Tracker, reopen it if necessary, and follow the instructions below.

Follow these guidelines as you attempt to analyse your bug:

1. Write detailed bug reports, supplying the exact build number of your Firebird kit. Also provide details of
the OS platform. Include reproducible test data in your report and post it to our Tracker.

2. You are warmly encouraged to make yourself known as a field-tester of this pre-release by subscribing to
the field-testers' list and posting the best possible bug description you can.

3. If you want to start a discussion thread about a bug or an implementation, please do so by subscribing to the
firebird-devel list. In that forum you might also see feedback about any tracker ticket you post regarding
this Beta.

Documentation

You will find all of the README documents referred to in these notes—as well as many others not referred to
—in the doc sub-directory of your Firebird 3.0 installation.

--The Firebird Project

http://www.firebirdsql.org/en/how-to-report-bugs/
http://tracker.firebirdsql.org
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe
mailto:firebird-devel-request@lists.sourceforge.net?subject=subscribe

2

Chapter 2

New In Firebird 3.0

The primary goals for Firebird 3 were to unify the server architecture and to improve support for SMP and
multiple-core hardware platforms. Parallel objectives were to improve threading of engine processes and the
options for sharing page cache across thread and connection boundaries.

Alongside these aims came new strategies to improve performance, query optimization, monitoring and scal-
ability and to address the demand for more security options. A number of popular features were introduced
into the SQL language, including the long-awaited support for the Boolean data type and the associated logical
predications.

Summary of Features

The following list summarises the features and changes, with links to the chapters and topics where more detailed
information can be found.

Unification of the Firebird executable is complete
With the completion of true SMP support for Superserver, the Firebird core is now a unified library that
supports a single ODS, loadable either as an embedded engine or by the “network listener” executable.
Choice of server model is determined by settings for two new configuration parameters defining the locking
and cache models, respectively: SharedDatabase and SharedCache. They can be specified at either
global level (in firebird.conf) or "per database" (in databases.conf).

By default, SharedDatabase = false and SharedCache = true, thus meaning SuperServer.

Note

The previous aliases.conf is replaced by databases.conf, now including not just aliases for
databases but also (optionally) configuration parameters to enable configuration of databases and/or alter-
native security databases individually.

The changes are described in more detail in the chapter Changes in the Firebird Engine.

True SMP support for SuperServer
In Superserver mode, the engine now makes use of multiple CPUs and cores when spawning connections.

Tracker: CORE-775

Implemented by V. Khorsun

New, object-oriented C++ APIs
Object-oriented C++ APIs enable external code routines to plug in and run safely inside Firebird engine
space, including (but not limited to):

• Encryption schemes for data

• User authentication schemes, including secure key exchange

http://tracker.firebirdsql.org/browse/CORE-775

New In Firebird 3.0

3

• Eventually, plug-in support for stored procedures, triggers and functions written in Java, C++, Object-
Pascal, etc.

“Per-Database” Configuration
Custom configuration at database level can now be achieved with formal entries in databases.conf
(formerly aliases.conf).

Multiple Security Databases
Firebird now supports user access control via more than one security database on the server. Each database
can be configured, using the parameter SecurityDatabase in databases.conf, to use a specific database
other than the default security3.fdb. The user structures may even be defined within the user database
itself.

Note

The flag MON$SEC_DATABASE was added to the monitoring table MON$DATABASE to assist in
determining what type of security database is used—Default, Self or Other.

Several New SQL Commands to Manage Users and Access
Changes in architecture, stiffening of rules for security and data integrity, along with feature requests, have
given rise to a raft of new SQL commands for managing users and their access to objects.

New Data Type Support
A true BOOLEAN type (True/False/Unknown), complete with support for logical predicates, e.g.,

 UPDATE ATABLE
 SET MYBOOL = (COLUMN1 IS DISTINCT FROM COLUMN2)

For details, see BOOLEAN Type.

IDENTITY type, spawning unique identifiers for the defined column from an internal generator. For details,
see IDENTITY-Style Column.

Support for SQL Packages
For details, refer to Packages.

DDL Triggers
Now, triggers can be written to execute when database objects are modified or deleted. A typical use is to
block unauthorised users from performing these tasks.
For details, refer to DDL Triggers.

'Window' functions in DML
A whole new series of analytical functions to work with multiple subsets in DML. See Window (Analytical)
Functions.

Statistical functions
A suite of statistical functions returning values for a variety of variance, standard deviation and linear re-
gression formulae. See Statistical Functions.

Scrollable Cursors
The query engine now supports bi-directional (“scrollable”) cursors, enabling both forward and backward
navigation in PSQL and in DSQL with support from the API. See Scrollable (Bi-directional) Cursor Support.

New In Firebird 3.0

4

SQL:2008-Compliant OFFSET and FETCH Clauses
Support implemented for SQL-2008-compliant OFFSET and FETCH clauses as an alternative for {FIRST
and SKIP} or {ROWS and TO} clauses. See SQL:2008-Compliant OFFSET and FETCH Clauses.

IPv6 Support
Firebird 3 can use IPv6 connections on both client and server sides. See the notes for the new configuration
parameter IPv6V6Only.

Validation Whilst Database is On-line
On-line validation, first implemented in Firebird 2.5.4, has been ported forward to Firebird 3.0. See Perform
Some Validation Services On-line.

Run-time Statistics in gbak Verbose Output
Verbose output from gbak can now include run-time statistics, reporting times elapsed, page reads and page
writes. Also supported in the Services API.

Compatibility with Older Versions

A series of notes about compatibility with older Firebird versions is collated in Chapter 12, “Compatibility
Issues”. Included there are instructions for initializing the security database, if it was not done by your installer
kit, and for configuring the server for the legacy style of authentication.

5

Chapter 3

Changes in the
Firebird Engine

In Firebird 3, the remodelling of the architecture that was begun in v.2.5 was completed with the implementation
of full SMP support for the Superserver model. In the new scheme, it is possible to configure the execution
model individually per database.

Remodelled Architecture
Dmitry Yemanov

The remodelled architecture integrates the core engine for Classic/Superclassic, Superserver and embedded
models in a common binary. The cache and lock behaviours that distinguish the execution models are now
determined externally by the settings in two new configuration parameters: SharedDatabase and SharedCache
and the connection method in the parameter Providers. The parameters for configuring the architecture are
specified globally (in firebird.conf) and can be overridden specifically for a database (in databases.
conf).

Note

databases.conf is the old aliases.conf with a new name. In Firebird 3, the role of this file involves
(potentially) much more than being just a lookup for database file paths. For more details about this, refer to
the chapter Configuration Additions and Changes.

Working Modes (“Models”)

Table 3.1. Matrix of Working Modes (D. Yemanov)

 SharedDatabase=0 SharedDatabase=1

SharedCache=0 Single user Classic, SuperClassic

SharedCache=1 Superserver See Note

In firebird.conf the defaults make SharedDatabase false (=0) and SharedCache true (=1), i.e., SuperServer.

SharedDatabase=1, SharedCache=1

This mode, although theoretically possible, is not supported currently.

Changes in the Firebird Engine

6

Execution Modes

Classic and SuperClassic
Classic and SuperClassic are set up using the same configuration: SharedDatabase = true and SharedCache
= false.

• On Linux, the server startup method determines which will run, i.e., running xinetd means Classic, while
running the firebird means SuperClassic.

• On Windows, the command line options for firebird.exe specify the mode, just as they did in v.2.5 for
fb_inet_server.exe, i.e., switch -m (for multi-threaded) means SuperClassic; otherwise Classic is implied.

Superserver
Superserver is set up using the configuration SharedDatabase = false and SharedCache = true.

• For multi-user use it is important to start the executable with the -m switch. It will start in single-user
mode otherwise.

Single-user Mode
SharedDatabase = false and SharedCache = false means that only one connection is possible, i.e., single
user mode.

Whether a “hostless” connection is handled by the embedded engine or by the network listener (e.g. the
XNET case), the settings SharedDatabase and SharedCache define the behaviour at the engine level. For an
embedded connection, SharedDatabase = false and SharedCache = true would mean the pre-v.2.5 embedded
behaviour on Windows (based on Superserver), while SharedDatabase = true and SharedCache = false would
mean the v.2.5 embedded behaviour (based on SuperClassic).

How the connection string is processed depends on order specified in the Providers setting. The default
setting is Remote, Engine12, Loopback. Connection strings to hosts are handled by the Remote
provider, while “hostless” ones are handled, in turn, by Engine12 or Loopback.

Accordingly, if libEngine12.so or engine12.dll (as appropriate to platform) is available to the
Dispatcher (y-valve), a “hostless” connection will be handled by the embedded engine; otherwise it will be
handled by the loopback provider (XNET on Windows, TCP via localhost on POSIX).

Note

Of course, technically, XNET is not a local loopback provider (a local connection through a remote inter-
face) and, in previous Firebird versions, it was treated as being in the “remote” space. On Firebird 3, it
belongs with the local loopback providers.

Providers

The providers are more or less what we traditionally thought of as the methods used to connect a client to a
server, that is to say, across a network, host-locally, via the local loopback (“localhost”) or by a more direct
local connection (the old libfbembed.so on POSIX, now implemented as the plug-in library libEngine1
2.so; on Windows, engine12.dll; on MacOSX, engine12.dylib).

In firebird.conf, all are available by default, as follows,

Changes in the Firebird Engine

7

 #Providers = Remote,Engine12,Loopback

Note

In databases.conf, one or more providers can be blocked by pasting the uncommented line and deleting the
unwanted provider[s].

The Providers Architecture
Alex Peshkov

Although a key feature of Firebird 3, the Providers architecture is not new. Providers existed historically in
Firebird's predecessors and, though well hidden, are present in all previous versions of Firebird. They were
introduced originally to deal with a task that has been performed since then by “interface layers” such as ODBC,
ADO, BDE and the like, to enable access to different database engines using a single external interface.

Subsequently, this Providers architecture (known then as Open Systems Relational Interface, OSRI) also showed
itself as very efficient for supporting a mix of old and new database formats—different major on-disk structure
versions—on a single server having mixed connections to local and remote databases.

The providers implemented in Firebird 3 make it possible to support all these modes (remote connections,
databases with differing ODS, foreign engines) as well as chaining providers. Chaining is a term for a situation
where a provider is using a callback to the standard API when performing an operation on a database.

The Components

The main element of the Providers architecture is the y-valve. On the initial attach or create database
call y-valve scans the list of known providers and calls them one by one until one of them completes the requested
operation successfully. For a connection that is already established, the appropriate provider is called at once
with almost zero overhead.

Let's take a look at some samples of y-valve operation when it selects the appropriate provider at the attach
stage. These use the default configuration, which contains three providers:

• Remote (establish network connection)

• Engine12 (main database engine)

• Loopback (force network connection to the local server for <database name> without an explicit network
protocol being supplied).

The typical client configuration works this way: when one attaches to a database called RemoteHost:dbname
(TCP syntax) or \\RemoteHost\dbname (NetBios) the Remote provider detects explicit network protocol
syntax and, finding it first in the Provider list, redirects the call to RemoteHost.

When <database name> does not contain a network protocol but just the database name, the Remote provider
rejects it and the Engine12 provider comes to the fore and tries to open the named database file. If it succeeds,
we get an embedded connection to the database.

Note

A special “embedded library” is no longer required. To make the embedded connection, the standard client
loads the appropriate provider and becomes an embedded server.

Changes in the Firebird Engine

8

Failure Response

But what happens if the engine returns an error on an attempt to attach to a database?

• If the database file to be attached to does not exist there is no interest at all.

• An embedded connection may fail if the user attaching to it does not have enough rights to open the database
file. That would be the normal case if the database was not created by that user in embedded mode or if he
was not explicitly given OS rights for embedded access to databases on that box.

Note

Setting access rights in such a manner is a requirement for correct Superserver operation.

• After a failure of Engine12 to access the database, the Loopback provider is attempted for an attach. It is
not very different to Remote except that it tries to access the named database <dbname> on a server running
a TCP/IP local loopback.

On Windows, the XNET protocol (also known as “Windows local connection”) is used for it. POSIX systems
prepend <dbname> with localhost: and use a TCP connection.

If the attachment succeeds, a remote-like connection is established with the database even though it is located
on the local machine.

Other Providers

Use of providers is not limited to the three standard ones. Firebird 3 does not support pre-ODS 12 databases but
Firebird 3 will have an additional provider to access older databases (ODS 8 to 11.x). Removing support for old
formats from the engine helps to simplify its code and gain a little speed. Taking into account that this speed
gain sometimes takes place in performance-critical places, like searching a key in an index block, avoiding old
code and related branches really does make Firebird fly faster.

Nevertheless, the Providers architecture does make it possible to access old databases when changing to a higher
version of Firebird.

Custom Providers

A strong feature of the Providers architecture is ability for the deployer to add his own providers to the server,
the client, or both.

So what else might be wanted on a client, other than a remote connection? Recall Provider chaining that was
mentioned earlier. Imagine a case where a database is accessed via very slow network connection, say something
like 3G or, worse, GPRS. What comes to mind as a way to speed it up is to cache on the client some big tables that
rarely change. Such systems were actually implemented but, to do it, one had to rename fbclient to something
arbitrary and load it into its own library called fbclient, thus making it possible to use standard tools to access
the database at the same time as caching required tables. It works but, as a solution, it is clearly not ideal.

With the Providers architecture, instead of renaming libraries, one just adds a local caching provider which can
use any method to detect connections to it (something like a cache@ prefix at the beginning of the database
name, or whatever else you choose).

Changes in the Firebird Engine

9

In this example, when the database name cache@RemoteHost:dbname is used, the caching provider accepts
the connection and invokes the y-valve once more with the traditional database name RemoteHost:dbname.
When the user later performs any call to his database, the caching provider gets control of it before Remote does
and, for a locally cached table, can avoid making calls to the remote server.

Use of chaining allows a lot of other useful things to be implemented, such as database replication without the
need for triggers: just repeat the same calls for the replication host when, for example, a transaction is committed.
In this case, the chaining provider is installed on the server, not the client, and no modification of the command
line is needed at all.

To avoid cycling when performing a callback to y-valve at attach time, such a provider can modify the list of
providers using the isc_dpb_config parameter in the DPB. The same technique may be used at the
client, too.

For details, see the Configuration Additions and Changes chapter.

The ability to access foreign database engines using providers should not be overlooked, either. It might seem
strange to consider this, given the number of tools available for this sort of task. Think about the ability to
access other Firebird databases using EXECUTE STATEMENT, that became available in Firebird 2.5. With
a provider to ODBC or other common tool to access various data sources it is within reach to use EXECUTE
STATEMENT to get direct access from procedures and triggers, to data from any database having a driver for
the chosen access tool. It is even possible to have a provider to access some particular type of foreign database
engine if there is some reason to want to avoid the ODBC layer.

Providers Q & A

Q. Interfaces and providers are probably very good, but I have an old task written using plain API functions and
for a lot of reasons I can't rewrite it in the near future. Does it mean I will have problems migrating to Firebird 3?

• A. Definitely no problems. The old API is supported for backward compatibility in Firebird 3 and will be
supported in future versions as long as people need it.

And what about performance when using the old API?

• A. The functional API is implemented as a very thin layer over interfaces. Code in most cases is trivial:
convert passed handles to pointers to interfaces—hitherto referred to as “handle validation”—and invoke the
appropriate function from the interface.

Functions that execute an SQL operation and fetch data from it are one place where coding is a little more
complex, involving the SQLDA construct. The data moves related to the SQLDA have always created an
overhead. The logic between the new and old APIs does not add significantly to that old overhead.

Plug-Ins
Alex Peshkov

From version 3 onward, Firebird's architecture supports plug-ins. For a number of predefined points in the
Firebird code, a developer can write his own fragment of code for execution when needed.

A plug-in is not necessarily one written by a third party: Firebird has a number of intrinsic plug-ins. Even some
core parts of Firebird are implemented as plug-ins.

Changes in the Firebird Engine

10

What is a Plug-In?

The term “plug-in” is used to name related but different things:

• a dynamic library, containing code to be loaded as a plug-in (often called a plug-in module) and stored in
the $FIREBIRD/plugins directory;

• code implementing a plug-in. That is slightly different from the library, since a single dynamic library may
contain code for more than one plug-in;

• a plug-in's factory: an object created by that code (pure virtual C++ class), creating instances of the plug-
in at Firebird's request;

• an instance of the plug-in, created by its factory.

Plug-In Types

Firebird's plug-in architecture makes it possible to create plug-ins of predefined types. Each version of Firebird
will have a fixed set of supported plug-in types. To add a further type, the first requirement is to modify the
Firebird code. Our plug-in architecture facilitates both adding new types of plug-ins and simplifying the coding
of the plug-in along generic lines.

To be able to implement a plug-in, say, for encrypting a database on the disk, the Firebird code has to be prepared
for it: it must have a point from which the plug-in is called.

The set of plug-in types implemented in Firebird 3 comprises:

user authentication related:
• AuthServer (validates user's credentials on server when logins are used)

• AuthClient (prepares credentials to be passed over the wire)

• AuthUserManagement (maintains a list of users on a server in a format known to AuthServer)

ExternalEngine
Controls the use of various engines, see External Engines.

Trace
The Trace plug-in was introduced in Firebird 2.5, but the way it interacts with the engine was changed in
Firebird 3 to accord with the new generic rules.

Encryption
encrypting plug-ins are for

• network (WireCrypt)

• disk (DbCrypt)

• a helper plug-in (KeyHolder), used to help maintain the secret key(s) for DbCrypt

Provider
Firebird 3 supports providers as a plug-in type.

Changes in the Firebird Engine

11

Technical Details

Plug-ins use a set of special Firebird interfaces. All plug-in-specific interfaces are reference counted, thus putting
their lifetime under specific control. Interfaces are declared in the include file plug-in.h. DbCrypt_example
provides a simple model for writing a plug-in module

Note

The example does not perform any actual encryption, it is just a sample of how to write a plug-in. Complete
instructions for writing plug-ins are not in scope for this document.

Features of a Plug-In

A short list of plug-in features:

• You can write a plug-in in any language that supports pure virtual interfaces. Interface declarations will need
to be written for your language if they are missing.

• As with UDFs, you are free to add any reasonable code to your plug-in—with emphasis on reasonable. For
example, prompting for user input at the server's console from a plug-in is hardly “reasonable”!

• Calling the Firebird API from your plug-in is OK, if needed. For example, the default authentication server
and user manager use a Firebird database to store accounts.

• Firebird provides a set of interfaces to help with configuring your plug-ins. It is not obligatory to use them,
since the plug-in code is generic and can employ any useful method for capturing configuration information.
However, using the standard tools provides commonality with the established configuration style and should
save the additional effort of rolling your own and documenting it separately.

Configuring Plug-ins

Configuration of plug-ins has two parts:

1. The engine has to be instructed what plug-ins it should load

2. The plug-ins themselves sometimes need some configuration.

The plug-ins to be loaded for each type of plug-in are defined in the main configuration file, firebird.
conf, usually with defaults. The ones defined in Firebird 3 are discussed in the chapter entitled “Configuration
Additions and Changes”. In summary, the set that provides normal operation in the server, client and embedded
cases consists of:

• AuthServer = Srp, Win_Sspi

• AuthClient = Srp, Win_Sspi, Legacy_Auth

• UserManager = Srp

• TracePlugin = fbtrace

• Providers = Remote,Engine12,Loopback

Changes in the Firebird Engine

12

• WireCryptPlugin = Arc4

Note

If you want to add other plug-ins, they must be cited in firebird.conf. Apart from other considerations, this
requirement acts as a security measure to avoid loading unknown code.

Taking the entry TracePlugin = fbtrace as an example, what does the value fbtrace signify? In a trivial case,
it can indicate the name of a dynamic library but the precise answer is more complicated.

As mentioned earlier, a single plug-in module may implement more than one plug-in. In addition, a single plug-
in may have more than one configuration at once, with a separate plug-in factory created for each configuration.
Each of these three object contexts (module | implementation | factory) has its own name:

• The name of a module is the file name of a dynamic library

• The name of a plug-in implementation is the one given to it by the developer of the plug-in. It is hard-coded
inside the module.

• The name of a factory is, by default, the same as the name of the plug-in implementation's name. It is the
factory name which is actually used in firebird.conf.

In a typical trivial case, where a module contains one plug-in that works with just one configuration and all three
names are equal, and no more configuration is needed. An example would be libEngine12.so | Engine12.dll |
Engine12.dylib, that contains the implementation of the embedded provider Engine12. Nothing other than the
record Providers = Engine12 is needed to load it.

For something more complex a file will help you to set up the plug-in factories precisely.

plugins.conf

The file $(root)/plugins.conf has two types of records: config and plugin.

the plugin record is a set of rules for loading land activating the plug-in. Its format is:

Plugin = PlugName ## this is the name to be referenced in firebird.conf
 {
 Module = LibName ## name of dynamic library
 RegisterName = RegName ## name given to plug-in by its developer
 Config = ConfName ## name of config record to be used
 ConfigFile = ConfFile ## name of a file that contains plug-in's configuration
 }

When plug-in PlugName is needed, Firebird loads the library LibName and locates the plug-in registered with
the name RegName. The configuration from the config record ConfName or the config file ConfFile are passed
to the library.

Note

If both ConfName and ConfFile are given, then the config record will be used.

If both parameters are missing, the default PlugName is used; except that if the ConfigFile is present and its
name is the same as the module's dynamic library but with a .conf extension, it will be used.

The ConfigFile is expected to use the format Key=Value, in line with other Firebird configuration files.

Changes in the Firebird Engine

13

For the plug-in configuration record the same format is used:

Config = ConfName
 {
 Key1 = Value1
 Key2 = Value2
 ...
 }

A Sample Setup

Suppose you have a server for which some clients trust the wire encryption from one vendor and others prefer a
different one. They have different licences for the appropriate client components but both vendors use the name
“BestCrypt” for their products.

The situation would require renaming the libraries to, say, WC1 and WC2, since there cannot be two files in
the same directory with the same name. Now, the modules stop loading automatically because neither is called
“BestCrypt” any longer.

To fix the problem, plug-ins.conf should contain something like this:

Plugin = WC1
 {
 RegisterName = BestCrypt
 }
Plugin = WC2
 {
 RegisterName = BestCrypt
 }

The module names will be automatically set to WC1 and WC2 and found. You can add any configuration info
that the plug-ins need.

Remember to modify firebird.conf to enable both plug-ins for the WireCryptPlugin parameter:

WireCryptPlugin = WC1, WC2

The server will now select appropriate plug-in automatically to talk to the client.

Another sample is distributed with Firebird, in $(root)/plugins.conf, configuring one of the standard
plug-ins, UDR. Because it was written to a use non-default configuration, the module name and one configura-
tion parameter are supplied explicitly.

Plug-Ins Q & A

Q. There are plug-ins named Remote, Loopback, Arc4 in the default configuration, but no libraries with such
names. How do they work?

• A. They are “built-in” plug-ins, built into fbclient library, and thus always present. Their existence is due to
the old ability to distribute the Firebird client for Windows as a single dll. The feature is retained for cases
where the standard set of plug-ins is used.

Q. What do the names of Srp and Arc4 plug-ins mean?

Changes in the Firebird Engine

14

• A. Srp implements the Secure Remote Passwords protocol, the default way of authenticating users in Firebird
3. Its effective password length is 20 bytes, resistant to most attacks (including “man in the middle”) and
works without requiring any key exchange between client and server to work.

Arc4 means Alleged RC4 - an implementation of RC4 cypher. Its advantage is that it can generate a unique,
cryptographically strong key on both client and server that is impossible to guess by capturing data transferred
over the wire during password validation by SRP.

The key is used after the SRP handshake by Arc4, which makes wire encryption secure without need to
exchange any keys between client and server explicitly.

Q. What do Win_Sspi and Legacy_Auth mean?

• A. Windows SSPI has been in use since Firebird 2.1 for Windows trusted user authentication. Legacy_Auth
is a compatibility plug-in to enable connection by the Firebird 3 client to older servers. It is enabled by default
in the client.

And Yes, it still transfers almost plain passwords over the wire, for compatibility.

On the server it works with security3.fdb just a with a security database from Firebird 2.5 It should be
avoided except in situations where you understand well what you are scrificing.

To use Legacy_Auth on the server you will need to avert network traffic encryption in firebird.conf
by reducing the default Required setting for the WireCrypt parameter, either

 WireCrypt = Enabled

or

 WireCrypt = Disabled

Q. How can I find out what the standard Authentication and User Manager plug-ins are?

• They are listed in firebird.conf.

External Engines
Adriano dos Santos Fernandes

The UDR (User Defined Routines) engine adds a layer on top of the FirebirdExternal engine interface with the
purpose of

• establishing a way to hook external modules into the server and make them available for use

• creating an API so that external modules can register their available routines

• making instances of routines “per attachment”, rather than dependent on the internal implementation details
of the engine

External Names

An external name for the UDR engine is defined as

Changes in the Firebird Engine

15

 '<module name>!<routine name>!<misc info>'

The <module name> is used to locate the library, <routine name> is used to locate the routine registered by
the given module, and <misc info> is an optional user-defined string that can be passed to the routine to be
read by the user.

Module Availability

Modules available to the UDR engine should be in a directory listed by way of the path attribute of the corre-
sponding plugin_config tag. By default, a UDR module should be on <fbroot>/plugins/udr, in accordance with
its path attribute in <fbroot>/plugins/udr_engine.conf.

The user library should include FirebirdUdr.h (or FirebirdUdrCpp.h) and link with the udr_engine library. Rou-
tines are easily defined and registered, using some macros, but nothing prevents you from doing things manually.

Note

A sample routine library is implemented in examples/udr, showing how to write functions, selectable pro-
cedures and triggers. It also shows how to interact with the current attachment through the legacy API.

Scope

The state of a UDR routine (i.e., its member variables) is shared among multiple invocations of the same routine
until it is unloaded from the metadata cache. However, it should be noted that the instances are isolated “per
session”.

Character Set

By default, UDR routines use the character set that was specified by the client.

Note

In future, routines will be able to modify the character set by overriding the getCharSet method. The chosen
character set will be valid for communication with the old Firebird client library as well as the communications
passed through the FirebirdExternal API.

Enabling UDRs in the Database

Enabling an external routine in the database involves a DDL command to “create” it. Of course, it was already
created externally and (we hope) well tested.

Syntax Pattern

 { CREATE [OR ALTER] | RECREATE | ALTER } PROCEDURE <name>
 [(<parameter list>)]
 [RETURNS (<parameter list>)]

Changes in the Firebird Engine

16

 EXTERNAL NAME '<external name>' ENGINE <engine>

 { CREATE [OR ALTER] | RECREATE | ALTER } FUNCTION <name>
 [<parameter list>]
 RETURNS <data type>
 EXTERNAL NAME '<external name>' ENGINE <engine>

 { CREATE [OR ALTER] | RECREATE | ALTER } TRIGGER <name>
 ...
 EXTERNAL NAME '<external name>' ENGINE <engine>

Examples

create procedure gen_rows (
 start_n integer not null,
 end_n integer not null
) returns (
 n integer not null
) external name 'udrcpp_example!gen_rows'
 engine udr;

create function wait_event (
 event_name varchar(31) character set ascii
) returns integer
 external name 'udrcpp_example!wait_event'
 engine udr;

create trigger persons_replicate
 after insert on persons
 external name 'udrcpp_example!replicate!ds1'
 engine udr;

How it Works

The external names are opaque strings to Firebird. They are recognized by specific external engines. External
engines are declared in configuration files, possibly in the same file as a plug-in, as in the sample UDR library
that is implemented in $(root)/plugins.

 external_engine = UDR {
 plugin_module = UDR_engine
 }

 plugin_module = UDR_engine {
 filename = $(this)/udr_engine
 plugin_config = UDR_config
 }

plugin_config = UDR_config {
 path = $(this)/udr
 }

When Firebird wants to load an external routine (function, procedure or trigger) into its metadata cache, it gets
the external engine through the plug-in external engine factory and asks it for the routine. The plug-in used is
the one referenced by the attribute plugin_module of the external engine.

Changes in the Firebird Engine

17

Note

Depending on the server architecture (Superserver, Classic, etc) and implementation details, Firebird may get
external engine instances “per database” or “per connection”. Currently, it always gets instances “per database”.

Optimizer Improvements
Dmitry Yemanov

• See Tracker item CORE-4528.

Hash/merge joins for non-field (DBKEY or derived expression) equalities are now allowed.

• See Tracker item CORE-1482.

The optimizer now considers the ORDER BY optimization when making its decision about join order.

Other Optimizations
Vlad Khorsun

• See Tracker item CORE-4556.

Data pages are now allocated as a group of sequential ordered pages (extents).

• See Tracker item CORE-4445.

The main database file extends faster when physical backup state changes from stalled to merge.

• See Tracker item CORE-4443.

Linux systems that support “fast file growth” can now use it.

• See Tracker item CORE-4432.

Attachments no longer block others when the allocation table is read for the first time.

• See Tracker item CORE-4431.

Contention has been reduced for the allocation table lock while database is in stalled physical backup state.

Remote Interface/Network Protocol
Dmitry Yemanov

Tracker item CORE-2530.

Further improvements were made to Firebird's network protocol, providing a denser data stream and better
prefetch logic. The following improvements were implemented:

1. The full length of a field whose value is NULL is no longer sent over the wire. (Tracker item CORE-2897).
NULL flags (4 bytes per field) are replaced with a bitmap and only these flags are transmitted, in the bitmap.

http://tracker.firebirdsql.org/browse/CORE-4528
http://tracker.firebirdsql.org/browse/CORE-1482
http://tracker.firebirdsql.org/browse/CORE-4556
http://tracker.firebirdsql.org/browse/CORE-4445
http://tracker.firebirdsql.org/browse/CORE-4443
http://tracker.firebirdsql.org/browse/CORE-4432
http://tracker.firebirdsql.org/browse/CORE-4431
http://tracker.firebirdsql.org/browse/CORE-2530
http://tracker.firebirdsql.org/browse/CORE-2897

Changes in the Firebird Engine

18

This improvement is available for the DSQL API only, so gbak does not benefit from this improvement,
as it uses a lower level BLR API.

2. The prefetch (batch receive) algorithm is now aware of variable-length messages, so that VARCHARs and
NULLs may reduce the transmitted message size, allowing more rows to be transmitted in each batch.

Acknowledgement

This work was sponsored by donations collected at the 9th Firebird Developers' Day conference in Brazil.

Miscellaneous Improvements

Miscellaneous engine improvements include.-

Connections Limit Raised
Paul Beach

(CORE-4439) :: Maximum connections (FD_SETSIZE) on Windows Superserver and Superclassic was raised
from 1024 to 2048.

Better Error Diagnosis
Dmitry Yemanov

(CORE-3881) :: The error reported for index/constraint violations has been extended to include the problematic
key value.

ICU Version Upgraded
Adriano dos Santos Fernandes

(CORE-2224) :: The ICU version was upgraded to v.52.1.

Internal Debug Info Made Human-readable
Vlad Khorsun

A new BLOB filter translates internal debug information into text.

A Silly Message is Replaced
Claudio Valderrama C.

A silly message sent by the parser when a reference to an undefined object was encountered was replaced with
one that tells it like it really is.

http://tracker.firebirdsql.org/browse/CORE-4439
http://tracker.firebirdsql.org/browse/CORE-3881
http://tracker.firebirdsql.org/browse/CORE-2224

Changes in the Firebird Engine

19

New Pseudocolumn RDB$RECORD_VERSION
Adriano dos Santos Fernandes

A pseudocolumn named RDB$RECORD_VERSION returns the number of the transaction that created the cur-
rent record version.

It is retrieved the same way as RDB$DB_KEY, i.e., select RDB$RECORD_VERSION from aTable where...

systemd init Scripts
Alex Peshkov

systemd init scripts are available in Firebird 3 POSIX installers. See Tracker ticket CORE-4085.

http://tracker.firebirdsql.org/browse/CORE-4085

20

Chapter 4

Changes to the
Firebird API and ODS

ODS (On-Disk Structure) Changes

New ODS Number

Firebird 3.0 creates databases with an ODS (On-Disk Structure) version of 12.

Implementation ID is Deprecated
Alex Peshkov

The Implementation ID in the ODS of a database is deprecated in favour of a new field in database headers
describing hardware details that need to match in order for the database to be assumed to have been created by
a compatible implementation.

The old Implementation ID is replaced with a 4-byte structure consisting of hardware ID, operating system ID,
compiler ID and compatibility flags. The three ID fields are just for information: the ODS does not depend upon
them directly and they are not checked when opening the database.

The compatibility flags are checked for a match between the database and the engine opening it. Currently we
have only one flag, for endianness. As previously, Firebird will not open a database on little-endian that was
created on big-endian, nor vice versa.

Sample gstat Output

./gstat -h employee
Database “/usr/home/firebird/trunk/gen/Debug/firebird/examples/empbuild/employee.fdb”
Database header page information:

 Implementation HW=AMD/Intel/x64 little-endian OS=Linux CC=gcc

The purpose is to make it easier to do ports of Firebird for new platforms.

Maximum Page Size

The maximum page size remains 16 KB (16384 bytes).

Changes to the Firebird API and ODS

21

Maximum Number of Page Buffers in Cache

The maximum number of pages that can be configured for the database cache depends on whether the database
is running under 64-bit or 32-bit Firebird:

• 64-bit :: 2^31 -1 (2,147,483,647) pages

• 32-bit :: 128,000 pages, i.e., unchanged from V.2.5

System Tables

New System Tables

RDB$MAPPING Stores authentication and other security mappings
RDB$PACKAGES Header for SQL packages
SEC$USERS Virtual table to query the local user list
SEC$USER_ATTRIBUTES Virtual table storing local user attributes

Changes to System Tables

RDB$SYSTEM_FLAG
Claudio Valderrama C.

RDB$SYSTEM_FLAG has been made NOT NULL in all tables.

CORE-2787.

RDB$TYPES
Dmitry Yemanov

Missing entries were added to RDB$TYPES. They describe the numeric values for these columns:

 RDB$PARAMETER_TYPE (table RDB$PROCEDURE_PARAMETERS)
 RDB$INDEX_INACTIVE (table RDB$INDICES)
 RDB$UNIQUE_FLAG (table RDB$INDICES)
 RDB$TRIGGER_INACTIVE (table RDB$TRIGGERS)
 RDB$GRANT_OPTION (table RDB$USER_PRIVILEGES)
 RDB$PAGE_TYPE (table RDB$PAGES)
 RDB$PRIVATE_FLAG (tables RdB$PROCEDURES and RDB$FUNCTIONS)
 RDB$LEGACY_FLAG (table RDB$FUNCTIONS)
 RDB$DETERMINISTIC_FLAG (table RDB$FUNCTIONS)

Monitoring Tables
Dmitry Yemanov

Per-table performance counters have been added to all of the monitoring tables. See Tracker CORE-4564.

http://tracker.firebirdsql.org/browse/CORE-2787
http://tracker.firebirdsql.org/browse/CORE-4564

Changes to the Firebird API and ODS

22

MON$ATTACHMENTS

New information is now available:

• Operating system user name. See Tracker CORE-3779.

• Protocol and client library version. See Tracker CORE-2780.

• Client host name. See Tracker CORE-2187.

• authentication method used for connection (MON$AUTH_METHOD). See Tracker CORE-4222.

MON$DATABASE

• Database owner (MON$OWNER) added. See Tracker CORE-4218.

• Security database type (MON$SEC_DATABASE) flag added. Value will be one of Default/Self/Other. See
Tracker CORE-4729.

MON$STATEMENTS

The PLAN is now included. See Tracker CORE-2303.

Application Programming Interfaces

A new public API replaces the legacy one in new applications, especially object-oriented ones. The interface part
can be found in the header file Interfaces.h in the directory /include/firebird beneath the installation
root directory.

Note

POSIX installations have a symlink pointing to /usr/include/firebird/Interfaces.h

The new public API can be also used inside user-defined routines (UDR, q.v.) for callbacks inside the engine,
allowing a UDR to select or modify something in the database, for example.

The main difference between the new API and the legacy one is that UDRs can query and modify data in the
same connection or transaction context as the user query that called that UDR. It is now possible to write external
triggers and procedures, not just external functions (UDFs).

Interfaces and the New Object-oriented API
Alex Peshkov

Firebird needed a modernised API for a number of compelling reasons.

• High on the list was the limitation of the 16-bit integer pervading the legacy API, encompassing message
size, SQL operator length, BLOB data portions, to name a few examples. While 16-bit was probably adequate
when that old API came to life, in today's environments it is costly to work around.

http://tracker.firebirdsql.org/browse/CORE-3779
http://tracker.firebirdsql.org/browse/CORE-2780
http://tracker.firebirdsql.org/browse/CORE-2187
http://tracker.firebirdsql.org/browse/CORE-4222
http://tracker.firebirdsql.org/browse/CORE-4218
http://tracker.firebirdsql.org/browse/CORE-4729
http://tracker.firebirdsql.org/browse/CORE-2303

Changes to the Firebird API and ODS

23

A trivial solution might be to add new functions that support 32-bit variables. The big downside is the obvious
need to retain support for the old API by having pairs of functions with the same functionality but differing
integer sizes. In fact, we did something like this to support 64-bit performance counters, for no better reason
than being pressed to provide for it without having a more elegant way to implement it.

• Another important reason, less obvious, derives from the era when Firebird's predecessor, InterBase, did
not support SQL. It used a non-standard query language, GDML, to manage databases. Data requests were
transported between client and server using messages whose formats were defined at request compilation
time in BLR (binary language representation). In SQL, the operator does not contain the description of the
message format so the decision was taken to surround each message with a short BLR sequence describing
its format.

The ISC API also has the XSQLDA layer over BLR. The trap with the XSQLDA solution is that it encapsu-
lates both the location of the data and their format, making it possible to change location or format (or both)
between fetch calls. Hence, the need for the BLR wrapping in every fetch call—notwithstanding, this potential
capability to change the data format between fetches was broken in the network layer before Firebird existed.

But to support the XSQLDA layer that rides on top of the message-based API that lower level API also has
support sending format BLR at every turn.

This system involving calls processing data through multiple layers is hard to extend and wastes performance;
the SQLDA is not simple to use; the desire to fix it was strong.

• Other reasons—numerous but perhaps less demanding—for changing the API included enhancing the status
vector and optimizing dynamic library loading. Interfaces also make it so much easier and more comfortable
to use the messages API.

The Non-COM Choice

The new interfaces are not compatible with COM, deliberately, and the reasons have to do with future perfor-
mance enhancement.

At the centre of the Providers architecture in Firebird 3.0 is the y-valve, which is directed at dispatching API
calls to the correct provider. Amongst the potential providers are older ones with potentially older interfaces. If
we used COM, we would have to call the method IUnknown for each call (including record fetch), just to ensure
that the provider really had some newer API method. Along with that comes the likelihood of future additions
to the catalogue of API calls to optimize performance. A COM-based solution does not play well with that.

Firebird interfaces, unlike COM, support multiple versions. The interface version is determined by the total
number of virtual functions it encompasses and is stored as a pointer-size integer at the beginning of the virtual
functions table. This makes it possible for very fast checking of the interface version, since it requires no virtual
call. That is to say, the pointer check has no overhead, unlike COM.

The Hierarchy of Interfaces

A detailed discussion of all the functions presented by all the interfaces is outside the scope of this overview.
The general schematic looks like this:

The base of the structure is IVersioned. It is the interface that enables a version upgrade. A lot of interfaces
not requiring additional lifetime control are based directly on IVersioned. IMaster is one example already

Changes to the Firebird API and ODS

24

mentioned. Others include a number of callback interfaces whose lifetimes must match the lifetimes of the
objects from which they were to be used for callback.

Two interfaces deal with lifetime control: IDisposable and IRefCounted. The latter is especially active in the
creation of other interfaces: IPlugin is reference counted, as are many other interfaces that are used by plug-ins.
These include the interfaces that describe database attachment, transaction management and SQL statements.

Not everything needs the extra overhead of a reference-counted interface. For example, IMaster, the main inter-
face that calls functions available to the rest of the API, has unlimited lifetime by definition. For others, the API
is defined strictly by the lifetime of a parent interface; the IStatus interface is non-threaded. For interfaces with
limited lifetimes it is of benefit to have a simple way to destroy them, that is, a dispose() function.

Each plug-in has one and only one main interface—IPlugin—which is responsible for basic plug-in function-
ality. In fact, a lot of plugins have only that interface, although that is not a requirement.

Finally, there is IProvider, a kind of “main” plug-in in the Firebird API. IProvider is derived from IPlugin and
must be implemented by every provider. If you want to write your own provider you must implement IProvider.
It is implemented also by the y-valve: it is the y-valve implementation that is returned to the user when the
getDispatcher() function from the master interface is called.

IProvider contains functions enabling creation of an attachment to a database (attach and create) or to the
Services Manager.

Interfaces Q & A

Q. We access new API using IMaster. But how to get access to IMaster itself?

• A. This is done using just the one new API function fb_get_master_interface(). It is exported by the fb-
client library. Also IMaster is passed as a parameter to each plug-in during its registration in the system.

Q. The non-use of COM-based interfaces was said to be to avoid working with IUnknown methods and that
this is done due to performance issues. Instead you have to check the interface version. Why is that faster than
using IUnknown?

• A. As was already mentioned we do not need to execute virtual calls when checking the interface version.
Taking into an account that each virtual call means a reset of the CPU cache, it is an important difference,
especially for the very small calls like getting specific metadata properties from IMetadata.

Other New APIs

Other new APIs support various plug-ins by declaring the interfaces between the engine and the plug-in. Besides
pluggable authentication and pluggable encryption, Firebird 3 supports “external engines”, bridges between the
engine and the execution environments that can run UDRs: native code, Java and others. By and large they are
intended for use by third-party solution providers, rather than for client application development.

For creating custom plug-ins and bridges, the relevant interface (API) needs to be implemented in the plug-
in code.

API Improvements

Improvements to the legacy API include.-

Changes to the Firebird API and ODS

25

Scrollable Cursor Support
Dmitry Yemanov

In PSQL, a scrollable cursor can be operated on directly to navigate flexibly from the current row to any anoth-
er row either forwards or backwards. API support is available to make scrollable cursors available to DSQL
applications.

Scrollable Cursor Usage

The result set must be opened with the flag IStatement::CURSOR_TYPE_SCROLLABLE explicitly spec-
ified.

Fetch Methods

The following fetch methods of the IResultSet interface are available:

int fetchNext(IStatus* status, void* message);
// equivalent to FETCH NEXT FROM <cursor name>

Moves the cursor's current position to the next row and returns it. If the cursor is empty or already positioned
at the last row, the condition NO_DATA is returned.

int fetchPrior(IStatus* status, void* message);
// equivalent to FETCH PRIOR FROM <cursor name>

Moves the cursor's current position to the prior row and returns it. If the cursor is empty or already positioned
at the first row, the condition NO_DATA is returned.

int fetchFirst(IStatus* status, void* message);
// equivalent to FETCH FIRST FROM <cursor name>

Moves the cursor's current position to the first row and returns it. If the cursor is empty, the condition NO_DATA
is returned.

int fetchLast(IStatus* status, void* message);
// equivalent to FETCH LAST FROM <cursor name>

Moves the cursor's current position to the last row and returns it. If the cursor is empty, the condition NO_DATA
is returned.

int fetchAbsolute(IStatus* status, int position, void* message);
// equivalent to FETCH ABSOLUTE <position> FROM <cursor name>

Moves the cursor's current position to the specified <position> and returns the located row. If <position> is
beyond the cursor's boundaries, the condition NO_DATA is returned.

Changes to the Firebird API and ODS

26

int fetchRelative(IStatus* status, int offset, void* message);
// equivalent to FETCH RELATIVE <offset> FROM <cursor name>

Moves the cursor's current position backward or forward by the specified <offset> and returna the located row.
If the calculated position is beyond the cursor's boundaries, the condition NO_DATA is returned.

Notes

1. When a scrolling option is omitted, NO SCROLL is implied (i.e., the cursor is opened as forward-only).
This means that only the fetchNext() API call can be used. Other fetch methods will return an error.

2. Scrollable cursors are internally materialized as a temporary record set, thus consuming memory/disk
resources, so this feature should be used only when really necessary.

SPB Support for New Statistics Feature in gbak Output
Vlad Khorsun

A new, much requested feature was added to gbak verbose output: optional run-time statistics. Read about it
here. The feature is fully supported in the Services API with a new item in the SPB (Services Parameter Block),

#define isc_spb_bkp_stat 15

along with its synonym

#define isc_spb_res_stat isc_spb_bkp_stat

Usage

isc_spb_bkp_stat, <len>, <string>
isc_spb_res_stat, <len>, <string>

where <len> (2 bytes) indicates the length of the following string parameter, and <string> (1-4 bytes) is a
string consisting of one character per statistics item.

The fbsvcmgr utility also supports the new SPB tags.

Better Error Reports for String Overflows
Alex Peshkov

Include expected and actual string length in the error message for string overflows (SQLCODE -802).

More Detail in “Wrong Page Type” Error Reports
Alex Peshkov

More details in the error message "wrong page type", i.e., identifying expected and encountered page types by
name instead of numerical type.

Changes to the Firebird API and ODS

27

New Services Tag for Overriding LINGER
Alex Peshkov

The Services API now includes the tag isc_spb_prp_nolinger, for example (in one line):

 fbsvcmgr host:service_mgr user sysdba password xxx
 action_properties dbname employee prp_nolinger

For information regarding LINGER, see the write-up in the DDL chapter.

New Connection Formats for Local Superserver Clients on Windows

In previous Firebird versions, a serverless protocol known as “Windows Local” was available to local clients
connecting to Superserver on a Windows platform, using the XNET subsystem. A typical connection string
looked like this:

 c:\Program Files\Firebird_2_5\examples\empbuild\employee.fdb

Under the new unified server, that form of connection attempts to load an embedded server. It is no longer valid
for a serverless client connection to Superserver. If you try, you will get a refusal message to the effect “File is in
use by another process”. This is not a bug. Since Superserver clients share resources, another server (in this case,
an embedded server) cannot attach a client to the same database that Superserver has any clients attached to.

However, all is not lost. The XNET subsystem can still do local client sessions for Superserver. You just need
a more elaborate connection string now. You have a few choices:

• this one is the former “Windows local”, using the XNET subsystem and shared memory for a (nominally)
serverless connection:

 xnet://alias-or-path-to-database

So, for our connection to the employee database:

 xnet://c:\Program Files\Firebird_3_0\examples\empbuild\employee.fdb

or using an alias:

 xnet://employee

• Connection to host/port via TCP:

 inet://host:port/alias-or-path-to-database

• Connection to host/port via Named Pipes (aka NetBEUI):

 wnet://host:port/alias-or-path-to-database

Changes to the Firebird API and ODS

28

• Connection to localhost via TCP:

 inet://alias-or-path-to-database

• Connection to localhost via named pipes (aka NetBEUI):

 wnet://alias-or-path-to-database

Perform Some Validation Services On-line
Vlad Khorsun

This feature was ported forward from Firebird 2.5.4.

Database validation enables low-level checks of the consistency of on-disk structures and even to fix some
minor corruptions. The recommended procedure for any valuable database is for the DBA to validate a database
periodically to ensure it is healthy.

Exclusive access to the database is required: any kind of concurrent access is forbidden during validation. Some-
times, blocking user access could be a major hold-up, especially if the database is large and complex.

Online validation is a new feature that allows some consistency checks to be performed without exclusive access.

What Online Validation Can Do

• validate some (or all) user tables in a database.

System tables are not validated.

• validate some (or all) indices

Other ODS checks, such as Header\PIP\TIP\Generators pages, are not performed.

Protection During Online Validation

While a table (and\or its index) is undergoing validation, user attachments are allowed to read this table. Any
attempt to change data (INSERT\UPDATE\DELETE) will wait until validation finishes or, depending on the
lock timeout of the user transaction, will return a lock timeout error.

Any kind of garbage collection on the table or its indexes is disabled whilst it is undergoing validation:

• background and cooperative garbage collection will just skip this table

• sweep will be terminated with an error

When online validation starts to check a table, it acquires a couple of locks to prevent concurrent modifications
of its data:

• a relation lock in PR (protected read) mode

Changes to the Firebird API and ODS

29

• (NEW) a garbage collection lock in PW (protected write) mode

Both locks are acquired using a user-specified lock timeout. An error is reported for any lock request that fails
and that table is skipped.

Once the locks are acquired, the table and its indexes are validated in the same way as a full validation does it.
The locks are released when it completes and the whole procedure is repeated for the next table.

The New Services API action: isc_action_svc_validate

Online validation is implemented as a Firebird service and is accessed through the Services API. Thus, it cannot
be run from the gfix utility.

The call involves the following elements:

Action:
 isc_action_svc_validate

Parameters:
 isc_spb_dbname :
 database file name, string, mandatory

 isc_spb_val_tab_incl, isc_spb_val_tab_excl,
 isc_spb_val_idx_incl, isc_spb_val_idx_excl :
 patterns for tables\indices names, string, optional

 isc_spb_val_lock_timeout :
 lock timeout, integer, optional

Output:
 text messages with progress of online validation process

Using isc_action_svc_validate Interactively

The fbsvcmgr utility has full support for the new service. The syntax is:

fbsvcmgr [host:]service_mgr [user <...>] [password <...>]
 action_validate dbname <filename>
 [val_tab_incl <pattern>]
 [val_tab_excl <pattern>]
 [val_idx_incl <pattern>]
 [val_idx_excl <pattern>]
 [val_lock_timeout <number>]

where

val_tab_incl pattern for table names to include in validation run
val_tab_excl pattern for table names to exclude from validation run
val_idx_incl pattern for index names to include in validation run, by

default %, i.e. all indexes
val_idx_excl pattern for index names to exclude from validation run

Changes to the Firebird API and ODS

30

val_lock_timeout lock timeout, used to acquire locks for table to validate,
in seconds, default is 10 secs. 0 is no-wait, -1 is infinite
wait

Usage Notes

• Patterns are regular expressions, processed by the same rules as SIMILAR TO expressions.

• All patterns are case-sensitive, regardless of database dialect.

• If the pattern for tables is omitted then all user tables will be validated.

• If the pattern for indexes is omitted then all indexes of the appointed tables will be validated.

• System tables are not validated.

• To specify a list of tables or indexes:

1. Separate names with the pipe character '|'

2. Do not add spaces: TAB1 | TAB2 is wrong

3. Enclose the whole list in double quotes to avoid confusing the command interpreter

Examples

1. Validate all tables in database 'c:\db.fdb' with names starting with 'A'. Indexes are not validated. Lock wait
is not performed.

fbsvcmgr.exe service_mgr user SYSDBA password masterkey
 action_validate dbname c:\db.fdb
 val_tab_incl A%
 val_idx_excl %
 val_lock_timeout 0

2. Validate tables TAB1 and TAB2 and all their indexes. Lock wait timeout is 10 seconds (the default):

fbsvcmgr.exe service_mgr user SYSDBA password masterkey
 action_validate dbname c:\db.fdb
 val_tab_incl "TAB1|TAB2"

3. Default behavior of val_XXX options: validate all user tables and their indexes in database 'c:\db.fdb', lock
wait is the default 10 seconds:

fbsvcmgr.exe service_mgr user SYSDBA password masterkey
 action_validate dbname c:\db.fdb

Code Improvement
Alex Peshkov

(CORE-4387) The functions IStatement::execute() and IAttachment::execute() now return
an error pointer to the old transaction interface.

http://tracker.firebirdsql.org/browse/CORE-4387

31

Chapter 5

Reserved Words and Changes

New Keywords in Firebird 3.0

Reserved

Items marked with asterisks (*) were previously non-reserved.

BOOLEAN REGR_AVGX SCROLL
CORR REGR_AVGY SQLSTATE
COVAR_POP REGR_COUNT STDDEV_POP
COVAR_SAMP REGR_INTERCEPT STDDEV_SAMP
DELETING * REGR_R2 TRUE
DETERMINISTIC REGR_SLOPE UNKNOWN
FALSE REGR_SXX UPDATING *
INSERTING * REGR_SXY VAR_POP
OFFSET REGR_SYY VAR_SAMP
OVER RETURN
RDB$RECORD_VERSION ROW

Non-reserved

ABSOLUTE FIRST_VALUE PLUGIN
ACOSH IDENTITY PRIOR
ASINH INCREMENT RANK
ATANH LAST_VALUE RELATIVE
BODY LAG ROW_NUMBER
CONTINUE LEAD SERVERWIDE
DDL LINGER TAGS
DECRYPT NAME TRUSTED
DENSE_RANK NTH_VALUE USAGE
ENCRYPT PACKAGE
ENGINE PARTITION

32

Chapter 6

Configuration
Additions and Changes

The file aliases.conf is renamed to databases.conf. An old aliases.conf from a previous version
can simply be renamed and the new engine will just continue to use it as before. However, databases.conf
can now include some configuration information for individual databases.

Scope of Parameters

Some parameters are marked as configurable per-database or per-connection.

• Per-database configuration is done in databases.conf.

• Per-connection configuration is primarily for client tool use and is done using the DPB parameter
isc_dpb_config or, for Services, the SPB parameter isc_spb_config.

• In the case of Embedded, the DPB can be used to tune per-database entries on first attaching to a database.

Macro Substitution

A number of predefined macros (syntax $(name)) is available for use in the configuration files to substitute for
a directory name:

$(root)
Root directory of Firebird instance

$(install)
Directory where Firebird is installed. $(root) and $(install) are initially the same. $(root) can be overridden
by setting or altering the environment variable FIREBIRD, in which case it becomes different from $(install).

$(this)
Directory where current configuration file is located

$(dir_conf)
Directory where firebird.conf and databases.conf are located

$(dir_secdb)
Directory where the default security database is located

$(dir_plugins)
Directory where plugins are located

Configuration Additions and Changes

33

$(dir_udf)
Directory where UDFs are located by default

$(dir_sample)
Directory where samples are located

$(dir_sampledb)
Directory where sample DB (employee.fdb) is located

$(dir_intl)
Directory where international modules are located

$(dir_msg)
Directory where the messages file (firebird.msg) is located. $(dir_msg) usually should be the same as $(root)
but can be overridden by the environment variable FIREBIRD_MSG.

Tip

You can observe the usage of some of the macros in databases.conf.

Notes

In our pre-built binaries, $(dir_conf) and $(dir_secdb) would normally be the same as $(root) and $(install).

$(dir_plugins), $(dir_udf), $(dir_sample), $(dir_sampledb) and $(dir_intl) are predefined sub-directories inside
$(root).

The build conventions are not “rules” that could be expected to apply in every distribution of Firebird. Dis-
tro-specific Linux packages, for example, each prefer to fit the Firebird components into standard layouts that
comply with their own conventions. As an illustration, user binaries, such as isql might be located in /usr/
bin, server binaries in /usr/sbin, configuration files in /etc/firebird.d and so on. Obviously, $(root)
would then make no sense, even if the $(dir_something) macros still pointed to actual directories.

Includes

One configuration file can be included in another by using an “include” directive, e.g.,

 include some_file.conf

A relative path is treated as relative to the enclosing configuration file. So, if our example above is inside /opt/
config/master.conf then our include refers to the file /opt/config/some_file.conf.

Wildcards

The standard wildcards * and ? may be used in an include directive, to include all matching files in undefined
order. For example,

Configuration Additions and Changes

34

 include $(dir_plugins)/config/*.conf

Expression of Parameter Values

Previously, byte values were specified by default as integer, representing the number of bytes. However, now
you can optionally specify them in Kilobytes, Megabytes or Gigabytes, as appropriate, by adding K, M or G
(case-insensitive). For example, 24M is read as 25165824 (24 * 1024 * 1024).

Boolean values are expressed as non-zero (true)|zero (false) by default, but you may now use the quoted strings
'y', 'yes' or 'true' instead of a non-zero digit.

“Per-database” Configuration

Custom configuration at database level is achieved with formal entries in databases.conf.

Format of Configuration Entries

In aliases.conf the format for specifying a database alias was

 aliasname = /absolute/path/to/database_file

If you are not adding any database-specific configuration directives for an alias, the format is just as it was
before, e.g.,

 emp = c:\Program Files\examples\empbuild\employee.fdb
 ** or **
 emp = /opt/firebird/examples/empbuild/employee.fdb
 ** or **
 emp = $(dir_sampleDb)/employee.fdb

A slightly more complex format is used for cases where certain non-global parameters are to be targeted at an
indvidual databases. The entry for the database is defined by the alias declaration, as previously. The database-
specific directives are listed below it, within curly brackets.

 #
 # Directives for MYBIGDB
 MYBIGDB = opt/databases/mybigdb.fdb
 # {
 # LockMemSize = 32M # We know that MYBIGDB needs a lot of locks
 # LockHashSlots = 19927 # and a hash table large enough for them
 # }
 #

Configuration Additions and Changes

35

Parameters Available

The following parameters can be copy/pasted to databases.conf and used as overrides for specific databas-
es.

Table 6.1. Parameters available in databases.conf

Engine-related

DatabaseGrowthIncrement DeadlockTimeout DefaultDbCachePages

EventMemSize FileSystemCacheThreshold ExternalFileAccess

GCPolicy LockAcquireSpins LockHashSlots

LockMemSize MaxUnflushedWrites MaxUnflushedWriteTime

SecurityDatabase SharedCache SharedDatabase

UserManager WireCrypt WireCryptPlugin

Client-related

Some parameters can be configured at the client connection via the
DPB/SPB, as an alternative to configuring them in databases.
conf. Please refer back to Scope of Parameters at the beginning of
this chapter to understand these differences.

AuthClient Providers

The following parameters can be configured ONLY via the DPB/SPB

ConnectionTimeout DummyPacketInterval IpcName

RemoteAuxPort RemotePipeName RemoteServiceName

RemoteServicePort TCPNoNagle

New Parameters

New parameters added to firebird.conf are:

SecurityDatabase

Defines the name and location of the security database that stores login user names and passwords used by the
server to validate remote connections. By default, in firebird.conf, it is $(root)/security3.fdb. It
can be overridden for a specific database by a configuration in databases.conf.

AuthServer and AuthClient

Two parameters that determine what authentication methods can be used by the network server and the client
redirector. The enabled methods are listed as string symbols separated by commas, semicolons or spaces.

Configuration Additions and Changes

36

• Secure remote passwords (Srp), using the plug-in is the default, using the OS-appropriate plug-in (libSrp.
s0 | Srp.dll | Srp.dylib)

• On Windows, the Security Support Provider Interface (Sspi) is used when no login credentials are supplied

• Client applications can use legacy authentication (Legacy_Auth) to talk to old servers.

For AuthServer, Srp and Win_Sspi are listed; for AuthClient, Srp, Win_Sspi and Legacy_Auth.

To disable a method, erase the comment marker (#) and remove the unwanted method from the list.

Both parameters can be used in databases.conf. They can both be used in the DPB or the SPB for a con-
nection-specific configuration.

WireCrypt

Sets whether the network connection should be encrypted. It has three possible values: Required | Enabled |
Disabled. The default is set such that encryption is Required for connections coming in to the server and Enabled
for connections outgoing to a server.

To access a server using an older client library and, thus, no encryption, WireCrypt in the server configuration
file should be set to Enabled or Disabled to avert the default Required.

The rules are simple: if one side has WireCrypt = Required and the other sets the parameter to Disabled,
side with WireCrypt=Required rejects the connection and it is not established.

A missing WireCrypt plug-in or encryption key in cases where the channel must be encrypted also thwarts a
connection.

In all other cases, connection is established without encryption if at least one side has WireCrypt = Dis-
abled. In other cases, the encrypted connection is established.

UserManager

Sets the plug-in that will operate on the security database. It can be a list with blanks, commas or semicolons
as separators: the first plug-in from the list is used.

The default plug-in is Srp (libSrp.s0 | Srp.dll | Srp.dylib).

The UserManager parameter can be used in databases.conf for a database-specific override.

TracePlugin

Specifies the plug-in used by Firebird's Trace facility to send trace data to the client app or audit data to the
log file.

The default plug-in is fbtrace (libfbtrace.s0 | fbtrace.dll | fbtrace.dylib).

WireCryptPlugin

A wire-crypt plug-in is used to encrypt and decrypt data transferred over the network.

Configuration Additions and Changes

37

The installation default Arc4 implies use of an Alleged RC4 plug-in. The configured plug-in, which requires a
key generated by the configured authentication plug-in, can be overridden in the API for a specific connection
via the DPB or the SPB.

Tip

For information about configuring plug-ins, see Configuring Plug-ins in the Engine chapter.

KeyHolderPlugin

This parameter would represent some form of temporary storage for database encryption keys. Nothing is im-
plemented as a default plug-in but a sample Linux plug-in named libCryptKeyHolder_example.so can
be found in /plugins/.

Providers

List of allowed transports for accessing databases, discussed in the Engine chapter.

SharedCache and SharedDatabase

Two parameters that, together, determine the execution mode of the server (“server model”). Discussed in the
Engine chapter.

RemoteAccess

Parameter in firebird.conf and databases.conf provides an efficient, configurable replacement for
hard-coded rules limiting access to security3.fdb. It can also be used to configure limited remote access
to any other database, including non-default security databases.

By default RemoteAccess is enabled for all databases except the security database. If you intend using more
than one dedicated security database, then disabling remote access to it (or them) via databases.conf is
recommended.

For stricter security, server-wide, you can set RemoteAccess to false in firebird.conf and use entries in
database.conf to re-enable it for specific databases.

RemoteAccess is a Boolean. It can be expressed with either true/false, 1/0 or Yes/No.

IPv6V6Only
Michael Kubecek

Parameter in firebird.conf only. (TCP ports are created before any connection is established.)

Firebird 3 supports IPv6 connections, on both client and server sides.

Configuration Additions and Changes

38

Server

By default, the Firebird server listens on the zero IPv6 address (::) and accepts all incoming connections, whether
IPv4 or IPv6, and IPv6V6Only is set to false (=0). If it is set to true, the server, still listening implicitly or
explicitly on the zero IPv6 address, will accept only IPv6 connections.

Note

A different listening address, either IPv4 or IPv6, can be set using the RemoteBindAddress parameter. If an
IPv4 address or a non-zero IPv6 address is used, the IPv6V6Only directive has no effect.

On POSIX platforms, in Classic mode, the parameters RemoteBindAddress, RemoteServicePort and Remote-
ServiceName are ignored by fbserver, since the listening socket is set up by (x)inetd. The listening ad-
dress and/or port need to be set in the (x)inetd.

IPv6V6Only is a Boolean. It can be expressed with either true/false, 1/0 or Yes/No.

Client

The standard text form of an IPv6 address uses the colon character to separate the four groups of digits. In the
connection string, the IPv6 address must be enclosed in square brackets, to resolve the ambiguity with the use
of the colon as the separator between the host IP address and the database path. For example:

 connect '[2014:1234::5]:test';
 connect '[2014:1234::5]/3049:/srv/firebird/test.fdb';

Notes

For consistency, square brackets can be optionally used around an IPv4 address or a domain name.

If a domain name is used in connection string, all addresses (IPv4 and IPv6) are tried in the order returned by
resolver until a connection is established. If all attempts fail, the client fails to connect.

Parameters Changed or Enhanced

The following parameters have been changed or enhanced:

ExternalFileAccess

Entries in the “Restrict” list of the ExternalFileAccess parameter can be used to mangle file names with relative
paths.

Entries in the “Restrict” list were already used to mangle file names with no path component. For example, with

 ExternalFileAccess = /opt/extern

Configuration Additions and Changes

39

and the following sequence of commands:

SQL> create table qq external file 'zz' (x int);
SQL> insert into qq values(1);
SQL> commit;

the file /opt/extern/zz will be created.

But if something like this is submitted,

 create table qq external file 'dir/zz' (x int);

the result is an error about denied access to file /opt/firebird/bin/dir/zz.

The improvement avoids this gap by mangling the file name in accord with the value of the parameter and, if
necessary, creating the missing path components, such as 'dir' in the example above.

Parameters Removed or Deprecated

The following parameters have been removed or deprecated:

RootDirectory

In older version, this parameter provided a superfluous option for recording the file system path to Firebird's
“root” files (firebird.conf, the security database and so on).

LegacyHash

This parameter used to make it possible to use the old security.fdb from Firebird 1.X installations after it
had been subjected to an upgrade script and thence to enable or disable use of the obsolete DES hash encrypting
algorithm. It is no longer supported.

OldSetClauseSemantics

This parameter enabled temporary support for an implementation fault in certain sequences of SET clauses in
versions of Firebird prior to v.2.5. It is no longer available.

OldColumnNaming

This parameter temporarily enabled legacy code support for an old InterBase/Firebird 1.0 bug that generated
unnamed columns for computed output which was not explicitly aliased in the SELECT specification. It is no
longer available.

Configuration Additions and Changes

40

LockGrantOrder

This parameter used to allow the option to have Firebird's Lock Manager emulate InterBase v3.3 lock allocation
behaviour, whereby locks would be granted in no particular order, as soon as soon as they were available, rather
than by the normal order (first-come, first-served). The legacy option is no longer supported.

Obsolete Windows priority settings

UsePriorityScheduler, PrioritySwitchDelay and PriorityBoost, which were marginally relevant to obsolete pro-
cessors on obsolete Windows versions, are no longer supported.

41

Chapter 7

Security

Security improvements in Firebird 3 include:

Location of User Lists
Alex Peshkov

CORE-685

Firebird now supports an unlimited number of security databases. Any database may act as a security database
and can be a security database for itself.

Use databases.conf to configure a non-default security database. This example configures /mnt/stor-
age/private.security.fdb as the security database for the first and second databases:

 first = /mnt/storage/first.fdb
 {
 SecurityDatabase = /mnt/storage/private.security.fdb
 }

 second = /mnt/storage/second.fdb
 {
 SecurityDatabase = /mnt/storage/private.security.fdb
 }

Here we use third database as its own security database:

 third = /mnt/storage/third.fdb
 {
 SecurityDatabase = third
 }

Note

The value of the SecurityDatabase parameter can be a database alias or the actual database path.

Creating an Alternative Security Database

To start using a separate, non-default security database, the first step is to create it, unless it already exists. An
embedded isql connection is used:

http://tracker.firebirdsql.org/browse/CORE-685

Security

42

 > isql -user sysdba
 SQL> create database '/mnt/storage/private.security.fdb';

Now connect to any database which will be served by the security database you are currently preparing, in order
to create its SYSDBA user:

 SQL> connect first;
 SQL> create user sysdba password 'sysdba-in-private-security-password';
 SQL> commit;
 SQL> exit;

Database Encryption
Alex Peshkov

CORE-657

With Firebird 3 comes the ability to encrypt data stored in database. Not all of the database file is encrypted:
just data, index and blob pages.

To make it possible to encrypt a database you need to obtain or write a database crypt plug-in.

Note

The sample crypt plug-in in examples/dbcrypt does not perform real encryption, it is merely a sample
of how to go about it.

Secret Key

The main problem with database encryption is how to store the secret key. Firebird provides a helper to transfer
that key from the client but that does not imply that storing the key on a client is the best way: it is no more than
a possible alternative. A very bad option is to keep the key on the same disk as the database.

Tasks

To separate encryption and key access efficiently, a database crypt plug-in is split into two parts: encryption
itself and the secret key holder. This may be an efficient approach for third-party plug-ins when you want to use
some good encryption algorithm but you have your own secret way to store a key.

Once you have decided on a crypt plug-in and a key, you can enable them with:

 ALTER DATABASE ENCRYPT WITH <PLUGIN_NAME>

Encryption will start right after this statement commits and will be performed in background. Normal database
activity is not disturbed during encryption.

http://tracker.firebirdsql.org/browse/CORE-657

Security

43

Tip

Encryption progress may be monitored using the field MON$CRYPT_PAGE in the pseudo-table MON
$DATABASE or watching the database header page using gstat -e.

gstat -h will also provide limited information about encryption state.

To decrypt the database do:

 ALTER DATABASE DECRYPT

For Linux, an example plug-in named libDbCrypt_example.so can be found in the /plugins/ sub-
directory.

New Authentication Method in Firebird 3
Alex Peshkov

All of the code related to authentication is plug-in-enabled. Though Firebird performs the generic work, like
extracting authentication data from a network message or putting it into such messages as appropriate, all the
activity related to calculating hashes, storing data in databases or elsewhere, using specific prime numbers and
so on is done by plug-ins.

Firebird 3 has new method of user authentication implemented as a default plugin: secure remote password
(SRP) protocol. Quoting from Wikipedia:

“The SRP protocol creates a large private key shared between the two parties in a manner similar to Diffie-
Hellman key exchange, then verifies to both parties that the two keys are identical and that both sides have
the user's password. In cases where encrypted communications as well as authentication are required, the SRP
protocol is more secure than the alternative SSH protocol and faster than using Diffie-Hellman key exchange
with signed messages. It is also independent of third parties, unlike Kerberos.”

SSH needs key pre-exchange between server and client when placing a public key on the server to make it work.
SRP does not need that. All a client needs are login and password. All exchange happens when the connection
is established.

Moreover, SRP is resistant to “man-in-the-middle” attacks.

Important

Use of the new authentication method is not compatible with old security databases and passwords from them.
There is no way to migrate users from Firebird 2.

Use of an old security database can be supported with the Legacy_Auth authentication plug-in, but this kills
the security benefits of Firebird 3.

The Firebird 3 client is built to make it possible to talk to old servers with the default configuration.

SSL/TLS Support

CORE-3251

http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
http://tracker.firebirdsql.org/browse/CORE-3251

Security

44

So, the answer to the question “Does Firebird use SSL/TLS for password validation?” is “yes and no”. The “No”
answer comes because, by default, SSL is not used. That is due to a minor licensing incompatibility between
Firebird and OpenSSL, the most popular SSL implementation.

The “Yes” applies because anyone is free to write an authentication plug-in that uses SSL and TLS.

Increased Password Length

CORE-1898.

Implementation of SRP in our plugin has increased the password length from 8 bytes. Because of the use of
SHA1 for hashes, it is effectively limited to 20 bytes **. A custom SRP plug-in can be built quite easily with
longer passwords using another hash.

Tip

The increased length limit means the default SYSDBAs password is the full 'masterkey' string (9 chars), no
longer 'masterke' (8 chars) as in older versions!

Support for the LegacyHash and Authentication parameters in firebird.conf has been dropped. Authentication
is overtaken by an AuthServer parameter in firebird.conf or elsewhere.

**Why is the password effectively limited to 20 characters?

A password of more than 20 bytes can be used and it will not be restricted. Hashes for passwords that differ
beyond byte 20 are different. The “effective limit” is due to the limited length of the hash in SHA1—20 bytes
== 160 bits. Sooner, rather than later, a shorter password with the same hash could be found using brute force.
That is why it is often said that the effective password length for a SHA-1-based password is 20 bytes.

That said, the likelihood of hash collisions is remote.

The Authentication Plug-in

The Authentication plug-in comprises three parts:

• Client—prepares data at the client to be sent to server on client

• Server—validates password for correctness

• User Manager—adds, modifies and deletes users on the server. It is not needed if some external authentication
method, such as Windows trusted authentication, is used.

All three parts are actually separate plug-ins which should be configured separately in firebird.conf. Let's
look at an example of configuring a server to accept connections from old clients. The default setting are:

 AuthServer = Srp, Win_Sspi
 UserManager = Srp

To enable access from old clients, AuthServer needs to be changed:

http://tracker.firebirdsql.org/browse/CORE-1898

Security

45

 AuthServer = Srp, Win_Sspi, Legacy_Auth

If we also want to manage the list of users in the old format we must add:

 UserManager = Legacy_UserManager

Multiple User Managers

Multiple user managers can be enumerated in firebird.conf. The first member of the list of user managers
is the default. Selecting from sec$users would produce something like the following:

SQL> select SEC$USER_NAME, SEC$PLUGIN from sec$users;

SEC$USER_NAME SEC$PLUGIN
=============================== ===============================
SYSDBA Legacy_UserManager
SYSDBA Srp
QA_USER1 Srp
QA_USER2 Srp
QA_USER3 Srp
QA_USER4 Srp
QA_USER5 Srp
GUEST Srp
SHUT1 Srp
SHUT2 Srp
QATEST Srp

There might well be two users named SYSDBA in such a list, because each user manager has its own SYSDBA.

Notes

• All user management commands can have the USING PLUGIN clause, whose purpose is to enable selection
of a particular UserManager plug-in from the list in firebird.conf.

• The default user manager in firebird.conf is Srp. If you need to manage legacy logins, set it to
Legacy_UserManager, e.g., UserManager = Legacy_UserManager,Srp.

• UserManager can be configured at database level, in databases.conf.

"Over the wire" Connection Encryption
Alex Peshkov

CORE-672 ...

All network traffic in Firebird 3 may be optionally encrypted. As with authentication, plug-ins are used for
encrypting and decrypting network traffic.

The default plug-in is arc4 (Alleged RC4). It is eminently possible to write your own crypt plug-in to encrypt
data travelling over the wire. Whatever you use for your plug-in, it is necessary to use the Firebird 3 version
of the fbclient library.

http://tracker.firebirdsql.org/browse/CORE-672

Security

46

The Secret Session Key

The challenge with use of a symmetric cypher is where to get a key for it. Firebird assumes that such a key, also
called a secret session key, is produced by the authentication plug-in at the connection establishment phase. SRP
meets this requirement just fine by producing a cryptographically strong session key.

Tip

If you want to use encryption with an authentication plug-in that does not provide the session key and agree to
use some pre-defined key, say, one stored at the client side as a file and on the server in the security database
for that specific client, then make that plug-in inform Firebird that it does have a session key.

Specifications for the Key

Specifications for the key's size, its format, how it is calculated and verified, etc., are not generalised. The key's
format and other details are specific to the wire encryption/decryption plug-in.

In particular, RC4 uses a symmetric key which can have any length, while the key produced by SRP has a
length of 20 bytes. That key is a SHA-1 hash on SRP's session key and some other SRP-related things, such
as user name.

Exporting a Key from an Authentication Plug-in

To export a key from your authentication plug-in, use the ServerBlock or the ClientBlock interface. One of these
is always passed to the server/client part of an authentication plug-in. Both have a “newKey” method that returns
a pointer to the CryptKey interface. That interface in turn has the methods setSymmetric and setAsymmetric
for storing the symmetric or asymmetric key in the interface, i.e., exporting that key.

Mapping of Users to Objects
Alex Peshkov

Firebird 3 introduces new SQL privileges to map access between users and groups and security objects and
between databases. See Tracker item CORE-1900.

With Firebird now supporting multiple security databases, some new problems arise that could not occur with
a single, global security database. Clusters of databases using the same security database were efficiently sepa-
rated. Mappings provide the means to achieve the same efficiency when multiple databases are using their own
security databases. Some cases require control for limited interaction between such clusters. For example:

• when EXECUTE STATEMENT ON EXTERNAL DATA SOURCE requires some data exchange between
clusters

• when server-wide SYSDBA access to databases is needed from other clusters, using services.

• comparable problems that have existed on Firebird 2.1 and 2.5 for Windows, due to support for Trusted User
authentication: two separate lists of users—one in the security database and another in Windows, with cases

http://tracker.firebirdsql.org/browse/CORE-1900

Security

47

where it was necessary to relate them. An example is the demand for a ROLE granted to a Windows group
to be assigned automatically to members of that group.

The single solution for all such cases is mapping the login information assigned to a user when it connects to a
Firebird server to internal security objects in a database—CURRENT_USER and CURRENT_ROLE.

The Mapping Rule

The mapping rule consists of four pieces of information:

1. mapping scope—whether the mapping is local to the current database or whether its effect is to be global,
affecting all databases in the cluster, including security databases

2. mapping name—an SQL identifier, since mappings are objects in a database, like any other

3. the object FROM which the mapping maps. It consists of four items:

• The authentication source

plug-in name or
the product of a mapping in another database or
use of server-wide authentication or
any method

• The name of the database where authentication succeeded

• The name of the object from which mapping is performed

• The type of that name—user name | role | OS group—depending upon the plug-in that added that name
during authentication

Any item is accepted but only type is required.

4. the object TO which the mapping maps. It consists of two items:

• The name of the object TO which mapping is performed

• The type, for which only USER or ROLE is valid

Syntax for MAPPING Objects

Mappings are defined using the following set of DDL statements:

 {CREATE | ALTER | CREATE OR ALTER} [GLOBAL] MAPPING name
 USING {
 PLUGIN name [IN database] | ANY PLUGIN [IN database | SERVERWIDE] |
 MAPPING [IN database] | '*' [IN database]}
 FROM {ANY type | type name}
 TO {USER | ROLE} [name]
 --
 DROP [GLOBAL] MAPPING name

Security

48

Description

• Any mapping may be tagged as GLOBAL.

Global mapping works best if a Firebird 3 or higher version database is used as the security database. If
you plan to use another database for this purpose—using your own provider, for example—then you should
create a table in it named RDB$MAP, with the same structure as RDB$MAP in a Firebird 3 database and
with SYSDBA-only write access.

Beware!

If global and local mappings of the same name exist then know and make it known that they are different
objects!

• The CREATE, ALTER and CREATE OR ALTER statements use the same set of options. The name (iden-
tifier) of a mapping is used to identify it, as in other DDL command sets.

• The USING clause has a highly complicated set of options:

- an explicit plug-in name means it will work only for that plug-in

- it can use any available plug-in; although not if the source is the product of a previous mapping

- it can be made to work only with server-wide plug-ins

- it can be made to work only with previous mapping results

- it can be left to use any method, using the asterisk (*) argument

- it can be provided with the name of the database that originated the mapping for the FROM object

Note

This argument is not valid for mapping server-wide authentication.

• The FROM clause takes a mandatory argument, the type of the object named.

-> When mapping names from plug-ins, type is defined by the plug-in.
-> When mapping the product of a previous mapping, type can be only USER or ROLE.
-> If an explicit name is provided, it will be taken into account by this mapping
-> Use the ANY keyword to work with any name of the given type.

• In the TO clause, the USER or ROLE to which the mapping is made must be specified. NAME is optional:
if it is not supplied, the name from the originating mapping is used.

Examples

The examples use the CREATE syntax. Usage of ALTER is exactly the same and the usage of DROP should
be obvious.

1. Enable use of Windows trusted authentication in all databases that use the current security database:

CREATE GLOBAL MAPPING TRUSTED_AUTH
 USING PLUGIN WIN_SSPI
 FROM ANY USER

Security

49

 TO USER;

2. Enable SYSDBA-like access for windows admins in current database:

CREATE MAPPING WIN_ADMINS
 USING PLUGIN WIN_SSPI
 FROM Predefined_Group
 DOMAIN_ANY_RID_ADMINS
 TO ROLE RDB$ADMIN;

Note

The group DOMAIN_ANY_RID_ADMINS does not exist in Windows, but such a name would be added
by the win_sspi plug-in to provide exact backwards compatibility.

3. Enable a particular user from another database to access the current database with another name:

CREATE MAPPING FROM_RT
 USING PLUGIN SRP IN "rt"
 FROM USER U1 TO USER U2;

Important

Database names or aliases will need to be enclosed in double quotes on operating systems that have case-
sensitive file names.

4. Enable the server's SYSDBA (from the main security database) to access the current database. (Assume
that the database is using a non-default security database):

CREATE MAPPING DEF_SYSDBA
 USING PLUGIN SRP IN "security.db"
 FROM USER SYSDBA
 TO USER;

5. Ensure users who logged in using the legacy authentication plug-in do not have too many privileges:

CREATE MAPPING LEGACY_2_GUEST
 USING PLUGIN legacy_auth
 FROM ANY USER
 TO USER GUEST;

Legacy Mapping Rule

Previous versions of Firebird have one hard-coded global default rule: users authenticated in the security
database are always mapped into any database one-to-one. It is a safe rule: it makes no sense for a security
database not to trust itself!

For backward compatibility this rule is retained in Firebird 3.

Security

50

Mapping Windows Users to CURRENT_USER

With Trusted User authentication enabled, Windows users in versions 2.1 and 2.5 are mapped automatically
to CURRENT_USER, by default. In Firebird 3 the mapping must be done explicitly for systems with multiple
security databases and Trusted User authentication enabled.

SQL Features for Managing Access

Changes in architecture, stiffening of rules for security and data integrity, along with a bucket list of feature
requests, have given rise in this release to a number of new SQL commands for managing users and access to
objects.

SQL-driven User Management
Alex Peshkov

The SQL set of DDL commands for managing user accounts has been enhanced in Firebird 3, thus improving
the capability to manage (add, modify or delete) users in a security database from a regular database attachment.

Syntax Forms

 CREATE USER name {PASSWORD 'password'} [options]
 [TAGS (tag [, tag [, tag ...]])] [USING PLUGIN name]
 ALTER USER name SET [PASSWORD 'password'] [options]
 [TAGS (tag [, tag [, tag ...]])] [USING PLUGIN name]
 ALTER CURRENT USER SET [PASSWORD 'password'] [options]
 [TAGS (tag [, tag [, tag ...]])] [USING PLUGIN name]
 CREATE OR ALTER USER name SET [PASSWORD 'password'] [options]
 [TAGS (tag [, tag [, tag ...]])] [USING PLUGIN name]
 DROP USER name [USING PLUGIN name];

OPTIONS is a (probably empty) list with the following options:

 FIRSTNAME 'string value'
 MIDDLENAME 'string value'
 LASTNAME 'string value'
 ACTIVE
 INACTIVE

Each TAG may have one of two forms:

 NAME = 'string value'

or the DROP NAME tag form to remove a user-defined attribute entirely:

 DROP tagname

Security

51

Note

The NAME side of the name/value pair can be any valid SQL identifier.

Older Methods Deprecated

From Firebird 3.0, multiple security databases are supported. This capability is not supported by either the gsec
utility or the Services API. Use of both of these methods is deprecated.

Usage Details

The CREATE USER, CREATE OR ALTER USER and DROP USER clauses are available only for SYSDBA
or another user granted the RDB$ADMIN role in the security database (and logged in under that role, of course.)

The PASSWORD clause is required when creating a new user.

An ordinary user can ALTER his own password, real name attributes and tags. Any attempt to modify another
user will fail, as will an attempt to make “self” inactive or active.

If you want to modify “self”, you can use the simplified form ALTER CURRENT USER.

At least one of PASSWORD, FIRSTNAME, MIDDLENAME, LASTNAME, ACTIVE, INACTIVE or TAGS
must be present in an ALTER USER or CREATE OR ALTER USER statement.

It is not a requirement to use any of the clauses FIRSTNAME, MIDDLENAME and LASTNAME. Any of them
may be left empty or used to store short information about the user.

The INACTIVE clause is used to disable the user's login capability without dropping it. The ACTIVE clause
restores that login ability.

TAGS is a list of end-user defined attributes. The length of the string value should not exceed 255 bytes.

Setting a list of tags for the user retains previously set tags if they are not mentioned in the current list.

Note

A UID or GID that was entered by the deprecated gsec utility is treated as a tag in the SQL interface.

Examples

Generic:

 CREATE USER superhero PASSWORD 'test';
 ALTER USER superhero SET FIRSTNAME 'Clark' LASTNAME 'Kent';
 CREATE OR ALTER USER superhero SET PASSWORD 'IdQfA';
 DROP USER superhero;
 ALTER CURRENT USER SET PASSWORD 'SomethingLongEnough';

Working with tags:

 ALTER USER superhero SET TAGS (a='a', b='b');
 NAME VALUE
 ================ ==============================

Security

52

 A a
 B b

 ALTER USER superhero SET TAGS (b='x', c='d');
 NAME VALUE
 ================ ==============================
 A a
 B x
 C d

 ALTER USER superhero SET TAGS (drop a, c='sample');
 NAME VALUE
 ================ ==============================
 B x
 C sample

Displaying the list of users:

 SELECT CAST(U.SEC$USER_NAME AS CHAR(20)) LOGIN,
 CAST(A.SEC$KEY AS CHAR(10)) TAG,
 CAST(A.SEC$VALUE AS CHAR(20)) "VALUE",
 SEC$PLUGIN "PLUGIN"
 FROM SEC$USERS U LEFT JOIN SEC$USER_ATTRIBUTES A
 ON U.SEC$USER_NAME = A.SEC$USER_NAME;

 LOGIN TAG VALUE PLUGIN
 ==================== ========== ==================== ===============================
 SYSDBA <null> <null> Srp
 SUPERHERO B x Srp
 SUPERHERO C sample Srp
 SYSDBA <null> <null> Legacy_UserManager

Note

Output depends upon the user management plug-in. If the legacy plug-in is used, bear in mind that some options
are not supported and will simply be ignored.

SET ROLE
Alex Peshkov

See Tracker item CORE-1377.

The SQL2008-compliant operator SET ROLE allows the CURRENT_ROLE context variable to be set to one
that has been granted to the CURRENT_USER or to a user assigned to the database attachment as trusted (SET
TRUSTED ROLE).

Syntax Pattern for SET ROLE

Enable CURRENT_USER access to a role that has been previously granted:

 SET ROLE <rolename>

Example of SET ROLE Usage

http://tracker.firebirdsql.org/browse/CORE-1377

Security

53

 SET ROLE manager;
 select current_role from rdb$database;

Displays:

 ROLE
 ===============================
 MANAGER

SET TRUSTED ROLE

The idea of a separate SET TRUSTED ROLE command is that, when the trusted user attaches to a database with-
out providing any role info, SET TRUSTED ROLE makes a trusted role (if one exists) the CURRENT_ROLE
without any additional activity, such as setting it in the DPB.

A trusted role is not a specific type of role but may be any role that was created using CREATE ROLE, or a
predefined system role such as RDB$ADMIN. It becomes a trusted role for an attachment when the security
objects mapping subsystem finds a match between the authentication result passed from the plug-in and a local
or global mapping for the current database. The role may be one that is not even granted explicitly to that trusted
user.

Notes

• A trusted role is not assigned to the attachment by default. It is possible to change this behaviour using an
appropriate authentication plug-in and a CREATE/ALTER MAPPING command.

• Whilst the CURRENT_ROLE can be changed using SET ROLE, it is not always possible to revert using
the same command, because it performs an access rights check.

Syntax Pattern

Enable access to a trusted role, if the CURRENT_USER is logged in under Trusted User authentication and
the role is available:

 SET TRUSTED ROLE

An example of the use of a trusted role is assigning the system role RDB$ADMIN to a Windows administrator
when Windows trusted authentication is in use.

GRANT/REVOKE Rights GRANTED BY Specified User
Alex Peshkov

Previously, the grantor or revoker of SQL privileges was always the current user. This change makes it so that
a different grantor or revoker can be specified in GRANT and REVOKE commands.

Syntax Pattern

 grant <right> to <object> [{ granted by | as } [user] <username>]
 revoke <right> from <object> [{ granted by | as } [user] <username>]

Security

54

The GRANTED BY clause form is recommended by the SQL standard. The alternative form using AS is
supported by Informix and possibly some other servers and is included for better compatibility.

Example (working as SYSDBA)

create role r1;
grant r1 to user1 with admin option;
grant r1 to public granted by user1;

-- (in isql)
show grant;
/* Grant permissions for this database */
GRANT R1 TO PUBLIC GRANTED BY USER1
GRANT R1 TO USER1 WITH ADMIN OPTION

REVOKE ALL ON ALL

When a user is removed from the security database or another authentication source, this new command is useful
for revoking its access to all objects in the database.

Syntax Pattern

 REVOKE ALL ON ALL FROM [USER] username
 REVOKE ALL ON ALL FROM [ROLE] rolename

Example

gsec -del guest
isql employee
fbs bin # ./isql employee
Database: employee
SQL> REVOKE ALL ON ALL FROM USER guest;
SQL>

User Privileges for Metadata Changes

Dmitry Yemanov
with Roman Simakov

In Firebird 3, the system tables are read-only. This SQL syntax provides the means to assign metadata write
privileges to specified users or roles for specified objects. See Tracker item CORE-735.

Note

Some people have been applying the nickname “DDL privileges” to this feature. Don't confuse it with “DDL
triggers”! A more useful nickname would be “Metadata privileges”.

Syntax Patterns

Granting metadata privileges:

http://tracker.firebirdsql.org/browse/CORE-735

Security

55

 GRANT CREATE <object-type>
 TO [USER | ROLE] <user-name> | <role-name> [WITH GRANT OPTION];
 GRANT ALTER ANY <object-type>
 TO [USER | ROLE] <user-name> | <role-name> [WITH GRANT OPTION];
 GRANT DROP ANY <object-type>
 TO [USER | ROLE] <user-name> | <role-name> [WITH GRANT OPTION];

Revoking metadata privileges:

 REVOKE [GRANT OPTION FOR] CREATE <object-type>
 FROM [USER | ROLE] <user-name> | <role-name>;
 REVOKE [GRANT OPTION FOR] ALTER ANY <object-type>
 FROM [USER | ROLE] <user-name> | <role-name>;
 REVOKE [GRANT OPTION FOR] DROP ANY <object-type>
 FROM [USER | ROLE] <user-name> | <role-name>;

Special form for database access:

 GRANT CREATE DATABASE TO [USER | ROLE] <user-name> | <role-name>;
 GRANT ALTER DATABASE
 TO [USER | ROLE] <user-name> | <role-name> [WITH GRANT OPTION];
 GRANT DROP DATABASE
 TO [USER | ROLE] <user-name> | <role-name> [WITH GRANT OPTION];

 REVOKE CREATE DATABASE FROM [USER | ROLE] <user-name> | <role-name>;
 REVOKE [GRANT OPTION FOR] ALTER DATABASE
 FROM [USER | ROLE] <user-name> | <role-name>;
 REVOKE [GRANT OPTION FOR] DROP DATABASE
 FROM [USER | ROLE] <user-name> | <role-name>;

Notes on Usage

• <object-type> can be any of the following:

CHARACTER SET COLLATION DOMAIN EXCEPTION
FILTER FUNCTION GENERATOR PACKAGE
PROCEDURE ROLE SEQUENCE TABLE
VIEW

Note

The metadata for triggers and indices are accessed through the privileges for the table that owns them.

• If the ANY option is used, the user will be able to perform any operation on any object

• If the ANY option is absent, the user will be able to perform operations on the object only if he owns it

• If the ANY option was acquired via a GRANT operation then, to revoke it, the REVOKE operation must
accord with that GRANT operation

Example

GRANT CREATE TABLE TO Joe;

Security

56

GRANT ALTER ANY TABLE TO Joe;
REVOKE CREATE TABLE FROM Joe;

GRANT EXECUTE Privileges for UDFs
Dmitry Yemanov

CORE-2554: EXECUTE permission is now supported for UDFs (both legacy and PSQL based ones).

Syntax Pattern

 GRANT EXECUTE ON FUNCTION <name> TO <grantee list>
 [<grant option> <granted by clause>]
 --
 REVOKE EXECUTE ON FUNCTION <name> FROM <grantee list>
 [<granted by clause>]

Note

The initial EXECUTE permission is granted to the function owner (user who created or declared the function).

Improvement for Recursive Stored Procedures
Alex Peshkov

A recursive stored procedure no longer requires the EXECUTE privilege to call itself. See Tracker item
CORE-3242.

Privileges to Protect Other Metadata Objects

New SQL-2008 compliant USAGE permission is introduced to protect metadata objects other than tables, views,
procedures and functions.

Syntax Pattern

 GRANT USAGE ON <object type> <name> TO <grantee list>
 [<grant option> <granted by clause>]
 --
 REVOKE USAGE ON <object type> <name> FROM <grantee list>
 [<granted by clause>]
 --
 <object type> ::= {DOMAIN | EXCEPTION | GENERATOR | SEQUENCE | CHARACTER SET | COLLATION}

Notes

The initial USAGE permission is granted to the object owner (user who created the object).

In Firebird 3.0 Beta 1, only USAGE permissions for exceptions (CORE-2884) and generators/sequences
(gen_id, next value for: CORE-2553) are enforced. Permissions for other object types could be validated in
subsequent releases, subject to further consideration of the integrity implications of allowing write access to
domains, character sets and collations.

http://tracker.firebirdsql.org/browse/CORE-2554
http://tracker.firebirdsql.org/browse/CORE-3242
http://tracker.firebirdsql.org/browse/CORE-2884
http://tracker.firebirdsql.org/browse/CORE-2553

Security

57

Pseudo-Tables with List of Users

CORE-2639.

To access lists of users and attributes, query the virtual tables SEC$USERS and SEC$USER_ATTRIBUTES.

Important

This feature depends highly on the user management plug-in. Take into an account that some options are ignored
when using the legacy user management plug-in.

The pseudo-tables are much like the MON$ family tables used for monitoring the server. The table is created
on demand when you run the statement

 SELECT * FROM SEC$USERS

or

 SELECT * FROM SEC$USER_ATTRIBUTES

The output lists the users (or their attributes) in the security database that is configured for the current database
and available for management to the current user. SEC$USERS includes a field indicating whether a user has
the RDB$ADMIN role in the security database.

http://tracker.firebirdsql.org/browse/CORE-2639

58

Chapter 8

Data Definition
Language (DDL)

Quick Links

• BOOLEAN Data Type
• IDENTITY-Style Column
• Manage Nullability in Domains and Columns
• Modify Generators (Sequences)
• Alter Default Character Set
• BLOB Expressions in Computed Columns
• “Linger” Database Closure for Superserver
• New SQL for Managing Users and Access Privileges

DDL Enhancements

The following enhancements have been added to the SQL data definition language lexicon:

New Data Types

A fully-fledged Boolean type is introduced in this release, along with a surfaced emulation of the Microsoft-style
“identity” column.

BOOLEAN Data Type
Adriano dos Santos Fernandes

The SQL-2008 compliant BOOLEAN data type (8 bits) comprises the distinct truth values TRUE and FALSE.
Unless prohibited by a NOT NULL constraint, the BOOLEAN data type also supports the truth value UN-
KNOWN as the null value. The specification does not make a distinction between the NULL value of this data
type and the truth value UNKNOWN that is the result of an SQL predicate, search condition, or boolean value
expression: they may be used interchangeably to mean exactly the same thing.

As with many programming languages, the SQL BOOLEAN values can be tested with implicit truth values. For
example, field1 OR field2 and NOT field1 are valid expressions.

The IS Operator

Predications use the operator IS [NOT] for matching. For example, field1 IS FALSE, or field1 IS NOT TRUE.

Data Definition Language (DDL)

59

Note

Equivalence operators (“=”, “!=”, “<>” and so on) are valid in all comparisons.

Examples

CREATE TABLE TBOOL (ID INT, BVAL BOOLEAN);
COMMIT;

INSERT INTO TBOOL VALUES (1, TRUE);
INSERT INTO TBOOL VALUES (2, 2 = 4);
INSERT INTO TBOOL VALUES (3, NULL = 1);
COMMIT;

SELECT * FROM TBOOL
 ID BVAL
============ =======
 1 <true>
 2 <false>
 3 <null>

-- Test for TRUE value
SELECT * FROM TBOOL WHERE BVAL
 ID BVAL
============ =======
 1 <true>

-- Test for FALSE value
SELECT * FROM TBOOL WHERE BVAL IS FALSE
 ID BVAL
============ =======
 2 <false>

-- Test for UNKNOWN value
SELECT * FROM TBOOL WHERE BVAL IS UNKNOWN
 ID BVAL
============ =======
 3 <null>

-- Boolean values in SELECT list
SELECT ID, BVAL, BVAL AND ID < 2
 FROM TBOOL
 ID BVAL
============ ======= =======
 1 <true> <true>
 2 <false> <false>
 3 <null> <false>

-- PSQL Declaration with start value
DECLARE VARIABLE VAR1 BOOLEAN = TRUE;

-- Valid syntax, but as with a comparison
-- with NULL, will never return any record
SELECT * FROM TBOOL WHERE BVAL = UNKNOWN
SELECT * FROM TBOOL WHERE BVAL <> UNKNOWN

Data Definition Language (DDL)

60

Notes

• Represented in the API with the FB_BOOLEAN type and FB_TRUE and FB_FALSE constants.

• The value TRUE is greater than the value FALSE.

• Although BOOLEAN is not implicitly convertible to any other datatype, it can be explicitly converted to
and from string with CAST.

Keywords INSERTING, UPDATING and DELETING

To avoid ambiguities when used in Boolean expressions, the previously non-reserved keywords INSERTING,
UPDATING and DELETING, which return True|False when tested in PSQL, have been made reserved words
in all contexts. If you have used any of these words as identifiers for database objects, columns, variables or
parameters, it will be necessary to redefine them, either with new names or by enclosing their identifiers in
double quotes.

Identity Column Type
Adriano dos Santos Fernandes

An identity column is a column associated with an internal sequence generator. Its value is set automatically
when the column is omitted in an INSERT statement.

Syntax Patterns

 <column definition> ::=
 <name> <type> GENERATED BY DEFAULT AS IDENTITY [(START WITH <value>)]<constraints>

When defining a column, the optional START WITH clause allows the generator to be initialised to a value
other than zero. See Tracker ticket CORE-4199.

 <alter column definition> ::=
 <name> RESTART [WITH <value>]

A column definition can be altered to modify the starting value of the generator. RESTART alone resets the
generator to zero; the optional WITH <value> clause allows the restarted generator to start at a value other than
zero. See Tracker ticket CORE-4206.

Rules

• The data type of an identity column must be an exact number type with zero scale. Allowed types are thus
SMALLINT, INTEGER, BIGINT, NUMERIC(x,0) and DECIMAL(x,0).

• An identity column cannot have DEFAULT or COMPUTED value.

http://tracker.firebirdsql.org/browse/CORE-4199
http://tracker.firebirdsql.org/browse/CORE-4206

Data Definition Language (DDL)

61

Notes

• An identity column cannot be altered to become a regular column. The reverse is also true.

• Identity columns are implicitly NOT NULL (non-nullable).

• Uniqueness is not enforced automatically. A UNIQUE or PRIMARY KEY constraint is required to guar-
antee uniqueness.

• The use of other methods of generating key values for IDENTITY columns, e.g., by trigger-generator code
or by allowing users to change or add them, is discouraged to avoid unexpected key violations.

Example

create table objects (
 id integer generated by default as identity primary key,
 name varchar(15)
);

insert into objects (name) values ('Table');
insert into objects (name) values ('Book');
insert into objects (id, name) values (10, 'Computer');

select * from objects;

 ID NAME
============ ===============
 1 Table
 2 Book
 10 Computer

Implementation Details

Two new columns have been inserted in RDB$RELATION_FIELDS to support identity columns: RDB
$GENERATOR_NAME and RDB$IDENTITY_TYPE.

• RDB$GENERATOR_NAME stores the automatically created generator for the column. In RDB$GENER-
ATORS, the value of RDB$SYSTEM_FLAG of that generator will be 6.

• Currently, RDB$IDENTITY_TYPE will currently always store the value 1 (by default) for identity columns
and NULL for non-identity columns. In the future this column will store the value 0, too (for ALWAYS)
when Firebird implements support for this type of identity column.

Manage Nullability in Domains and Columns
A. dos Santos Fernandes

ALTER syntax is now available to change the nullability of a table column or a domain

Syntax Pattern

ALTER TABLE <table name> ALTER <field name> [NOT] NULL

ALTER DOMAIN <domain name> [NOT] NULL

Data Definition Language (DDL)

62

Notes

The success of a change in a table column from NULL to NOT NULL is subject to a full data validation on the
table, so ensure that the column has no nulls before attempting the change.

A change in a domain subjects all the tables using the domain to validation.

An explicit NOT NULL on a column that depends on a domain prevails over the domain. In this situation, the
changing of the domain to make it nullable does not propagate to the column.

Modify Generators (Sequences)

More statement options have been added for modifying generators (sequences). Where previously in SQL the
only option was ALTER SEQUENCE <sequence name> RESTART WITH <value>, now a full lexicon is
provided and GENERATOR and SEQUENCE are synonyms for the full range of commands.

RESTART can now be used on its own to restart the sequence at its previous start or restart value. A new column
RDB$INITIAL_VALUE is added to the system table RDB$GENERATORS to store that value.

Syntax Forms

{ CREATE | RECREATE } { SEQUENCE | GENERATOR } <sequence name> [START WITH <value>]

CREATE OR ALTER { SEQUENCE | GENERATOR } <sequence name> { RESTART | START WITH <value> }

ALTER { SEQUENCE | GENERATOR } <sequence name> RESTART [WITH <value>]

Alter the Default Character Set
A. dos Santos Fernandes

 ALTER DATABASE
 ...
 SET DEFAULT CHARACTER SET <new_charset>

The alteration does not change any existing data. The new default character set is used only in subsequent DDL
commands and will assume the default collation of the new character set.

BLOB Expressions in Computed Columns
Adriano dos Santos Fernandes

A substring from a BLOB column can now be used to define a computed column.

For Example

ALTER TABLE ATABLE
 ADD ABLOB
 COMPUTED BY (SUBSTRING(BLOB_FIELD FROM 1 FOR 20))

Data Definition Language (DDL)

63

“Linger” Database Closure for Superserver

Sometimes it is desirable to have the Superserver engine keep the database open for a period after the last
attachment is closed, i.e., to have it “linger” a while. It can help to improve performance at low cost, under
conditions where the database is opened and closed frequently, by keeping resources “warm” for next time it
is reopened.

Firebird 3.0 introduces an enhancement to ALTER DATABASE to manage this optional LINGER capability
for databases running under Superserver.

Syntax Form

 ALTER DATABASE SET LINGER TO {seconds};
 ALTER DATABASE DROP LINGER;

Usage

To set linger for the database do:

 ALTER DATABASE SET LINGER TO 30; -- sets linger interval to 30 seconds

Either of the following forms will clear the linger setting and return the database to the normal condition (no
linger):

 ALTER DATABASE DROP LINGER;
 ALTER DATABASE SET LINGER TO 0;

Note

Dropping LINGER is not an ideal solution for the occasional need to turn it off for some once-only condition
where the server needs a forced shutdown. The gfix utility now has the -NoLinger switch, which will close the
specified database immediately the last attachment is gone, regardless of the LINGER setting in the database.
The LINGER setting is retained and works normally the next time.

The same one-off override is also available through the Services API, using the tag isc_spb_prp_nolinger,
e.g. (in one line):

 fbsvcmgr host:service_mgr user sysdba password xxx
 action_properties dbname employee prp_nolinger

See also Tracker ticket CORE-4263 for some discussion of the development of this feature.

New SQL for Managing Users and Access Privileges

A number of new features and enhancements have been added to the DDL lexicon for managing users and their
access to objects in databases. They are described in detail in Chapter 7, Security.

http://tracker.firebirdsql.org/browse/CORE-4263

Data Definition Language (DDL)

64

SQL-driven User Management

The SQL set of DDL commands for managing user accounts has been enhanced in Firebird 3, thus improving
the capability to manage (add, modify or delete) users in a security database from a regular database attachment.

gsec is deprecated!

The command-line and shell utility gsec is deprecated from this release forward. It will continue to work with
security3.fdb but it will not work with alternative security databases.

SET ROLE and SET TRUSTED ROLE

The SQL2008-compliant operator SET ROLE allows the CURRENT_ROLE context variable to be set to one
that has been granted to the CURRENT_USER or to a user assigned to the database attachment as trusted (SET
TRUSTED ROLE).

GRANTED BY Clause for Privileges

Previously, the grantor or revoker of SQL privileges was always the current user. The GRANTED BY clause
makes it so that a different grantor or revoker can be specified in GRANT and REVOKE commands.

REVOKE ALL ON ALL

When a user is removed from the security database or another authentication source, this new command is useful
for revoking its access to all objects in the database.

GRANT/REVOKE Metadata Privileges

In Firebird 3, the system tables are read-only. This SQL syntax provides the means to assign metadata write
privileges to specified users or roles for specified objects.

EXECUTE Privileges for UDFs

EXECUTE permission is now supported for UDFs (both legacy and PSQL based ones).

GRANT/REVOKE USAGE

New SQL-2008 compliant USAGE permission is introduced to protect metadata objects other than tables, views,
procedures and functions.

65

Chapter 9

Data Manipulation
Language (DML)

In this chapter are the additions and improvements that have been added to the SQL data manipulation language
subset in Firebird 3.0.

Quick Links

• Supplemental SQL 2008 Features for MERGE
• Window (Analytical) Functions
• Advanced PLAN Output
• SUBSTRING With Regular Expressions
• Inverse Hyperbolic Trig Functions
• Statistical Functions
• Enhancements to DATEADD() Internal Function
• TRIM() BLOB Arguments Lose 32 KB limit
• Alternatives for Embedding Quotes in String Literals
• SQL:2008-Compliant OFFSET and FETCH Clauses
• Prohibit Edgy Mixing of Implicit/Explicit Joins
• Support for Left-side Parameters in WHERE Clause
• RETURNING Clause Can be Aliased
• RETURNING Clause from Positioned Updates and Deletes
• Cursor Stability
• Improvements for Global Temporary Tables
• Improvements for DML Strings
• COUNT() Now Returns BIGINT
• SIMILAR TO Performance Improvement
• OR'ed Parameter in WHERE Clause
• A Little Dialect 1 Accommodation
• Embedded SQL (ESQL) Enhancements

Supplemental SQL 2008 Features for MERGE
Adriano dos Santos Fernandes

In summary, support for MERGE was supplemented with the introduction of these features:

• Addition of the DELETE extension (CORE-2005)

• Enabling the use of multiple WHEN MATCHED | NOT MATCHED clauses (CORE-3639) and ability to
apply conditions to WHEN MATCHED | NOT MATCHED

http://tracker.firebirdsql.org/browse/CORE-2005
http://tracker.firebirdsql.org/browse/CORE-3639

Data Manipulation Language (DML)

66

• Addition of the RETURNING ... INTO ... clause (CORE-3020)

The purpose of MERGE is to read data from the source and INSERT or UPDATE in the target table according
to a condition. It is available in DSQL and PSQL.

Syntax Pattern

 <merge statement> ::=
 MERGE
 INTO <table or view> [[AS] <correlation name>]
 USING <table or view or derived table> [[AS] <correlation name>]
 ON <condition>
 <merge when>...
 <returning clause>

 <merge when> ::=
 <merge when matched> |
 <merge when not matched>

 <merge when matched> ::=
 WHEN MATCHED [AND <condition>] THEN
 { UPDATE SET <assignment list> | DELETE }

 <merge when not matched> ::=
 WHEN NOT MATCHED [AND <condition>] THEN
 INSERT [<left paren> <column list> <right paren>]
 VALUES <left paren> <value list> <right paren>

Rules

At least one of <merge when matched> or <merge when not matched> should be specified.

Example

MERGE INTO customers c
 USING
 (SELECT * FROM customers_delta WHERE id > 10) cd
 ON (c.id = cd.id)
 WHEN MATCHED THEN
 UPDATE SET name = cd.name
 WHEN NOT MATCHED THEN
 INSERT (id, name)
 VALUES (cd.id, cd.name)

Notes

A right join is made between the INTO (left-side) and USING tables using the condition. UPDATE is called
when a record exists in the left table (INTO), otherwise INSERT is called.

As soon as it is determined whether or not the source matches a record in the target, the set formed from the
corresponding (WHEN MATCHED / WHEN NOT MATCHED) clauses is evaluated in the order specified,
to check their optional conditions. The first clause whose condition evaluates to true is the one which will be
executed, and the subsequent ones will be ignored.

If no record is returned in the join, INSERT is not called.

http://tracker.firebirdsql.org/browse/CORE-3020

Data Manipulation Language (DML)

67

Window (Analytical) Functions
Adriano dos Santos Fernandes

According to the SQL specification, window functions (also known as analytical functions) are a kind of ag-
gregation, but one that does not “filter” the result set of a query. The rows of aggregated data are mixed with
the query result set.

The window functions are used with the OVER clause. They may appear only in the SELECT list or the ORDER
BY clause of a query.

Besides the OVER clause, Firebird window functions may be partitioned and ordered.

Syntax Pattern

 <window function> ::= <window function name>([<expr> [, <expr> ...]]) OVER (
 [PARTITION BY <expr> [, <expr> ...]]
 [ORDER BY <expr>
 [<direction>]
 [<nulls placement>]
 [, <expr> [<direction>] [<nulls placement>] ...]
)

 <direction> ::= {ASC | DESC}

 <nulls placement> ::= NULLS {FIRST | LAST}

Aggregate Functions Used as Window Functions

All aggregate functions may be used as window functions, adding the OVER clause.

Imagine a table EMPLOYEE with columns ID, NAME and SALARY, and the need to show each employee
with his respective salary and the percentage of his salary over the payroll.

A normal query could achieve this, as follows:

select
 id,
 department,
 salary,
 salary / (select sum(salary) from employee) percentage
 from employee
 order by id;

Results

 id department salary percentage
 -- ---------- ------ ----------
 1 R & D 10.00 0.2040
 2 SALES 12.00 0.2448

Data Manipulation Language (DML)

68

 3 SALES 8.00 0.1632
 4 R & D 9.00 0.1836
 5 R & D 10.00 0.2040

The query is repetitive and lengthy to run, especially if EMPLOYEE happened to be a complex view.

The same query could be specified in a much faster and more elegant way using a window function:

select
 id,
 department,
 salary,
 salary / sum(salary) OVER () percentage
 from employee
 order by id;

Here, sum(salary) over () is computed with the sum of all SALARY from the query (the employee table).

Partitioning

Like aggregate functions, that may operate alone or in relation to a group, window functions may also operate
on a group, which is called a “partition”.

Syntax Pattern

 <window function>(...) OVER (PARTITION BY <expr> [, <expr> ...])

Aggregation over a group could produce more than one row, so the result set generated by a partition is joined
with the main query using the same expression list as the partition.

Continuing the employee example, instead of getting the percentage of each employee's salary over the all-
employees total, we would like to get the percentage based on just the employees in the same department:

select
 id,
 department,
 salary,
 salary / sum(salary) OVER (PARTITION BY department) percentage
 from employee
 order by id;

Results

 id department salary percentage
 -- ---------- ------ ----------
 1 R & D 10.00 0.3448
 2 SALES 12.00 0.6000
 3 SALES 8.00 0.4000
 4 R & D 9.00 0.3103
 5 R & D 10.00 0.3448

Data Manipulation Language (DML)

69

Ordering

The ORDER BY sub-clause can be used with or without partitions and, with the standard aggregate functions,
make them return the partial aggregations as the records are being processed.

Example

select
 id,
 salary,
 sum(salary) over (order by salary) cumul_salary
 from employee
 order by salary;

The result set produced:

 id salary cumul_salary
 -- ------ ------------
 3 8.00 8.00
 4 9.00 17.00
 1 10.00 37.00
 5 10.00 37.00
 2 12.00 49.00

Then cumul_salary returns the partial/accumulated (or running) aggregation (of the SUM function). It may
appear strange that 37.00 is repeated for the ids 1 and 5, but that is how it should work. The ORDER BY keys
are grouped together and the aggregation is computed once (but summing the two 10.00). To avoid this, you
can add the ID field to the end of the ORDER BY clause.

It's possible to use multiple windows with different orders, and ORDER BY parts like ASC/DESC and NULLS
FIRST/LAST.

With a partition, ORDER BY works the same way, but at each partition boundary the aggregation is reset.

All aggregation functions, other than LIST(), are usable with ORDER BY.

Exclusive window functions

Beyond aggregate functions are the exclusive window functions, currently divided into ranking and navigational
categories. Both sets can be used with or without partition and ordering, although the usage does not make much
sense without ordering.

Ranking Functions

The rank functions compute the ordinal rank of a row within the window partition. In this category are the
functions DENSE_RANK, RANK and ROW_NUMBER.

Syntax

 <ranking window function> ::=

Data Manipulation Language (DML)

70

 DENSE_RANK() |
 RANK() |
 ROW_NUMBER()

The ranking functions can be used to create different type of incremental counters. Consider SUM(1) OVER
(ORDER BY SALARY) as an example of what they can do, each of them in a different way. Following is an
example query, also comparing with the SUM behavior.

select
 id,
 salary,
 dense_rank() over (order by salary),
 rank() over (order by salary),
 row_number() over (order by salary),
 sum(1) over (order by salary)
 from employee
 order by salary;

The result set:

 id salary dense_rank rank row_number sum
 -- ------ ---------- ---- ---------- ---
 3 8.00 1 1 1 1
 4 9.00 2 2 2 2
 1 10.00 3 3 3 4
 5 10.00 3 3 4 4
 2 12.00 4 5 5 5

The difference between DENSE_RANK and RANK is that there is a gap related to duplicate rows (relative to the
window ordering) only in RANK. DENSE_RANK continues assigning sequential numbers after the duplicate
salary. On the other hand, ROW_NUMBER always assigns sequential numbers, even when there are duplicate
values.

Navigational Functions

The navigational functions get the simple (non-aggregated) value of an expression from another row of the
query, within the same partition.

Syntax

 <navigational window function> ::=
 FIRST_VALUE(<expr>) |
 LAST_VALUE(<expr>) |
 NTH_VALUE(<expr>, <offset>) [FROM FIRST | FROM LAST] |
 LAG(<expr> [[, <offset> [, <default>]]) |
 LEAD(<expr> [[, <offset> [, <default>]])

Important to Note

FIRST_VALUE, LAST_VALUE and NTH_VALUE also operate on a window frame. Currently, Firebird al-
ways frames from the first to the current row of the partition, not to the last. This is likely to produce strange
results for NTH_VALUE and especially LAST_VALUE.

Data Manipulation Language (DML)

71

Example

select
 id,
 salary,
 first_value(salary) over (order by salary),
 last_value(salary) over (order by salary),
 nth_value(salary, 2) over (order by salary),
 lag(salary) over (order by salary),
 lead(salary) over (order by salary)
 from employee
 order by salary;

The result set:

 id salary first_value last_value nth_value lag lead
 -- ------ ----------- ---------- --------- ------ ------
 3 8.00 8.00 8.00 <null> <null> 9.00
 4 9.00 8.00 9.00 9.00 8.00 10.00
 1 10.00 8.00 10.00 9.00 9.00 10.00
 5 10.00 8.00 10.00 9.00 10.00 12.00
 2 12.00 8.00 12.00 9.00 10.00 <null>

FIRST_VALUE and LAST_VALUE get, respectively, the first and last value of the ordered partition.

NTH_VALUE gets the n-th value, starting from the first (default) or the last record, from the ordered parti-
tion. An offset of 1 from first would be equivalent to FIRST_VALUE; an offset of 1 from last is equivalent
to LAST_VALUE.

LAG looks for a preceding row, and LEAD for a following row. LAG and LEAD get their values within a
distance respective to the current row and the offset (which defaults to 1) passed.

In a case where the offset points outside the partition, the default parameter (which defaults to NULL) is returned.

Advanced Plan Output
Dmitry Yemanov

PLAN output can now be output in a more structured and comprehensible form, e.g.

SELECT statement
 -> First [10]
 -> Sort [SUM, O_ORDERDATE]
 -> Aggregate
 -> Sort [L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY]
 -> Inner Loop Join
 -> Filter
 -> Table #ORDERS# Access By ID
 -> Bitmap
 -> Index #ORDERS_ORDERDATE# Range Scan
 -> Filter
 -> Table #CUSTOMER# Access By ID
 -> Bitmap
 -> Index #CUSTOMER_PK# Unique Scan

Data Manipulation Language (DML)

72

 -> Filter
 -> Table #LINEITEM# Access By ID
 -> Bitmap
 -> Index #LINEITEM_PK# Unique Scan

Advanced PLAN Output in isql

New syntax SET EXPLAIN [ON | OFF] has been added to the isql utility to surface this option. For details,
refer to SET EXPLAIN Extensions for Viewing Detailed Plans in the Utilities chapter.

Internal Functions

Additions and enhancements to the internal functions set are:

SUBSTRING with Regular Expressions
Adriano dos Santos Fernandes

A substring search can now use a regular expression.

Search Pattern

 SUBSTRING(<string> [NOT] SIMILAR TO <pattern> ESCAPE <char>)

Discussion: TrackerCORE-2006

For more information about the use of SIMILAR TO expressions, refer to README.similar_to.txt in the /
doc/ subdirectory of your Firebird installation.

Tip

The regex used is the SQL one. A guide is available in the DML chapter of the v.2.5 release notes and also
at the Firebird web site.

Inverse Hyperbolic Trigonometric Functions
Claudio Valderrama C.

The six inverse hyperbolic trigonometric functions have been implemented internally. They are:

ACOSH
Returns the hyperbolic arc cosine of a number (expressed in radians). Format: ACOSH(<number>)

ASINH
Returns the hyperbolic arc sine of a number (expressed in radians). Format: ASINH(<number>)

ATANH
Returns the hyperbolic arc tangent of a number (expressed in radians). Format: ATANH(<number>)

http://tracker.firebirdsql.org/browse/CORE-2006
http://www.firebirdsql.org/file/documentation/release_notes/html/rlsnotes253.html#rnfb25-dml-regex

Data Manipulation Language (DML)

73

COSH
Returns the hyperbolic cosine of an angle (expressed in radians). Format: COSH(<number>)

SINH
Returns the hyperbolic sine of an angle (expressed in radians). Format: SINH(<number>)

TANH
Returns the hyperbolic tangent of an angle (expressed in radians). Format: TANH(<number>)

Statistical Functions

Hajime Nakagami
Adriano dos Santos Fernandes

A suite of SQL-standards-compliant statistical functions has been implemented.

Aggregate Statistical Functions

Functions comprise Sample Variance, Population Variance, Sample Standard Deviation, Population Stan-
dard Deviation, Sample Population, Population Covariance and Coefficient of Correlation. See Tracker ticket
CORE-4717.

Syntax

 <single param statistical function> ::= <single param statistical function name>(<expr>)
 <single param statistical function name> := { VAR_POP | VAR_SAMP | STDDEV_POP | STDDEV_SAMP }

 <dual param statistical function> ::= <dual param statistical function name>(<expr1>, <expr>>)
 <dual param statistical function name> := { COVAR_POP | COVAR_SAMP | CORR }

Semantics

• NULL is returned from VAR_SAMP, STDDEV_SAMP or COVAR_SAMP if the result count is 0 or 1

• NULL is returned from VAR_POP, STDDEV_POP, COVAR_POP or CORR if the result count is 0

Syntax

SELECT STDDEV_SAMP(salary) FROM employees;

SD/Variance Function Descriptions

Function Format Description

VAR_SAMP VAR_SAMP(<expr>) Returns the Sample Variance, equivalent to

(SUM(<expr> ^ 2) - SUM(<expr>) ^ 2 / COUNT(<expr>)) / (COUNT(<expr>) - 1)

http://tracker.firebirdsql.org/browse/CORE-4717

Data Manipulation Language (DML)

74

Function Format Description

VAR_POP VAR_POP(<expr>) Returns the the Population Variance, equivalent to

(SUM(<expr> ^ 2) - SUM(<expr>) ^ 2 / COUNT(<expr>)) / COUNT(<expr>)

STDDEV_SAMP STDDEV_SAMP(<expr>) Returns the Sample Standard Deviation, equivalent
to

SQRT(VAR_SAMP(<expr>))

STDDEV_POP STDDEV_POP(<expr>) Returns the Population Standard Deviation, equiva-
lent to

SQRT(VAR_POP(<expr>))

COVAR_SAMP COVAR_SAMP(<expr1>,
<expr2>)

Returns the Sample Population, equivalent to

(SUM(<expr1> * <expr2>) - SUM(<expr1>) * SUM(<expr2>) / COUNT(*)) / (COUNT(*) - 1)

COVAR_POP COVAR_POP(<expr1>,
<expr2>)

Returns the Population Covariance, equivalent to

(SUM(<expr1> * <expr2>) - SUM(<expr1>) * SUM(<expr2>) / COUNT(*)) / COUNT(*)

CORR CORR(<expr1>, <expr2>) Returns the Coefficient of Correlation, equivalent to

COVAR_POP(<expr1>, <expr2>) / (STDDEV_POP(<expr2>) * STDDEV_POP(<expr1>))

Linear Regression Functions

The suite of REGR_* functions analyses the relationships between two sets of numeric data, considering only
sets that are not NULL in either expression. See Tracker ticket CORE-4722.

Syntax

<regr function> ::= <function name>(<expr1>, <expr2>)
<function name> := { REGR_AVGX | REGR_AVGY | REGR_COUNT | REGR_INTERCEPT |
 REGR_R2 | REGR_SLOPE | REGR_SXX | REGR_SXY | REGR_SYY }

Formulae

The formulae use the following variables:

http://tracker.firebirdsql.org/browse/CORE-4722

Data Manipulation Language (DML)

75

 Y: <expr1> (<expr1> IS NOT NULL AND <expr2> IS NOT NULL)
 X: <expr2> (<expr1> IS NOT NULL AND <expr2> IS NOT NULL)
 N: COUNT of recordset unless <expr1> IS NULL OR <expr2> IS NULL

Important

Y and X are DOUBLE PRECISION. N is SMALLINT, INTEGER or BIGINT.

All functions eliminate expression pairs where either expression in the pair is NULL. If no rows remain, the
functions (except REGR_COUNT()) return NULL.

Linear Regression Function Descriptions

Function Format Description

REGR_AVGX REGR_AVGX(Y, X) Returns the average of the independent expression
(Y) in the expression pair. The return value is of type
DOUBLE PRECISION.

Formula: REGR_AVGX(Y, X) = SUM(X) / N

REGR_AVGY REGR_AVGY(Y, X) Returns the average of the dependent expression (X)
in the expression pair. The return value is of type
DOUBLE PRECISION.

Formula: REGR_AVGY(Y, X) = SUM(Y) / N

REGR_COUNT REGR_COUNT(Y, X) Returns the number of expression pairs (Y and X).
The return value is of type SMALLINT, INTEGER
or BIGINT. If no rows remain after elimination of
pairs where either expression is NULL, the function
returns 0.

Formula: REGR_COUNT(Y, X) = N

REGR_INTERCEPT REGR_INTERCEPT(Y, X) Returns the y-intercept of the regression line deter-
mined by a set of expression pairs (Y and X).

Formula: REGR_INTERCEPT(Y, X) = REGR_AVGY(Y, X) - REGR_SLOPE(Y, X) * REGR_AVGX(Y, X)

REGR_R2 REGR_R2(Y, X) Returns the square of the correlation coefficient of a
set of expression pairs (Y and X).

Formula: REGR_R2(Y, X) = POWER(CORR(Y, X),2)

REGR_SLOPE REGR_SLOPE(Y, X) Returns the slope of the regression line, determined
by a set of expression pairs (Y and X).

Data Manipulation Language (DML)

76

Function Format Description

Formula: REGR_SLOPE(Y, X) = COVAR_POP(Y, X) / VAR_POP(X)

REGR_SXX REGR_SXX(Y, X) Returns the sum of squares of the independent ex-
pression (Y) in an expression pair (Y and X).

Formula: REGR_SXX(Y, X) = N * VAR_POP(X)

REGR_SXY REGR_SXY(Y, X) Returns the sum of products of the independent ex-
pression multiplied by the dependent expression in
an expression pair (Y and X).

Formula: REGR_SXY(Y, X) = N * COVAR_POP(Y, X)

REGR_SYY REGR_SYY(Y, X) Returns the sum of squares of the dependent expres-
sion in an expression pair (Y and X).

Formula: REGR_SYY(Y, X) = N * VAR_POP(Y)

TRIM() BLOB Arguments Lose 32 KB limit
Adriano dos Santos Fernandes

In prior versions, TRIM(substring from string) allowed BLOBs for both arguments, but the first argument had
to be smaller than 32 KB. Now both arguments can take BLOBs of up to 4 GB.

String Literal Limit Adjustments
Adriano dos Santos Fernandes

The internal length of a string can, at some levels, be almost 64 KB. Tests demonstrated that it is safe to accept
a string literal of up to that size for writing to a text BLOB. Accordingly,

1. The (32KB - 3) “safety limit” on literal string length for writing to text BLOBs has been raised to 65,533
bytes (64KB - 3);

2. A limit, in characters, is calculated in run-time for strings that are in multi-byte character sets, to avoid
overrunning the bytes limit. For example, for a UTF8 string (max. 3 bytes/character) the run-time limit is
likely to be about (floor (65533/3)) = 21844 characters.

See Tracker ticket CORE-4881.

Enhancements to DATEADD() Internal Function
Adriano dos Santos Fernandes

http://tracker.firebirdsql.org/browse/CORE-4881

Data Manipulation Language (DML)

77

For the internal function DATEADD()

• The function now supports a fractional value for MILLISECOND. See Tracker item CORE-4457.

• the data type of input <amount> arguments has changed from INTEGER to BIGINT. See Tracker item
CORE-4310.

DML Improvements

A collection of useful DML improvements is released with Firebird 3.

Alternatives for Embedding Quotes in String Literals
Adriano dos Santos Fernandes

It is now possible to use a character, or character pair, other than the doubled (escaped) apostrophe, to embed a
quoted string inside another string. The keyword q or Q preceding a quoted string informs the parser that certain
left-right pairs or pairs of identical characters within the string are the delimiters of the embedded string literal.

Syntax

<alternate string literal> ::=
 { q | Q } <quote> <alternate start char> [{ <char> }...] <alternate end char> <quote>

Rules

When <alternate start char> is '(', '{', '[' or '<', <alternate end char> is paired up with its respective “partner”,
viz. ')', '}', ']' and '>'. In other cases, <alternate end char> is the same as <alternate start char>.

Inside the string, i.e., <char> items, single (not escaped) quotes could be used. Each quote will be part of the
result string.

Examples

select q'{abc{def}ghi}' from rdb$database; -- result: abc{def}ghi
select q'!That's a string!' from rdb$database; -- result: That's a string

SQL:2008-Compliant OFFSET and FETCH Clauses
Mark Rotteveel

New SQL:2008 compliant OFFSET and FETCH clauses provide a standard equivalent for FIRST and SKIP,
and an alternative for ROWS...TO, when fetching sets from ordered output.

• The OFFSET clause specifies the number of rows to skip

• The FETCH clause specifies the number of rows to fetch.

http://tracker.firebirdsql.org/browse/CORE-4457
http://tracker.firebirdsql.org/browse/CORE-4310

Data Manipulation Language (DML)

78

As with SKIP and FIRST, OFFSET and FETCH clauses can be applied independently, in both top-level and
nested query expressions. They are available in PSQL and DSQL.

Syntax Pattern

 SELECT ... [ORDER BY <expr_list>]
 [OFFSET <simple_value_expr> { ROW | ROWS }]
 [FETCH { FIRST | NEXT } [<simple_value_expr>] { ROW | ROWS } ONLY]

<simple_value_expr> is a (numeric) literal, a DSQL parameter (?) or a PSQL named parameter (:namedpa-
rameter) that resolves to an integer data type.

Examples

-- 1:
SELECT * FROM T1 ORDER BY COL1
 OFFSET 10 ROWS;
-- 2:
SELECT * FROM T1 ORDER BY COL1
 FETCH FIRST 10 ROWS ONLY;
-- 3:
SELECT * FROM (
 SELECT * FROM T1 ORDER BY COL1 DESC
 OFFSET 1 ROW
 FETCH NEXT 10 ROWS ONLY
) a
 ORDER BY a.COL1
 FETCH FIRST ROW ONLY;

Notes

1. The FIRST/SKIP and ROWS clauses are non-standard alternatives.

2. The OFFSET and/or FETCH clauses cannot be mixed with clauses from the FIRST/SKIP or ROWS al-
ternatives in the same query expression.

3. Expressions and column references are not allowed within either the OFFSET or the FETCH clause.

4. Unlike the ROWS clause, OFFSET and FETCH are available only in SELECT statements.

5. The “percentage FETCH” defined in the SQL standard is not supported.

6. “FETCH ... WITH TIES” defined in the SQL standard is not supported.

Prohibit Edgy Mixing of Implicit/Explicit Joins
Dmitry Yemanov

While mixing of implicit and explict join syntaxes is not recommended at all, the parser would allows them,
nevertheless. Certain “mixes” actually cause the optimizer to produce unexpected results, including “No record
for fetch” errors. The same edgy styles are prohibited by other SQL engines and now they are prohibited in
Firebird.

To visit some discussion on the subject, see the Tracker ticket CORE-2812.

http://tracker.firebirdsql.org/browse/CORE-2812

Data Manipulation Language (DML)

79

Support for Left-side Parameters in WHERE Clause
Adriano dos Santos Fernandes

The following style of subquery, with the parameter in the left side of a WHERE...IN (SELECT...) condition,
would fail with the error “The data type of the parameter is unknown”.

This style is now accepted. For example:

SELECT <columns> FROM table_1 t1
 WHERE <conditions on table_1>
 AND (? IN (SELECT some_col FROM table_2 t2 WHERE t1.id = t2.ref_id))

Important

Better SQL coding practice would be to use EXISTS in these cases; however, developers were stumbling over
this problem when using generated SQL from Hibernate, which used the undesirable style.

Enhancements to the RETURNING Clause
Adriano dos Santos Fernandes

Two enhancements were added to the RETURNING clause:

RETURNING Clause Value Can be Aliased

When using the RETURNING clause to return a value to the client, the value can now be passed under an alias.

Example Without and With Aliases

 UPDATE T1 SET F2 = F2 * 10
 RETURNING OLD.F2, NEW.F2; -- without aliases

 UPDATE T1 SET F2 = F2 * 10
 RETURNING OLD.F2 OLD_F2, NEW.F2 AS NEW_F2; -- with aliases

Note

The keyword AS is optional.

RETURNING Clause from Positioned Updates and Deletes

Support has been added for a RETURNING clause in positioned (WHERE CURRENT OF) UPDATE and
DELETE statements.

Example

Data Manipulation Language (DML)

80

 UPDATE T1 SET F2 = F2 * 10 WHERE CURRENT OF C
 RETURNING NEW.F2;

Cursor Stability
Vlad Khorsun

Until this release, Firebird suffered from an infamous bug whereby a data modification operation could loop
infinitely and, depending on the operation, delete all the rows in a table, continue updating the same rows ad
infinitum or insert rows until the host machine ran out of resources. All DML statements were affected (INSERT,
UPDATE, DELETE, MERGE). It occurred because the engine used an implicit cursor for the operations.

To ensure stability, rows to be inserted, updated or deleted had to be marked in some way in order to avoid
multiple visits. Another workaround was to force the query to have a SORT in its plan, in order to materialize
the cursor.

From Firebird 3, engine uses the Undo log to check whether a row was already inserted or modified by the
current cursor.

Important

This stabilisation does NOT work with SUSPEND loops in PSQL.

An Improvement for GTTs
Vlad Khorsun

Global temporary tables (GTTs) are now writable even in read-only transactions. The effect is as follows.-

Read-only transaction in read-write database
Writable in both ON COMMIT PRESERVE ROWS and ON COMMIT DELETE ROWS

Read-only transaction in read-only database
Writable in ON COMMIT DELETE ROWS only

Also

• Rollback for GTT ON COMMIT DELETE ROWS is faster

• Rows do not need to be backed out on rollback

• Garbage collection in GTT is not delayed by active transactions of other connections

Note

The same refinements were also backported to Firebird 2.5.1.

An Improvement for DML Strings
Adriano dos Santos Fernandes

Data Manipulation Language (DML)

81

Strings in DML queries are now transformed or validated to avoid passing malformed strings to the engine
internals, for example, to the MON$STATEMENTS.MON$SQL_TEXT column.

The solution adopted depends on the character set of the attachment.-

• NONE—non-ASCII characters are transformed to question marks

• Others—the string is checked for malformed characters

COUNT() Now Returns BIGINT

The COUNT() aggregator now returns its result as BIGINT instead of INTEGER.

Optimizations

Optimizations made for this release included:

SIMILAR TO
Adriano dos Santos Fernandes

The performance of SIMILAR TO was improved.

OR'ed Parameter in WHERE Clause
Dmitry Yemanov

Performance for (table.field = :param or :param = -1) in the WHERE clause was enhanced.

Better Choices for Navigation
Dmitry Yemanov

Previously, when an ORDER plan was in a SELECT structure, the optimizer would choose the first index
candidate that matched the ORDER BY or GROUP BY clause. This “first come” approach is not the best when
multiple index choices are available. The Firebird 3 engine surveys all of the available choices and picks the
most suitable index.

See Tracker ticket CORE-4285.

Plainer Execution Path for UNION Queries
Dmitry Yemanov

Previously, the execution path for UNION queries was hierarchical, often causing redundant reads. This opti-
mization replaces the hierarchical execution path with a plainer one that improves performance.

See Tracker ticket CORE-4165.

Index Walk for Compound Index
Dmitry Yemanov

http://tracker.firebirdsql.org/browse/CORE-4285
http://tracker.firebirdsql.org/browse/CORE-4165

Data Manipulation Language (DML)

82

The optimizer now allows an index walk (ORDER plan) when a suitable compound index (A, B) is available
for a query condition of the style WHERE A = ? ORDER BY B.

See Tracker ticket CORE-1846.

Performance Improvement for SET STATISTICS INDEX
Vlad Khorsun

BTR_selectivity() would walk the whole leaf level of given index b-tree to calculate index selectivity. Through-
out the process, the only rescheduling would happen at a disk I/O operation. The effect was to impose long waits
for AST requests from concurrent attachments, such as page lock requests, monitoring, cancellation, etc. An
improvement in Firebird 3 seems to solve that problem.

See Tracker ticket CORE-1846.

Dialect 1 Interface
Adriano dos Santos Fernandes

Selection of SQL_INT64, SQL_DATE and SQL_TIME in dialect 1 was enabled.

See Tracker CORE-3972

Embedded SQL (ESQL) Enhancements
Dmitry Yemanov

Two enhancements were included in the Embedded SQL subset in this release:

Support for UPDATE OR INSERT statement
See Tracker ticket CORE-4438

Support for the RETURNING clause
See Tracker ticket CORE-4437

http://tracker.firebirdsql.org/browse/CORE-1846
http://tracker.firebirdsql.org/browse/CORE-1846
http://tracker.firebirdsql.org/browse/CORE-3972
http://tracker.firebirdsql.org/browse/CORE-4438
http://tracker.firebirdsql.org/browse/CORE-4437

83

Chapter 10

Procedural SQL (PSQL)

Advancements in procedural SQL (PSQL) include:

Quick Links

• PSQL Stored Functions
• PSQL Subroutines
• Packages
• DDL Triggers
• Exceptions with Parameters
• CONTINUE in Looping Logic
• PSQL Cursor Stabilization
• PSQL Cursors as Variables
• SQLSTATE Now Valid in Exception Trap
• Some Size Limits Removed Using New API

PSQL Stored Functions
Dmitry Yemanov

It is now possible to write a scalar function in PSQL and call it just like an internal function.

Syntax for the DDL

 {CREATE [OR ALTER] | ALTER | RECREATE} FUNCTION <name>
 [(param1 [, ...])]
 RETURNS <type>
 AS
 BEGIN
 ...
 END

Tip

The CREATE statement is the declaration syntax for PSQL functions, parallel to DECLARE for legacy UDFs.

Example

CREATE FUNCTION F(X INT) RETURNS INT
AS
BEGIN
 RETURN X+1;
END;

Procedural SQL (PSQL)

84

SELECT F(5) FROM RDB$DATABASE;

PSQL Sub-routines
Adriano dos Santos Fernandes

The header of a PSQL module (stored procedure, stored function, trigger, executable block) can now accept
sub-procedure and sub-function blocks in the header declarations for use within the body of the module.

Syntax for Declaring a Sub-procedure

 DECLARE PROCEDURE <name> [(param1 [, ...])]
 [RETURNS (param1 [, ...])]
 AS
 ...

Syntax for declaring a Sub-function

 DECLARE FUNCTION <name> [(param1 [, ...])]
 RETURNS <type>
 AS
 ...

Examples

SET TERM ^;
--
-- Sub-function in EXECUTE BLOCK
--
EXECUTE BLOCK RETURNS (N INT)
AS
 DECLARE FUNCTION F(X INT) RETURNS INT
 AS
 BEGIN
 RETURN X+1;
 END
BEGIN
 N = F(5);
 SUSPEND;
END ^
--
-- Sub-function inside a stored function
--
CREATE OR ALTER FUNCTION FUNC1 (n1 INTEGER, n2 INTEGER)
 RETURNS INTEGER
 AS
 DECLARE FUNCTION SUBFUNC (n1 INTEGER, n2 INTEGER)
 RETURNS INTEGER
 AS
 BEGIN
 RETURN n1 + n2;
 END
 BEGIN
 RETURN SUBFUNC(n1, n2);

Procedural SQL (PSQL)

85

 END ^
--
select func1(5, 6) from rdb$database ^

Packages
A. dos Santos Fernandes

Acknowledgement

This feature was sponsored with donations gathered at the fifth Brazilian Firebird Developers' Day, 2008

A package is a group of procedures and functions managed as one entity. The notion of “packaging” the code
components of a database operation addresses several objectives:

Modularisation
The idea is to separate blocks of interdependent code into logical modules, as programming languages do.

In programming it is well recognised that grouping code in various ways, in namespaces, units or classes,
for example, is a good thing. With standard procedures and functions in the database this is not possible.
Although they can be grouped in different script files, two problems remain:

1. The grouping is not represented in the database metadata.

2. Scripted routines all participate in a flat namespace and are callable by everyone (we are not referring
to security permissions here).

To facilitate dependency tracking
We want a mechanism to facilitate dependency tracking between a collection of related internal routines, as
well as between this collection and other routines, both packaged and unpackaged.

Firebird packages come in two parts: a header (keyword PACKAGE) and a body (keyword PACKAGE
BODY). This division is very similar to a Delphi unit, the header corresponding to the interface part and the
body corresponding to the implementation part.

The header is created first (CREATE PACKAGE) and the body (CREATE PACKAGE BODY) follows.

Whenever a packaged routine determines that it uses a certain database object, a dependency on that object is
registered in Firebird system tables. Thereafter, to drop, or maybe alter that object, you first need to remove
what depends on it. As it is a package body that depends on it, that package body can just be dropped,
even if some other database object depends on this package. When the body is dropped, the header remains,
allowing you to recreate its body once the changes related to the removed object are done.

To facilitate permission management
It is good practice in general to create routines to require privileged use and to use roles or users to enable
the privileged use. As Firebird runs routines with the caller privileges, it is necessary also to grant resource
usage to each routine when these resources would not be directly accessible to the caller. Usage of each
routine needs to be granted to users and/or roles.

Packaged routines do not have individual privileges. The privileges act on the package. Privileges granted
to packages are valid for all package body routines, including private ones, but are stored for the package
header.

Procedural SQL (PSQL)

86

For example:

 GRANT SELECT ON TABLE secret TO PACKAGE pk_secret;
 GRANT EXECUTE ON PACKAGE pk_secret TO ROLE role_secret;

To enable “private scope”
This objective was to introduce private scope to routines; that is, to make them available only for internal
usage within the defining package.

All programming languages have the notion of routine scope, which is not possible without some form of
grouping. Firebird packages also work like Delphi units in this regard. If a routine is not declared in the
package header (interface) and is implemented in the body (implementation), it becomes a private routine.
A private routine can only be called from inside its package.

Signatures

For each routine that is assigned to a package, elements of a digital signature (the set of [routine name, parameters
and return type]) are stored in the system tables.

The signature of a procedure or routine can be queried, as follows:

SELECT...
-- sample query to come

Packaging Syntax

 <package_header> ::=
 { CREATE [OR ALTER] | ALTER | RECREATE } PACKAGE <name>
 AS
 BEGIN
 [<package_item> ...]
 END

 <package_item> ::=
 <function_decl> ; |
 <procedure_decl> ;

 <function_decl> ::=
 FUNCTION <name> [(<parameters>)] RETURNS <type>

 <procedure_decl> ::=
 PROCEDURE <name> [(<parameters>) [RETURNS (<parameters>)]]

 <package_body> ::=
 { CREATE | RECREATE } PACKAGE BODY <name>
 AS
 BEGIN
 [<package_item> ...]
 [<package_body_item> ...]
 END

Procedural SQL (PSQL)

87

 <package_body_item> ::=
 <function_impl> |
 <procedure_impl>

 <function_impl> ::=
 FUNCTION <name> [(<parameters>)] RETURNS <type>
 AS
 BEGIN
 ...
 END
 |
 FUNCTION <name> [(<parameters>)] RETURNS <type>
 EXTERNAL NAME '<name>' ENGINE <engine>

 <procedure_impl> ::=
 PROCEDURE <name> [(<parameters>) [RETURNS (<parameters>)]]
 AS
 BEGIN
 ...
 END
 |
 PROCEDURE <name> [(<parameters>) [RETURNS (<parameters>)]]
 EXTERNAL NAME '<name>' ENGINE <engine>

 <drop_package_header> ::=
 DROP PACKAGE <name>

 <drop_package_body> ::=
 DROP PACKAGE BODY <name>

Syntax rules

• All routines declared in the header and at the start of the body should be implemented in the body with the
same signature, i.e., you cannot declare the routine in different ways in the header and in the body.

• Default values for procedure parameters cannot be redefined in <package_item> and <package_body_item>.
They can be in <package_body_item> only for private procedures that are not declared.

Notes

• DROP PACKAGE drops the package body before dropping its header.

• The source of package bodies is retained after ALTER/RECREATE PACKAGE. The column RDB
$PACKAGES.RDB$VALID_BODY_FLAG indicates the state of the package body. See Tracker item
CORE-4487.

• UDF declarations (DECLARE EXTERNAL FUNCTION) are currently not supported inside packages.

• Syntax is available for a description (COMMENT ON) for package procedures and functions and their
parameters. See Tracker item CORE-4484.

Simple Packaging Example

SET TERM ^;
-- package header, declarations only
CREATE OR ALTER PACKAGE TEST

http://tracker.firebirdsql.org/browse/CORE-4487
http://tracker.firebirdsql.org/browse/CORE-4484

Procedural SQL (PSQL)

88

AS
BEGIN
 PROCEDURE P1(I INT) RETURNS (O INT); -- public procedure
END

-- package body, implementation
RECREATE PACKAGE BODY TEST
AS
BEGIN
 FUNCTION F1(I INT) RETURNS INT; -- private function
 PROCEDURE P1(I INT) RETURNS (O INT)
 AS
 BEGIN
 END
 FUNCTION F1(I INT) RETURNS INT
 AS
 BEGIN
 RETURN 0;
 END
END ^

Note

More examples can be found in the Firebird installation, in ../examples/package/.

DDL triggers
A. dos Santos Fernandes

Acknowledgement

This feature was sponsored with donations gathered at the fifth Brazilian Firebird Developers' Day, 2008

The purpose of a “DDL trigger” is to enable restrictions to be placed on users who attempt to create, alter or
drop a DDL object.

Syntax Pattern

 <database-trigger> ::=
 {CREATE | RECREATE | CREATE OR ALTER}
 TRIGGER <name>
 [ACTIVE | INACTIVE]
 {BEFORE | AFTER} <ddl event>
 [POSITION <n>]
 AS
 BEGIN
 ...
 END

 <ddl event> ::=
 ANY DDL STATEMENT
 | <ddl event item> [{OR <ddl event item>}...]

 <ddl event item> ::=
 CREATE TABLE

Procedural SQL (PSQL)

89

 | ALTER TABLE
 | DROP TABLE
 | CREATE PROCEDURE
 | ALTER PROCEDURE
 | DROP PROCEDURE
 | CREATE FUNCTION
 | ALTER FUNCTION
 | DROP FUNCTION
 | CREATE TRIGGER
 | ALTER TRIGGER
 | DROP TRIGGER
 | CREATE EXCEPTION
 | ALTER EXCEPTION
 | DROP EXCEPTION
 | CREATE VIEW
 | ALTER VIEW
 | DROP VIEW
 | CREATE DOMAIN
 | ALTER DOMAIN
 | DROP DOMAIN
 | CREATE ROLE
 | ALTER ROLE
 | DROP ROLE
 | CREATE SEQUENCE
 | ALTER SEQUENCE
 | DROP SEQUENCE
 | CREATE USER
 | ALTER USER
 | DROP USER
 | CREATE INDEX
 | ALTER INDEX
 | DROP INDEX
 | CREATE COLLATION
 | DROP COLLATION
 | ALTER CHARACTER SET
 | CREATE PACKAGE
 | ALTER PACKAGE
 | DROP PACKAGE
 | CREATE PACKAGE BODY
 | DROP PACKAGE BODY

Semantics

1. BEFORE triggers are fired before changes to the system tables. AFTER triggers are fired after system table
changes.

Important Rule

The event type [BEFORE | AFTER] of a DDL trigger cannot be changed.

2. When a DDL statement fires a trigger that raises an exception (BEFORE or AFTER, intentionally or un-
intentionally) the statement will not be committed. That is, exceptions can be used to ensure that a DDL
operation will fail if the conditions are not precisely as intended.

3. DDL trigger actions are executed only when committing the transaction in which the affected DDL com-
mand runs. Never overlook the fact that what is possible to do in an AFTER trigger is exactly what is
possible to do after a DDL command without autocommit. You cannot, for example, create a table in the
trigger and use it there.

Procedural SQL (PSQL)

90

4. With “CREATE OR ALTER” statements, a trigger is fired one time at the CREATE event or the ALTER
event, according to the previous existence of the object. With RECREATE statements, a trigger is fired for
the DROP event if the object exists, and for the CREATE event.

5. ALTER and DROP events are generally not fired when the object name does not exist. For the exception,
see point 6.

6. The exception to rule 5 is that BEFORE ALTER/DROP USER triggers fire even when the user name does
not exist. This is because, underneath, these commands perform DML on the security database and the
verification is not done before the command on it is run. This is likely to be different with embedded users,
so do not write code that depends on this.

7. If some exception is raised after the DDL command starts its execution and before AFTER triggers are
fired, AFTER triggers will not be fired.

8. Packaged procedures and triggers do not fire individual {CREATE | ALTER | DROP} {PROCEDURE
| FUNCTION} triggers.

Permissions

The following users can create, alter or drop DDL triggers and access the trigger-related switches in the Firebird
utilities:

• the database owner

• SYSDBA

• a user logged in under the RDB$ADMIN role

• a user having the ALTER DATABASE metadata privilege

Support in Utilities

A DDL trigger is a type of database trigger, so the parameters -nodbtriggers (GBAK and ISQL) and -T
(NBACKUP) apply to them. Remember that only users with the appropriate metadata privileges can use these
switches.

DDL_TRIGGER Context Namespace

The introduction of DDL triggers brings with it the new DDL_TRIGGER namespace for use with RDB
$GET_CONTEXT. Its usage is valid only when a DDL trigger is running. Its use is valid in stored procedures
and functions called by DDL triggers.

The DDL_TRIGGER context works like a stack. Before a DDL trigger is fired, the values relative to the exe-
cuted command are pushed onto this stack. After the trigger finishes, the values are popped. So in the case of
cascade DDL statements, when an user DDL command fires a DDL trigger and this trigger executes another
DDL command with EXECUTE STATEMENT, the values of the DDL_TRIGGER namespace are the ones
relative to the command that fired the last DDL trigger on the call stack.

Procedural SQL (PSQL)

91

Elements of DDL_TRIGGER Context

• EVENT_TYPE: event type (CREATE, ALTER, DROP)

• OBJECT_TYPE: object type (TABLE, VIEW, etc)

• DDL_EVENT: event name (<ddl event item>), where <ddl_event_item> is EVENT_TYPE || ' ' ||
OBJECT_TYPE

• OBJECT_NAME: metadata object name

• OLD_OBJECT_NAME: for tracking the renaming of a domain (see note)

• NEW_OBJECT_NAME: for tracking the renaming of a domain (see note)

• SQL_TEXT: sql statement text

Note

ALTER DOMAIN <old name> TO <new name> sets OLD_OBJECT_NAME and NEW_OBJECT_NAME
in both BEFORE and AFTER triggers. For this command, OBJECT_NAME will have the old object name in
BEFORE triggers and the new object name in AFTER triggers.

Examples Using DDL Triggers

Here is how you might use a DDL trigger to enforce a consistent naming scheme, in this case, stored procedure
names should begin with the prefix “SP_”:

set auto on;
create exception e_invalid_sp_name 'Invalid SP name (should start with SP_)';

set term !;

create trigger trig_ddl_sp before CREATE PROCEDURE
as
begin
 if (rdb$get_context('DDL_TRIGGER', 'OBJECT_NAME') not starting 'SP_') then
 exception e_invalid_sp_name;
end!

-- Test

create procedure sp_test
as
begin
end!

create procedure test
as
begin
end!

-- The last command raises this exception and procedure TEST is not created
-- Statement failed, SQLSTATE = 42000
-- exception 1
-- -E_INVALID_SP_NAME

Procedural SQL (PSQL)

92

-- -Invalid SP name (should start with SP_)
-- -At trigger 'TRIG_DDL_SP' line: 4, col: 5

set term ;!

Implement custom DDL security, in this case restricting the running of DDL commands to certain users:

create exception e_access_denied 'Access denied';

set term !;

create trigger trig_ddl before any ddl statement
as
begin
 if (current_user <> 'SUPER_USER') then
 exception e_access_denied;
end!

-- Test

create procedure sp_test
as
begin
end!

-- The last command raises this exception and procedure SP_TEST is not created
-- Statement failed, SQLSTATE = 42000
-- exception 1
-- -E_ACCESS_DENIED
-- -Access denied
-- -At trigger 'TRIG_DDL' line: 4, col: 5

set term ;!

Use a trigger to log DDL actions and attempts:

create sequence ddl_seq;

create table ddl_log (
 id bigint not null primary key,
 moment timestamp not null,
 user_name varchar(31) not null,
 event_type varchar(25) not null,
 object_type varchar(25) not null,
 ddl_event varchar(25) not null,
 object_name varchar(31) not null,
 sql_text blob sub_type text not null,
 ok char(1) not null
);

set term !;

create trigger trig_ddl_log_before before any ddl statement
as
 declare id type of column ddl_log.id;
begin
 -- We do the changes in an AUTONOMOUS TRANSACTION, so if an exception happens
 -- and the command didn't run, the log will survive.

Procedural SQL (PSQL)

93

 in autonomous transaction do
 begin
 insert into ddl_log (id, moment, user_name, event_type, object_type,
 ddl_event, object_name, sql_text, ok)
 values (next value for ddl_seq, current_timestamp, current_user,
 rdb$get_context('DDL_TRIGGER', 'EVENT_TYPE'),
 rdb$get_context('DDL_TRIGGER', 'OBJECT_TYPE'),
 rdb$get_context('DDL_TRIGGER', 'DDL_EVENT'),
 rdb$get_context('DDL_TRIGGER', 'OBJECT_NAME'),
 rdb$get_context('DDL_TRIGGER', 'SQL_TEXT'),
 'N')
 returning id into id;
 rdb$set_context('USER_SESSION', 'trig_ddl_log_id', id);
 end
end!

-- Note: the above trigger will fire for this DDL command. It's good idea to
-- use -nodbtriggers when working with them!
create trigger trig_ddl_log_after after any ddl statement
as
begin
 -- Here we need an AUTONOMOUS TRANSACTION because the original transaction
 -- will not see the record inserted on the BEFORE trigger autonomous
 -- transaction if user transaction is not READ COMMITTED.
 in autonomous transaction do
 update ddl_log set ok = 'Y'
 where id = rdb$get_context('USER_SESSION', 'trig_ddl_log_id');
end!

commit!

set term ;!

-- Delete the record about trig_ddl_log_after creation.
delete from ddl_log;
commit;

-- Test

-- This will be logged one time
-- (as T1 did not exist, RECREATE acts as CREATE) with OK = Y.
recreate table t1 (
 n1 integer,
 n2 integer
);

-- This will fail as T1 already exists, so OK will be N.
create table t1 (
 n1 integer,
 n2 integer
);

-- T2 does not exist. There will be no log.
drop table t2;

-- This will be logged twice
-- (as T1 exists, RECREATE acts as DROP and CREATE) with OK = Y.
recreate table t1 (
 n integer
);

Procedural SQL (PSQL)

94

commit;

select id, ddl_event, object_name, sql_text, ok
 from ddl_log order by id;

 ID DDL_EVENT OBJECT_NAME SQL_TEXT OK
===================== ========================= ======================= ================= ======
 2 CREATE TABLE T1 80:3 Y
==
SQL_TEXT:
recreate table t1 (
 n1 integer,
 n2 integer
)
==
 3 CREATE TABLE T1 80:2 N
==
SQL_TEXT:
create table t1 (
 n1 integer,
 n2 integer
)
==
 4 DROP TABLE T1 80:6 Y
==
SQL_TEXT:
recreate table t1 (
 n integer
)
==
 5 CREATE TABLE T1 80:9 Y
==
SQL_TEXT:
recreate table t1 (
 n integer
)
==

Scrollable (Bi-directional) Cursor Support
Dmitry Yemanov

Instead of just fetching rows sequentially in a forward direction, “scrollability” allows flexible navigation
through an open cursor set both backwards and forwards. Rows next to, prior to and relative to the current cursor
row can be targetted. In PSQL, a scrollable cursor can be operated on directly. API support is available to enable
DSQL applications to fetch rows in a similar manner.

Cursor Syntax for PSQL

To declare a cursor:

DECLARE <name> SCROLL CURSOR FOR (<select expression>)

Procedural SQL (PSQL)

95

To fetch forward:

FETCH <cursor name> [INTO <var name> [, <var name> ...]];

To fetch in any direction:

FETCH {NEXT | PRIOR | FIRST | LAST | ABSOLUTE <n> | RELATIVE <n>}
 FROM <cursor name> [INTO <var name> [, <var name> ...]];

See also Scrollable Cursor Support for DSQL in the chapter entitled [Changes to the Firebird API and ODS]. The
section entitled Scrollable Cursor Usage explains a little more about the usage of the various FETCH options.

Notes

1. When a scrolling option is omitted, NO SCROLL is implied (i.e., the cursor is opened as forward-only).
This means that only FETCH [NEXT FROM] commands can be used. Other commands will return an
error.

2. Scrollable cursors are internally materialized as a temporary record set, thus consuming memory/disk
resources, so this feature should be used only when really necessary.

Exceptions with parameters
Adriano dos Santos Fernandes

An exception can now be defined with a message containing slots for parameters which are filled and passed
when raising the exception, using the syntax pattern

 EXCEPTION <name> USING (<value list>)

Examples

 create exception e_invalid_val 'Invalid value @1 for the field @2';

...
if (val < 1000) then
 thing = val;
else
 exception e_invalid_val using (val, 'thing');
end

CREATE EXCEPTION EX_BAD_SP_NAME
'Name of procedures must start with ''@1'' : ''@2''';

CREATE TRIGGER TRG_SP_CREATE BEFORE CREATE PROCEDURE
AS

Procedural SQL (PSQL)

96

DECLARE SP_NAME VARCHAR(255);
BEGIN
 SP_NAME = RDB$GET_CONTEXT('DDL_TRIGGER', 'OBJECT_NAME');

 IF (SP_NAME NOT STARTING 'SP_')
 THEN EXCEPTION EX_BAD_SP_NAME USING ('SP_', SP_NAME);
END;

Notes

The status vector is generated using this code combination: isc_except, <exception number>,
isc_formatted_exception, <formatted exception message>, <exception parameters>

Since a new error code (isc_formatted_exception) is used, the client must be v.3.0, or at least use the fire-
bird.msg file from v.3.0, in order to translate the status vector to a string.

Considering, in left-to-right order, each parameter passed in the exception-raising statement as “the Nth”, with
N starting at 1:

• If an Nth parameter is not passed, the text is not substituted.

• If NULL is passed, it is replaced by the string '*** null ***'.

• If more parameters are passed than are defined in the exception message, the surplus ones are ignored.

• The total length of the message, including the values of the parameters, is still limited to 1053 bytes.

CONTINUE in Looping Logic
Adriano dos Santos Fernandes

CONTINUE is a complementary command to BREAK/LEAVE, allowing flow of control to break (leave) and
start of the next iteration of a FOR/WHILE loop.

Syntax

 CONTINUE [<label>];

Example

FOR SELECT A, D FROM ATABLE INTO :achar, :ddate
 DO BEGIN
 IF (ddate < current_data - 30) THEN
 CONTINUE;
 ELSE
 /* do stuff */
 ...
 END

PSQL Cursor Stabilization
Vlad Khorsun

Procedural SQL (PSQL)

97

PSQL cursors without SUSPEND inside are now stable:

FOR SELECT ID FROM T WHERE VAL IS NULL INTO :ID
 DO BEGIN
 UPDATE T SET VAL = 1
 WHERE ID = :ID;
 END

Previously, this block would loop interminably. Now, the loop will not select the value if it was set within the
loop.

Note

This could change the behaviour of legacy code.

If there is a SUSPEND inside the block, the old instability remains: this query, for example, still produces the
infinite loop:

FOR SELECT ID FROM T INTO :ID
 DO BEGIN
 INSERT INTO T (ID) VALUES (:ID);
 SUSPEND;
 END

Extension of Colon Prefix Usage
Adriano dos Santos Fernandes

Hitherto, the colon (:) prefix has been used in PSQL to mark a reference to a variable in DML statements. Its
use has been extended in Firebird 3 for two unrelated purposes:

1. to allow OLD/NEW fields in cursors to be read or assigned to and to assign them to variables.

2. to make variable assignment in both DML and PSQL statements in modules and blocks more flexible and,
where needed, to resolve ambiguity between field names and variable names

PSQL Cursors as Variables

Referencing cursors as record variables is now supported in PSQL. Either explicit (DECLARE AS CURSOR)
or implicit (FOR SELECT) PSQL cursors make their current record available via the cursor name, thus making
the INTO clause optional.

In FOR SELECT loops, it requires the AS CURSOR clause to be specified. For example:

execute block as
begin
 for
 select id, x from t1 as cursor c1
 do begin

Procedural SQL (PSQL)

98

 for select id, x from t2 where x = :c1.x as cursor c2 do
 begin
 /* . . . */
 end
 end
end

Note

Notice the extension of the use of a colon (:) as a prefix to the referenced cursor field.

Another example

for
 select rdb$relation_id as id, rdb$relation_name as name
 from rdb$relations
 where rdb$view_blr is null
 as cursor tables
do begin
 out_id = tables.id;
 out_name = tables.name;
 suspend;
end

To avoid ambiguity, the colon prefix could be used:

 out_id = :tables.id;
 out_name = :tables.name;
/* or */
 :out_id = :tables.id;
 :out_name = :tables.name;

“tables” here is a cursor name and acts similarly to OLD/NEW in triggers.

Colon Prefix as a Variable Marker

It is now valid to apply the colon prefix to a variable on either side of an assignment statement in PSQL-only
constructs.

Previously, these were valid assignments:

 var1 = :var2;
/* or */
 new.fld = :var;

whereas, these were invalid:

 :var1 = :var2;
/* or */
 :new.fld = :var;

Procedural SQL (PSQL)

99

The extension (CORE-4434) fixes this inconsistency.

This is now valid syntax:

create trigger t1 before insert on t1
as
 declare v integer;
begin
 :v = :old.n;
 :new.n = :v;
end

In fact, using this example, there is no difference between

 :v = :old.n;
/* and */
 v = :old.n;

Here, it is just “syntactic sugar” but, in other cases, it provides the means to resolve ambiguity between field
name references and variable names.

Example of possible ambiguity

for
 select rdb$relation_id as id, rdb$relation_name as name
 from rdb$relations
 where rdb$view_blr is null
 as cursor tables
do begin
 out_id = :table.id;
 select tables.name from tables where tables.id = :tables.id into :out_name;
 suspend;
end

Inside the nested SELECT, “tables” is both a table name and a cursor name here, so the colon is used to resolve
the ambiguity.

SQLSTATE in Exception Handlers
Dmitry Yemanov

An SQLSTATE code becomes a valid condition for trapping an exception with a WHEN statement.

Some Size Limits Removed Using New API
Dmitry Yemanov

If and only if the new API is being used:

http://tracker.firebirdsql.org/browse/CORE-4434

Procedural SQL (PSQL)

100

• The size of the body of a stored procedure or a trigger can exceed the traditional limit of 32 KB. The theoretical
limit provided by the new API is 4GB. At the moment, as a security measure, a hard-coded limit of 10MB
is imposed. The same limit of 10MB also applies to any user-defined DSQL query. It may change before
the final release.

• The total size of all input or output parameters for a stored procedure or a user-defined DSQL query is no
longer limited to the traditional size of (64KB minus overhead). The theoretical limit provided by the new
API is 4GB.

101

Chapter 11

Monitoring &
Command-line Utilities

No new monitoring features or other utilities are released with Firebird 3.0. Existing features have undergone
a few improvements.

Monitoring
Dmitry Yemanov

Several changes have been made to the set of virtual tables storing the monitoring information. These are listed
in the System Tables section of Chapter 4, Changes to the Firebird API and ODS.

Tracing

Latest improvements to the Trace functions include:

• Trace output now supports showing the explained plan. See Tracker CORE-4451 (V. Khorsun).

• Tracing execution of stored functions. See Tracker CORE-4345 (V. Khorsun).

• Trace no longer ignores the fact that users from different security databases are actually different users.
It now “knows” in which security database a particular SYSDBA was authenticated or where a privileged
user's elevated privileges are established. It is no longer possible, for example, for a user named SYSDBA
to access security3.fdb if it is not currently authenticated for that access. See See Tracker CORE-4851
(A. Peshkov).

gbak

New “Skip Data” Backup Option
Alex Peshkov

gbak has a new option switch-- -skip_d(ata) to ignore the data from specific tables during a backup.

The switch -skip_d(ata) accepts a regular expression as its argument. For example, to skip two tables in the
employee database (aliased here as 'employee'):

http://tracker.firebirdsql.org/browse/CORE-4451
http://tracker.firebirdsql.org/browse/CORE-4345
http://tracker.firebirdsql.org/browse/CORE-4851

Monitoring & Command-line Utilities

102

 gbak -skip_d '(sales|customer)' employee e1.fbk

Tip

The regex used is the SQL one—the same one that is used for Firebird's SIMILAR TO searches. A guide is
available in the DML chapter of the v.2.5 release notes and also at the Firebird web site.

Long Names for Log Files
Alex Peshkov

This improvement allows the gbak log to take an extra-long name without encountering the message “Attempt
to store 256 bytes in a clumplet”.

Run-time Statistics in Verbose Output
Vlad Khorsun

gbak can now show some runtime statistics in its verbose output. A new command-line switch -STATISTICS
has been added to specify which statistics items should be produced. Currently, four items are implemented:

Table 11.1. Arguments for gbak STATISTICS Output

Item Argument Data Reported

Total time T Time elapsed since the gbak process started, in sec-
onds and milliseconds

Time delta D Time elapsed since the previous line of output, in
seconds and milliseconds

Page reads R Number of page reads since the previous line of out-
put, integer

Page writes W Number of page writes since the previous line of out-
put, integer

At least one item is mandatory for the STATISTICS switch. The arguments are case-insensitive and they can
be in any order. For example, “TDRW” and “WdrT” are equivalent.

The STATISTICS switch will have no effect if the -v[er] switch is not specified.

Verbose output with STATISTICS includes two special lines:

• a line with headers for the specified statistics, printed before the other statistics lines:

gbak: time delta reads writes

http://www.firebirdsql.org/file/documentation/release_notes/html/rlsnotes253.html#rnfb25-dml-regex

Monitoring & Command-line Utilities

103

• a line with total statistics summaries for the specified items, printed after the end of the main process:

gbak: 46.684 0.002 171 82442 total statistics

Note

The feature is fully supported in the Services API with a new item in the SPB (Services Parameter Block). The
fbsvcmgr utility also supports the SPB implementation.

Examples

1. Show total time since gbak start:

gbak -v -STATISTICS T -b employee emp_bkp.fbk -y log21.log

2. Show delta time and page reads:

... -STAT DR ...

3. Show all statistics items:

... -sta TDRW ...

4. Sample of gbak verbose output:

firebird>gbak -v -stat tdrw -r a.fbk a.fdb
gbak:opened file a.fbk
gbak: time delta reads writes
gbak: 0.173 0.173 0 0 transportable backup -- data in XDR format
gbak: 0.175 0.002 0 0 backup file is compressed
gbak: 0.177 0.001 0 0 backup version is 10
gbak: 0.270 0.092 0 650 created database a.fdb, page_size 8192 bytes
gbak: 0.273 0.002 0 2 started transaction
...
gbak: 18.661 0.002 0 0 restoring data for table TEST1
gbak: 18.698 0.036 0 0 10000 records restored
...
gbak: 25.177 0.036 0 0 1770000 records restored
gbak: 25.220 0.042 0 1633 1780000 records restored
...
gbak: 38.702 0.002 0 0 restoring privilege for user SYSDBA
gbak: 38.707 0.004 22 0 creating indexes
gbak: 45.015 6.308 82 38394 activating and creating deferred index T2_VAL
...
gbak: 46.682 0.008 4 13 finishing, closing, and going home
gbak: 46.684 0.002 171 82442 total statistics
gbak:adjusting the ONLINE and FORCED WRITES flags

See also: Tracker ticket CORE-4919

http://tracker.firebirdsql.org/browse/CORE-4919

Monitoring & Command-line Utilities

104

gsec

The gsec utility is deprecated from Firebird 3 forward. This means you are encouraged to use the new SQL
features for managing access described in Chapter 7, Security, in preference to existing equivalents provided
by gsec.

Important

gsec will continue to work with security3.fdb. However, it does not work with alternative security databas-
es.

isql

SET EXPLAIN Extensions for Viewing Detailed Plans
Dmitry Yemanov

A new SET option is added: SET EXPLAIN [ON | OFF]. It extends the SET PLAN option to report the explained
plan instead of the standard one.

If SET PLAN is omitted, then SET EXPLAIN turns the plan output on. SET PLANONLY works as in previous
versions.

Usage options

 SET PLAN = simple plan + query execution
 SET PLANONLY = simple plan, no query execution
 SET PLAN + SET EXPLAIN = explained plan + query execution
 SET PLAN + SET EXPLAIN + SET PLANONLY = explained plan, no query execution
 SET EXPLAIN = explained plan + query execution
 SET EXPLAIN + SET PLANONLY = explained plan, no query execution

Metadata Extract
Claudio Valderrama C.

The metadata extract tool (-[e]x[tract] switch) was improved to create a script that takes the dependency order
of objects properly into account.

Path to INPUT Files
Adriano dos Santos Fernandes

The INPUT command will now use a relative path based on the directory of the last-opened, unclosed file in
the chain to locate the next file.

Monitoring & Command-line Utilities

105

Command Buffer Size Increase
Adriano dos Santos Fernandes

The size of the isql command buffer has increased from 64 KB to 10 MB to match the new engine limits. See
Tracker ticket CORE-4148.

fb_lock_print

Input Arguments
Dmitry Yemanov

fb_lock_print now accepts 32-bit integers as the input arguments for seconds and intervals. Previously they were
limited to SMALLINT.

Useability Improvements
Vlad Khorsun

A few other small improvements:

1. More detailed usage help is available from the command line (-help).

2. Events history and list of owners are no longer output by default: they may be requested explicitly if re-
quired. Header-only is the new default.

3. New -o[wners] switch to print only owners (locks) with pending requests

gfix

-NoLinger Switch
Alex Peshkov

gfix has a new switch -NoLinger to provide a one-off override to the LINGER setting of a database.

For information regarding LINGER, see the write-up in the DDL chapter.

Improvements to Validation Messages
Vlad Khorsun

• Critical validation messages are now split from minor ones

http://tracker.firebirdsql.org/browse/CORE-4148

Monitoring & Command-line Utilities

106

• The table name is now returned in the text of validation contraint error messages, to help identify the error
context

Other Tweaks

Some implementation annoyances were cleared up in several utilities.

All Command-line Utilities

Resolution of Database Path
Alex Peshkov

All utilities resolve database paths in databases.conf when they need to access a database file directly. But
not all of them would follow the same rules when expanding a database name. Now, they do.

Help and Version Information
Claudio Valderrama C.

All command-line utilities except gpre and qli now present help and version information in a unified and coherent
way.

No info yet at CORE-2540.

Hard-coded Messages Replaced
Claudio Valderrama C.

Hard-coded messages were replaced with the regular parameterised-style ones in tracemanager and nbackup.

Arbitrary Switch Syntax Clean-up
Claudio Valderrama C.

Switch options in qli and nbackup were made to check the correctness (or not) of the abbreviated switch options
presented.

http://tracker.firebirdsql.org/browse/CORE-2540

107

Chapter 12

Compatibility Issues

In this section are features and modifications that might affect the way you have installed and used Firebird
in earlier releases.

Where Are the Tools?

On Windows, you will find all of the executable programs, including the command-line and shell tools, in the
Firebird installation (root) folder. In previous versions they were in a folder beneath the root folder, named ..\bin.

On POSIX platforms, you will find the tools and other executable programs in similar locations to those used
for earlier versions. Exactly where depends on the distribution you are using.

aliases.conf Is No More

The file aliases.conf is replaced by databases.conf in the Firebird root directory. The format for
database aliases has not changed so you can copy/paste the contents of your existing aliases.conf file into
databases.conf successfully. The new file is capable of carrying a lot more configuration detail, however,
to enable database-level configuration of many features that were previously available only at the global server
level.

Embedded Connections

For an embedded connection, an authenticated login is no longer required on POSIX platforms. If you provide
a user name and password, the password is ignored. Applications may still require a user name and possibly a
role name, due to SQL privileges in databases.

This feature is new for embedded Firebird on POSIX but it is the way embedded always worked on Windows,
when the embedded engine was a separate executable.

Initializing the Security Database

By default, Firebird 3 is configured for the new authentication model which uses SRP to work with user pass-
words and generate unique session identifiers for traffic encryption. The security database (security3.fdb)
has no predefined users. This is intentional.

However, when using the standard installers for Windows, Linux and MacOSX, the SYSDBA user is created
during the final step of the installation, with a password that is either random or defined via a user input routine.

In a situation where the SYSDBA initialization step either fails, or is missing from an OS-specific install process,
such as a Windows .zip kit install or a dedicated POSIX platform port, it may be necessary to initialize the

Compatibility Issues

108

security database manually for use with the SRP plugins. You will need to create the user SYSDBA and set up
the password for it using SQL CREATE USER command syntax in embedded mode as your first step to getting
access to databases and utilities.

The gsec utility can be used instead but, having been deprecated, it is not discussed here.

Important

This initialization is not required and should NOT be performed if you have configured the server to use legacy
(pre-Firebird 3 style) authentication and user management. The legacy security plugins totally preserve the
legacy behaviour and thus contain the legacy record for SYSDBA with “masterke” as the initial password.

Instructions for configuring firebird.conf for legacy authentication behaviour are in the next section.

Initialization Steps

Initialization is performed in embedded mode using the isql utility. For an embedded connection, an authenti-
cation password is not required and will be ignored if you provide one. An embedded connection will work fine
with no login credentials and “log you in” using your host credentials if you omit a user name. However, even
though the user name is not subject to authentication, creating or modifying anything in the existing security
database requires that the user be SYSDBA; otherwise, isql will throw a privilege error for the CREATE USER
request.

The SQL user management commands will work with any open database. Because the sample database em-
ployee.fdb is present in your installation and already aliased in databases.conf, it is convenient to use
it for the user management task.

1. Stop the Firebird server. Firebird 3 caches connections to the security database aggressively. The pres-
ence of server connections may prevent isql from establishing an embedded connection.

2. In a suitable shell, start an isql interactive session, opening the employee database via its alias:

 > isql -user sysdba employee

3. Create the SYSDBA user:

 SQL> create user SYSDBA password 'SomethingCryptic';
 SQL> commit;
 SQL> quit;

Note

The SYSDBA user will have full administrator rights automatically. Do not assign the ADMIN role (RDB
$ADMIN) to SYSDBA.

Compatibility Issues

109

4. To complete the initialization, start the Firebird server again. Now you will be able to perform a network
login to databases, including the security database, using the password you assigned to SYSDBA.

About Passwords

• An effective password, using the default user manager Srp, can be up to 20 characters, although a password
of up to 255 characters will be valid.

• If you intend in future to configure the server to use legacy authentication (not recommended!), then only the
first 8 characters of any password, including that of the SYSDBA, will be read.

• masterkey is NOT a recommended password for SYSDBA!

Additional Notes About Security Databases

Since Firebird 2, users—including SYSDBA—could not log in to the security database directly. With Firebird
3 it is possible to establish a direct, embedded connection to the security database. With the appropriate config-
uration parameters, you can control the ability to connect remotely to other security databases.

The gsec utility, although deprecated in Firebird 3, is still available for access to security3.fdb only. It
cannot be used to manage a custom user database. It is recommended that database admins plan to move away
from relying on gsec and become familiar with the newer SQL user management features.

Legacy Authentication

If you do not intend to use SRP encrypted log-ins right away and want to use the security database—security
3.fdb— as you have done in previous Firebird versions, proceed as follows:

1. Using a text editor, open firebird.conf and find the entry for the parameter UserManager:

 #UserManager = Srp

Delete the “#” symbol and change the value to:

 UserManager = Legacy_UserManager

2. Find the entry for the WireCrypt parameter:

 #WireCrypt = Enabled (for client) / Required (for server)

Delete the “#” symbol and change the value to:

 WireCrypt = Enabled
 -- or, if you don't plan to use SRP encryption at all --
 WireCrypt = Disabled

Compatibility Issues

110

3. Find the entry for the AuthServer parameter:

 #AuthServer = Srp, WinSspi, Legacy_Auth

Delete the “#” symbol and change the order of the arguments:

 AuthServer = Legacy_Auth, Srp, WinSspi

4. Find the entry for the AuthClient parameter:

 #AuthClient = Srp, WinSspi, Legacy_Auth

Delete the “#” symbol and change the order of the arguments:

 AuthClient = Legacy_Auth, Srp, WinSspi

5. Save the changes.

6. Stop and restart Firebird for the changes to take effect.

Legacy Passwords

• The old masterke password is available for your first login as SYSDBA. It is known to the whole world
and should be changed as soon as possible.

• Reminder: Legacy authentication reads only the first 8 characters of any password.

Local Connections to Superserver on Windows

In previous Firebird versions, a serverless protocol known as “Windows Local” was available to local clients
connecting to Superserver on a Windows platform, using the XNET subsystem. A typical connection string
looked like this:

 c:\Program Files\Firebird_2_5\examples\empbuild\employee.fdb

Under the new unified server, that form of connection is no longer valid for a serverless client connection to
Superserver. It attempts to load an embedded server. If you try whilst Superserver is connected to your database,
you will get a refusal message to the effect “File is in use by another process”.

This is not a bug. Since Superserver clients share resources, another server (in this case, an embedded server)
cannot attach a client to the same database that Superserver has any clients attached to.

However, all is not lost. The XNET subsystem can still do local client sessions for Superserver. You just need
a more elaborate connection string now:

 xnet://alias-or-path-to-database

Compatibility Issues

111

So, for our connection to the employee database:

 xnet://c:\Program Files\Firebird_3_0\examples\empbuild\employee.fdb

or using an alias:

 xnet://employee

Note

New connection strings are available as alternatives for other local connection protocols, too. For more infor-
mation, see New Connection Formats for Local Clients on Windows.

Configuration Parameters

The previously deprecated firebird.conf parameters CompleteBooleanEvaluation, OldColumnNaming
and OldSetClauseSemantics are no longer supported anymore and have been removed. The lack of one or more
of these parameters may break your application code, so please check these settings in firebird.conf on
your older server version.

The parameters UsePriorityScheduler, PrioritySwitchDelay, PriorityBoost, LegacyHash and Lock-
GrantOrder no longer have any use and have been removed.

Important

Ensure that you study the chapter Configuration Additions and Changes in preparation for upgrading user
software to Firebird 3.

SQL Language Changes

It will be necessary to pay attention to some changes in the SQL language implementation.

• Improperly mixed explicit and implicit joins are no longer supported, in accordance with the SQL specifica-
tion. It also means that, in the explicit A JOIN B ON <condition>, the condition is not allowed to refer
to any stream except A and B. See Tracker ticket CORE-2812 for more details.

• The system tables (RDB$—) are now read-only. Attempting any DDL or insert/update/delete statement on
them will be rejected.

Reserved Words

A number of new reserved keywords are introduced. Please refer to the chapter Reserved Words and Changes and
ensure your DSQL statements and procedure/trigger sources do not contain any of those keywords as identifiers.
Otherwise, it will be necessary either to use them quoted (in Dialect 3 only) or to rename them.

http://tracker.firebirdsql.org/browse/CORE-2812

112

Chapter 13

Bugs Fixed

Firebird 3.0 Release Candidate 1:
Bug Fixes and Minor Improvements

The following bug fixes and tweaks were reported prior to v.3.0.0 release candidate 1:

Minor Improvements

(CORE-4911) IMPROVEMENT: Most errors that occur in providers are fatal and it is pointless to try
other providers in the hope another will succeed when that one failed. As an example, if the remote redirector
detects that the format of the database connection string matches a certain protocol, trying other providers will
be futile if connection on that protocol failed. Or, suppose the engine reports some internal database error (other
than invalid ODS version) it will be no use trying to open the same database through the loopback provider.

A better option appeared to be to enumerate the codes for those errors after which it would make sense to try
other providers—primarily isc_unavailable and isc_no_priv. Given the desirability of retaining the
content of the status vector as-is, the solution was to add some more error codes.

Implemented by A. Peshkov

 ~ ~ ~

(CORE-4898) IMPROVEMENT: Creation and loading of functions was slow when there were many
functions in the database. This process has been given a speed boost.

Implemented by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4880) IMPROVEMENT: Creating packages containing many functions was slow. This process
has been given a speed boost.

Implemented by A. dos Santos Fernandes

 ~ ~ ~

Bugs

Core Engine

(CORE-4929) PSQL source with “ELSE IF (<expr>) THEN” block containing commands to manipulate
an explicit cursor would not compile

http://tracker.firebirdsql.org/browse/CORE-4911
http://tracker.firebirdsql.org/browse/CORE-4898
http://tracker.firebirdsql.org/browse/CORE-4880
http://tracker.firebirdsql.org/browse/CORE-4929

Bugs Fixed

113

fixed by D. Yemanov

 ~ ~ ~

(CORE-4921) Predicate IS [NOT] DISTINCT FROM was not being pushed into unions/aggregates,
resulting in sub-optimal plans

fixed by D. Yemanov

 ~ ~ ~

(CORE-4917) ALTER DOMAIN ... TO <new_name> would allows the <new_name> to be specified in
the same pattern as domains generated by the system, i.e., matching to 'RDB$[[:DIGIT:]]*'

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4909) MERGE / HASH JOINs would produce incorrect results when VARCHAR join keys
differed only by trailing spaces

fixed by D. Yemanov

 ~ ~ ~

(CORE-4906) An access violation would occur if the server was shut down with active trace session(s)

fixed by V. Khorsun

 ~ ~ ~

(CORE-4904) Index corruption could occur while inserting data into a long-key-indexed field

fixed by V. Khorsun

 ~ ~ ~

(CORE-4902) Failure of assertion (m_format->fmt_length == m_data.getCount())

fixed by D. Yemanov, V. Khorsun

 ~ ~ ~

(CORE-4897) The fbsvcmgr could produce a broken log when restoring a database

fixed by A. Peshkov

 ~ ~ ~

(CORE-4890) Placing a comment (single-lined or multi-lined) between the final END statement and the
terminator character (^) in stored procedure code produced a compiling error if the utility tool used the legacy
API

fixed by A. Peshkov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-4921
http://tracker.firebirdsql.org/browse/CORE-4917
http://tracker.firebirdsql.org/browse/CORE-4909
http://tracker.firebirdsql.org/browse/CORE-4906
http://tracker.firebirdsql.org/browse/CORE-4904
http://tracker.firebirdsql.org/browse/CORE-4902
http://tracker.firebirdsql.org/browse/CORE-4897
http://tracker.firebirdsql.org/browse/CORE-4890

Bugs Fixed

114

(CORE-4889) Using fbsvcmgr with action_trace_start under SuperSsrver would cause a livelock
and prevent attachments using local protocol

fixed by V. Khorsun

 ~ ~ ~

(CORE-4887) An AFTER CREATE/ALTER PACKAGE DDL trigger would run before inserts and updates
of RDB$PROCEDURES and RDB$FUNCTIONS, whereas it should run after all changes to the system tables.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4884) A script containing EXECUTE BLOCK with MULTIPLE nested BEGIN..END statements
would cause a crash during parsing

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4872) The V.3 fbclient could not work with servers older than V.2.5 via the remote protocol

fixed by D. Yemanov

 ~ ~ ~

(CORE-4861) A segmentation fault could occur when working with a saved exception in a request

fixed by A. Peshkov

 ~ ~ ~

(CORE-4854) The client library was handling non-UTF8 representation of international characters incor-
rectly in the SPB

fixed by A. Peshkov

 ~ ~ ~

(CORE-4848) MERGE ... WHEN NOT MATCHED ... RETURNING was returning wrong (non-null)
values when no insert was performed

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4846) Altering a trigger to attempt to change the table to which it belongs did not succeed but it
failed with bizarre results and an unhelpful error message

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4836) GRANT UPDATE(c) ON T TO U01 WITH GRANT OPTION: user U01 would be unable
to revoke this privilege if some DML was executed before REVOKE

fixed by A. Peshkov

http://tracker.firebirdsql.org/browse/CORE-4889
http://tracker.firebirdsql.org/browse/CORE-4887
http://tracker.firebirdsql.org/browse/CORE-4884
http://tracker.firebirdsql.org/browse/CORE-4872
http://tracker.firebirdsql.org/browse/CORE-4861
http://tracker.firebirdsql.org/browse/CORE-4854
http://tracker.firebirdsql.org/browse/CORE-4848
http://tracker.firebirdsql.org/browse/CORE-4846
http://tracker.firebirdsql.org/browse/CORE-4836

Bugs Fixed

115

 ~ ~ ~

(CORE-4710) “Invalid request BLR at offset 361 context already in use (BLR error)” was the wrong
message for the error concerned, occurring only when the context count was near the 256 limit

fixed by D. Yemanov

 ~ ~ ~

(CORE-4585) A column CHECK constraint could not be created if the column was based on a domain

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4497) Regression: wrong handling in FOR-cursor when a “NOT EXISTS(select from <view>)”
expression was used to check results obtained from a stored procedure

fixed by D. Yemanov

 ~ ~ ~

(CORE-4279) Invalid error message: “CHARACTER SET OCTETS is not defined” when creating a
database specifying isc_dpb_lc_ctype = OCTETS

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4277) A database could be created with an invalid character set as its default

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4276) CREATE TABLE would throw an error if a column was being defined with the character
set DOS775

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4107) (subquery + derived table + union) would produce a wrong result set

fixed by D. Yemanov

 ~ ~ ~

(CORE-3717) Anomalies existed between the three methods of user management, regarding valid user
names and passwords

fixed by A. Peshkov

 ~ ~ ~

(CORE-3545) Validation of domain constraints in PSQL was inconsistent

fixed by A. dos Santos Fernandes

http://tracker.firebirdsql.org/browse/CORE-4710
http://tracker.firebirdsql.org/browse/CORE-4585
http://tracker.firebirdsql.org/browse/CORE-4497
http://tracker.firebirdsql.org/browse/CORE-4279
http://tracker.firebirdsql.org/browse/CORE-4277
http://tracker.firebirdsql.org/browse/CORE-4276
http://tracker.firebirdsql.org/browse/CORE-4107
http://tracker.firebirdsql.org/browse/CORE-3717
http://tracker.firebirdsql.org/browse/CORE-3545

Bugs Fixed

116

 ~ ~ ~

POSIX-Specific

(CORE-4919) On AIX and Solaris, all processes on a Classic server would hang after the death of one
process

fixed by A. Peshkov

 ~ ~ ~

Windows-Specific

(CORE-4859) Embedded server could not work without the folder C:\ProgramData\firebird

fixed by V. Khorsun

 ~ ~ ~

(CORE-4860) Online validation on Windows would fail if the dbname argument contained forward slash
('/') and a concurrent attachment existed that also used '/'

fixed by V. Khorsun

 ~ ~ ~

Utilities

fbsvcmgr

(CORE-4855) Online validation during DML activity in another connection would lead to errors: “Error
while trying to read from file” and “Page in use during flush (210)”

fixed by V. Khorsun

 ~ ~ ~

(CORE-4876) A named trace session launched by fbsvcmgr with a non-empty value for the parameter
trc_name could not be stopped using its name

fixed by V. Khorsun

 ~ ~ ~

gbak

(CORE-4928) The connection information in an ON CONNECT trigger could not be saved if the connection
was established by gbak

http://tracker.firebirdsql.org/browse/CORE-4919
http://tracker.firebirdsql.org/browse/CORE-4859
http://tracker.firebirdsql.org/browse/CORE-4860
http://tracker.firebirdsql.org/browse/CORE-4855
http://tracker.firebirdsql.org/browse/CORE-4876
http://tracker.firebirdsql.org/browse/CORE-4928

Bugs Fixed

117

fixed by A. dos Santos Fernandes

 ~ ~ ~

gfix

(CORE-4899) Using gfix -online in Classic returned the message "IProvider::attachDatabase failed
when loading mapping cache" if access was using a remote protocol

fixed by A. Peshkov

 ~ ~ ~

(CORE-4865) Online validation could return a false report of double-allocated pages

fixed by V. Khorsun

 ~ ~ ~

(CORE-3548) gfix would return an error after correctly shutting down a database

fixed by A. Peshkov

 ~ ~ ~

isql

(CORE-4882) The isql INPUT command (or the -i option at the command line) was reading large (>
64K) lines incorrectly

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4864) CREATE DATABASE fails in isql

fixed by A. Peshkov

 ~ ~ ~

(CORE-4870) In isql, SET COUNT ON reports the wrong number of affected rows when issuing UPDATE
on a view which was created WITH CHECK OPTION

fixed by A. dos Santos Fernandes

 ~ ~ ~

Firebird 3.0 Second Beta Release: Bug Fixes

The following bug fixes were reported prior to the v.3.0.0 Beta 2 release:

http://tracker.firebirdsql.org/browse/CORE-4899
http://tracker.firebirdsql.org/browse/CORE-4865
http://tracker.firebirdsql.org/browse/CORE-3548
http://tracker.firebirdsql.org/browse/CORE-4882
http://tracker.firebirdsql.org/browse/CORE-4864
http://tracker.firebirdsql.org/browse/CORE-4870

Bugs Fixed

118

Core Engine

(CORE-4819) failure of the engine to check the validity of RETURNING_VALUES for EXECUTE
PROCEDURE and INTO for EXECUTE STATEMENT could lead to bugchecks.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4809) HASH/MERGE JOIN was not used for more than two streams if they were joined via
USING/NATURAL clauses and the join was based on DBKEY concatenations.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4806) Regression: generators could be seen and modified by unprivileged users.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4798) Regression: MIN() or MAX() with a join would ignore possible index navigation.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4789) Timestamps that were out of valid range were not prevented from being cast to VARCHAR
or CHAR.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4786) When an attempt was made to insert a duplicate value into a primary or unique key column,
where the length of the key was 127 characters or more, the problematic key was not shown in the error message.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4781) Maximum string length (32765 bytes) was not being validated by the parser.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4774) Table aliasing was being required unnecessarily when doing UPDATE ... RETURNING
RDB$ pseudo-columns.

fixed by A. dos Santos Fernandes

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-4819
http://tracker.firebirdsql.org/browse/CORE-4809
http://tracker.firebirdsql.org/browse/CORE-4806
http://tracker.firebirdsql.org/browse/CORE-4798
http://tracker.firebirdsql.org/browse/CORE-4789
http://tracker.firebirdsql.org/browse/CORE-4786
http://tracker.firebirdsql.org/browse/CORE-4781
http://tracker.firebirdsql.org/browse/CORE-4774

Bugs Fixed

119

(CORE-4768) CREATE USER ... TAGS (argument_1 = 'value1', ..., argument_N = 'valueN') would
return wrong results from the statement when there were many arguments.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4767) In CREATE USER ... TAGS (attr = 'prefix #suffix') the character “#” in the attribute value
would cause the subsequent characters to be dropped from storage.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4760) A user with non-ascii (multi-byte) characters in the name could not be created.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4759) A request synchronization error could occur when building an expression index.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4755) A parameterized exception would produce wrong output when the number of arguments
exceeded seven.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4754) Manipulations with a GTT from several attachments (using EXECUTE STATEMENT
with an ON EXTERNAL clause and different roles) could lead to the error “Internal Firebird consistency check
(invalid SEND request (167), file: JrdStatement.cpp line: 325)”.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4753) Firebird could hang in the embedded mode.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4752) EXECUTE STATEMENT using BLOB parameters would result in an “Invalid BLOB
ID” error.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4747) The error “Invalid BLOB ID” could occur when retrieving MON$STATEMENTS.MON
$SQL_TEXT using EXECUTE STATEMENT with an ON EXTERNAL clause with the db_connect argument
unspecified.

http://tracker.firebirdsql.org/browse/CORE-4768
http://tracker.firebirdsql.org/browse/CORE-4767
http://tracker.firebirdsql.org/browse/CORE-4760
http://tracker.firebirdsql.org/browse/CORE-4759
http://tracker.firebirdsql.org/browse/CORE-4755
http://tracker.firebirdsql.org/browse/CORE-4754
http://tracker.firebirdsql.org/browse/CORE-4753
http://tracker.firebirdsql.org/browse/CORE-4752
http://tracker.firebirdsql.org/browse/CORE-4747

Bugs Fixed

120

fixed by V. Khorsun

 ~ ~ ~

(CORE-4744) The statement ALTER DATABASE SET DEFAULT CHARACTER SET exhibited two
faults: 1) it would take effect only once for the current attachment; 2) it was not checking that the new character
set existed until it was actually used.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4743) A granted role would not work with a non-ASCII user name.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4740) SIMILAR TO with quantifier {n,} in the pattern was failing in v.2.5 with the error “Invalid
pattern” and was producing strange results in v.3.0.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4733) The command ALTER TABLE <T> ALTER TYPE <C>
DOMAIN_WITH_NOT_NULL was not verifying the data in column <C> and would make incorrect assign-
ments in <C> to ZERO / JULIAN_DATE / ASCII(0) for types INT, TIMESTAMP and VARCHAR.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4725) Inconsistencies were exhibited with ALTER DOMAIN and ALTER TABLE involving
DROP NOT NULL and PRIMARY KEYs.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4719) The message “Statement failed, SQLSTATE = 00000 + unknown ISC error 0” would appear
when issuing REVOKE ALL ON ALL FROM <existing_user>.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4713) A “BLOB not found” error would be thrown at rollback after inserting into a table with
an expression index.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4712) Messages stating “Error in isc_release_request() ... when working with legacy security
database” were appearing in firebird.log for the Classic server when connecting with legacy authentication.

http://tracker.firebirdsql.org/browse/CORE-4744
http://tracker.firebirdsql.org/browse/CORE-4743
http://tracker.firebirdsql.org/browse/CORE-4740
http://tracker.firebirdsql.org/browse/CORE-4733
http://tracker.firebirdsql.org/browse/CORE-4725
http://tracker.firebirdsql.org/browse/CORE-4719
http://tracker.firebirdsql.org/browse/CORE-4713
http://tracker.firebirdsql.org/browse/CORE-4712

Bugs Fixed

121

fixed by A. Peshkov

 ~ ~ ~

(CORE-4702) Join order was less optimal than in v2.x.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4684) An error was being thrown while preparing a complex query (“Too many Contexts of
Relation/Procedure/Views. Maximum allowed is 256”.)

fixed by D. Yemanov

 ~ ~ ~

(CORE-4675) Conditions like WHERE <field> = <cursor>.<field> would not use an existing index.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4673) A computed index based on a computed column would store NULL for all its keys.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4670) Constraint violation errors could be swallowed in some cases.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4668) SELECT FROM MON$TABLE_STATS did not work on Superclassic and Classic.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4665) Search criteria would produce wrong results on WHERE <field_C> STARTING WITH
<:value> ORDER BY <field_N> when field_C was the leading part of a compound index key consisting of
{ field_C, field_N }.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4659) A bug was introduced when implementing support for multiple user managers, whereby
the error “Missing security context for\SECURITY3.FDB” could appear when performing some operations
where per-database security was configured.

fixed by A. Peshkov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-4702
http://tracker.firebirdsql.org/browse/CORE-4684
http://tracker.firebirdsql.org/browse/CORE-4675
http://tracker.firebirdsql.org/browse/CORE-4673
http://tracker.firebirdsql.org/browse/CORE-4670
http://tracker.firebirdsql.org/browse/CORE-4668
http://tracker.firebirdsql.org/browse/CORE-4665
http://tracker.firebirdsql.org/browse/CORE-4659

Bugs Fixed

122

(CORE-4656) The server could hang while chasing dead record versions.

fixed by D. Starodubov

 ~ ~ ~

(CORE-4655) MSVC8 and MSVC9 builds of Beta 1 were failing.

fixed by D. Starodubov

 ~ ~ ~

(CORE-4648) A user with the RDB$ADMIN role was denied the privilege for CREATE DATABASE.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4644) Security context and open database errors could present under heavy concurrent load.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4634) The error “No current record for fetch operation” could occur when the same indexed
column was specified in both the WHERE and the ORDER BY clauses.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4631) When the shared memory region backing the lock table could not be remapped, the status
vector would return the error message “Lock manager out of room” without any low-level details (e.g. OS level
error), thus hiding the real cause of the problem.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4624) Firebird's handling of ':' characters in mount table entries was invalid.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4623) PSQL variables based on “Domain” and “Type Of” referring to BLOB with sub_type <
0 were no longer working.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4622) Triggers with the UPDATE OR INSERT statement and IIF() were not working as expected.

fixed by D. Yemanov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-4656
http://tracker.firebirdsql.org/browse/CORE-4655
http://tracker.firebirdsql.org/browse/CORE-4648
http://tracker.firebirdsql.org/browse/CORE-4644
http://tracker.firebirdsql.org/browse/CORE-4634
http://tracker.firebirdsql.org/browse/CORE-4631
http://tracker.firebirdsql.org/browse/CORE-4624
http://tracker.firebirdsql.org/browse/CORE-4623
http://tracker.firebirdsql.org/browse/CORE-4622

Bugs Fixed

123

(CORE-4618) Rollback was failing to undo changes when a MERGE statement was updating the same
target rows multiple times and the optimizer used PLAN MERGE.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4604) EXECUTE STATEMENT was inflating the CHAR_LENGTH() size for VARCHARs.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4599) The REPLACE() function was not working correcting with multi-byte character sets.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4583) The embedded engine would try to load the ICU DLLs from PATH folders.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4582) During the “linger” period, problems would occur when attempting to change some database
properties.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4581) The embedded server was trying to load UDFs from wrong place.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4572) The incorrect error message was returned for PSQL functions when the number of actual
arguments did not match the number of formal arguments.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4571) Selecting from a table with ICU columns would fail where the database had been created
on Linux with ICU 4.2.1 and then copied to Windows.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4561) BUGCHECK(183) was thrown when using a cursor with ORDER BY ID+0 and FOR
UPDATE WITH LOCK.

fixed by D. Yemanov

http://tracker.firebirdsql.org/browse/CORE-4618
http://tracker.firebirdsql.org/browse/CORE-4604
http://tracker.firebirdsql.org/browse/CORE-4599
http://tracker.firebirdsql.org/browse/CORE-4583
http://tracker.firebirdsql.org/browse/CORE-4582
http://tracker.firebirdsql.org/browse/CORE-4581
http://tracker.firebirdsql.org/browse/CORE-4572
http://tracker.firebirdsql.org/browse/CORE-4571
http://tracker.firebirdsql.org/browse/CORE-4561

Bugs Fixed

124

 ~ ~ ~

(CORE-4539) The server would not accept the right plan.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4507) Procedure source could not be deleted.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4472) The message “Modifying function <F> which is currently in use” was displayed when <F>
was called from an internal function declared in another unit.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4384) Problems would occur when a table grew beyond 65535 pointer pages.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4383) Index and BLOBs garbage collection was not working for in-place updates.

fixed by D. Sibiryakov & D. Yemanov

 ~ ~ ~

(CORE-4382) User savepoints were not being released on COMMIT.

fixed by D. Sibiryakov

 ~ ~ ~

(CORE-4369) BUGCHECK(177) was being thrown for a MERGE involving multiple matches.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4280) Stored PSQL functions would accept duplicate input arguments.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4161) It was not possible to insert records into a table having a column GENERATED BY
DEFAULT AS IDENTITY in its DDL.

fixed by D. Yemanov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-4539
http://tracker.firebirdsql.org/browse/CORE-4507
http://tracker.firebirdsql.org/browse/CORE-4472
http://tracker.firebirdsql.org/browse/CORE-4384
http://tracker.firebirdsql.org/browse/CORE-4383
http://tracker.firebirdsql.org/browse/CORE-4382
http://tracker.firebirdsql.org/browse/CORE-4369
http://tracker.firebirdsql.org/browse/CORE-4280
http://tracker.firebirdsql.org/browse/CORE-4161

Bugs Fixed

125

(CORE-3373) It was possible to store a 31-character string in a VARCHAR(25) column.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2932) Field position would be wrong after ALTER POSITION.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2848) Page-level “lock conversion denied” or “lock denied” errors could occur under high load
when no deadlocks were apparent.

fixed by V. Khorsun

 ~ ~ ~

(CORE-214) COUNT (DISTINCT ...) was too slow.

fixed by D. Yemanov

 ~ ~ ~

Server Crashes

(CORE-4766) An access violation would occur on an attempt to manage the users list using EXECUTE
STATEMENT on behalf of a non-SYSDBA user having the RDB$ADMIN role.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4705) Superclassic would crash at disconnect after running EXECUTE STATEMENT as non-
current user.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4653) Infinite mutual stored procedure calls were causing the server to crash instead of returning
the appropriate error, “Too many concurrent executions of the same request”.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4075) The server would bugcheck or crash on an exception in a calculated index.

fixed by D. Yemanov

 ~ ~ ~

(CORE-3632) The application would crash after calling fork() in a process using libfbembed.so.

http://tracker.firebirdsql.org/browse/CORE-3373
http://tracker.firebirdsql.org/browse/CORE-2932
http://tracker.firebirdsql.org/browse/CORE-2848
http://tracker.firebirdsql.org/browse/CORE-214
http://tracker.firebirdsql.org/browse/CORE-4766
http://tracker.firebirdsql.org/browse/CORE-4705
http://tracker.firebirdsql.org/browse/CORE-4653
http://tracker.firebirdsql.org/browse/CORE-4075
http://tracker.firebirdsql.org/browse/CORE-3632

Bugs Fixed

126

fixed by A. Peshkov

 ~ ~ ~

API/Remote Interface

(CORE-4795) fbclient was executing the event callback function twice.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4794) isc_cancel_events() was returning the error “invalid events id (handle) (code: 335545021)”
if an event was no longer queued.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4788) The Superclassic server could hang when receiving a network packet.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4785) Bad op_execute packet would kill the server.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4756) Events were broken in Firebird 3.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4646) Attachment would fail when using LegacyAuth on the server and the default configuration
on the client.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4639) Linux servers could reject connections with a transliteration error.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4471) The Legacy_Auth plugin would not connect from a FB3 to a FB2.5 server when tried
after Win_Sspi.

fixed by A. Peshkov

http://tracker.firebirdsql.org/browse/CORE-4795
http://tracker.firebirdsql.org/browse/CORE-4794
http://tracker.firebirdsql.org/browse/CORE-4788
http://tracker.firebirdsql.org/browse/CORE-4785
http://tracker.firebirdsql.org/browse/CORE-4756
http://tracker.firebirdsql.org/browse/CORE-4646
http://tracker.firebirdsql.org/browse/CORE-4639
http://tracker.firebirdsql.org/browse/CORE-4471

Bugs Fixed

127

 ~ ~ ~

Utilities

isql

(CORE-4782) SHOW TABLE command in isql would fail when the table contained a field with Unicode
collation in its DDL.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4706) isql was padding BLOB columns wrongly when the column alias had more than 17 characters.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4578) In isql, INPUT files were not being properly closed.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4503) In isql, the command SHOW USERS would display only the current user.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4259) The call to setlocale(LC_CTYPE, "") should not be made in isql for Windows.

fixed by F. Schlottmann-Goedde & D. Yemanov

 ~ ~ ~

gbak

(CORE-4715) Restore of a shadowed database would fail if the -k (“restore without shadow”) switch
was used.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4704) Permissions for generators and exceptions were being corrupted after backup/restore.

fixed by D. Yemanov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-4782
http://tracker.firebirdsql.org/browse/CORE-4706
http://tracker.firebirdsql.org/browse/CORE-4578
http://tracker.firebirdsql.org/browse/CORE-4503
http://tracker.firebirdsql.org/browse/CORE-4259
http://tracker.firebirdsql.org/browse/CORE-4715
http://tracker.firebirdsql.org/browse/CORE-4704

Bugs Fixed

128

gsec

(CORE-4698) Typing add -user SYSDBA -pw masterkey -admin yes into gsec would crash firebird.exe.

fixed by V. Khorsun & A. Peshkov

 ~ ~ ~

Firebird 3.0 Second Beta Release: Improvements

The following improvements were implemented prior to the v.3.0.0 Beta 2 release:

(CORE-4791) INSERTING, UPDATING and DELETING were made reserved words to fix ambiguity
with Boolean expressions.

implemented by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4735) An expression 'where bool_field IS true | false' can now use the same index as 'where
bool_field = true | false' if such an index exists.

implemented by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4731) Issuing DML or DDL statements on the RDB$-- system tables is prohibited in Firebird 3.

implemented by A. Peshkov

 ~ ~ ~

(CORE-4729) A flag was added to MON$DATABASE to assist in determining what type of security
database is used - default, self or other.

implemented by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4696) Flushing dirty pages to disk after creation of a temporary table index is now avoided.

implemented by V. Khorsun

 ~ ~ ~

(CORE-4685) Resolved some risky issues on POSIX when aliases in databases.conf were pointing
to symbolic or hard links, allowing invalid database accesses.

implemented by A. Peshkov

 ~ ~ ~

(CORE-4671) Internal temporary blobs are released early, to free up some memory\disk space.

http://tracker.firebirdsql.org/browse/CORE-4698
http://tracker.firebirdsql.org/browse/CORE-4791
http://tracker.firebirdsql.org/browse/CORE-4735
http://tracker.firebirdsql.org/browse/CORE-4731
http://tracker.firebirdsql.org/browse/CORE-4729
http://tracker.firebirdsql.org/browse/CORE-4696
http://tracker.firebirdsql.org/browse/CORE-4685
http://tracker.firebirdsql.org/browse/CORE-4671

Bugs Fixed

129

implemented by V. Khorsun

 ~ ~ ~

(CORE-4610) Diagnostics will now report a tag name when transliteration errors occur in Parameter
Block values.

implemented by A. Peshkov

 ~ ~ ~

(CORE-4607) Support added for having multiple UserManagers in firebird.conf and for using them
from SQL.

implemented by A. Peshkov

 ~ ~ ~

(CORE-4605) The configuration parameter CryptPlugin was renamed to WireCryptPlugin.

implemented by A. Peshkov

 ~ ~ ~

(CORE-4590) The data type of the result returned by the functions CHAR_LENGTH(), BIT_LENGTH()
and OCTET_LENGTH() for BLOBs was changed to BIGINT.

implemented by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4386) “Object in use” errors now come with more details.

implemented by D. Yemanov

 ~ ~ ~

(CORE-3526) Support was added for WHEN SQLSTATE error handlers in PSQL.

implemented by D. Yemanov

 ~ ~ ~

(CORE-3234) Support was added for text BLOBs >= 32K as the first argument for the TRIM() function.

implemented by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3226) IPv6 support for the remote interface.

implemented by M. Kubecek

 ~ ~ ~

(CORE-733) Compression of data over the network.

implemented by A. Peshkov

http://tracker.firebirdsql.org/browse/CORE-4610
http://tracker.firebirdsql.org/browse/CORE-4607
http://tracker.firebirdsql.org/browse/CORE-4605
http://tracker.firebirdsql.org/browse/CORE-4590
http://tracker.firebirdsql.org/browse/CORE-4386
http://tracker.firebirdsql.org/browse/CORE-3526
http://tracker.firebirdsql.org/browse/CORE-3234
http://tracker.firebirdsql.org/browse/CORE-3226
http://tracker.firebirdsql.org/browse/CORE-733

Bugs Fixed

130

 ~ ~ ~

Firebird 3.0 First Beta Release

The following improvements and bug fixes were reported prior to the v.3.0.0 Beta 1 release:

Core Engine

(CORE-4576) The Cache Writer thread could not start.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4574) Regression: Incorrect result in subquery with aggregate.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4570) ALTER PACKAGE was returning a wrong error.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4566) Incorrect size of the output parameter or argument when EXECUTE BLOCK, procedure
or function used a system field in the metadata character set.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4565) GDSCODE could have value = 0 in WHEN-section under some concurrent environments.
This bug affected Superclassic and Classic models but not Superserver.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4555) A DDL trigger was remaining active after being dropped.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4530) A DB_KEY based join of two tables could be ineffective.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4522) DDL permissions were not protecting against removal of BLOB filters.

http://tracker.firebirdsql.org/browse/CORE-4576
http://tracker.firebirdsql.org/browse/CORE-4574
http://tracker.firebirdsql.org/browse/CORE-4570
http://tracker.firebirdsql.org/browse/CORE-4566
http://tracker.firebirdsql.org/browse/CORE-4565
http://tracker.firebirdsql.org/browse/CORE-4555
http://tracker.firebirdsql.org/browse/CORE-4530
http://tracker.firebirdsql.org/browse/CORE-4522

Bugs Fixed

131

fixed by R. Simakov

 ~ ~ ~

(CORE-4515) Regression: trace was reporting UPDATEs in statistics when doing INSERT into
<some_table>.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4505) Use of a named cursor would fail if a statement was not executed.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4488) A FOR SELECT <L> FROM <T> AS CURSOR <C> seems to return a wrong result
if table <T> is modified inside the cursor's BEGIN...END block. Cursor references, which are not variables,
should represent the current state of the record. If it was updated "in place" (via "where current of"), then cursor
references should return the new values. The first example reported in CORE-4488 should return NULLs.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4478) Failure to load a provider or plugin was not reported anywhere.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4477) The field RDB$MAP_TO_TYPE was missing from the system table RDB$TYPES.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4468) CREATE USER GRANT ADMIN ROLE did not work.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4464) Duplicate tags for CREATE/ALTER USER were not handled correctly.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4453) Regression: The NOT NULL constraint, if declared in a domain, did not work.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4447) A positioned UPDATE statement would preclude its index usage for the subsequent cursor
field references.

http://tracker.firebirdsql.org/browse/CORE-4515
http://tracker.firebirdsql.org/browse/CORE-4505
http://tracker.firebirdsql.org/browse/CORE-4488
http://tracker.firebirdsql.org/browse/CORE-4488
http://tracker.firebirdsql.org/browse/CORE-4478
http://tracker.firebirdsql.org/browse/CORE-4477
http://tracker.firebirdsql.org/browse/CORE-4468
http://tracker.firebirdsql.org/browse/CORE-4464
http://tracker.firebirdsql.org/browse/CORE-4453
http://tracker.firebirdsql.org/browse/CORE-4447

Bugs Fixed

132

fixed by D. Yemanov

 ~ ~ ~

(CORE-4444) Engine could hang and block all attachments in an out-of-disk-space condition during
physical backup.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4433) GlobalRWLock could not downgrade an EX lock to SH if readers were present.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4435) After calling release() instead of detach() for an attachment to a database in embedded
mode, the attachment would remain interminably active.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4430) Properties of a user created in Legacy_UserManager were padded with spaces up to 10
characters.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4415) Pointless extraction of generic DDL trigger.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4396) A query executed via EXECUTE STATEMENT was returning the wrong result.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4395) EXECUTE STATEMENT ON EXTERNAL was not finding a Firebird 2.5 database.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4394) "Cursor not found error" when using the legacy API.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4388) SELECT WITH LOCK could enter an infinite loop for a single record.

fixed by D. Yemanov

http://tracker.firebirdsql.org/browse/CORE-4444
http://tracker.firebirdsql.org/browse/CORE-4433
http://tracker.firebirdsql.org/browse/CORE-4435
http://tracker.firebirdsql.org/browse/CORE-4430
http://tracker.firebirdsql.org/browse/CORE-4415
http://tracker.firebirdsql.org/browse/CORE-4396
http://tracker.firebirdsql.org/browse/CORE-4395
http://tracker.firebirdsql.org/browse/CORE-4394
http://tracker.firebirdsql.org/browse/CORE-4388

Bugs Fixed

133

 ~ ~ ~

(CORE-4381) Run-time errors were returning incorrect line/column information.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4379) Explicit cursors containing correlated subqueries in the select list were performing poorly.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4376) Preparation of an erroneous DDL statement was not indicating that the main command failed.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4375) A procedure would execute infinitely if it contained more than 32767 statements inside
any BEGIN/END block.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4374) Truncation error when using EXECUTE STATEMENT with a BLOB.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4373) Package compilation was not checking for duplicate names.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4372) Deadlock could occur when two data pages contained record fragments pointing to each other.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4371) A CREATE FUNCTION or CREATE PROCEDURE statement that referred to a non-
existent exception would return the error message “Error while parsing function's BLR” instead of “exception
not defined”.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4366) A WHERE predicate containing NULL IS NOT DISTINCT FROM (select min(NULL)
from ...) was returning the wrong result.

fixed by D. Yemanov

http://tracker.firebirdsql.org/browse/CORE-4381
http://tracker.firebirdsql.org/browse/CORE-4379
http://tracker.firebirdsql.org/browse/CORE-4376
http://tracker.firebirdsql.org/browse/CORE-4375
http://tracker.firebirdsql.org/browse/CORE-4374
http://tracker.firebirdsql.org/browse/CORE-4373
http://tracker.firebirdsql.org/browse/CORE-4372
http://tracker.firebirdsql.org/browse/CORE-4371
http://tracker.firebirdsql.org/browse/CORE-4366

Bugs Fixed

134

 ~ ~ ~

(CORE-4365) Equality predicate distribution was not working for some complex queries.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4360) SELECT from derived table which contains GROUP BY on a column with a literal value
was returning wrong results.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4354) Parsing of a recursive query would return the error “Column does not belong to referenced
table” when the source table did have such a column.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4353) Sorting records were larger than was really necessary.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4344) Error “no current record for fetch operation” when table inner joins procedure inner joins
table.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4334) Resources (e.g. sort files) owned by a trigger could be left unreleased when the trigger
was interrupted asynchronously.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4331) LAG, LEAD and NTH_VALUE would raise an error when the second argument was NULL.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4330) The function LAG returned an incorrect result if the OFFSET value was assigned from a table.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4326) The keyword SET was required in the ALTER USER statement when it should have been
optional.

fixed by A. Peshkov

http://tracker.firebirdsql.org/browse/CORE-4365
http://tracker.firebirdsql.org/browse/CORE-4360
http://tracker.firebirdsql.org/browse/CORE-4354
http://tracker.firebirdsql.org/browse/CORE-4353
http://tracker.firebirdsql.org/browse/CORE-4344
http://tracker.firebirdsql.org/browse/CORE-4334
http://tracker.firebirdsql.org/browse/CORE-4331
http://tracker.firebirdsql.org/browse/CORE-4330
http://tracker.firebirdsql.org/browse/CORE-4326

Bugs Fixed

135

 ~ ~ ~

(CORE-4318) Regression: Predicates involving PSQL variables or parameters were not pushed inside
the aggregation.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4313) Error “Attempt to reopen an open cursor” could be raised if the query handle was reused
in a different transaction.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4309) The 'Cache Writer' record in MON$ATTACHMENTS would vanish when deleting, via
delete from MON$ATTACHMENTS, another connection that was running a heavy update on a big table.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4307) Any fields present only in the WHERE clause of a view WITH CHECK OPTION would
cause an invalid CHECK CONSTRAINT violation.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4303) Possible races during service destruction.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4301) Non-ASCII data in SEC$USERS was not read correctly.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4286) The error “Statement already has a cursor assigned” would be thrown when trying to execute
another SQL statement using a different cursor name.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4118) Expression index might be overlooked for derived fields or view fields.

fixed by D. Yemanov

 ~ ~ ~

(CORE-3305) A “BLOB not found” error would be returned after creating or altering an invalid trigger.

fixed by D. Yemanov

http://tracker.firebirdsql.org/browse/CORE-4318
http://tracker.firebirdsql.org/browse/CORE-4313
http://tracker.firebirdsql.org/browse/CORE-4309
http://tracker.firebirdsql.org/browse/CORE-4307
http://tracker.firebirdsql.org/browse/CORE-4303
http://tracker.firebirdsql.org/browse/CORE-4301
http://tracker.firebirdsql.org/browse/CORE-4286
http://tracker.firebirdsql.org/browse/CORE-4118
http://tracker.firebirdsql.org/browse/CORE-3305

Bugs Fixed

136

 ~ ~ ~

(CORE-2350) An over-long column name for a SELECT alias was not being rejected, as it should have been.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1475) A database which had active attachments could not be replaced from a backup file even
after the database was shut down.

fixed by D. Yemanov

 ~ ~ ~

Server Crashes

(CORE-4575) The server would crash in the garbage collector thread at disconnect of the last attachment.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4568) The server could crash while disconnecting from the database under load.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4510) A database validation bug could cause the server to crash.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4506) The server would crash when executing almost any "show ..." commands after a reconnect.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4500) Firebird would crash after an unsuccessful remapping of the lock table's shared memory.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4498) The server would crash when getting an explained plan for a DBKEY-based retrieval.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4422) The server would crash when using ROW_NUMBER()over(PARTITION BY x) in an
ORDER by clause.

http://tracker.firebirdsql.org/browse/CORE-2350
http://tracker.firebirdsql.org/browse/CORE-1475
http://tracker.firebirdsql.org/browse/CORE-4575
http://tracker.firebirdsql.org/browse/CORE-4568
http://tracker.firebirdsql.org/browse/CORE-4510
http://tracker.firebirdsql.org/browse/CORE-4506
http://tracker.firebirdsql.org/browse/CORE-4500
http://tracker.firebirdsql.org/browse/CORE-4498
http://tracker.firebirdsql.org/browse/CORE-4422

Bugs Fixed

137

fixed by D. Yemanov

 ~ ~ ~

(CORE-4419) The server could crash while sorting records longer than 128KB.

fixed by D. Yemanov

 ~ ~ ~

(CORE-4322) The engine would crash when aggregate or window functions were used in a recursive query.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4321) Regression: isql was not destroying the SQL statement.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4319) The engine would crash when the Trace config contained the line “connection_id=NN” and
an attempt was made to connect to a non-existent database or alias.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4304) The engine would crash when an attempt to REcreate a table with a foreign key was made
after a syntax error that preceded the RECREATE attempt.

fixed by A. dos Santos Fernandes

 ~ ~ ~

API/Remote Interface

(CORE-4275) CREATE DATABASE would fault if fbclient.dll was loaded from another directory
(Providers = Engine12).

fixed by V. Khorsun

 ~ ~ ~

Utilities

isql

(CORE-4480) isql would issue the warning “Bad debug info format” when connecting to a database with
stored functions after a restore.

fixed by D. Yemanov

http://tracker.firebirdsql.org/browse/CORE-4419
http://tracker.firebirdsql.org/browse/CORE-4322
http://tracker.firebirdsql.org/browse/CORE-4321
http://tracker.firebirdsql.org/browse/CORE-4319
http://tracker.firebirdsql.org/browse/CORE-4304
http://tracker.firebirdsql.org/browse/CORE-4275
http://tracker.firebirdsql.org/browse/CORE-4480

Bugs Fixed

138

 ~ ~ ~

(CORE-4440) isql would crash without connecting when executing the command SHOW VERSION.

fixed by A. Peshkov

 ~ ~ ~

(CORE-4380) isql would truncate a BLOB when reading an empty segment.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4320) Regression: isql would crash when receiving statistics from the execution of a SQL query.

fixed by V. Khorsun

 ~ ~ ~

gbak

(CORE-4470) gbak restore would fail on a database containing dependency between views and packaged
functions.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4425) User collations based on UNICODE were not being upgraded to a newer ICU version
on restore.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4417) gbak refused to commit the index for a primary key with characters accented with an umlaut.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4346) V.3 gbak was unable to restore backups made on earlier server versions.

fixed by D. Yemanov

 ~ ~ ~

nBackup

(CORE-4461) nBackup was printing error messages to stdout instead of stderr.

fixed by A. Peshkov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-4440
http://tracker.firebirdsql.org/browse/CORE-4380
http://tracker.firebirdsql.org/browse/CORE-4320
http://tracker.firebirdsql.org/browse/CORE-4470
http://tracker.firebirdsql.org/browse/CORE-4425
http://tracker.firebirdsql.org/browse/CORE-4417
http://tracker.firebirdsql.org/browse/CORE-4346
http://tracker.firebirdsql.org/browse/CORE-4461

Bugs Fixed

139

qli

(CORE-4327) qli was throwing an error when copying NULL blobs between databases.

fixed by A. Peshkov

 ~ ~ ~

Firebird 3.0 Second Alpha Release

The following improvements and bug fixes were reported as fixed prior to the v.3.0.0 release:

Core Engine

(CORE-4302) Descending index could be very inefficient for some keys

fixed by V. Khorsun

 ~ ~ ~

(CORE-4289) A NOT NULL field from a derived table could become NULL when referred to from
outside the derived table

fixed by D. Yemanov

 ~ ~ ~

(CORE-4281) TYPE OF arguments of stored functions could cause the server to hang if depending on
a domain or column that had been changed

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4270) A subquery involving a windowed function and a where <field> IN(select ...)
condition could cause an error

fixed by D. Yemanov

 ~ ~ ~

(CORE-4265) An unexpected lock conflict error could be raised while connecting to a heavily loaded
database

fixed by D. Yemanov

 ~ ~ ~

(CORE-4262) Context parsing errors could occur with derived tables and CASE functions

fixed by D. Yemanov

http://tracker.firebirdsql.org/browse/CORE-4327
http://tracker.firebirdsql.org/browse/CORE-4302
http://tracker.firebirdsql.org/browse/CORE-4289
http://tracker.firebirdsql.org/browse/CORE-4281
http://tracker.firebirdsql.org/browse/CORE-4270
http://tracker.firebirdsql.org/browse/CORE-4265
http://tracker.firebirdsql.org/browse/CORE-4262

Bugs Fixed

140

 ~ ~ ~

(CORE-4261) JOIN result could be wrong when joined fields had been created via the row_number()
function

fixed by D. Yemanov

 ~ ~ ~

(CORE-4258) The boundary for the minimum value for BIGINT/DECIMAL(18) was wrong

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4251) The Guardian service could write garbage after the end of a message in the Event Log

fixed by V. Khorsun

 ~ ~ ~

(CORE-4250) Access violation could occur in Guardian at process shutdown

fixed by V. Khorsun

 ~ ~ ~

(CORE-4237) Metadata being reported from system table queries for UDF return arguments was different
to that returned in Firebird 2.5

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4234) IF (subfunc()) would throw an error when subfunc returned a Boolean

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4229) Bidirectional cursor was not being positioned by the first call of FETCH LAST

fixed by D. Yemanov

 ~ ~ ~

(CORE-4227) A parser conflict was causing wrong evaluation of BETWEEN and Boolean expressions

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4216) Memory leak with TRIGGER ON TRANSACTION COMMIT

fixed by V. Khorsun

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-4261
http://tracker.firebirdsql.org/browse/CORE-4258
http://tracker.firebirdsql.org/browse/CORE-4251
http://tracker.firebirdsql.org/browse/CORE-4250
http://tracker.firebirdsql.org/browse/CORE-4237
http://tracker.firebirdsql.org/browse/CORE-4234
http://tracker.firebirdsql.org/browse/CORE-4229
http://tracker.firebirdsql.org/browse/CORE-4227
http://tracker.firebirdsql.org/browse/CORE-4216

Bugs Fixed

141

(CORE-4211) The embedded engine would hang for 5 seconds when closing, with errors about timeout
in shutdown process and invalid mutex being written into firebird.log

fixed by A. Peshkov

 ~ ~ ~

(CORE-4201) A computed field would return NULL inside a BEFORE INSERT trigger

fixed by D. Yemanov

 ~ ~ ~

(CORE-4198) An incorrect “token unknown” error would occur when an SQL string ended with a hex
number literal

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4177) Some Boolean expressions were not being allowed

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4159) Incorrect memory statistics were being reported

fixed by D. Yemanov

 ~ ~ ~

(CORE-4156) RDB$GET_CONTEXT/RDB$SET_CONTEXT parameters were being described incor-
rectly as CHAR NOT NULL instead of VARCHAR NULLABLE

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3689) Bad performance and slow response were exhibited when many concurrent sorts were
executed

fixed by D. Yemanov

 ~ ~ ~

(CORE-3291) With bugcheckabort=1 and sweep starting at gap ~21000, “Bugcheck 186 (record disap-
peared)” and 100% CPU load would occur

fixed by V. Khorsun

 ~ ~ ~

(CORE-2165) Unnecessary index reads could occur when using a strict inequality condition

fixed by V. Khorsun

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-4211
http://tracker.firebirdsql.org/browse/CORE-4201
http://tracker.firebirdsql.org/browse/CORE-4198
http://tracker.firebirdsql.org/browse/CORE-4177
http://tracker.firebirdsql.org/browse/CORE-4159
http://tracker.firebirdsql.org/browse/CORE-4156
http://tracker.firebirdsql.org/browse/CORE-3689
http://tracker.firebirdsql.org/browse/CORE-3291
http://tracker.firebirdsql.org/browse/CORE-2165

Bugs Fixed

142

Server Crashes

(CORE-4293) The server could crash on a SELECT with a long or complex list of compound AND/
OR'd predicates

fixed by D. Yemanov

 ~ ~ ~

(CORE-4271) Recreation of an errant package body could cause the engine to crash

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4268) Disconnecting from a database could cause a server crash

fixed by D. Yemanov

 ~ ~ ~

(CORE-4267) Sweeping a database could cause a server crash

fixed by D. Yemanov

 ~ ~ ~

(CORE-4225) The server could crash when trace activity was attempted on a database having a database-
level trigger

fixed by V. Khorsun

 ~ ~ ~

(CORE-4185) Server crashes could occur, reporting “invalid lock id (NNNNN)”

fixed by A. Peshkov

 ~ ~ ~

API/Remote Interface

(CORE-4283) “Resource temporarily unavailable” errors could occur while events were being registered
simultaneously

fixed by A. Peshkov

 ~ ~ ~

(CORE-4236) Database shutdown was being reported as successfully completed before all active connec-
tions had actually been interrupted

fixed by D. Yemanov

http://tracker.firebirdsql.org/browse/CORE-4293
http://tracker.firebirdsql.org/browse/CORE-4271
http://tracker.firebirdsql.org/browse/CORE-4268
http://tracker.firebirdsql.org/browse/CORE-4267
http://tracker.firebirdsql.org/browse/CORE-4225
http://tracker.firebirdsql.org/browse/CORE-4185
http://tracker.firebirdsql.org/browse/CORE-4283
http://tracker.firebirdsql.org/browse/CORE-4236

Bugs Fixed

143

 ~ ~ ~

(CORE-4178) The new API was still returning obscure historical definition artifacts of data fields, instead
of proper metadata properties that would make the interface actually usable

fixed by A. Peshkov

 ~ ~ ~

(CORE-4162) Warnings were not being returned from calls to attachDatabase()

fixed by A. Peshkov

 ~ ~ ~

Security/User Management

(CORE-4241) Log-in could succeed with an empty password

fixed by A. Peshkov

 ~ ~ ~

(CORE-4200) An uncommitted SELECT from the pseudo table sec$users would block new database
connections

fixed by A. Peshkov

 ~ ~ ~

Procedural Language

(CORE-4247) Positioned DELETE (WHERE CURRENT OF <CURSOR>) could fail for tables with
newly added fields

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4244) Creating a procedure could be a problem if it involved adding text in DOS864 character set

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4184) An error would be raised while executing an empty EXECUTE BLOCK with NOT NULL
output parameter

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4160) A parameterized exception would mishandle non-ASCII characters passed as the parameter

fixed by A. dos Santos Fernandes

http://tracker.firebirdsql.org/browse/CORE-4178
http://tracker.firebirdsql.org/browse/CORE-4162
http://tracker.firebirdsql.org/browse/CORE-4241
http://tracker.firebirdsql.org/browse/CORE-4200
http://tracker.firebirdsql.org/browse/CORE-4247
http://tracker.firebirdsql.org/browse/CORE-4244
http://tracker.firebirdsql.org/browse/CORE-4184
http://tracker.firebirdsql.org/browse/CORE-4160

Bugs Fixed

144

 ~ ~ ~

(CORE-4145) Preparing an EXECUTE BLOCK that used domains was causing a memory leak

fixed by A. dos Santos Fernandes

 ~ ~ ~

Data Definition Language

(CORE-4214) Global temporary tables were able to reference permanent relations, which they should
not be able to do

fixed by V. Khorsun

 ~ ~ ~

(CORE-4212) Dropping a foreign key on a Global temporary table would cause a server crash

fixed by V. Khorsun

 ~ ~ ~

(CORE-4203) Packaged routines with CHAR or VARCHAR parameters could not be created

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4180) CREATE COLLATION was not verifying the base collation character set

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4173) Setting a generator value twice in a single transaction would set it to zero

fixed by D. Yemanov

 ~ ~ ~

(CORE-4155) External routines DDL in packages was wrongly reporting termination with semi-colon
as an error

fixed by A. dos Santos Fernandes

 ~ ~ ~

Data Manipulation Language

(CORE-4269) Wrong output would be produced when a field with the result of a windowed function was
used in a query with a useless WHERE 0=0 and GROUP BY clause

fixed by D. Yemanov

http://tracker.firebirdsql.org/browse/CORE-4145
http://tracker.firebirdsql.org/browse/CORE-4214
http://tracker.firebirdsql.org/browse/CORE-4212
http://tracker.firebirdsql.org/browse/CORE-4203
http://tracker.firebirdsql.org/browse/CORE-4180
http://tracker.firebirdsql.org/browse/CORE-4173
http://tracker.firebirdsql.org/browse/CORE-4155
http://tracker.firebirdsql.org/browse/CORE-4269

Bugs Fixed

145

 ~ ~ ~

(CORE-4255) Parameterized queries using RDB$DB_KEY would not work

fixed by D. Yemanov

 ~ ~ ~

(CORE-4240) Recursive query would return incorrect results if passage through more than one branch
was requested

fixed by D. Yemanov

 ~ ~ ~

(CORE-4158) LIKE with escape was not working

fixed by A. dos Santos Fernandes

 ~ ~ ~

Utilities

gfix

(CORE-4297) gfix would crash when the size of the description of a limbo transaction was larger than 1 KB

fixed by V. Khorsun

 ~ ~ ~

fbsvcmgr

(CORE-4298) fbsvcmgr was not recognising sts_record_versions and other sts switches

fixed by A. Peshkov

 ~ ~ ~

isql

(CORE-4259) Bug in the isql command setlocale(LC_CTYPE, "") on Windows due to a reference
to editline, which is not available on that platform

fixed by F. Schlottmann-Goedde

 ~ ~ ~

(CORE-4205) ISQL -x was failing to output the START WITH clause of generators/sequences

fixed by A. dos Santos Fernandes

http://tracker.firebirdsql.org/browse/CORE-4255
http://tracker.firebirdsql.org/browse/CORE-4240
http://tracker.firebirdsql.org/browse/CORE-4158
http://tracker.firebirdsql.org/browse/CORE-4297
http://tracker.firebirdsql.org/browse/CORE-4298
http://tracker.firebirdsql.org/browse/CORE-4259
http://tracker.firebirdsql.org/browse/CORE-4205

Bugs Fixed

146

 ~ ~ ~

(CORE-4149) New permission types were not being displayed by isql

fixed by D. Yemanov

 ~ ~ ~

(CORE-362) It was impossible to enter certain characters in isql

fixed by F. Schlottmann-Goedde

 ~ ~ ~

gbak

(CORE-4202) Backup/restore from an older version to v.3.0 would fail with a BLR error

fixed by D. Yemanov

 ~ ~ ~

(CORE-4168) A backup containing procedures or triggers that selected from external tables could not
be restored with ExternalFileAccess = None

fixed by D. Yemanov

 ~ ~ ~

(CORE-4164) Owner name was missing for generators and exceptions restored from a backup

fixed by D. Yemanov

 ~ ~ ~

nbackup

(CORE-2648) nBackup's delta file was ignoring the Forced Writes setting of the database

fixed by V. Khorsun

 ~ ~ ~

Database Monitoring (MON$)

(CORE-4235) Deadlock could occur while accessing the monitoring tables under concurrent load

fixed by D. Yemanov & V. Khorsun

 ~ ~ ~

(CORE-4176) Monitoring tables were returning incomplete information in Classic and Superclassic
configurations

http://tracker.firebirdsql.org/browse/CORE-4149
http://tracker.firebirdsql.org/browse/CORE-362
http://tracker.firebirdsql.org/browse/CORE-4202
http://tracker.firebirdsql.org/browse/CORE-4168
http://tracker.firebirdsql.org/browse/CORE-4164
http://tracker.firebirdsql.org/browse/CORE-2648
http://tracker.firebirdsql.org/browse/CORE-4235
http://tracker.firebirdsql.org/browse/CORE-4176

Bugs Fixed

147

fixed by D. Yemanov

 ~ ~ ~

Trace

(CORE-4219) Regular expressions with double-slash would fail in trace

fixed by A. Peshkov

 ~ ~ ~

(CORE-4163) Configuration file fbtrace.conf contained syntax errors

fixed by A. Peshkov

 ~ ~ ~

International Language Support

Installation Issues

(CORE-4153) Attempting to use Legacy_Auth directly after install would not work without restarting
the service

fixed by P. Reeves

 ~ ~ ~

Firebird 3.0 First Alpha Release

The following improvements and bug fixes were reported as fixed prior to the v.3.0.0 release:

Core Engine

(CORE-4135) Sweep was blocking the establishment of concurrent attachments in Superserver.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4134) A race condition could occur when auto-sweep was started.

fixed by V. Khorsun

 ~ ~ ~

(CORE-4074) COMPUTED BY columns and POSITION function could produce garbled results.

http://tracker.firebirdsql.org/browse/CORE-4219
http://tracker.firebirdsql.org/browse/CORE-4163
http://tracker.firebirdsql.org/browse/CORE-4153
http://tracker.firebirdsql.org/browse/CORE-4135
http://tracker.firebirdsql.org/browse/CORE-4134
http://tracker.firebirdsql.org/browse/CORE-4074

Bugs Fixed

148

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-4027) Creating a table with computed fields containing SELECT FIRST could produce a corrupted
result.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3973) The SQLDA for an aliased column in a grouped query was missing the original table name,
column name and owner.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3947) Wrong results were produced when a column in the WHERE clause used the collation
option (NUMERIC-SORT=1).

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3941) A unique expression index would exhibit a memory alignment problem.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3929) The invalid error “attempted update of read-only column” would appear when selecting
MINVALUE from a list of more than 255 elements.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3894) When an attempt was made to reduce the size of a CHAR or VARCHAR column, the
numbers delivered in the error message were incorrect.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3874) A computed column would appear in non-existent rows output from a left join.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3820) Some character sets were duplicated in the system table RDB$TYPES.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3754) SIMILAR TO was not working correctly.

http://tracker.firebirdsql.org/browse/CORE-4027
http://tracker.firebirdsql.org/browse/CORE-3973
http://tracker.firebirdsql.org/browse/CORE-3947
http://tracker.firebirdsql.org/browse/CORE-3941
http://tracker.firebirdsql.org/browse/CORE-3929
http://tracker.firebirdsql.org/browse/CORE-3894
http://tracker.firebirdsql.org/browse/CORE-3874
http://tracker.firebirdsql.org/browse/CORE-3820
http://tracker.firebirdsql.org/browse/CORE-3754

Bugs Fixed

149

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3735) An unprivileged user could delete from the system tables RDB$DATABASE, RDB$COL-
LATIONS and RDB$CHARACTER_SETS.

fixed by D. Yemanov

 ~ ~ ~

(CORE-3694) “Internal consistency check” would occur in a query with grouping by subquery+stored
procedure+aggregate.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3672) It was not possible to use the SUBSTRING function to create a computed index for large
columns.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3638) Some collation tweaking: FR_CA_CI_AI collation was introduced; FR_FR was changed
to be identical to FR_CA and FR_FR_CI_AI was changed to be identical to the new FR_CA_CI_AI.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3476) The LIST function was concatenating binary blobs as though they were text.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3401) Collation errors could occur with the use of [type of] <domain> and type of <column>.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3373) It was possible to store a string of length 31 characters into a VARCHAR(25) column.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3338) Regression: Code changes had disabled support for expression indexes with COALESCE,
CASE and DECODE.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3317) Success of row deletion depended on the order of insertion of the rows.

http://tracker.firebirdsql.org/browse/CORE-3735
http://tracker.firebirdsql.org/browse/CORE-3694
http://tracker.firebirdsql.org/browse/CORE-3672
http://tracker.firebirdsql.org/browse/CORE-3638
http://tracker.firebirdsql.org/browse/CORE-3476
http://tracker.firebirdsql.org/browse/CORE-3401
http://tracker.firebirdsql.org/browse/CORE-3373
http://tracker.firebirdsql.org/browse/CORE-3338
http://tracker.firebirdsql.org/browse/CORE-3317

Bugs Fixed

150

fixed by V. Khorsun

 ~ ~ ~

(CORE-3310) A complex expression involving RDB$GET_CONTEXT and BETWEEN worked in DSQL
but failed with a conversion error when selected in a view definition.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3260) Interlock.h was not portable.

fixed by A. Peshkov

 ~ ~ ~

(CORE-3250) The Firebird server could not be started under any user name other than “root”, “firebird”,
“interbas” or “interbase”.

fixed by A. Peshkov

 ~ ~ ~

(CORE-3239) The collation UTF8 UNICODE_CI could not be used in a compound index.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3204) A constraint violation error involving CAST was not being raised inside views.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3052) Comparisons involving multiple index segments could produce wrong result sets.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2988) The concurrent transaction number was not being reported when a lock timeout occurred.

fixed by N. Samofatov

 ~ ~ ~

(CORE-2957) COUNT(*) from a big table could return a negative result.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2952) Character class names in SIMILAR TO expressions could be case-sensitive or case-
insensitive, depending on the collation of the left part, whereas they should be unequivocally case-insensitive.

fixed by D. Sibiryakov

http://tracker.firebirdsql.org/browse/CORE-3310
http://tracker.firebirdsql.org/browse/CORE-3260
http://tracker.firebirdsql.org/browse/CORE-3250
http://tracker.firebirdsql.org/browse/CORE-3239
http://tracker.firebirdsql.org/browse/CORE-3204
http://tracker.firebirdsql.org/browse/CORE-3052
http://tracker.firebirdsql.org/browse/CORE-2988
http://tracker.firebirdsql.org/browse/CORE-2957
http://tracker.firebirdsql.org/browse/CORE-2952

Bugs Fixed

151

 ~ ~ ~

(CORE-2932) An ALTER TABLE..ALTER COLUMN..ALTER POSITION operation could result in
wrong column positions.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2922) The character set used in a constant was not being registered as a dependency.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2913) COLLATE expressions were being applied incorrectly.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2798) Plan output lacked the names of views when selecting from views that contained procedure
calls.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2796) DB_KEY was always zero for rows in external tables.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2678) A full outer join could not use available indices, resulting in very slow execution sometimes.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2508) Use of certain choices of character in double-quoted index names, for example a bracket
character, could defeat the parsing logic when generating a human-readable plan.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2155) A join of a stored procedure with a view or a table could fail with the error “No current
record for fetch operation”.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1712) A buffer overrun error was being caught erroneously in a DOUBLE PRECISION to
VARCHAR conversion in a Dialect 1 database.

fixed by C. Valderrama C.

http://tracker.firebirdsql.org/browse/CORE-2932
http://tracker.firebirdsql.org/browse/CORE-2922
http://tracker.firebirdsql.org/browse/CORE-2913
http://tracker.firebirdsql.org/browse/CORE-2798
http://tracker.firebirdsql.org/browse/CORE-2796
http://tracker.firebirdsql.org/browse/CORE-2678
http://tracker.firebirdsql.org/browse/CORE-2508
http://tracker.firebirdsql.org/browse/CORE-2155
http://tracker.firebirdsql.org/browse/CORE-1712

Bugs Fixed

152

 ~ ~ ~

(CORE-1605) An aggregated query was causing “Bugcheck 232 (invalid operation)”.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1550) An unnecessary index scan was executed when the same index is mapped to both WHERE
and ORDER BY clauses.

fixed by D. Yemanov

 ~ ~ ~

API/Remote Interface

(CORE-3718) The cient library could hang after an unsuccessful attempt to connect to the remote auxiliary
(events) port.

fixed by A. Peshkov

 ~ ~ ~

(CORE-3475) Parameters inside the CAST function were being wrongly described in the SQLDA as
non-nullable.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3269) The client would perform detach incorrectly when the server became unavailable.

fixed by A. Peshkov

 ~ ~ ~

(CORE-2484) An erroneous “Success” message would be returned in the error status vector when failing
to connect to a trash database file.

fixed by C. Valderrama C.

 ~ ~ ~

(CORE-2431) String values in error messages were not converted to the connection character set.

fixed by A. dos Santos Fernandes

 ~ ~ ~

Procedural Language

(CORE-4018) Use of a system domain in declarations of arguments or return values in a stored procedure
could prevent the procedure from being modifiable.

http://tracker.firebirdsql.org/browse/CORE-1605
http://tracker.firebirdsql.org/browse/CORE-1550
http://tracker.firebirdsql.org/browse/CORE-3718
http://tracker.firebirdsql.org/browse/CORE-3475
http://tracker.firebirdsql.org/browse/CORE-3269
http://tracker.firebirdsql.org/browse/CORE-2484
http://tracker.firebirdsql.org/browse/CORE-2431
http://tracker.firebirdsql.org/browse/CORE-4018

Bugs Fixed

153

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3737) EXECUTE BLOCK parameter definitions were not being respected and could cause wrong
behavior with respect to character sets.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3545) Validation of domain CHECK constraints when used in PSQL declarations was inconsistent:
it was using the type of the expression, instead of the type of the variable.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3055) The names of variables or arguments could be wrong or absent in error messages when
more than 256 variables were used.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3047) Resolution of EXECUTE BLOCK parameter collations was using wrong logic.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2204) Constraints on stored procedure output parameters were checked even when the procedure
returned no rows.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1620) Incorrect error message (an absurd column number) was returned if an empty SQL string
was prepared for EXECUTE STATEMENT.

fixed by D. Yemanov

 ~ ~ ~

Data Definition Language

(CORE-3114) Attempting to drop a non-existent generator (sequence) would result in a serious exception.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3056) Problems could occur if further DDL commands were issued in the same transaction
following a CREATE COLLATION command.

http://tracker.firebirdsql.org/browse/CORE-3737
http://tracker.firebirdsql.org/browse/CORE-3545
http://tracker.firebirdsql.org/browse/CORE-3055
http://tracker.firebirdsql.org/browse/CORE-3047
http://tracker.firebirdsql.org/browse/CORE-2204
http://tracker.firebirdsql.org/browse/CORE-1620
http://tracker.firebirdsql.org/browse/CORE-3114
http://tracker.firebirdsql.org/browse/CORE-3056

Bugs Fixed

154

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2696) The ALTER TABLE command allowed the addition of a column with a NOT NULL
definition, allowing a non-savvy DBAdmin to wreck the table.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1748) Unrestorable backup: a problem which would occur if ALTER TABLE...ADD COLUMN
added a column with a NOT NULL constraint. The fix for CORE-2696 has now made it impossible to do this.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1518) Adding a non-nullable column to a populated table would render the table inconsistent. The
fix for CORE-2696 has now made it impossible to do this.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1355) Client tools tended to be confused about how to interpret a NULL that is returned from
a non-nullable column. The fix for CORE-2696 has now made it impossible to add a non-nullable column to
a populated table.

It is not clear, though, whether this part of the fix makes it mandatory to specify a default value for a non-
nullable column.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-634) Bad behaviour of DELETE when the WHERE clause was a subquery involving FIRST/
SKIP: the operation would zap every row in the table.

fixed by V. Khorsun

 ~ ~ ~

(CORE-304) Any user could alter or drop generators and exceptions#a metadata security hole.

fixed by D. Yemanov

 ~ ~ ~

Data Manipulation Language & DSQL

(CORE-4144) When when preparing a query with UNION, the error “context already in use (BLR error)”
was wrongly being thrown.

fixed by V. Khorsun

http://tracker.firebirdsql.org/browse/CORE-2696
http://tracker.firebirdsql.org/browse/CORE-1748
http://tracker.firebirdsql.org/browse/CORE-2696
http://tracker.firebirdsql.org/browse/CORE-1518
http://tracker.firebirdsql.org/browse/CORE-2696
http://tracker.firebirdsql.org/browse/CORE-1355
http://tracker.firebirdsql.org/browse/CORE-2696
http://tracker.firebirdsql.org/browse/CORE-634
http://tracker.firebirdsql.org/browse/CORE-304
http://tracker.firebirdsql.org/browse/CORE-4144

Bugs Fixed

155

 ~ ~ ~

(CORE-4005) Recursive CTEs were returning a wrong error message.

fixed by V. Khorsun

 ~ ~ ~

(CORE-3416) Inserting a word containing the 8-bit character 'ä' into a CHARACTER SET ASCII column
would succeed instead of throwing a transliteration error.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3201) The internal function ATAN2 was returning an incorrect value with arguments (0, 0).

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3174) An expression index involving TRIM could lead to an incorrect indexed lookup.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2699) A common table expression context could be used with parameters.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2606) A multi-byte CHAR value requested as VARCHAR was returned with padded spaces.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2238) With UTF8 and large varchar fields, IS DISTINCT FROM would cause the error “Imple-
mentation limit exceeded”.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1188) STARTING WITH ? (where the parameter value supplied is an empty string) would fail
if the plan used a compound index.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-92) Infinite insertion cycle: INSERT INTO THIS_TABLE SELECT ... FROM THIS_TABLE
would loop forever until resources were exhausted.

fixed by V. Khorsun

http://tracker.firebirdsql.org/browse/CORE-4005
http://tracker.firebirdsql.org/browse/CORE-3416
http://tracker.firebirdsql.org/browse/CORE-3201
http://tracker.firebirdsql.org/browse/CORE-3174
http://tracker.firebirdsql.org/browse/CORE-2699
http://tracker.firebirdsql.org/browse/CORE-2606
http://tracker.firebirdsql.org/browse/CORE-2238
http://tracker.firebirdsql.org/browse/CORE-1188
http://tracker.firebirdsql.org/browse/CORE-92

Bugs Fixed

156

 ~ ~ ~

Command-line Utilities

(CORE-2547) Utilities did not always honour the minimum number of characters required to recognise
an option.

fixed by C. Valderrama C.

 ~ ~ ~

Other old bugs that were fixed in utilities:

FbGuard

(CORE-2784) Guardian would keep creating more and more threads each time FBServer died.

fixed by C. Valderrama C.

 ~ ~ ~

(CORE-1595) Firebird Guardian's tray icon would disappear after a Windows Explorer crash.

fixed by C. Valderrama C.

 ~ ~ ~

isql

(CORE-4137) isql was generating metadata script output with syntax errors in the CHARACTER SET
clause, e.g., CHARACTER SETISO8859_1.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-3431) isql was padding UTF-8 data incorrectly.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2788) isql would extract the array dimensions after the character set name.

fixed by C. Valderrama C.

 ~ ~ ~

gbak

(CORE-3575) gbak did not support backup volumes of size greater than 4GB.

http://tracker.firebirdsql.org/browse/CORE-2547
http://tracker.firebirdsql.org/browse/CORE-2784
http://tracker.firebirdsql.org/browse/CORE-1595
http://tracker.firebirdsql.org/browse/CORE-4137
http://tracker.firebirdsql.org/browse/CORE-3431
http://tracker.firebirdsql.org/browse/CORE-2788
http://tracker.firebirdsql.org/browse/CORE-3575

Bugs Fixed

157

fixed by A. Peshkov

 ~ ~ ~

(CORE-2740) gbak would restore invalid views without any warning to the user.

fixed by C. Valderrama C.

 ~ ~ ~

(CORE-2545) Several validations were lacking in gbak.

fixed by C. Valderrama C.

 ~ ~ ~

nbackup

(CORE-2543) nbackup could hide the real cause of a failure.

fixed by C. Valderrama C.

 ~ ~ ~

International Language Support

(CORE-4136) The “Sharp-S” character was being treated incorrectly in the UNICODE_CI_AI collation.

fixed by A. dos Santos Fernandes

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-2740
http://tracker.firebirdsql.org/browse/CORE-2545
http://tracker.firebirdsql.org/browse/CORE-2543
http://tracker.firebirdsql.org/browse/CORE-4136

158

Chapter 14

Firebird 3.0 Project Teams

Table 14.1. Firebird Development Teams

Developer Country Major Tasks

Dmitry Yemanov Russian
Federation

Full-time database engineer/implementor, core team leader

Alex Peshkov Russian
Federation

Full-time security features coordinator; buildmaster; porting
authority

Claudio Valderrama Chile Code scrutineer; bug-finder and fixer; ISQL enhancements;
UDF fixer, designer and implementor

Vladyslav Khorsun Ukraine Full-time DB engineer, SQL feature designer/implementor

Adriano dos San-
tos Fernandes

Brazil International character-set handling; text and text BLOB en-
hancements; new DSQL features; code scrutineering

Roman Simakov Russian
Federation

Engine contributions

Paul Beach France Release Manager; HP-UX builds; MacOS Builds; Solaris
Builds

Pavel Cisar Czech Re-
public

QA tools designer/coordinator

Philippe Makowski France QA tester

Paul Reeves France Win32 installers and builds

Mark Rotteveel The Nether-
lands

Jaybird implementor and co-coordinator

Jiri Cincura Czech Re-
public

Developer and coordinator of .NET providers

Alexander Potapchenko Russian
Federation

Developer and coordinator of ODBC/JDBC driver for Fire-
bird

Stephen Boyd Canada GPRE contributions

Alexey Kovyazin Russian
Federation

Website coordinator

Paul Vinkenoog The Nether-
lands

Coordinator, Firebird documentation project; documentation
writer and tools developer/implementor

Norman Dunbar U.K. Documentation writer

Firebird 3.0 Project Teams

159

Developer Country Major Tasks

Pavel Menshchikov Russian
Federation

Documentation translator

Tomneko Hayashi Japan Documentation translator

Umberto (Mimmo) Masotti Italy Documentation translator

Helen Borrie Australia Release notes editor; Chief of Thought Police

160

Appendix A:
Licence Notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this Licence. Copies of the
Licence are available at http://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsql.org/
manual/pdl.html (HTML).

The Original Documentation is entitled Firebird 3.0 Release Notes.

The Initial Writer of the Original Documentation is: Helen Borrie. Persons named in attributions are Contrib-
utors.

Copyright (C) 2004-2015. All Rights Reserved. Initial Writer contact: helebor at users dot sourceforge dot net.

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 3.0 Release Notes
	Table of Contents
	General Notes
	Bug Reporting
	Documentation

	New In Firebird 3.0
	Summary of Features
	Compatibility with Older Versions

	Changes in the Firebird Engine
	Remodelled Architecture
	Working Modes (“Models”)
	Execution Modes

	Providers
	The Providers Architecture
	The Components
	Failure Response

	Other Providers
	Custom Providers

	Providers Q & A

	Plug-Ins
	What is a Plug-In?
	Plug-In Types
	Technical Details
	Features of a Plug-In
	Configuring Plug-ins
	plugins.conf

	Plug-Ins Q & A

	External Engines
	External Names
	Module Availability
	Scope
	Character Set
	Enabling UDRs in the Database
	How it Works

	Optimizer Improvements
	Other Optimizations
	Remote Interface/Network Protocol
	Miscellaneous Improvements
	Connections Limit Raised
	Better Error Diagnosis
	ICU Version Upgraded
	Internal Debug Info Made Human-readable
	A Silly Message is Replaced
	New Pseudocolumn RDB$RECORD_VERSION
	systemd init Scripts

	Changes to the Firebird API and ODS
	ODS (On-Disk Structure) Changes
	New ODS Number
	Implementation ID is Deprecated
	Maximum Page Size
	Maximum Number of Page Buffers in Cache
	System Tables
	New System Tables
	Changes to System Tables
	RDB$SYSTEM_FLAG
	RDB$TYPES
	Monitoring Tables
	MON$ATTACHMENTS
	MON$DATABASE
	MON$STATEMENTS

	Application Programming Interfaces
	Interfaces and the New Object-oriented API
	The Non-COM Choice
	The Hierarchy of Interfaces
	Interfaces Q & A

	Other New APIs
	API Improvements
	Scrollable Cursor Support
	Scrollable Cursor Usage

	SPB Support for New Statistics Feature in gbak Output
	Better Error Reports for String Overflows
	More Detail in “Wrong Page Type” Error Reports
	New Services Tag for Overriding LINGER
	New Connection Formats for Local Superserver Clients
 on Windows
	Perform Some Validation Services On-line
	What Online Validation Can Do
	Protection During Online Validation
	The New Services API action: isc_action_svc_validate
	Using isc_action_svc_validate Interactively

	Code Improvement

	Reserved Words and Changes
	New Keywords in Firebird 3.0

	Configuration Additions and Changes
	Scope of Parameters
	Macro Substitution
	Includes
	Wildcards

	Expression of Parameter Values
	“Per-database” Configuration
	Format of Configuration Entries
	Parameters Available

	New Parameters
	SecurityDatabase
	AuthServer and AuthClient
	WireCrypt
	UserManager
	TracePlugin
	WireCryptPlugin
	KeyHolderPlugin
	Providers
	SharedCache and SharedDatabase
	RemoteAccess
	IPv6V6Only
	Server
	Client

	Parameters Changed or Enhanced
	ExternalFileAccess

	Parameters Removed or Deprecated
	RootDirectory
	LegacyHash
	OldSetClauseSemantics
	OldColumnNaming
	LockGrantOrder
	Obsolete Windows priority settings

	Security
	Location of User Lists
	Creating an Alternative Security Database

	Database Encryption
	Secret Key
	Tasks

	New Authentication Method in Firebird 3
	SSL/TLS Support
	Increased Password Length
	The Authentication Plug-in
	Multiple User Managers

	"Over the wire" Connection Encryption
	The Secret Session Key
	Specifications for the Key
	Exporting a Key from an Authentication Plug-in

	Mapping of Users to Objects
	The Mapping Rule
	Syntax for MAPPING Objects
	Legacy Mapping Rule
	Mapping Windows Users to CURRENT_USER

	SQL Features for Managing Access
	SQL-driven User Management
	Older Methods Deprecated
	Usage Details

	SET ROLE
	SET TRUSTED ROLE

	GRANT/REVOKE Rights GRANTED BY Specified User
	REVOKE ALL ON ALL
	User Privileges for Metadata Changes
	GRANT EXECUTE Privileges for UDFs
	Improvement for Recursive Stored Procedures
	Privileges to Protect Other Metadata Objects

	Pseudo-Tables with List of Users

	Data Definition Language (DDL)
	Quick Links
	DDL Enhancements
	New Data Types
	BOOLEAN Data Type
	The IS Operator
	Keywords INSERTING, UPDATING and DELETING

	Identity Column Type
	Implementation Details

	Manage Nullability in Domains and Columns
	Modify Generators (Sequences)
	Alter the Default Character Set
	BLOB Expressions in Computed Columns
	“Linger” Database Closure for Superserver
	New SQL for Managing Users and Access Privileges
	SQL-driven User Management
	SET ROLE and SET TRUSTED ROLE
	GRANTED BY Clause for Privileges
	REVOKE ALL ON ALL
	GRANT/REVOKE Metadata Privileges
	EXECUTE Privileges for UDFs
	GRANT/REVOKE USAGE

	Data Manipulation Language (DML)
	Quick Links
	Supplemental SQL 2008 Features for MERGE
	Window (Analytical) Functions
	Aggregate Functions Used as Window Functions
	Partitioning
	Ordering
	Exclusive window functions
	Ranking Functions
	Navigational Functions

	Advanced Plan Output
	Advanced PLAN Output in isql

	Internal Functions
	SUBSTRING with Regular Expressions
	Inverse Hyperbolic Trigonometric Functions
	Statistical Functions
	Aggregate Statistical Functions
	Linear Regression Functions

	TRIM() BLOB Arguments Lose 32 KB limit
	String Literal Limit Adjustments
	Enhancements to DATEADD() Internal Function

	DML Improvements
	Alternatives for Embedding Quotes in String Literals
	SQL:2008-Compliant OFFSET and FETCH Clauses
	Prohibit Edgy Mixing of Implicit/Explicit Joins
	Support for Left-side Parameters in WHERE Clause
	Enhancements to the RETURNING Clause
	RETURNING Clause Value Can be Aliased
	RETURNING Clause from Positioned Updates and Deletes

	Cursor Stability
	An Improvement for GTTs
	An Improvement for DML Strings
	COUNT() Now Returns BIGINT
	Optimizations
	SIMILAR TO
	OR'ed Parameter in WHERE Clause
	Better Choices for Navigation
	Plainer Execution Path for UNION Queries
	Index Walk for Compound Index
	Performance Improvement for SET STATISTICS INDEX

	Dialect 1 Interface
	Embedded SQL (ESQL) Enhancements

	Procedural SQL (PSQL)
	Quick Links
	PSQL Stored Functions
	PSQL Sub-routines
	Packages
	Signatures
	Packaging Syntax
	Simple Packaging Example

	DDL triggers
	Permissions
	Support in Utilities
	DDL_TRIGGER Context Namespace
	Elements of DDL_TRIGGER Context

	Scrollable (Bi-directional) Cursor Support
	Cursor Syntax for PSQL

	Exceptions with parameters
	CONTINUE in Looping Logic
	PSQL Cursor Stabilization
	Extension of Colon Prefix Usage
	PSQL Cursors as Variables
	Colon Prefix as a Variable Marker

	SQLSTATE in Exception Handlers
	Some Size Limits Removed Using New API

	Monitoring & Command-line Utilities
	Monitoring
	Tracing
	gbak
	New “Skip Data” Backup Option
	Long Names for Log Files
	Run-time Statistics in Verbose Output

	gsec
	isql
	SET EXPLAIN Extensions for Viewing Detailed Plans
	Metadata Extract
	Path to INPUT Files
	Command Buffer Size Increase

	fb_lock_print
	Input Arguments
	Useability Improvements

	gfix
	-NoLinger Switch
	Improvements to Validation Messages

	Other Tweaks
	All Command-line Utilities
	Resolution of Database Path
	Help and Version Information

	Hard-coded Messages Replaced
	Arbitrary Switch Syntax Clean-up

	Compatibility Issues
	Where Are the Tools?
	aliases.conf Is No More
	Embedded Connections
	Initializing the Security Database
	Initialization Steps
	Additional Notes About Security Databases

	Legacy Authentication
	Local Connections to Superserver on Windows
	Configuration Parameters
	SQL Language Changes
	Reserved Words

	Bugs Fixed
	Firebird 3.0 Release Candidate 1: Bug Fixes and Minor
 Improvements
	Core Engine
	POSIX-Specific
	Windows-Specific
	Utilities
	fbsvcmgr
	gbak
	gfix
	isql

	Firebird 3.0 Second Beta Release: Bug Fixes
	Core Engine
	Server Crashes
	API/Remote Interface
	Utilities
	isql
	gbak
	gsec

	Firebird 3.0 Second Beta Release: Improvements
	Firebird 3.0 First Beta Release
	Core Engine
	Server Crashes
	API/Remote Interface
	Utilities
	isql
	gbak
	nBackup
	qli

	Firebird 3.0 Second Alpha Release
	Core Engine
	Server Crashes
	API/Remote Interface
	Security/User Management
	Procedural Language
	Data Definition Language
	Data Manipulation Language
	Utilities
	gfix
	fbsvcmgr
	isql
	gbak
	nbackup
	Database Monitoring (MON$)
	Trace

	International Language Support
	Installation Issues

	Firebird 3.0 First Alpha Release
	Core Engine
	API/Remote Interface
	Procedural Language
	Data Definition Language
	Data Manipulation Language & DSQL
	Command-line Utilities
	FbGuard
	isql
	gbak
	nbackup

	International Language Support

	Firebird 3.0 Project Teams
	A. Licence Notice

